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Abstract Interpretation

xxxx

Abstract Interpretation

› Abstract interpretation theory [Thesis, POPL ’77, PO-
PL ’79, JLC ’92] formalizes the idea of abstraction for
mathematical constructs involved in the specification
of properties of computer systems.
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Applications of Abstract Interpretation

› Static Program Analysis [POPL ’77,78,79] inluding Dataflow

Analysis [POPL ’79,00], Set-based Analysis [FPCA ’95]

› Syntax Analysis [TCS 290(1) 2002]

› Hierarchies of Semantics (including Proofs) [POPL ’92, TCS
277(1–2) 2002]

› Typing [POPL ’97]

› Model Checking [POPL ’00]

› Program Transformation [POPL ’02]
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The Abstract Interpretation Methodology

› All these techniques involve approximations that can
be formalized by abstract interpretation;

› Consequently, sound (and complete) abstracts seman-
tics, including abstract models, algorithms, etc can be
derived systematically in a mathematically construc-
tive way by algebraic calculation.
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A Challenge for Abstract Interpretation

› Most applications of abstract interpretation tolerate a
small rate (typically 5 to 15%) of false alarms:

-- Run-time checks elimination, Partial evaluation!
do not optimize,

-- Typing ! reject some correct programs, etc;

› Some applications require no false alarm at all:

-- Program verification.

› Theoretically possible [SARA ’00]; Practically feasible?

Reference

[SARA ’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.

Requirements for Verification

› Correctness 1 (excludes non exhaustive methods like
simulation or test),

› Automation (no manual production of a programmodel,
no human assistance for provers),

› Precision (general-purpose static program analyzers
produce too many false alarms),

› Scaling up (to a few hundred thousand lines), and

› Efficiency (with minimal space and time requirements
for verification during software production).

— 7 —

Content

› A short introduction to abstract interpretation

› Application to predicate abstraction

› A practical application of abstract interpretation to
the verification of safety critical embedded software

› Would automatic predicate abstraction have done it?

› Conclusion

1 Automatic verification for proving the absence of errors, not their presence (i.e. not debugging).
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A Short Introduction
to Abstract Interpretation

(based on [POPL ’79, Sec. 5])

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Moore Family-Based Abstraction
[POPL ’79, Sec. 5.1]

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.

Properties

› We represent properties P of objects s 2 ˚ as sets of
objects P 2 }(˚) (which have the property in ques-
tion);

Example: the property “to be an even natural
number” is f0; 2; 4; 6; : : :g
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Complete Lattice of Properties

› The set of properties of objects˚ is a complete boolean
lattice:

h}(˚); „; ;; ˚; [; \; :i :
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Abstraction

A reasoning/computation such that:

› only some properties can be used;

› the properties that can be used are called “abstract”;

› so, the (other concrete) properties must be approx-
imated by the abstract ones;

— 13 —

Direction of Approximation

› Approximation from above: approximate P by P such
that P „ P ;

› Approximation from below: approximate P by P such
that P „ P (dual).

Abstract Properties

› Abstract Properties: a set A ( }(˚) of properties of
interest (the only one which can be used to approxi-
mate others).

— 15 —

In Absence of (Upper) Approximation

› What to say when some property has no (computable)
abstraction?

-- loop?

-- block?

-- ask for help?

-- say something!
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I don’t know

› Any property should be approximable from above by
I don’t know (i.e. “true” or ˚).

— 17 —

Minimal Approximations

› A concrete property P 2 }(˚) is most precisely ab-
stracted by any minimal upper approximation P 2
A:

P „ P

@P 0 2 A : P „ P 0 ( P

› So, an abstract property P 2 A is best approximated
by itself.

Which Minimal Approximation is Most Useful?

› Which minimal approximation is most useful depends
upon the circumstances;

› Example (rule of signs):

-- 0 is better approximated as positive in “ 3 + 0 ”;

-- 0 is better approximated as negative in “`3 + 0 ”.

— 19 —

Avoiding Backtracking

› We don’t want to exhaustively try all minimal approx-
imations;

› We want to use only one of the minimal approxima-
tions;
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Which Minimal Abstraction to Use?

› Which minimal abstraction to choose?

-- make a circumstantial choice 2;

-- make a definitive arbitrary choice 3;

-- require the existence of a best choice 4.

Reference

[JLC ’92] P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511–547,
1992.
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Best Abstraction

› We require that all concrete property P 2 }(˚) have
a best abstraction P 2 A:

P „ P

8P 0 2 A : (P „ P 0) =) (P „ P 0)

› So, by definition of the greatest lower bound/meet \:

P = \fP 0 2 A j P „ P 0g 2 A

2 [JLC ’92] uses a concretization function.
3 [JLC ’92] uses an abstraction function.
4 [JLC ’92] uses an abstraction/concretization Galois connection (this talk).

Moore Family

› So, the hypothesis that any concrete property P 2
}(˚) has a best abstraction P 2 A implies that:

A is a Moore family

i.e. it is closed under intersection \:

8S „ A :\S 2 A

› In particular \; = ˚ 2 A.

— 23 —

Example of Moore Family-Based Abstraction
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The Lattice of Abstractions (1)

› The set M(}(}(˚))) of all abstractions i.e. of Moore
families on the set }(˚) of concrete properties is the
complete lattice of abstractions

hM(}(}(˚))); «; }(˚); f˚g; –S .M([S); \i

where:

M(A) = f\S j S „ Ag

is the „-least Moore family containing A.

— 25 —

Closure Operator-Based Abstraction
[POPL ’79, Sec. 5.2]

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.

Closure Operator Induced by an Abstraction

The map Ā mapping a concrete property P 2 }(˚) to
its best abstraction Ā(P ) in A is:

Ā(P ) = \fP 2 A j P „ Pg :

It is a closure operator:

› extensive,

› idempotent,

› isotone/monotonic;

such that P 2 Ā () P = Ā(P )
hence A = Ā(}(˚)).

— 27 —

Abstraction Induced by a Closure Operator

› Any closure operator  on the set of properties }(˚)
induces an abstraction (}(˚)).

Examples:

-- –P .P the most precise abstraction (identity),
-- –P .˚ the most imprecise abstraction (I don’t know).

› Closure operators are isomorphic to the Moore families
(i.e. their fixpoints).
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Example of Closure Operator-Based Abstraction
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The Lattice of Abstractions (2)

› The set clo(}(˚) 7! }(˚)) of all abstractions, i.e. iso-
morphically, closure operators  on the set }(˚) of
concrete properties is the complete lattice of abstrac-
tions for pointwise inclusion 5:

hclo(}(˚) 7! }(˚)); „̇; –P .P; –P .˚; –S . ide([̇S); \̇i
where:

-- the glb \̇ is the reduced product;

-- ide() = lfp


„̇
–f . f ‹ f is the „̇-least idempotent

operator on }(˚) „̇-greater than .

5 M. Ward, The closure operators of a lattice, Annals Math., 43(1942), 191–196.

Local Completion
(see [POPL ’79, Sec. 9.2])

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Non Distributivity [POPL ’79]

› An abstraction  is [-complete or distributive, when-
ever the union of abstract properties is abstract:

8S „ }(˚) : [
P2S
(P ) = ( [

P2S
(P ))

› Hence, the abstract union of abstract properties looses
no information with respect to their concrete one;

› Otherwise it is [-incomplete or non-distributive.

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Example of Non Distributivity [POPL ’79]

› Kildall’s constant propagation hf;;Zg [ ffig j i 2 Zg; „i

g.2h g3h g4hg1h g2hg.3hg.4h

<

[

is not distributive:

(f1g) [ (f2g) = f1; 2g 6= Z = ((f1g) [ (f2g)) :

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Disjunctive Completion [POPL ’79]

› The [-completion or disjunctive completion C[(A) of
an abstract domain A is the smallest distributive ab-
stract domain containing A;

› The disjunctive completion adds all missing joins to
the abstract domain:

C[(A) = lfp
„

Ā
–A .M

 

A [ f[
P2S
A(P ) j

A([
P2S
A(P )) 6= [

P2S
A(P )g

!

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.

Example of Disjunctive Completion [POPL ’79]

› Kildall’s constant propagation hf;;Zg [ ffig j i 2 Zg; „i

g.2h g3h g4hg1h g2hg.3hg.4h

<

[

is not distributive;
› The disjunctive completion is h}(Z); „i (i.e. identity
abstraction!).
Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Local Completeness [POPL ’79]

› Given f 2 }(˚) 7! }(˚), the abstraction  is f -
complete iff the f -transformation of abstract proper-
ties is abstract:

8P 2 }(˚) :  ‹ f ‹ (P ) = f ‹ (P )

› Hence, the abstract transformation of an abstract prop-
erty looses no information with respect to the concrete
one;
› Otherwise  is f -incomplete.
Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Local Completion 6

› The f -completion Cf(A) of an abstract domain A is
the smallest f -complete abstract domain containing
A;

› The local completion adds all missing abstract ele-
ments to the abstract domain:

Cf(A) = lfp
„

Ā
–A .M

 

A [ ff ‹ A(P ) j
A ‹ f ‹ A(P ) 6= f ‹ A(P )g

!

— 37 —

Galois Connection-Based Abstraction
[POPL ’79, Sec. 5.3]

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.

6 See other completion methods in:

P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. ACM, 47(2):361–
416, 2000.

Correspondance Between Concrete and Abstract Properties

› For closure operators , we have:

(P ) „ (P 0) , P „ (P 0)

written:
h}(˚); „i `̀ !̀! ̀`̀`



1
h(}(˚)); „i

where 1 is the identity and:

h}(˚); „i `̀`!̀! ̀`̀`
¸

‚
hD; vi

means that h¸; ‚i is a Galois connection:
-- 8P 2 }(˚); P 2 D : ¸(P ) v P , P „ ‚(P );
-- ¸ is onto (equivalently ¸ ‹ ‚ = 1 or ‚ is one-to-one).

— 39 —

Abstract Domain

› Abstract Domain: an isomorphic representation D of
the set A ( }(˚) = (}(˚)) of abstract properties
(up to some order-isomorphism «).
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Galois Surjection 7

› We have the Galois surjection:

h}(˚); „i `̀ `̀ !̀! ̀ `̀ `̀
«‹

«`1
hD; vi

› More generally:

h}(˚); „i `̀`!̀! ̀`̀`
¸

‚
hD; vi

denoting (again) the fact that:
-- 8P 2 }(˚); P 2 D : ¸(P ) v P , P „ ‚(P );
-- ¸ is onto (equivalently ¸ ‹ ‚ = 1 or ‚ is one-to-one).

— 41 —

Example of Galois Surjection-Based Abstraction
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7 Also called Galois insertion since ‚ is injective.

Galois Connection

› Relaxing the condition that ¸ is onto:

h}(˚); „i `̀ !̀ ̀`̀¸
‚
hD; vi

that is to say:

8P 2 }(˚); P 2 D : ¸(P ) v P , P „ ‚(P );

› i.e.  is now ‚ ‹ ¸;

We can now have different representations of the same
abstract property.

— 43 —

Abstraction α

y

z

::2

3

88

fx : [1; 99]; y : [2; 77]g
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Concretization γ

y

z

::2

3

88

fx : [1; 99]; y : [2; 77]g

— 45 —

The Abstraction α is Monotone

y

z

::2

3

59

9:44

72

:1

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y ) ¸(X) v ¸(Y )

The Concretization γ is Monotone

y

z

::2 9:44

3

59

72

:1

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X v Y ) ‚(X) „ ‚(Y )

— 47 —

The γ ◦ α Composition is Extensive

y

z

::2

3

88

fx : [1; 99]; y : [2; 77]g

X „ ‚ ‹ ¸(X)
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The α ◦ γ Composition is Reductive

y

z

::2

3

88

fx : [1; 99]; y : [2; 77]g
==v

fx : [1; 99]; y : [2; 77]g

¸ ‹ ‚(Y ) ==v Y

— 49 —

Composition of Galois Connections

The composition of Galois connections:

hL; »i `̀ !̀ ̀ `̀
¸1

‚1
hM; vi

and:

hM; vi `̀ !̀ ̀ `̀
¸2

‚2
hN; —i

is a Galois connection:

hL; »i `̀`̀ `̀! ̀`̀ `̀`
¸2‹¸1

‚1‹‚2
hN; —i

Function Abstraction
[POPL ’79, Sec. 7.2]

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.
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Function Abstraction

G
^

G

Bctusbdu epnbjo

Dpodsfuf epnbjo

F ] = ¸ ‹ F ‹ ‚
i:e: F ] =  ‹ F

hP; „i `̀ !̀ ̀`̀¸

‚
hQ; vi )

hP mon7 !̀ P; „̇i `̀ `̀ `̀ `̀ `̀! ̀`̀ `̀ `̀ `̀`
–F .¸‹F ‹‚

–F ] . ‚‹F ]‹¸
hQ mon7 !̀ Q; v̇i
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Fixpoint Abstraction
[POPL ’79, Sec. 7.1]

Reference

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, TX, 1979. ACM Press.

— 53 —

Approximate Fixpoint Abstraction

G

G
^

Dpodsfuf epnbjo

Bctusbdu epnbjo

G G G G G
G

G
^ G

^ G
^

G
^

� Bqqspyjnbujpo
sfmbujpo

@

@
^

w

F ] = ¸ ‹ F ‹ ‚ ) ¸(lfpF ) v lfpF ]

Approximate/Exact Fixpoint Abstraction

Exact Abstraction:

¸(lfpF ) = lfpF ]

Approximate Abstraction:

¸(lfpF ) @] lfpF ]

— 55 —

Exact Fixpoint

Abstraction

G

G
^

Dpodsfuf!epnbjo

Bctusbdu!epnbjo

G G G G G
G

G
^ G

^ G
^

G
^

Bqqspyjnbujpo
sfmbujpo!w

@

@
^

G G
G

G G

�þ

&

F ‹ ‚ = ‚ ‹ F ] ) ¸(lfpF ) = lfpF ]
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Fixpoint Completion

› We want to prove lfpF „ ‚(I) i.e. ¸(lfpF ) v] I

› The abstraction is in general incomplete so lfpF ] 6v] I

› Hence we look for the most abstract abstraction ¯̧
which is more precise than ¸ and is fixpoint complete:
¯̧(lfpF ) = lfp F̄ ] where F̄ ] = ¯̧ ‹ F ‹ ‚̄

› This is sound since lfp F̄ ] v] I implies ¸(lfpF ) v] I
that is lfpF „ ‚(I)

› This is complete since lfpF „ ‚̄(I) = ‚(I) so ¯̧(lfpF ) v]

I i.e. lfp F̄ ] v] I is now provable in the abstract.

— 57 —

Local F -Completion

A sufficient condition to ensure exact fixpoint abstrac-
tion ¯̧(lfpF ) = lfp F̄ ] is:

› Local completeness that is F ‹ ‚̄ = ‚̄ ‹ F̄ ], or F ‹ ̄ =
̄ ‹ F ‹ ̄ where ̄ = ‚̄ ‹ ¯̧

› Therefore F -local completion can be used to determine
̄ (i.e. h ¯̧; ‚̄i) from  = ‚ ‹ ¸ by a fixpoint computa-
tion.

Notes:

› The F -local completion can be restricted to the fixpoint iterates;

› In general, the completed domain does not satisfy the ascending chain condition (see the
previous constant propagation example).

Application to
Predicate Abstraction

Reference

[1] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In Proc. 9th Int. Conf.
CAV ’97,LNCS 1254, pp. 72–83. Springer, 1997.
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The Structure of Program States

› States: ˚ = LˆM

› Program points/labels: L is finite

› Variables: X is finite (for a given program)

› Set of values: V

› Memory states: M = X 7! V
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Local Versus Global Assertions

› Isomorphism between global and local assertions:

h}(L ˆM); „i `̀ `!̀!  ̀ `̀ `
¸#

‚#
hL 7! }(M); „̇i

where:

¸#(P ) = –‘ . fm j h‘; mi 2 Pg
‚#(Q) = fh‘; mi j ‘ 2 L ^m 2 Q‘g

and „̇ is the pointwise ordering:
Q „̇ Q0 if and only if 8‘ 2 L : Q‘ „ Q

0
‘.

— 61 —

Syntactic Predicates

› a set P of syntactic predicates p such that:

8S „ P : (^S) 2 P

› an interpretation I 2 P 7! }(M) such that:

8S „ P : I (^S) = \
p2S
IJpK

› It follows that fIJpK j p 2 Pg is a Moore family.

Predicate Abstraction

A memory state property Q 2 }(M) is approximated by
the subset of predicates p of P which holds when Q holds
(formally Q „ IJpK). This defines a Galois connection:

h}(M); „i `̀ !̀ ̀ `̀
¸P

‚P
h}(P); «i

where:

¸P(Q)
def= fp 2 P j Q „ IJpKg

‚P(P )
def= \fIJpK j p 2 Pg
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Pointwise Extension to All program Points

By pointwise extension, we have for all program points:

hL 7! }(M); „̇i `̀ !̀ ̀ `̀
˙̧ P

‚̇P
hL 7! }(P); «̇i

where:

˙̧ P(Q) = –‘ .¸P(Q‘)

‚̇P(P ) = –‘ . ‚P(P‘)

P «̇ P 0 = 8‘ 2 L : P‘ « P
0
‘
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Boolean Encoding

› P = fp1; : : : ; pkg is finite

› B = ftt; ffg is the set of booleans with ff ) ff ) tt) tt

› We can use a boolean encoding of subsets of P:

h}(P); «i `̀ `!̀!  ̀ `̀ `
¸b

‚b
h
k
Y

i=1
B; :(i

where:
¸b(P ) =

k
Y

i=1
(pi 2 P )

‚b(Q) = fpi j 1 » i » k ^Qig

Q :( Q0 = 8i : 1 » i » k : Qi( Q
0
i
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Pointwise Extension to All program Points

By pointwise extension, we have for all program points:

hL 7! }(P); «̇i `̀ `!̀!  ̀ `̀ `
˙̧ b

‚̇b
hL 7!

k
Y

i=1
B; ::(i

where:
˙̧ b(P ) = –‘ .¸b(P‘)

‚̇b(Q) = –‘ . ‚b(Q‘)

Q ::( Q0 = 8‘ 2 L : Q‘
:( Q0‘

Composition: Pointwise Boolean Encoded Predicate

Abstraction

By composition, we get:

h}(L ˆM); „i `̀`!̀!  ̀`̀`
¸

‚
hL 7!

k
Y

i=1
B; ::(i

where:
¸(P ) = ˙̧ b ‹ ˙̧ P ‹ ¸#(P )

‚(Q) = ‚# ‹ ‚̇P ‹ ‚̇b(Q)
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Abstract Predicate Transformer (Sketchy)

¸ ‹ postJX:=EK ‹ ‚(
n

î=1
qi)
where fq1; : : : ; qng „ fp1; : : : ; pkg

= ¸ ‹ postJX:=EK(
n
\
i=1
IJqiK) def. ‚

= ¸(f[X=JEK] j  2
n
\
i=1
IJqiKg) def. postJX:=EK

= ¸(
n
\
i=1
IJqi[X=E]K) def. substitution

= ^fpj j IJqi[X=E]) pjKg def. ¸

) ^fpj j theorem_proverJqi[X=E]) pjKg
since theorem_proverJqi[X=E]) pjK implies IJqi[X=E]) pjK
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Predicate Abstraction Completion

› Principle:

-- Start from P = ftrueg (or some more refined ab-
straction such as intervals)

-- Iteratively repeat local completion until verifica-
tion done

› A few convincing practical experiences e.g. [2]

› Can this scale up for more precise abstractions?

Reference

[2] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of C programs.
In Proc. ACM SIGPLAN 2001 Conf. PLDI. ACM SIGPLAN Not. 36(5), pages 203–213. ACM Press,
June 2001.
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A Practical Application of Abstract
Interpretation to the Verification of

Safety Critical Embedded Software

Reference

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85–108. Springer, 2002.

General-Purpose versus Specializable
Static Program Analysis

— 71 —

General-Purpose Static Program Analyzers

› To handle infinitely many programs for non-trivial prop-
erties, a general-purpose analyser must use an infinite
abstract domain 8;

› Such analyzers are huge for complex languages hence
very costly to develop but reusable;

› There are always programs for which they lead to false
alarms;

› Although incomplete, they are very useful for verifying/
testing/debugging.

8 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Ab-
stract Interpretation. PLILP’92. LNCS 631, pp. 269–295. Springer.
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Parametric Specializable
Static Program Analyzers

› The abstraction can be tailored to significant classes
of programs (e.g. critical synchronous real-time em-
bedded systems);

› This leads to very efficient analyzers with zero (or al-
most no) false alarm even for large programs.

— 73 —

The Class of Periodic Synchronous Programs

declare volatile input, state and output variables;

initialize state variables;

loop forever
- read volatile input variables,

- compute output and state variables,

- write to volatile output variables;

wait for next clock tick;
end loop

› The only allowed interrupts are clock ticks;

› Execution time of loop body less than a clock tick [4].

Reference

[4] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469–485.

First Experience

Reference

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85–108. Springer, 2002.
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A First Experience of Parametric
Specializable Static Program Analyzers

› C programs: safety critical embedded real-time syn-
chronous software for non-linear control of complex
systems;

› 10 000 LOCs, 1300 global variables (booleans, integers,
floats, arrays, macros, non-recursive procedures);

› Implicit specification: absence of runtime errors (no
integer/floating point arithmetic overflow, no array
bound overflow);

› Comparative results (commercial software):

-- 70 false alarms, 2 days, 500 Megabytes;
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First Experience Report
› Initial design: 2h, 110 false alarms (general purpose
interval-based analyzer);

› Main redesign:
-- Reduced product with weak relational domain with
time;

› Parametrisation:
-- Hypotheses on volatile inputs;
-- Staged widenings with thresholds;
-- Local refinements of the parameterized abstract do-
mains;

› Results: No false alarm, 14s, 20 Megabytes.
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Example of a Simple Idea That Does Not Scale Up

› Represent abstract environments M̄ = X 7! D̄ where
D̄ is the abstract domain as arrays/functional arrays;

› O(1) to access/change the abstract value of an iden-
tifier but, most variables are locally unchanged so a
lot of time is lost in unions P [ P = P and widenings
P

`
P = P ;

› Solution: shared balanced binary tree (maps in CAML);

› O(lnn) among n to access/change the abstract value
of an identifier but, most of the tree is unchanged in
unions and widenings (gained factor 7 in time).

Example 1 of refinement: widenings

› Interval analysis with naïve widening to ˚1 can be
less precise than sign analysis;

› For example [2;+1]
`
[1;+1] = [`1;+1] whereas

sign analysis would first try [0;+1] (i.e. “positive”);

› Solution: widening with threshold set.
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Widening with threshold set

› The threshold set T is a finite set of numbers (plus
+1 and `1),

› [a; b]
`
T [a
0; b0] = [if a0 < a then maxf‘ 2 T j ‘ » a0g

else a;
if b0 > b then minfh 2 T j h – b0g

else b] :
› Examples (intervals):

-- sign analysis: T = f`1; 0;+1g;

-- strict sign analysis: T = f`1;`1; 0;+1;+1g;

› T is a parameter of the analysis.
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Example 2 of refinement: trace partitionning

Control point partitionning:

Trace partitionning:

Fork Join

— 81 —

Performance: Space and Time

Space = O(LOCs)
Time = O(LOCs ˆ (ln(LOCs))1:5)
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Second Experience
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A Second Experience of Parametric
Specializable Static Program Analyzers

› Same C programs for synchronous non-linear control
of very complex systems;

› 132,000 lines of C, 75,000 LOCs after preprocessing,
10,000 global variables, over 21,000 after expansion of
small arrays;

› Same implicit specification: absence of runtime errors;

› Analyzer of first experience: 30mn, 1,200 false alarms;
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Some Difficulties (Among Others)

› Ignoring the value of any variable at any program point
creates false alarms;

› Most precise abstract domains (e.g. polyhedra [6]) sim-
ply do not scale up;

› Tracing the fixpoint computation will produce huge
log files crashing usual text editors;

Reference

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In 5th POPL, pages 84–97, Tucson, AZ, 1978. ACM Press.
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Example of Refinement: Octagons

x

y
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:

1 » x » 9
x+ y » 78
1 » y » 20
x` y » 03

Reference

[7] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001,
LNCS 2053, Springer, 2001, pp. 155–172.

Difficulty 1 with Octagons

› Most operations are O(n2) in space and O(n3) in time,
so does not scale up;

› Solution:

-- Parameterize with packs of variables/program points
where to use octagons,

-- Automatize the determination of the packs by ex-
perimentation (to eliminate the useless ones);

— 87 —

Difficulty 2 with Octagons 9

› Must be correct with respect to the IEEE 754 floating-
point arithmetic norm;

› Solution: sophisticated algorithmic to correctly handle
concrete and abstract rounding errors

9 An opened problem with polyhedra.
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Second Experience (Preliminary) Report

› Comparative results (commercial software):

-- 4,200 (false?) alarms, 5 days;

› Results: 20 (false?) alarms, 1h30mn, 500 Megabytes.
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Benchmarks
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Would Automatic Predicate
Abstraction Have Done It?
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Yes, Predicate Abstraction Can Do It!

› Yes, because their exists a finite domain that can do
it (as proved in [SARA ’00])!

› So this finite abstract domain can be encoded by pred-
icate abstraction!

Reference

[SARA ’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.
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Yes, But What About Automatic Predicate Abstraction!

› Yes, because one can use a widening on the concrete
domain which, for a given program, will extract from
this infinite domain a finite, subset which can be used
as an abstract domain for a finite analysis as proved
in [PLILP ’92]!

› So this finite abstract domain can be encoded by pred-
icate abstraction!

This is good old theory, but so what in practice?
Reference

[PLILP ’92] P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches
to Abstract Interpretation. PLILP’92. LNCS 631, pp. 269–295. Springer.
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Problems of Semantics

› For C programs, the prover which is used to automati-
cally design abstract transfer functions has to take the
machine-level semantics into account;

› For example:

-- floating-point arithmetic with rounding errors as
opposed to real numbers (e.g. A+B < C^D`B »
C 6) A+D < 2ˆ C);

-- ESC is simply unsound with respect to modulo
arithmetics [8].

Reference

[8] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended static checking for
Java. PLDI’02, ACM SIGPLAN Not. 37(5), (2002) 234–245.

Prognosticating a State Explosion Problem

The main loop invariant: a textual file over 4.5 Mb with

› 6,900 boolean interval assertions (x 2 [0; 1])

› 9,600 interval assertions (x 2 [a; b])

› 25,400 clock assertions (x+clk 2 [a; b]^x`clk 2 [a; b])

› 19,100 additive octagonal assertions (a » x+ y » b)

› 19,200 subtractive octagonal assertions (a » x`y » b)

› 100 decision trees

› etc, . . .

involving over 16,000 floating point constants (only 550
appearing in the program text) ˆ 75,000 LOCs.
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Conclusion
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Conclusion on Abstract Interpretation

› Abstract interpretation provides mathematical foun-
dations of most semantics-based program verification
and manipulation techniques;

› In abstract interpretation, the abstraction of the pro-
gram semantics into an approximate semantics is au-
tomated so that one can go much beyond examples
modelled by hand (as in software model-checking);

› The abstraction can be tailored to classes of programs
so as to design very efficient analyzers with almost no
and even zero-false alarm.

— 97 —

Conclusion on Verification by Abstraction

Beyond Static Analysis, Abstract

Interpretation is Efficacious for Au-

tomatic Verification in the Large.

THE END

More references at URL www.di.ens.fr/~cousot.
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