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ABSTRACT

In this paper, we present a multiresolution
implementation of the watershed segmentation
algorithm.  Our approach uses the morphological
pyramid to form a scale space representation, offering
a significant reduction in computational cost. In
addition to increased efficiency, the multiresolution
approach avoids the over-segmentation problem of
traditional fixed scale watershed algorithms. As
shown in the examples, the watershed pyramids
produce edge maps corresponding to the desired scale
without sacrificing accuracy in edge location.

I. INTRODUCTION

Edge detection is one of the classic problems in
image processing, with applications ranging from
biomedical systems to manufacturing. Although a
variety of edge detection schemes have been
demonstrated, no one method has proven to be ideal.
One technique that has garnered interest in recent
years is the watershed algorithm. The concept of the
watershed is borrowed from topography. The image is
considered as a topographic surface, where the low
valued areas represent catchment basins and the ridges
are watershed boundaries. By applying the watershed
approach to the gradient magnitude of the image, it is
possible to find edges. In this paper we introduce a
method of determining watershed boundaries in a
coarse-to-fine manner. The application of a pyramid
proves to not only be more computationally efficient,
but also results in a more effective segmentation of the
image.

One advantage of using the watershed for edge
detection is that the resulting edges are continuous and
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of single-pixel width, since the edges are defined as
boundaries between connected regions called
watersheds. The shortcomings of the watershed
approach are the prohibitive computational expense
and the over-segmentation of the image. Here, we
describe a multiresolution watershed algorithm. We
demonstrate that the watershed pyramid algorithm
both increases the computational efficiency of the
watershed and is tunable to the desired feature scale.

The notion of using a multi-scale representation of
the watershed to avoid over-segmentation is not new.
Gauch and Pizer used Gaussian blurring to represent
images at different scales [1], and more recently
Jackway applied a morphological pyramid to the
watershed [2]. Our approach differs from the previous
approach in that the watershed is applied at a coarse
level of the pyramid then the information is
propagated through the finer levels of the pyramid to
the original image. This coarse-to-fine hierarchy
provides a dramatic reduction in computational
expense.

I1. THEORY

The watershed - In order to understand the
watershed, it is necessary consider the image as a
surface, where high pixel values correspond to peaks
and low pixel values correspond to valleys. Just as
with actual watersheds, if a drop of water were to fall
on any point of the contour it would find its way to
lower ground until it reached a local minimum. These
local minima are referred to as catchment basins, and
all points that drain into the same catchment basin are
referred to as members of the same watershed [3].

The first step in performing edge detection using
the watershed approach is to calculate the local
gradients within the image; these gradient magnitude
values are also blurred to insure that each magnitude
value is locally unique [1]. Given an original image I
and a low variance Gaussian kernel G, the blurred
gradient B becomes



B=G=*VI

where VI is defined such that

VIij)=[I(ij + 1)~ 16T +[HGj)— K +1))F .

The next step is to find the local minima of B. An
element m(i,j) is said to be a local minimum if
m(i,j)<p(iojo) V(injo)eN(i,j) where N(ij) represents
spatial neighborhood of the element at row i and
column j in eight connectivity. These local minima m;
represent the catchment basins of the image and are
each assigned a unique label greater than zero. The
final step is to follow each element in B toward its
lowest valued neighbor until it merges into one of the
catchment basins, m;. Once an element merges with a
catchment basin m; it assumes the label of that basin.
We will define the above function to be represented as
WS so the watershed W is defined as

W =WS(G*VI)
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where W(i,j) is the label of watershed in which element
(i,j) is a member. After all of the watersheds have
been labeled, the resulting edge map E is defined as

1 VW(3,j)>0
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EGij)= {
Unfortunately, even with prefiltering, the above
process results in over-segmented images. There are a
number of methods to merge watersheds and remedy
the problem of over-segmentation in the literature, and
the technique employed depends on the nature of the
application. For the examples shown in section III, a
simple statistical similarity approach was used to
perform region combinations.

The first step is to assign each watershed label a
pixel intensity X(d) representative of the original
image. This is accomplished by
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where WS, ={(ij)= W(ij)=d}. The next step is to

merge watersheds in W based on the pixel intensities
X, and a predetermined threshold 7 (based on the
standard deviation of the pixel intensities) forming a
modified watershed W’.

d,  {xWij)- Xd)}<T
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for all d; e X.
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Watershed pyramids - The concept behind the
pyramid is to create a scale space where only the most
prominent features appear at the coarsest
representation. In a morphological pyramid, the
original image is used to create a series of images at
coarser scales by morphologically filtering each level
and subsampling. Pyramid level L is defined by

I = I-(I(L—x) °K)' KL2 L=01,..n 6)

where Iois the original image, [-]1, represents a down

sampling by a factor of two in each spatial dimension
(along rows and columns), (IoK) represents the

morphological opening of the image I with structuring
element K, and (I*K) represents the morphological

closing of the image I with structuring element K.
The parameter n is largest integer such that for an

MxN image {W n IV ,,}21 . In the pyramid, every

element in level L has one “parent” in level L+1 and
four “children” in level L-1 since there is-a 4 to 1 pixel
reduction with every ascending level. The open-close
operation was chosen because it introduces less
distortion and is less biased than an individual open or
close operation [4].

Multiresolution watersheds have been
demonstrated by both Gauch and Pizer [1] and
Jackway [2], but our multiresolution algorithm
introduces a method where the watershed algorithm is
applied at a coarse level, and the edges are propagated
back to finer representations without performing the
watershed algorithm at each level of the pyramid.
Once the watershed has been applied at a coarse level
L, each element of W;_; must be linked to an element
in W;. This is accomplished by

W.(ij) VW, (ij)=0
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WL-I(iO’jO ) = {

for all (ipjo)eC(i,j,L) where C(i,j,L) represents the
children of element (ij) at level L. 1In (7), if
VW(i,j)=0, signifying that no change in watershed
label exists in that neighborhood, we say that the label
for the children of Wy(i,j) is known to be equal to the
label of Wy(ij). If VW.(ij)#0 then the label of the
children in question is uncertain. The final step in
linking level L-1 to level L is to perform the watershed
on the elements of W, _,(i,j) with undefined labels.

W,_(iy.j,) = WS[B,_(in.j,)] (8)

for all (ig,jo)e {Wr.,(i,j)=0}, where B is defined in (1).
Since the pyramid structure insures the causality of



watersheds, no watershed can appear in level L-/ that
did not exist in level L. For this reason any new
watershed which formed while evaluating the regions
of uncertainty must be flooded into its nearest
neighbor by equation (5) with the condition that any
watershed formed in level L-1 must merge with one
and only one watershed which existed in level L. This
linking continues until L-/=0, and finally, edge
detection is performed on level O using equation (3).

In practice the multiresolution algorithm decreases
the computational complexity of the watershed
segmentation by an order of magnitude. Making the
assumption that a comparison between elements is
equivalent to an addition operation, the cost of
performing the full resolution watershed on an NxN
image is: 3V adds and 2N? multiplies for the V
operation, 8(G-N)’ adds and 9(G-N) multiplies for
convolution with a GxG Gaussian, and JON’ adds to
perform the WS operation. This means that the full
resolution watershed algorithm requires (13+9G*)N?
addition operations and (2+9G*)N? multiplication
operations, not including the computational cost of
prefiltering. For the multiresolution algorithm, the
watershed is applied at a level R that is of size

N 2RX1V z, then linked to the finer levels of the

pyramid. The cost of constructing the pyramid using
an open-close filter with a kernel of size KxK is

R-1 2
4K° Z (% L) adds. Assuming there are Er elements
L=0

in level R which represent watershed boundaries, the
watershed must be performed on 4E; elements to link
level R to level R-1. This linking will produce Eg; =
2Eg eclements in level R-I since connectivity is
maintained. The resulting computational cost of
linking the multiresolution watershed is found to be

R-1
(13+9G?)-4Y 2"E, adds. An example is given in
L=0

section III.

III. RESULTS

An example of the results from the watershed
pyramid is shown in figure 1. Fig. 1(b) shows the
resulting edge map from the single resolution
watershed algorithm, and Fig. 1(c) shows the resulting
edge map using a watershed pyramid. Edge maps
from each of the coarser levels of the pyramid are
shown in Figs. 1(d)-(f). The multiresolution
watershed algorithm yielded an accurate edge

detection while filtering out edges corresponding to
insignificant detail.

In computing the full resolution watershed, the
256x256 image was prefiltered with a 9x9 open-close
filter. The prefilter required 12.8x10° adds, and the
watershed algorithm required 5.4x10° multiplies and
6.2x10° adds. In computing the watershed pyramid, a
3x3 open-close filter was used to form the pyramid and
the watershed was applied to level 3 (size 32x32). The
number of elements representing watershed boundaries
in level 3 was 152 (see fig. 1(f)). The computational
expense included 3.1x10° adds to construct the
pyramid, 8.5x10* multiplies and 9.6x10* adds to
perform  the  watershed segmentation, and
approximately 40.0x10* adds for linking. The total
computational cost was  5.4x10° multiplication
operations and 19.0x10° addition operations for the
single  resolution  algorithm, and  8.5x10°
multiplication operations and 3.2x10° addition
operations for the watershed pyramid approach. This
is‘a decrease in the number of addition operations by a
factor of 6, and a decrease in the number of
multiplication operations by a factor of 64.

In conclusion, we have shown that the watershed
pyramid edge detector is not only more
computationally efficient, but it also offers a solution
to the problem of over-segmentation. Our linking
algorithm allows for the watershed boundary detection
to be performed once at a coarse resolution, and the
information to be propagated back to the original
resolution without sacrificing localization in the edge
map. Future research will focus on a robust method of
watershed region combination for the pyramidal
approach.
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FIGURE 1: (a) Original image — 256x256. (b) Watershed on full resolution image after
applying a 9x9 open-close filter. (c) Edge map of the base pyramid level using a 3x3 open-close
morphological pyramid. (d) Edge map of the first pyramid level — 128x128. (¢) Edge map of the
second pyramid level — 64x64. (f) Edge map of the third level of the edge map pyramid — 32x32.

581




