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17 Granger Causality: Basic Theory 
and Application to Neuroscience 

Mingzhou Ding, Yonghong Chen, and Steven L. Bressler 

Multielectrode neurophysiological recordings produce massive quantities of da- 
ta. Multivariate time series analysis provides the basic framework for analyzing 
the patterns of neural interactions in these data. It has long been recognized 
that neural interactions are directional. Being able to assess the directionality of 
neuronal interactions is thus a highly desired capability for understanding the 
cooperative nature of neural computation. Research over the last few years has 
shown that Granger causality is a key technique to furnish this capability. The 
main goal of this chapter is to provide an expository introduction to the concept 
of Granger causality. Mathematical frameworks for both the bivariate Granger 
causality and conditional Granger causality are developed in detail, with partic- 
ular emphasis on their spectral representations. The technique is demonstrated 
in numerical examples where the exact answers of causal influences are known. 
It is then applied to analyze multichannel local field potentials recorded from 
monkeys performing a visuomotor task. Our results are shown to be physiolog- 
ically interpretable and yield new insights into the dynamical organization of 
large-scale oscillatory cortical networks. 

17.1 Introduction 

In neuroscience, as in many other fields of science and engineering, signals of 
interest are often collected in the form of multiple simultaneous time series. To 
evaluate the statistical interdependence among these signals, one calculates cross- 
correlation functions in the time domain and ordinary coherence functions in the 
spectral domain. However, in many situations of interest, symmetric1 measures 
like ordinary coherence are not completely satisfactory, and further dissection 
of the interaction patterns among the recorded signals is required to parcel out 
effective functional connectivity in complex networks. Recent work has begun to 
consider the causal influence one neural time series can exert on another. The 
basic idea can be traced back to Wiener [l] who conceived the notion that, if the 
prediction of one time series could be improved by incorporating the knowledge 

Here by symmetric we mean that, when A is coherent with B, B is equally coherent with A. 
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17 Granger Causality: Basic Theory and Application to Neuroscience 

of a second one, then the second series is said to have a causal influence on the 
first. Wiener's idea lacks the machinery for practical implementation. Granger 
later formalized the prediction idea in the context of linear regression models [2]. 
Specifically, if the variance of the autoregressive prediction error of the first time 
series at the present time is reduced by inclusion of past measurements from the 
second time series, then the second time series is said to have a causal influence 
on the first one. The roles of the two time series can be reversed to address Joint 

the question of causal influence in the opposite direction. From this definition 
it is clear that the flow of time plays a vital role in allowing inferences to be 
made about directional causal influences from time series data. The interaction 
discovered in this way may be reciprocal or it may be unidirectional. 

Two additional developments of Granger's causality idea are important. First, 
for three or more simultaneous time series, the causal relation between any two of 
the series may be direct, may be mediated by a third one, or may be a combination 
of both. This situation can be addressed by the technique of conditional Granger 
causality. Second, natural time series, including ones from economics and neuro- 
biology, contain oscillatory aspects in specific frequency bands. It is thus desir- 
able to have a spectral representation of causal influence. Major progress in this 
direction has been made by Geweke [3,4] who found a novel time series decom- 
position technique that expresses the time domain Granger causality in terms 
of its frequency content. In this chapter we review the essential mathematical 
elements of Granger causality with special emphasis on its spectral decomposi- 
tion. We then discuss practical issues concerning how to estimate such measures 
from time series data. Simulations are used to illustrate the theoretical concepts. 
Finally, we apply the technique to analyze the dynamics of a large-scale senso- 
rimotor network in the cerebral cortex during cognitive performance. Our result 
demonstrates that, for a well designed experiment, a carefully executed causality 
analysis can reveal insights that are not possible with other techniques. 

17.2 Bivariate Time Series and Pairwise Granger Causality 

Our exposition in this and the next section follows closely that of Geweke [3,4]. 
To avoid excessive mathematical complexity we develop the analysis framework 
for two time series. The framework can be generalized to two sets of time se- 

17.2.1 Time Domain Formulation 

Consider two stochastic processes Xt and Yt. Assume that they are jointly sta- 
tionary. Individually, under fairly general conditions, each process admits an au- 
toregressive representation 
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M 

Xt = x a i j x t j  + f i t ,  var(elt) = t i  , (17.1) rn 
] = I  
03 

Yt = x d l j ~ t - ]  + q i t ,  var(rllt) = T i  . (17.2) 
]=I 

Jointly, they are represented as 

00 00 

Xt  = x a2,Xt-j + x bijyt-j + €2,)  (1 7.3) 
j=1 j=1 

00 00 

Yt = ~ 2 > X t - ~  + x d2jYt-1 f qzt, (17.4) 
j=1 )=I 

where the noise terms are uncorrelated over time and their contemporaneous 
covariance matrix is 

1 Y 
= (Y: rf) . (17.5) I 

The entries are defined as Z2 = var(czt), r2 = var(qzt ), Y2 = COV( f2 t  ,nz t  ). If Xt I 

and Yt are independent, then {bzj} and {czj} are uniformly zero, T2 = 0, L1 = L2 
and T; = T2. This observation motivates the definition of total interdependence 
between Xt and Yt as 

I 

I 
I Z l  r1 I 

FX,y = In - 
I 

I IZI ' 
(17.6) 

I 

where 1.1 denotes the determinant of the enclosed matrix. According to this def- 
inition, FxVy = 0 when the two time series are independent, and Fx,y > 0 when I 
they are not. 

Consider Eqs. (17.1) and (17.3). The value of Z1 measures the accuracy of the 1 
autoregressive prediction of Xt based on its previous values, whereas the value 
of Z2 represents the accuracy of predicting the present value of Xt based on the I 

previous values of both Xt and Yt. According to Wiener [I] and Granger 121, if 
1 2  is less than t l  in some suitable statistical sense, then Yt is said to have a causal I 

influence on Xt. We quantify this causal influence by I 
I 

I I 

1 1  
Fy+x =In--. (17.7) 

1 2  I 
It is clear that Fy4x = 0 when there is no causal influence from Y to X and FY+X > , 
0 when there is. Similarly, one can define causal influence from X to Y as I 

rl 
I 

I , Fx+v = In - . (17.8) I 

I 
r2 

It is possible that the interdependence between Xt and Yt cannot be fully ex- I 

plained by their interactions. The remaining interdependence is captured by Y2, 
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the covariance between ~2~ and q z t .  This interdependence is referred to as in- 
stantaneous causality and is characterized by 

When Y2 is zero, Fx.v is also zero. When Y z  is not zero, FX.y > 0. 
The above definitions imply that 

Thus we decompose the total interdependence between the two time series Xt 
and Yt into three components: two directional causal influences due to their in- 
teraction patterns, and the instantaneous causality due to factors possibly exoge- 
nous to the (X, Y) system, e.g., a common driving input. 

17.2.2 Frequency Domain Formulation 

To begin we define the lag operator L to be LXt = Xt-, . Rewrite Eqs. (17.3) and 
(17.4) in terms of the lag operator 

where az (0) = 1, b2 (0) = 0, c2 (0) = 0, dz (0) = 1. Fourier transforming both sides 
of Eq. (17.11) leads to 

where the components of the coefficient matrix A ( w )  are 

Recasting Eq. (17.12) into the transfer function format we obtain 

where the transfer function is H ( w )  = A-' (w)  whose components are 

1 1 
Hxx(w) = - det A d 2 ( ~ ) ,  Hxy (w)  = -- detAb2(w)  ' 

1 1 
Hyx(w) = --cz(w), Hyy(w)  = -az(w). det A det A 
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After proper ensemble averaging we have the spectral matrix 

where * denotes the complex conjugate and matrix transpose. 
The spectral matrix contains cross-spectra and auto-spectra. If Xt and Yt are 

independent, then the cross-spectra are zero and (S(w)l equals the product of 
two auto-spectra. This observation motivates the spectral domain representation 
of total interdependence between Xt and Yt as 

where IS(w)I = Sxx(w)Syy ( w )  - S x y  ( w ) S y x ( w )  and Syx (w)  = S:, ( w ) .  It is easy 
to see that this decomposition of interdependence is related to coherence by the 
following relation 

where coherence is defined as 

The coherence defined in this way is sometimes referred to as the squared coher- 
ence. 

To obtain the frequency decomposition of the time domain causality defined 
in the previous section, we look at the auto-spectrum of Xt 

It is instructive to consider the case where Y2 = 0. In this case there is no in- 
stantaneous causality and the interdependence between Xt and Yt is entirely 
due to their interactions through the regression terms on the right-hand sides 
of Eqs. (17.3) and (17.4). The spectrum has two terms. The first term, viewed as 
the intrinsic part, involves only the variance of ezt ,  which is the noise term that 
drives the Xt time series. The second term, viewed as the causal part, involves 
only the variance of q z t r  which is the noise term that drives Yt. This power de- 
composition into an "intrinsic" term and a "causal" term will become important 
for defining a measure for spectral domain causality. 

When T2 is not zero it becomes harder to attribute the power of the Xt series 
to different sources. Here we consider a transformation introduced by Geweke [3] 
that removes the cross term and makes the identification of an intrinsic power 
term and a causal power term possible. The procedure is called normalization 
and it consists of left multiplying 
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on both sides of Eq. (17.12). The result is 

where c3(w) = C Z ( W )  - 5 a 2 ( w ) ,  d3(w) =, d2(w) - 2 b 2 ( ~ ) ,  Ey (w)  = Ey (w)  - 
~ E , ( W ) .  The new transfer function H ( W )  for Eq. (17.20) is the inverse of the 
new coefficient matrix ~ ( w )  

Since det A = det A we have 

From the construction it is easy to see that Ex and Ey are uncorrelated, that 
is, cov(Ex, Ey ) = 0. The variance of the noise term for the normalized Yt equation 

is r2 = r2 - 2. From Eq. (17.20), following the same steps that lead to Eq. (17.18). 
the spectrum of Xt is found to be 

Here the first term is interpreted as the intrinsic power and the second term as the 
causal power of Xt due to Yt. This is an important relation because it explicitly 
identifies that portion of the total power of Xt at frequency w that is contributed 
by Yt. Based on this interpretation we define the causal influence from Yt to Xt 
at frequency w as 

Note that this definition of causal influence is expressed in terms of the intrinsic 
power rather than the causal power. It is expressed in this way so that the causal 
influence is zero when the causal power is zero (i.e., the intrinsic power equals 
the total power), and increases as the causal power increases (i.e., the intrinsic 
power decreases). 

By taking the transformation matrix as 

and performing the same analysis, we get the causal influence from Xt to Yt 
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where H,,(w) = H,,(w) + ~ H , , ( W ) .  
By defining the spectral decomposition of instantaneous causality as 151 

we achieve a spectral domain expression for the total interdependence that is 
analogous to Eq. (17.10) in the time domain, namely 

We caution that the spectral instantaneous causality may become negative for 
some frequencies in certain situations and may not have a readily interpretable 
physical meaning. 

It is important to note that, under general conditions, these spectral measures 
relate to the time domain measures as 

The existence of these equalities gives credence to the spectral decomposition 
procedures described above. 

17.3 Trivariate Time Series and Conditional Granger Causality 

For three or more time series one can perform a pairwise analysis and thus re- 
duce the problem to a bivariate problem. This approach has some inherent limi- 
tations. For example, for the two coupling schemes in Fig. 17.1, a pairwise analy- 
sis will give the same patterns of connectivity like that in Fig. 17.l(b). Another 
example involves three processes where one process drives the other two with 
differential time delays. A pairwise analysis would indicate a causal influence 
from the process that receives an early input to the process that receives a late 
input. To disambiguate these situations requires additional measures. Here we 
define conditional Granger causality which has the ability to resolve whether the 
interaction between two time series is direct or is mediated by another recorded 
time series and whether the causal influence is simply due to differential time 
delays in their respective driving inputs. Our development is for three time se- 
ries. The framework can be generalized to three sets of time series [4]. 
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Fig. 17.1: Two distinct patterns of connectivity among three time series. A pairwise 
causality analysis cannot distinguish these two patterns. 

17.3.1 Time Domain Formulation 

Consider three stochastic processes Xt, Yt and Zt. Suppose that a pairwise analy- 
sis reveals a causal influence from Yt to Xt.  To examine whether this influence 
has a direct component (Fig. 17.l(b)) or is mediated entirely by Zt (Fig. 17.l(a)) 
we carry out the following procedure. First, let the joint autoregressive represen- 
tation of Xt and Zt be 

where the covariance matrix of the noise terms is 

Next we consider the joint autoregressive representation of all the three processes 
Xt ,  Yt, and Z t  



17.3 Trivariate Time Series and Conditional Granger Causality 

where the covariance matrix of the noise terms is 

From these two sets of equations we define the Granger causality from Yt to Xt 
conditional on Z t  to be 

The intuitive meaning of this definition is quite clear. When the causal influence 
from Yt to Xt is entirely mediated by Z t  (Fig. 17.l(a)), {b4j} is uniformly zero, 
and ,Ex, = L3. Thus, we have FY,xlz = 0, meaning that no further improvement 
in the prediction of Xt can be expected by including past measurements of Yt . On 
the other hand, when there is still a direct component from Yt to X t  (Fig. 17.l(b)), 
the inclusion of past measurements of Yt in addition to that of Xt and Z t  results 
in better predictions of Xt, leading to Ex, < L3, and FYtXIZ > 0. 

17.3.2 Frequency Domain Formulation 

To derive the spectral decomposition of ,the time domain conditional Granger 
causality we carry out a normalization procedure like that for the bivariate case. 
For Eq. (17.30) and Eq. (17.31) the normalized equations are 

where Dl (0) = 1, D22(0) = 1, D12(0) = 0, COV(X;,Z;) = 0, and Dzl(0) is gener- 
ally not zero. We note that var(x;) = 1 3  and this becomes useful in what follows. 

For Eqs. (17.33), (17.34), and (17.35) the normalization process involves left- 
multiplying both sides by the matrix 

where 
1 

(17.39) 

and 
0 
1 (17.40) 

0 Y - x x y ) x y y  - E Y X  ,Ex - 1  1 
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We denote the normalized equations as 

where the noise terms are independent, and their respective variances are f ,,, 
f yy r  and f,,. 

To proceed further we need the following important relation [4]: 

and its frequency domain counterpart 

To obtain fvz*,x* (w) ,  we need to decompose the spectrum of X*. The Fourier 
transform of Eqs. (17.37) and (17.41) gives 

(17.44) 

and 

( )  = ( Hxx(w) Hxy(w) Hxz(w) 
H y x ( ~ )  Hyy (w)  Hyz(w) (17.45) 

Z(w)  Hzx(w) Hz, ( w )  Hzz(w) 

Assuming that X(w) and Z(w)  from Eq. (17.44) can be equated with that from 
Eq. (17.45), we combine Eqs. (17.44) and (17.45) to yield 

where Q ( w  ) = G-' (w)H(w) .  After suitable ensemble averaging, the spectral 
matrix can be obtained from which the power spectrum of X* is found to be 
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The first term can be thought of as the intrinsic power and the remaining two 
terms as the combined causal influences from Y to Z". This interpretation leads 
immediately to the definition 

f ~ ~ * - . ~ *  (w)  = ln ISx*x* (w)l 

I Q ~ ~ ( w ) ~ ~ ~ Q : ~ ( w ) I  ' 

We note that S,.,. (w) is actually the variance of as pointed out earlier. On 
the basis of the relation in Eq. (17.43), the final expression for Granger causality 
from Yt to Xt conditional on Zt is 

fY4xlz(w) = ln 
1 3  (17.49) 

I ~ ~ ~ ( w ) f ~ ~ ~ : , ( w ) l  ' 

It can be shown that fv,xlZ(w) relates to the time domain measure FY.+XIZ via 

FY-X(Z = - 27~ i" -, fy-x(z(w) dw , 

under general conditions. 
The above derivation is made possible by the key assumption that X(w) 

and Z(w) in Eqs. (17.44) and (17.45) are identical. This certainly holds true on 
purely theoretical grounds, and it may very well be true for simple mathematical 
systems. For actual physical data, however, this condition may be very hard to 
satisfy due to practical estimation errors. In a recent paper we developed a parti- 
tion matrix technique to overcome this problem [6]. The subsequent calculations 
of conditional Granger causality are based on this partition matrix procedure. 

17.4 Estimation of Autoregressive Models 

The preceding theoretical development assumes that the time series can be 
well represented by autoregressive processes. Such theoretical autoregressive 
processes have infinite model orders. Here we discuss how to estimate autore- 
gressive models from empirical time series data, with emphasis on the incorpo- 
ration of multiple time series segments into the estimation procedure [7]. This 
consideration is motivated by the goal of applying autoregressive modeling in 
neuroscience. It is typical in behavioral and cognitive neuroscience experiments 
for the same event to be repeated on many successive trials. Under appropriate 
conditions, time series data recorded from these repeated trials may be viewed 
as realizations of a common underlying stochastic process. 

Let Xt = [XI t ,  Xzt ,  . . . , xPtlT be a p-dimensional random process. Here T de- 
notes the matrix transposition. In multivariate neural data, p represents the total 

1 number of recording channels. Assume that the process Xt is stationary and can 
I be described by the following mth order autoregressive equation: 

Xt + A(1)Xt-I I-. . . + A(m)XtPm = Et , (17.50) 
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where A(i) are p  x p  coefficient matrices and Et = [El t, Ezt,. . . , E , ~ ] ~  is a zero 
mean uncorrelated noise vector with the covariance matrix II. 

To estimate A(i) and II, we multiply Eq. (17.50) from the right by x:-,, where 
k = 1,2, . . . , m. Taking expectations, we obtain the Yule-Walker equations 

R(-k) + A(l)R(-k + 1 )  + . . .  + A(m)R(-k + m) = 0 ,  (17.51) 

where R(n) = (XtX:+,) is XtJs covariance matrix of lag n.  In deriving these 
equations, we have used the fact that (EtX:-,) = 0 as a result of Et being an 
uncorrelated process. 

For a single realization of the X process, {x,}~=, , we compute the covariance 
matrix in Eq. (17.51) according to 

(17.52) 

If multiple realizations of the same process are available, then we compute the 
above quantity for each realization, and average across all the realizations to ob- 
tain the final estimate of the covariance matrix. Note that for a single short trial 
of data one uses the divisor N for evaluating covariance to reduce inconsistency. 
Due to the availability of multiple trials in neural applications, we have used the 
divisor ( N  - n)  in the above definition, Eq. (17.52), to achieve an unbiased esti- 
mate. It is quite clear that, for a single realization, if N is small, one will not get 
good estimates of R(n) and hence will not be able to obtain a good model. This 
problem can be overcome if a large number of realizations of the same process is 
available. In this case the length of each realization can be as short as the model 
order n plus 1 .  Equation (17.50) contain a total of mp2 unknown model coef- 
ficients. In Eq. (17.51) there is exactly the same number of simultaneous linear 
equations. One can simply solve these equations to obtain the model coefficients. 
An alternative approach is to use the Levinson, Wiggins, Robinson (LWR) algo- 
rithm, which is a more robust solution procedure based on the ideas of maximum 
entropy. This algorithm was implemented in the analysis of neural data described 
below. The noise covariance matrix E may be obtained as part of the LWR algo- 
rithm. Otherwise one may obtain t through 

m 

,E = R(0) + 2 A(i)R(i) . 
t= 1 

Here we note that RT(k) = R(-k). 
The above estimation procedure can be carried out for any model order m. 

The correct m is usually determined by minimizing the Akaike Information Cri- 
terion (AIC) defined as 

0 1  

tri 
in 
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where Ntotal is the total number of data points from all the trials. Plotted as 
a function of rn the proper model order corresponds to the minimum of this 
function. It is often the case that for neurobiological data NtOta1 is very large. 
Consequently, for a reasonable range of rn, the AIC function does not achieve a 
minimum. An alternative criterion is the Bayesian Information Criterion (BIC), 
which is defined as 

This criterion can compensate for the large number of data points and may 
perform better in neural applications. A final step, necessary for determining 
whether the autoregressive time series model is suited for a given data set, is to 
check whether the residual noise is white. Here the residual noise is obtained by 
computing the difference between the model's predicted values and the actually 
measured values. 

Once an autoregressive model is adequately estimated, it becomes the basis 
for both time domain and spectral domain causality analysis. Specifically, in the 
spectral domain, Eq. (17.50) can be written as 

where 

is the transfer function with A(0) being the identity matrix. From Eq. (17.56), 
after proper ensemble averaging, we obtain the spectral matrix 

Once we obtain the transfer function, the noise covariance, and the spectral ma- 
trix, we can then carry out causality analysis according to the procedures outlined 
in the previous sections. 

17.5 Numerical Examples 

In this section we consider three examples that illustrate various aspects of the 
general approach outlined earlier. 

17.5.1 Example 1 
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power interdependence 

. . . . . . . .  

0 20 40 60 80 100 0 20 40 60 80 100 

total causality 

2 

I 1 

Fig. 17.2: Simulation results for an AR(2) model consisting of two coupled time 
series. Power (black for X, gray for Y) spectra, interdependence spectrum (related 
to the coherence spectrum), and Granger causality spectra are displayed. Note that 
the total causality spectrum, representing the sum of directional causalities and the 
instantaneous causality, is nearly identical to the interdependence spectrum. 

where et, q t  are Gaussian white noise processes with zero means and vari- 
ances cr: = 1, o$ = 0.7, respectively. The covariance between ct and qt  is 0.4. 
From the construction of the model, we can see that Xt has a causal influence 
on Yt and that there is also instantaneous causality between Xt and Yt. 

We simulated Eq. (17.59) to generate a data set of 500 realizations of 100 time 
points each. Assuming no knowledge of Eq. (17.59) we fitted a MVAR model on 
the generated data set and calculated power, coherence, and Granger causality 
spectra. The result is shown in Fig. 17.2. The interdependence spectrum is com- 
puted according to Eq. (17.17) and the total causality is defined as the sum of 
directional causalities and the instantaneous causality. The result clearly recovers 
the pattern of connectivity in Eq. (17.59). It also illustrates that the interdepen- 
dence spectrum, as computed according to Eq. (17.17), is almost identical to the 
total causality spectrum as defined on the right-hand side of Eq. (17.28). 17.5.2 
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20 40  60 80 100 
frequency (Hz) 

Fig. 17.3: Simulation results for three coupled time series. Two distinct patterns 
of connectivity as that illustrated in Fig. 17.1 are considered. Results for the case 
with a direct causal influence are shown as solid curves and the results for the case 
with indirect causal influence are shown as dashed curves. (a) Pairwise Granger 
causality analysis gives very similar results for both cases which indicates that the 
pairwise analysis cannot differentiate these two patterns of connectivity. (b) Con- 
ditional causality analysis shows a nonzero spectrum (solid) for the direct case and 
almost zero spectrum (dashed) for the indirect case. 

17.5.2 Example 2 
I 

Here we consider two models. The first consists of three time series simulating. 
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The second model creates a situation corresponding to Fig. 17.l(b), containing 
both direct and indirect causal influences from Yt to Xt. This is achieved by 
using the same system as in Eq. (17.60), but with an additional term in the first 
equation 

For both models. ~ ( t ) ,  t ( t ) ,  q ( t )  are three independent Gaussian white noise 
processes with zero means and variances of a: = 0.3, of = 1, o: = 0.2, respec- 
tively. 

Each model was simulated to generate a data set of 500 realizations of 100 
time points each. First, pairwise Granger causality analysis was performed on 
the simulated data set of each model. The results are shown in Fig. 17.3(a), with 
the dashed curves showing the results for the first model and the solid curves 
for the second model. From these plots it is clear that pairwise analysis cannot 
differentiate the two coupling schemes. This problem occurs because the indi- 
rect causal influence from Yt to Xt that depends completely on Z t  in the first 
model cannot be clearly distinguished from the direct influence from Yt to Xt in 
the second model. Next, conditional Granger causality analysis was performed 
on both simulated data sets. The Granger causality spectra from Yt to Xt con- 
ditional on Z t  are shown in Fig. 17.3(b), with the second model's result shown 
as the solid curve and the first model's result as the dashed curve. Clearly, the 
causal influence from Yt to Xt that was prominent in the pairwise analysis of 
the first model in Fig. 17.3(a), is no longer present in Fig. 17.3(b). Thus, by cor- 
rectly determining that there is no direct causal influence from Yt to X t  in the 
first model, the conditional Granger causality analysis provides an unambiguous 
dissociation of the coupling schemes represented by the two models. 

17.5.3 Example 3 

We simulated a five-node oscillatory network structurally connected with differ- 
ent delays. This example has been analyzed with partial directed coherence and 
directed transfer function methods in [8]. The network involves the following 
multivariate autoregressive model: 



17.5 Numerical Examples 

Fig. 17.4: Simulation results for a five-node network structurally connected with 
different time delays. (a) Schematic illustration of the system. (b) Calculated power 
spectra are shown in the diagonal panels, results of pairwise (solid) and con- 
ditional Granger causality analysis (dashed) are in off-diagonal panels. Granger 
causal influence is from the horizontal index to the vertical index. Features of 
Granger causality spectra (both pairwise and conditional) are consistent with that 
of power spectra. 



17 Granger Causality: Basic Theory and Application to Neuroscience 

where € 1  t, ezt, ~ 3 ~ ~  ~ 4 t ,  ~ 5 t  are independent Gaussian white noise processes with 
zero means and variances of a: = 0.6, o$ = 0.5, 05 = 0.3, o i  = 0.3, og = 0.6, 
respectively. The structure of the network is illustrated in Fig. 17.4(a). 

We simulated the network model to generate a data set of 500 realizations 
each with ten time points. Assuming no knowledge of the model, we fitted a fifth 
order MVAR model on the generated data set and performed power spectra, co- 
herence, and Granger causality analysis on the fitted model. The results of power 
spectra are given in the diagonal panels of Fig. 17.4(b). It is clearly seen that all 
five oscillators have a spectral peak at around 25 Hz and the fifth has some addi- 
tional high frequency activity as well. The results of pairwise Granger causality 
spectra are shown in the off-diagonal panels of Fig. 17.4(b) (solid curves). Com- 
pared to the network diagram in Fig. 17.4(a) we can see that pairwise analysis 
yields connections that can be the result of direct causal influences (e.g., 1 -+ 2), 
indirect causal influences (e.g., 1 -+ 5) and differentially delayed driving inputs 
(e.g., 2 -+ 3). We further performed a conditional Granger causality analysis in 
which the direct causal influence between any two nodes are examined while 
the influences from the other three nodes are conditioned out. The results are 
shown as dashed curves in Fig. 17.4(b). For many pairs the dashed curves and 
solid curves coincide (e.g., 1 + 2), indicating that the underlying causal influ- 
ence is direct. For other pairs the dashed curves become zero, indicating that 
the causal influences in these pairs are either indirect or are the result of dif- 
ferentially delayed inputs. These results demonstrate that conditional Granger 
causality furnishes a more precise network connectivity diagram that matches 
the known structural connectivity. One noteworthy feature about Fig. 17.4(b) is 
that the spectral features (e.g., peak frequency) are consistent across both power 
and Granger causality spectra. This is important since it allows us to link local 
dynamics with that of the network. 

17.6 Analysis of a Beta Oscillation Network in Sensorimotor 

A number of studies have appeared in the neuroscience literature where the issue 
of causal effects in neural data is examined [6, 8-15]. Three of these studies [lo, 
11, 151 used the measures presented in this article. Below we review one study 
published by our group [6,15]. 

Local field potential data were recorded from two macaque monkeys using 
transcortical bipolar electrodes at 15 distributed sites in multiple cortical areas 
of one hemisphere (the right hemisphere in monkey GE and the left hemisphere 
in monkey LU) while the monkeys performed a GO/NO-GO visual pattern dis- 
crimination task [16]. The prestimulus stage began when the monkey depressed 
a hand lever while monitoring a display screen. This was followed from 0.5 s to 
1.25 s later by the appearance of a visual stimulus (a four-dot pattern) on the 
screen. The monkey made a GO response (releasing the lever) or a NO-GO re- 

b 
n 
fl 
I1 

a 
ir 
cl 
v1 
hi 
SC 

tl- 
v j 
re 

P ' 
si, 
ca 
fic 
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sponse (maintaining lever depression) depending on the stimulus category and 
the session contingency. The entire trial lasted about 500 ms, during which the 
local field potentials were recorded at a sampling rate of 200Hz. 

Previous studies have shown that synchronized beta-frequency (15Hz to 
30Hz) oscillations in the primary motor cortex are involved in maintaining 
steady contractions of contralateral arm and hand muscles. Relatively little is 
known, however, about the role of postcentral cortical areas in motor mainte- 
nance and their patterns of interaction with motor cortex. Making use of the 
simultaneous recordings from distributed cortical sites we investigated the inter- 
dependency relations of beta-synchronized neuronal assemblies in pre- and post- 
central areas in the prestimulus time period. Using power and coherence spectral 
analysis, we first identified a beta-synchronized large-scale network linking pre- 
and postcentral areas. We then used Granger causality spectra to measure direc- 
tional influences among recording sites, ascertaining that the dominant causal 
influences occurred in the same part of the beta-frequency range as indicated 
by the power and coherence analysis. The patterns of significant beta-frequency 
Granger causality are summarized in the schematic Granger causality graphs 
shown in Fig. 17.5. These patterns reveal that, for both monkeys, strong Granger 
causal influences occurred from the primary somatosensory cortex (Sl) to both 
the primary motor cortex (MI) and inferior posterior parietal cortex (7a and 7b), 
with the latter areas also exerting Granger causal influences on the primary mo- 
tor cortex. Granger causal influences from the motor cortex to postcentral areas, 
however, were not ~bserved .~  , 

Our results are the first to demonstrate in awake monkeys that synchronized 
beta oscillations not only bind multiple sensorimotor areas into a large-scale 
network during motor maintenance behavior, but also carry Granger causal in- 
fluences from primary somatosensory and inferior posterior parietal cortices to 
motor cortex. Furthermore, the Granger causality graphs in Fig. 17.5 provide 
a basis for fruitful speculation about the functional role of each cortical area 
in the sensorimotor network. First, steady pressure maintenance is akin to a 
closed-loop-control problem and as such, sensory feedback is expected to pro- 
vide critical input needed for cortical assessment of the current state of the be- 
havior. This notion is consistent with our observation that primary somatosen- 
sory area (S1 ) serves as the dominant source of causal influences to other areas in 
the network. Second, posterior parietal area 7b is known to be involved in non- 
visually guided movement. As a higher-order association area it may maintain 
representations relating to the current goals of the motor system. This would im- 
ply that area 7b receives sensory updates from area S1 and outputs correctional 
signals to the motor cortex (MI). This conceptualization is consistent with the 
causality patterns in Fig. 17.5. As mentioned earlier, previous work has identi- 
fied beta range oscillations in the motor cortex as an important neural correlate of 

A more stringent significance threshold was applied here which resulted in elimination of several 
very small causal influences that were Included in the previous report. 
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Fig. 17.5: Granger causality graphs for monkey GE (a) and monkey LU (b). i 

pressure maintenance behavior. The main contribution of our work is to demon- 
strate that the beta network exists on a much larger scale and that postcentral 
areas play a key role in organizing the dynamics of the cortical network. The 
latter conclusion is made possible by the directional information provided by 
Granger causality analysis. 

Since the above analysis was pairwise, it had the disadvantage of not dis- 
tinguishing between direct and indirect causal influences. In particular, in mon- 
key GE, the possibility existed that the causal influence from area S1 to inferior 
posterior parietal area 7a was actually mediated by inferior posterior parietal 
area 7b (Fig. 17.5(a)). We used the conditional Granger causality to test the hy- 
pothesis that the S1 -+ 7a influence was mediated by area 7b. In Fig. 17.6(a) is 
presented the pairwise Granger causality spectrum from S1 to 7a (S1 --t 7a, dark 
solid curve), showing significant causal influence in the beta-frequency range. Su- 
perimposed in Fig. 17.6(a) is the conditional Granger causality spectrum for the 
same pair, but with area 7b taken into account (S1 -+ 7a I 7b, light solid curve). 
The corresponding 99 % significance thresholds are also presented (light and dark 
dashed lines coincide). These significance thresholds were determined using a I 
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Fig. 17.6: Comparison of pairwise and conditional Granger causality spectra for 
monkey GE (a,b), and monkey LU (c). 
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permutation procedure that involved creating 500 permutations of the local field 
potential data set by random rearrangement of the trial order independently for 
each channel (site). Since the test was performed separately for each frequency, 
a correction was necessary for the multiple comparisons over the whole range of 
frequencies. The Bonferroni correction could not be employed because these mul- 
tiple comparisons were not independent. An alternative strategy was employed I 

following Blair and Karniski [17]. The Granger causality spectrum was computed 
for each permutation, and then the maximum causality value over the frequency 
range was identified. After 500 permutation steps, a distribution of maximum 
causality values was created. Choosing a p-value at p = 0.01 for this distribution 
gave the thresholds shown in Fig. 17.6(a)-(c) as the dashed lines. 

We see from Fig. 17.6(a) that the conditional Granger causality is greatly re- 
duced in the beta-frequency range and no longer significant, meaning that the 
causal influence from S1 to 7a is most likely an indirect effect mediated by 7b. 
This conclusion is consistent with the known neuroanatomy of the sensorimotor 
cortex [I$] in which area 7a receives direct projections from area 7b which in turn 
receives direct projections from the primary somatosensory cortex. No pathway 

1 
is known to project directly from the primary somatosensory cortex to area 7a. 

From Fig. 17.5(a) we see that the possibility also existed that the causal influ- t 

ence from S1 to the primary motor cortex (MI) in monkey GE was mediated by 1 
area 7b. To test this possibility, the Granger causality spectrum from S1 to MI 
(S1 + MI, dark solid curve in Fig. 17.6(b)) was compared with the conditional 
Granger causality spectrum with 7b taken into account (S1 -+ MI I 7b, light solid 
curve in Fig. 17.6(b)). In contrast to Fig. 17.6(a), we see that the beta-frequency 
conditional Granger causality in Fig. 17.6(b) is only partially reduced, and re- 
mains well above the 99% significance level. From Fig. 17.4(b), we see that the 
same possibility existed in monkey LU of the S1 to MI causal influence being 
mediated by 7b However, just as in Fig. 17.6(b), we see in Fig. 17.6(c) that the 5 
beta-frequency conditional Granger causality for monkey LU is only partially re- i 
duced, and remains well above the 99 % significance level. 

2 
The results from both the monkeys thus indicate that the observed Granger 

causal influence from the primary somatosensory cortex to the primary motor 
i 

cortex was not simply an indirect effect mediated by area 7b. However, we fur- 
ther found that area 7b did play a role in mediating the S1 to M1 causal in- 
fluence in both the monkeys. This was determined by comparing the means of 
bootstrap resampled distributions of the peak beta Granger causality values from 
the spectra of S1 -, MI and S1 + MI I 7b by the Student's t-test. The significant 
reduction of beta-frequency Granger causality when area 7b is taken into account 
(t = 17.2 for GE; t = 18.2 for LU, p << 0.001 for both), indicates that the influence 
from the primary somatosensory to primary motor area was partially mediated 
by area 7b. Such an influence is consistent with the known neuroanatomy [18] 
where the primary somatosensory area projects directly to both the motor cortex 
and area 7b, and area 7b projects directly to primary motor cortex. 
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17.7 Summary 

17.7 Summary ID 

In this chapter we have introduced the mathematical formalism for estimating 
Granger causality in both the time and spectral domain from time series data. 
Demonstrations of the technique's utilities are carried out both on simulated 
data, where the patterns of interactions are known, and on local field potential 
recordings from monkeys performing a cognitive task. For the latter we have 
stressed the physiological interpretability of the findings and pointed out the 
new insights afforded by these findings. It is our belief that Granger causality 
offers a new way of looking at cooperative neural computation and it enhances 
our ability to identify key brain structures underlying the organization of a given 
brain function. 
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