
In Proc. ICCL’94, Fifth IEEE International Conference on Computer Languages, pages 289–298.

Binding-time Analysis:

Abstract Interpretation versus Type Inference

Jens Palsberg Michael I. Schwartzbach

palsberg@daimi.aau.dk mis@daimi.aau.dk

Computer Science Department, Aarhus University

Ny Munkegade, DK–8000 Aarhus C, Denmark

Abstract

Binding-time analysis is important in partial eval-

uators. Its task is to determine which parts of a pro-

gram can be evaluated if some of the expected input is

known. Two approaches to do this are abstract inter-

pretation and type inference. We compare two specific

such analyses to see which one determines most pro-

gram parts to be eliminable. The first is a an abstract

interpretation approach based on closure analysis and

the second is the type inference approach of Gomard

and Jones. Both apply to the pure λ-calculus. We

prove that the abstract interpretation approach is more

powerful than that of Gomard and Jones: the former

determines the same and possibly more program parts

to be eliminable as the latter.

1 Introduction

In this paper we compare two techniques for doing
binding-time analysis of terms in the pure λ-calculus
[1]. The binding-times we are concerned with are
“static” (compile-time) and “dynamic” (run-time).

Binding-time analysis has been formulated in var-
ious settings. Most of them are based on either ab-
stract interpretation or type inference. For examples
of the former that are applicable to higher-order lan-
guages, see the work of Mogensen [11, 12], Bondorf,
[2], Consel [3], and Hunt and Sands [8]. For examples
of the latter that are also applicable to higher-order
languages, see the work of Nielson and Nielson [13],
and Gomard and Jones [6]. Only little is known, how-
ever, about the relative quality of these analyses. For
comparison with strictness analysis, note that Jensen

[9] has proved the equivalence of two strictness anal-
yses based on abstract interpretation and type infer-
ence, respectively.

We will compare two fundamentally different
binding-time analyses. The first is a an abstract inter-
pretation approach based on closure analysis [14] and
the second is the type inference approach of Gomard
and Jones [6]. The first is intended to capture the
binding-time analyses of Bondorf [2] and Consel [3],
when restricted to the λ-calculus. We have not given
a proof of this connection, however, so this analysis
may turn out to be novel. The binding-time analyses
of Bondorf, Consel, and Gomard and Jones are suc-
cessfully used in the Similix, Schism, and Lambda-

mix partial evaluators, respectively.

Our comparison concentrates on the higher-order
aspects of the two binding-time analyses. Thus, we
define the abstract interpretation based analysis for
the λ-calculus, and we restrict the definition of Go-
mard and Jones’ analysis to the same language.

A natural extension would be the introduction of
first-order values. This introduces the possibility of
“lifting” static values to dynamic values, and this is,
to the best of our knowledge, done differently in Bon-
dorf’s and Gomard and Jones’ analyses. Our compar-
ison shows that the two chosen analyses differ even
when first-order values are omitted.

We assume that a λ-term to be analyzed takes its
input through the free variables. We also assume that
all input is dynamic. The definition of Gomard and
Jones’ analysis remains the same if we introduce static
input. The definition of the abstract interpretation
based analysis, however, depends on having no static
higher-order input. Since we treat the λ-calculus,
there are no first-order values, hence no static in-

put. Again, our comparison shows that the two chosen
analyses differ even in the absence of static input.

The output of a binding-time analysis can be pre-
sented as an annotated version of the analyzed λ-term.
The language of annotated λ-terms is usually called a
2-level λ-calculus [13]. It is defined by the grammar:

E ::= x (variable)
| λx.E (static abstraction)
| E1 @ E2 (static application)
| λx.E (dynamic abstraction)
| E1 @ E2 (dynamic application)

Intuitively, “static” means “statically known”, and
“dynamic” means “not statically known”. The static
entities are those that can be eliminated during par-
tial evaluation. The purpose of a binding-time analy-
sis for the λ-calculus is to produce consistent 2-level
λ-terms [14]. Consistency prevents partial evaluators
from “going wrong” [14]. For example, the 2-level λ-
term (λx.x) @ y is inconsistent: even though the func-
tion part of the static application is an abstraction, it
is marked as dynamic.

For another example, consider (λx.x @ y) @ z.
A binding-time analysis may here produce the anno-
tated term (λx.x @ y) @ z. It could also produce
(λx.x @ y) @ z. Both these 2-level λ-terms are con-
sistent. In the first case, a partial evaluator will do a
single reduction and obtain z @ y.

Following Gomard and Jones [6], we partially or-
der the set of 2-level λ-terms as follows. Given 2-level
λ-terms E and E′, E v E′ if and only if they are
equal except for underlinings and E ′ has the same
and possibly more underlinings than E. For exam-
ple, ((λx.x @ y) @ z) v ((λx.x @ y) @ z). Notice that
v admits greatest lower bounds, written u, for two
terms that are equal except for underlinings.

The quality of a binding-time analysis has at least
two aspects:

• How many applications does it determine to be
reducible? and

• How fast can it be executed?

The first aspect determines the effect of the specializer,
and the second aspect influences the overall execution
time of the partial evaluator.

This paper focuses on the first quality aspect. Our
quality measure is the standard one:

One binding-time analysis is more pow-
erful than another, if it always produces v-
smaller 2-level λ-terms than the other.

The intuition is “the fewer underlinings, the better”.

We prove that the abstract interpretation based
analysis is more powerful than that of Gomard and
Jones, in the sense that it always produces v-smaller
2-level λ-terms.

Our proof technique is a generalization of one used
in [16]. That paper also compares two analyses based
on abstract interpretation and type inference, respec-
tively. The key difference is that the abstract inter-
pretation in [16] uses a lattice whereas the one in this
paper does not. Our new proof technique can handle
both cases.

In the following section we discuss the key concept
of well-annotatedness, in Section 3 we define the two
analyses, and in Section 4 we prove our result.

2 Well-annotatedness

A sufficient and decidable condition for consistency,
called well-annotatedness, was first presented by Go-
mard and Jones [6]. Their binding-time analysis al-
ways produces well-annotated terms.

In this paper we present another condition for con-
sistency. It is defined to capture the outputs of the
binding-time analyses of Bondorf and Consel, when
restricted to the λ-calculus. We have not given a proof
of this connection, however, so our condition may turn
out to be novel.

This paper proves that the new consistency
condition is weaker than that of Gomard and
Jones. This justifies calling the new condition “well-
annotatedness”. For clarity, we will call the new con-
dition “Palsberg/Schwartzbach well-annotatedness”.
Thus, if a 2-level λ-term is Gomard/Jones well-
annotated, then it will also be Palsberg/Schwartzbach
well-annotated. It has been proved by the first author
[14] that Palsberg/Schwartzbach well-annotatedness,
hence also Gomard/Jones well-annotatedness, implies
consistency.

The two definitions of well-annotatedness can be
understood as specifications of binding-time analyses.
Such a specification is implemented by any algorithm
that always produces well-annotated 2-level λ-terms.
We need not be satisfied with any such algorithm,
however. Both well-annotatedness criteria have the
property that for each λ-term there is a v-least well-
annotated version of it. Thus, the best possible im-
plementations are algorithms that produce the v-least
well-annotated versions of their inputs.

We compare the best possible implementations of
the two well-annotatedness criteria. These algorithms

indeed exist, as follows. Both the algorithms of Go-
mard [5] and Henglein [7] produce the v-least Go-
mard/Jones well-annotated 2-level version of a given
λ-term. We believe (but have not proved) that the al-
gorithms of Bondorf and Consel produces the v-least
Palsberg/Schwartzbach well-annotated 2-level version
of a given λ-term. A näıve algorithm that computes
this v-least 2-level λ-term is sketched below.

Our comparison proceeds by first proving
that Gomard/Jones well-annotatedness implies Pals-
berg/Schwartzbach well-annotatedness. This leads to
the desired result because the input/output behavior
of the two chosen analyses are fully defined by their
specifications.

Gomard and Jones formulated their well-annota-
tedness criterion via inference rules [6]. For the pur-
pose of this paper, we will rephrase it using constraint
systems. The new notion of well-annotatedness will
also be phrased using constraint systems. The use of
constraint systems makes possible the proof of com-
parison.

3 The Formal Systems

Both notions of well-annotatedness will be pre-
sented via constraint systems. In each case, the idea
is that the condition is true of a 2-level λ-term E0

iff a constraint system generated from E0 is solvable.
Both constraint systems are generated in the style of
Wand [20], as follows. First, the 2-level λ-term is α-
converted so that every λ-bound (or λ-bound) vari-
able is distinct. This means that every abstraction
λx.E (or λx.E) can be denoted by the unique lambda
token λx (or λx). Second, a type variable [[E]] is as-
signed to every subterm E. Finally, a finite collection
of constraints over these variables is generated from
the syntax.

The two definitions of well-annotatedness employ
constraints over different domains, we will consider
them in turn.

Gomard/Jones Well-annotatedness

In Gomard/Jones well-annotatedness, type variables
range over the following types:

τ ::= Dyn | τ1 → τ2

The intuition behind the constant Dyn is that a term
with this type has unknown value; Dyn abbreviates
Dynamic (Dyn is called code by Gomard and Jones).

The constraints are generated inductively in the
syntax of a 2-level λ-term E0, as follows:

Phrase: Initial constraints:
x If x is free in E0 then [[x]] = Dyn

E0 [[E0]] = Dyn

Phrase: Type constraint:
λx.E [[λx.E]] = [[x]] → [[E]]
E1 @ E2 [[E1]] = [[E2]] → [[E1 @ E2]]
λx.E [[λx.E]] = [[x]] = [[E]] = Dyn

E1 @ E2 [[E1]] = [[E2]] = [[E1 @ E2]] = Dyn

We let GJ (“Gomard/Jones”) denote the global
constraint system. Sometimes we write GJ(E0) to em-
phasize that the constraint system is generated from
E0. Each type constraint matches an inference rule in
Gomard and Jones’ formulation of the predicate [6].
The initial constraints of the form [[x]] = Dyn reflect
that the free variables of E0 correspond to unknown
input. The initial constraint [[E0]] = Dyn reflects that
a partial evaluator is supposed to produce a residual
program. Intuitively, underlinings must be introduced
if a subterm does not have a simple type. A solution

of GJ assigns a type to each type variable such that
all constraints are satisfied. The constraint system
GJ((λx.y) @ (λz.z @ z)) is shown in figure 1.

Note that the constraints differ from those pre-
sented by Henglein [7]; the latter are defined on pure
λ-terms with the purpose of specifying the computa-

tion (rather than the well-annotatedness) of an anno-
tation.

For any λ-term, there is a v-least annotated version
for which GJ is solvable, for a proof see Gomard’s
Master’s thesis [4]. Henglein gave a pseudo-linear time
algorithm for computing this v-least term [7].

A New Notion of Well-annotatedness

The new notion of well-annotatedness is based on an
abstract interpretation called closure analysis [18, 2]
(also called control flow analysis by Jones [10] and
Shivers [19]). The closures of a term are simply the
subterms corresponding to abstractions. A closure
analysis approximates for every subterm the set of pos-
sible closures to which it may evaluate [10, 18, 2, 19].
Both Bondorf and Consel’s binding-time analyses may
be understood as a closure analysis that in addition to
closures also incorporates a special value Dyn (Dyn is
called D by Bondorf). The intuition behind Dyn is the
same as that behind the Dyn used in Gomard/Jones
well-annotatedness.

We define the new well-annotatedness criterion as
follows. For static entities, we generate the usual con-
straints of closure analysis [16, 17, 15]; and for dy-

Constraints:

y [[y]] = Dyn

(λx.y) @ (λz.z @ z) [[(λx.y) @ (λz.z @ z)]] = Dyn

λx.y [[λx.y]] = [[x]] → [[y]]

λz.z @ z [[λz.z @ z]] = [[z]] → [[z @ z]]

(λx.y) @ (λz.z @ z) [[λx.y]] = [[λz.z @ z]] → [[(λx.y) @ (λz.z @ z)]]

z @ z [[z]] = [[z]] = [[z @ z]] = Dyn

Solution: The mapping L where

L[[x]] = L[[λz.z @ z]] = Dyn → Dyn

L[[y]] = L[[(λx.y) @ (λz.z @ z)]] = Dyn

L[[z]] = L[[z @ z]] = Dyn

L[[λx.y]] = (Dyn → Dyn) → Dyn

Figure 1: The constraint system GJ((λx.y) @ (λz.z @ z)).

namic entities we generate the same constraints as Go-
mard and Jones. This approach emphasizes both the
similarities and differences between Gomard/Jones
well-annotatedness and Palsberg/Schwartzbach well-
annotatedness.

(The definition of well-annotatedness in [14] is
slightly different but equivalent to the one given here.)

In the new notion of well-annotatedness, type vari-
ables range over the set D of binding-time values. The
set D consists of the value Dyn and all subsets of
lambda. lambda is the finite set of static lambda
tokens in E0, the main term. Sometimes we write
lambda(E0) to emphasize that the set is generated
from E0. The set D is partially ordered by ≤, as fol-
lows:

1. Dyn ≤ Dyn; and

2. if v, v′ ⊆ lambda and v ⊆ v′, then v ≤ v′.

Notice that D is not a lattice, since Dyn is incompa-
rable to all other values.

The constraints are generated from the syntax of a
2-level λ-term E0, as shown in the table below.

As a conceptual aid, the constraints are grouped
into initial , basic, and connecting constraints.

The connecting constraints reflect the relationship
between formal and actual arguments and results. The
condition {λx} ≤ [[E1]] states that the two guarded
inclusions are relevant only if the closure denoted by
λx is a possible result of E1. Notice that Dyn is not

a possible result of E1 because of the basic constraint
[[E1]] ≥ ∅.

Phrase: Initial constraints:
x If x is free in E0 then [[x]] = Dyn

E0 [[E0]] = Dyn

Phrase: Basic constraints:
λx.E [[λx.E]] ≥ {λx}
E1 @ E2 [[E1]] ≥ ∅
λx.E [[λx.E]] = [[x]] = [[E]] = Dyn

E1 @ E2 [[E1]] = [[E2]] = [[E1 @ E2]] = Dyn

Phrase: Connecting constraints:
E1 @ E2 For every λx.E in E0,

if {λx} ≤ [[E1]] then
[[E2]] ≤ [[x]] ∧ [[E1 @ E2]] ≥ [[E]]

We let WA (“Well-Annotatedness”) denote the
global constraint system, i.e., the collection of con-
straints for every subterm. Sometimes we write
WA(E0) to emphasize that the constraint system is
generated from E0. Intuitively, underlinings must be
introduced to ensure that no subexpression can eval-
uate to both a static and a dynamic value. The con-
straint system WA((λx.y) @ (λz.z @ z)) is shown in fig-
ure 2.

The constraints for the pure terms yield a closure
analysis. A solution of WA assigns an element of D
to each type variable such that all constraints are sat-
isfied. Below we prove that for any λ-term, there is

Constraints:

y [[y]] = Dyn

(λx.y) @ (λz.z @ z) [[(λx.y) @ (λz.z @ z)]] = Dyn

λx.y [[λx.y]] ≥ {λx}

λz.z @ z [[λz.z @ z]] ≥ {λz}

(λx.y) @ (λz.z @ z) [[λx.y]] ≥ ∅

z @ z [[z]] ≥ ∅

(λx.y) @ (λz.z @ z)









{λx} ≤ [[λx.y]] ⇒

[

[[λz.z @ z]] ≤ [[x]]
[[(λx.y) @ (λz.z @ z)]] ≥ [[y]]

{λz} ≤ [[λx.y]] ⇒

[

[[λz.z @ z]] ≤ [[z]]
[[(λx.y) @ (λz.z @ z)]] ≥ [[z @ z]]

z @ z









{λx} ≤ [[z]] ⇒

[

[[z]] ≤ [[x]]
[[z @ z]] ≥ [[y]]

{λz} ≤ [[z]] ⇒

[

[[z]] ≤ [[z]]
[[z @ z]] ≥ [[z @ z]]

Solution: The mapping L where

L[[x]] = L[[λz.z @ z]] = {λz}

L[[y]] = L[[(λx.y) @ (λz.z @ z)]] = Dyn

L[[z]] = L[[z @ z]] = ∅

L[[λx.y]] = {λx}

Figure 2: The constraint system WA((λx.y) @ (λz.z @ z)).

a v-least annotated version for which WA is solvable.
We also give an algorithm for computing this v-least
term.

Informal Comparison

The two notions of well-annotatedness use the same
initial constraints and the same constraints on dy-
namic entities. They differ in their treatment of static
entities: GJ uses a type discipline to handle abstrac-
tions whereas WA uses abstract interpretation.

Gomard and Jones’ analysis can apparently be com-
puted faster than the new analysis [7]. In return for
the longer running time, the new analysis produces
better results.

For example, consider (λx.y) @ (λz.z @ z). The
abstract interpretation approach yields no underlin-
ings at all because WA((λx.y) @ (λz.z @ z)) is solvable,
see figure 2. Gomard and Jones’ approach must yield
at least one underlining because this λ-term does not
have a simple type. Specifically, it yields the 2-level λ-
term (λx.y) @ (λz.z @ z), that is, just one underlining.

For a solution of GJ((λx.y) @ (λz.z @ z)), see figure 1.

4 Comparison

We now show that the abstract interpretation based
analysis produces at most as many underlinings as the
analysis of Gomard and Jones. We do this by proving
for all 2-level λ-terms that if GJ is solvable, then so is
WA. This implies the desired result because given any
λ-term, WA is in particular solvable for the v-least
annotated version for which GJ is solvable.

The main technical challenge is that WA and
GJ are constraint systems over two different domains,
sets versus types. Our proof introduces the closure
WA as a convenient “stepping stone” between GJ and
WA. The structure of the proof can be illustrated as
follows:

GJ =⇒ WA ⇐⇒ WA

First we define the closure WA. The set WA can
be described as a disjoint union of C and U where C

contains the connecting constraints and U the initial
and basic constraints. The closure WA is the smallest
set such that

• U is included in WA.

• If c ⇒ K is in C and c is in WA, then K is in
WA.

• If r ≤ s and s ≤ t both are in WA, then r ≤ t is
in WA.

The closure WA contains only constraints of the forms
{λx} ≤ X , ∅ ≤ X , X = Dyn, and X ≤ Y , where X, Y

are type variables. We first prove that WA has a useful
property. The point is that in the proof of Lemma 4.2
below, we need a solution L of WA with the property
that λx ∈ L(X) if and only if {λx} ≤ X is in WA.

Lemma 4.1 If WA is solvable, then it has a solu-

tion L such that for all type variables X and all λx in

L(X), the constraint {λx} ≤ X is in WA.

Proof. Suppose WA has solution L′. Define L as
follows. If L′(X) = Dyn, then L(X) = Dyn. Other-
wise, L(X) = L′(X)\SX , where SX is the set of those
λx in L′(X) where the constraint {λx} ≤ X is not in
WA. Clearly, for all type variables X and all λx in
L(X), the constraint {λx} ≤ X is in WA.

To see that L is a solution of WA, we consider the
constraints in WA in turn. Constraints of the forms
X ≥ ∅ and X = Dyn have solution L because they
have solution L′. Constraints of the form {λx} ≤ X

have solution L because they have solution L′ and
because λx is not in SX . Finally, constraints of the
form X ≤ Y yield two cases. In the first case, L′(X) =
L′(Y) = Dyn, so L(X) = L(Y) = Dyn. In the second
case, L′(X) and L′(Y) are both sets with L′(X) ⊆
L′(Y). We need to prove that (L′(X)\SX) ⊆ (L′(Y)\
SY). To do this, suppose λx is in L′(X) \ SX . Thus,
λx is in L′(X) and the constraint {λx} ≤ X is in WA.
Then, by transitivity of ⊆ and by WA being closed
under the transitivity of ≤, we get that λx is in L′(Y)
and that the constraint {λx} ≤ Y is in WA. Thus, λx

is in (L′(Y) \ SY). 2

We can then prove that closing WA preserves solv-
ability.

Lemma 4.2 WA is solvable iff WA is solvable.

Proof. For the only if case, suppose WA has solu-
tion L. We will show that also WA has solution L.
We proceed by induction on the construction of WA.
In the base case, consider U . Since U is a subset of

WA, U has solution L. In the induction step there are
two cases. In the first case, consider c ⇒ K in C and
suppose c is in WA. By the induction hypothesis, c

has solution L. Combining this with C having solu-
tion L we get that K has solution L. In the second
case, consider r ≤ s and s ≤ t in WA. By the in-
duction hypothesis, both have solution L. Using the
transitivity of ≤, also r ≤ t has solution L.

For the if case, suppose WA is solvable. By
Lemma 4.1, choose a solution L with the property
that for all type variables X and all λx in L(X), the
constraint {λx} ≤ X is in WA. We will show that also
WA has solution L. Clearly, U has solution L, since
U is included in WA. To see that also C has solution
L, consider c ⇒ K in C and suppose c has solution
L. Since c is of the form {λx} ≤ X we get, by the
property of L, that c is in WA. Hence, also K is in
WA, so K has solution L. 2

We now show the fundamental connection between
the two well-annotatedness criteria.

Lemma 4.3 If GJ is solvable, then so is WA.

Proof. Suppose GJ has solution L. Define L′ as
follows. If L(X) = Dyn then L′(X) = Dyn; and if
L(X) = α → β then L′(X) = lambda. We will show
the following three properties of which the first is the
desired conclusion:

1. WA has solution L′;

2. If {λx} ≤ X is in WA then L[[λx.E]] = L(X); and

3. If X ≤ Y is in WA then L(X) = L(Y).

Here, X, Y are type variables.
We proceed by induction on the construction of

WA.
In the base case, consider U . For any λx.E,

GJ yields the constraint [[λx.E]] = [[x]] → [[E]] and
WA yields the constraint [[λx.E]] ≥ {λx}. Since
the former constraint has solution L, we get that
L′[[λx.E]] = lambda, so the second constraint has
solution L′. Clearly, L[[λx.E]] = L[[λx.E]].

For any E1 @ E2, GJ yields the constraint [[E1]] =
[[E2]] → [[E1 @ E2]] and WA yields the constraint
[[E1]] ≥ ∅. Since the former constraint has solution
L, we get that L′[[E1]] = lambda, so the second con-
straint has solution L′.

For any λx.E, E1 @ E2, free variable in the main
term, or the main term itself, WA and GJ yield the
same constraints, of the form X = Dyn. Since each of
these constraints X = Dyn has solution L, we get that
L′(X) = Dyn, so X = Dyn also has solution L′.

In the induction step there are two cases. In the
first case, consider

{λx} ≤ [[E1]] ⇒ [[E2]] ≤ [[x]] ∧ [[E1 @ E2]] ≥ [[E]]

in C and suppose {λx} ≤ [[E1]] is in WA. By
the induction hypothesis, L[[λx.E]] = L[[E1]]. In
GJ we have the constraints [[λx.E]] = [[x]] → [[E]]
and [[E1]] = [[E2]] → [[E1 @ E2]]. Thus, L[[E2]] = L[[x]]
and L[[E1 @ E2]] = L[[E]], so L′[[E2]] ≤ L′[[x]] and
L′[[E1 @ E2]] ≥ L′[[E]].

In the second case, consider r ≤ s and s ≤ t in
WA. By the induction hypothesis, both constraints
have solution L′, so by the transitivity of ≤, also r ≤
t has solution L′. If r is on the form {λx}, then s

and t are type variables. By the induction hypothesis,
L[[λx.E]] = L(s) and L(s) = L(t), so L[[λx.E]] = L(t).
If r is a type variable, then s and t are type variables.
By the induction hypothesis, L(r) = L(s) and L(s) =
L(t), so L(r) = L(t). 2

Lemma 4.4 If GJ is solvable, then so is WA.

Proof. Combine Lemmas 4.2 and 4.3. 2

To be able to prove that for any λ-term there is a
v-least annotated version for which WA is solvable,
we need the following lemma.

Lemma 4.5 Solvability of WA is preserved by binary

u of annotated versions of a λ-term.

Proof. Let EU be a λ-term. Suppose EA and EB

are annotated versions of EU such that WA(EA) and
WA(EB) have solutions LA and LB , respectively. By
Lemma 4.2, it is then sufficient to prove that WA(EAu
EB) has the solution L, constructed as follows. Let E

be a subterm of EA u EB . We can then write E =
E′

A
u E′

B
, where E′

A
is a subterm of EA and E′

B
is

the corresponding subterm of EB . Finally, we define
L[[E]] = LA[[E′

A
]] u/ LB [[E′

B
]]. The symbol u/ denotes

the greatest lower bound in the ordering / of D. The
ordering / is an extension of ≤ such that also v / Dyn

for all v. Thus, (D,/) is a lattice with Dyn as the
maximal element. The property of u/ that we need is
that Dyn is neutral with respect to it.

We will show the following three properties of which
the first is the desired conclusion:

1. WA(EA u EB) has solution L;

2. If {λx} ≤ X is in WA(EA u EB), then in both
EA and EB , the type variables for the two sub-
terms corresponding to λx and X are either both
assigned Dyn by LA and LB, respectively, or else
neither of them are; and

3. If X ≤ Y is in WA(EAuEB), then in both EA and
EB , the type variables for the two subterms cor-
responding to X and Y are either both assigned
Dyn by LA and LB , respectively, or else neither
of them are.

Here, X, Y are type variables.

We proceed by induction on the construction of
WA(EA u EB).

In the base case, consider U . For any subterm
λx.E of EA u EB , we must show that L[[λx.E]] ≥
{λx}. Observe that L[[λx.E]] = LA[[E′

A
]] u/ LB[[E′

B
]],

where E′

A
and E′

B
both are abstractions of which at

most one is dynamic. If neither are dynamic, then
both LA[[E′

A
]] ≥ {λx} and LB [[E′

B
]] ≥ {λx}. Thus,

LA[[E′

A
]] ∩ LB [[E′

B
]] ≥ {λx}. The desired result is

then immediate. If only one is dynamic, then either
LA[[E′

A
]] = Dyn or LB [[E′

B
]] = Dyn. The constraint

still holds for the static one. The desired result is
then immediate since Dyn is neutral with respect to
u/. Moreover, since λx and [[λx.E]] correspond to the
same subterm of EA uEB , the second property above
trivially holds.

The case of E1 @ E2 is treated like the first case.
The remaining cases of λx.E, E1 @ E2, free variables
of EA uEB , and EA uEB itself, trivially follows from
Dyn = Dyn u/ Dyn.

In the induction step there are two cases. In the
first case, consider

{λx} ≤ [[E1]] ⇒ [[E2]] ≤ [[x]] ∧ [[E1 @ E2]] ≥ [[E]]

in C, where E1 @ E2 and λx.E are subterms of
EAuEB , and suppose {λx} ≤ [[E1]] is in WA(EAuEB).
The following table gives notation for the subterms
of EA and EB which correspond to the subterms
E1 @ E2, E1, E2, λx.E, E of EA u EB .

EA u EB EA EB

E1 @ E2 FA FB

E1 E1A E1B

E2 E2A E2B

λx.E GA GB

E EBA EBB

We must show that

(a) L[[E2]] ≤ L[[x]] and L[[E1 @ E2]] ≥ L[[E]];

(b) [[E2A]] and [[x]] are either both assigned Dyn by
LA or else neither of them; and also [[FA]] and
[[EBA]] are either both assigned Dyn by LA or else
neither of them; and

(c) [[E2B]] and [[x]] are either both assigned Dyn by LB

or else neither of them; and also [[FB]] and [[EBB]]
are either both assigned Dyn by LB or else neither
of them.

Property (a) is equivalent to LA[[E2A]] u/

LB [[E2B]] ≤ LA[[x]]u/LB[[x]] and LA[[FA]]u/LB [[FB]] ≥
LA[[EBA]] u/ LB[[EBB]].

By the induction hypothesis (property 2), we get
that [[GA]] and [[E1A]] are either both assigned Dyn by
LA or else neither of them; and we also get that [[GB]]
and [[E1B]] are either both assigned Dyn by LA or else
neither of them.

Observe that GA and GB are both abstractions of
which at most one is dynamic. Suppose first that both
are static. Thus, neither of them are assigned Dyn

by LA and LB , respectively. Hence, neither of [[E1A]]
and [[E1B]] are assigned Dyn by LA and LB , respec-
tively. Since LA and LB are solutions of WA(EA) and
WA(EB), respectively, both of FA and FB are static
applications. We then get that {λx} ≤ LA[[E1A]] ⇒
LA[[E2A]] ≤ LA[[x]]∧LA[[FA]] ≥ LA[[EBA]] and {λx} ≤
LB [[E1B]] ⇒ LB[[E2B]] ≤ LB [[x]] ∧ LB [[FB]] ≥
LB [[EBB]]. Moreover, both of the conditions hold be-
cause {λx} ≤ L[[E1]] = LA[[E1A]] u/ LB [[E1B]]. The
three properties then follow immediately.

Suppose then that one of GA and GB is dynamic,
say GB . Thus, LB[[GB]] = Dyn. Hence, LB [[E1B]] =
Dyn. Since LB is a solution of WA(EB), FB is
a dynamic application, and LB [[E2B]] = LB[[x]] =
LB [[FB]] = LB [[EBB]] = Dyn. As in the first case,
we have {λx} ≤ LA[[E1A]] ⇒ LA[[E2A]] ≤ LA[[x]] ∧
LA[[FA]] ≥ LA[[EBA]] and the condition hold. The
three properties then follow immediately.

In the second case of the induction step, consider
r ≤ s and s ≤ t in WA(EA u EB). By the induction
hypothesis, both constraints have solution L, so by
the transitivity of ≤, also r ≤ t has solution L. If r

is of the form {λx}, then s and t are type variables.
In this case, the desired property (2) for r ≤ t follows
by using the induction hypothesis on r ≤ s (property
2) and on s ≤ t (property 3). Similarly, if r is a type
variable, then s and t are type variables. In this case,
the desired property (3) for r ≤ t follows by using the
induction hypothesis on r ≤ s (property 3) and on
s ≤ t (property 3). 2

We can now prove that the WA constraint systems
have the same fundamental property as the GJ con-
straint systems, as follows.

Lemma 4.6 For any λ-term, there is a v-least an-

notated version for which WA is solvable.

Proof. Consider some λ-term EU . We want to es-
tablish the following two facts:

1. There are finitely many annotated versions of EU ;
and

2. There exists an annotated version of EU for which
WA is solvable.

Given these, we can derive the desired result as follows.
Let A be the set of all annotated versions of EU for
which WA is solvable. Since A is finite (fact 1) and
non-empty (fact 2), we can compute its v-greatest
lower bound M by a finite sequence of u’s. Since u
preserves solvability of WA (Lemma 4.5), we conclude
that M ∈ A. Hence, M is the v-least element of A.

To establish the first fact, note that the number of
annotated versions of EU is exponential in the size of
EU , hence finite.

To establish the second fact, let EM be the anno-
tated version where all abstractions and applications
are dynamic. WA(EM) is clearly solvable: the assign-
ment of Dyn to all variables yields a solution. 2

Theorem 4.7 For all λ-terms, the abstract interpre-

tation based analysis produces v-smaller annotated

versions than does Gomard and Jones’ analysis.

Proof. Let E be a λ-term. Gomard and Jones’
analysis produces the v-least annotated version EG

of E such that GJ(EG) is solvable. By Lemma 4.4,
WA(EG) is also solvable. The abstract interpretation
based analysis produces the v-least annotated version
EB of E such that WA(EB) is solvable (Lemma 4.6).
Thus, EB v EG. 2

The λ-term (λx.y) @ (λz.z @ z) from Section 3
shows that in some cases the abstract interpretation
based analysis produces strictly v-smaller annotated
versions than does Gomard and Jones’ analysis.

Mogensen [12] extended the binding-time analysis
of Gomard and Jones with the use of recursive types.
The type constraints are the same but types can now
be regular trees, not only finite ones. This allows solu-
tions to constraints such as X = X → X . Mogensen’s
well-annotatedness criterion does have the property
that for each λ-term there is a v-least well-annotated
version of it [12].

Corollary 4.8 For all λ-terms, the abstract inter-

pretation based analysis produces v-smaller annotated

versions than does Mogensen’s analysis.

Proof. Only Lemma 4.3 is influenced by the intro-
duction of recursive types, and its proof can be reused
with a few modifications. 2

In some cases the abstract interpretation based
analysis produces strictly v-smaller annotated ver-
sions than does Mogensen’s analysis. For example,
consider the λ-term

(λx.(x @ (λv.v)) @ y) @ (λz.z @ z)

The abstract interpretation approach yields no under-
linings at all whereas Mogensen’s approach yields

(λx.(x @ (λv.v)) @ y) @ (λz.z @ z)

We leave it to the reader to check this.
We conclude the comparison with demonstrating

how the closure WA can be useful in an algorithm.
The following näıve algorithm computes the v-least
Palsberg/Schwartzbach well-annotated version of a
given λ-term E.

1. For each possible annotated version E0 of E do

(a) Generate WA(E0)

(b) Derive WA(E0)

(c) Check if WA(E0) is solvable.

2. Compute the greatest lower bound of the well-
annotated versions of E, by a sequence of binary
u.

Notice that when checking if WA(E0) is solvable, it is
sufficient to look for a solution where each type vari-
able is assigned either Dyn or lambda. Since there are
exponentially many annotated versions of a λ-term,
the algorithm runs in at least exponential time.

5 Conclusion

We have compared two different approaches to
binding-time analysis and proved that the abstract in-
terpretation approach produces better results than the
type inference approach of Gomard and Jones. The
latter may still be preferred in practice, however, be-
cause it (currently) can be executed faster.

We have also proved that abstract interpretation
approach produces better results than the extended
type inference approach of Mogensen.

To summarize, we get the following classification:

The abstract interpretation based approach
is more powerful than

Mogensen’s approach
is more powerful than

Gomard and Jones’ approach

Acknowledgement. The authors thank Olivier
Danvy, Mitchell Wand, and the anonymous referees
for helpful comments on drafts of the paper.

References

[1] Henk P. Barendregt. The Lambda Calculus: Its

Syntax and Semantics. North-Holland, 1981.

[2] Anders Bondorf. Automatic autoprojection of
higher order recursive equations. Science of

Computer Programming, 17(1–3):3–34, December
1991.

[3] Charles Consel. Binding time analysis for higher
order untyped functional languages. In Proc.

ACM Conference on Lisp and Functional Pro-

gramming, pages 264–272, 1990.

[4] Carsten K. Gomard. Higher order partial evalu-
ation – HOPE for the lambda calculus. Master’s
thesis, DIKU, University of Copenhagen, Septem-
ber 1989.

[5] Carsten K. Gomard. Partial type inference for
untyped functional programs. In Proc. ACM

Conference on Lisp and Functional Programming,
pages 282–287, 1990.

[6] Carsten K. Gomard and Neil D. Jones. A par-
tial evaluator for the untyped lambda-calculus.
Journal of Functional Programming, 1(1):21–69,
1991.

[7] Fritz Henglein. Efficient type inference for higher-
order binding-time analysis. In Proc. Confer-

ence on Functional Programming Languages and

Computer Architecture, pages 448–472. Springer-
Verlag (LNCS 523), 1991.

[8] Sebastian Hunt and David Sands. Binding time
analysis: a new PERspective. In Proc. ACM

SIGPLAN Symposium on Partial Evaluation and

Semantics Based Program Manipulation, pages
154–165. Sigplan Notices, 1991.

[9] Thomas P. Jensen. Strictness analysis in log-
ical form. In Proc. Conference on Functional

Programming Languages and Computer Archi-

tecture, pages 352–366. Springer-Verlag (LNCS

523), 1991.

[10] Neil D. Jones. Flow analysis of lambda expres-
sions. In Proc. Eighth Colloquium on Automata,

Languages, and Programming, pages 114–128.
Springer-Verlag (LNCS 115), 1981.

[11] Torben Æ. Mogensen. Binding time analysis for
polymorphically typed higher order languages.
In Proc. TAPSOFT’89, pages 298–312. Springer-
Verlag (LNCS 352), March 1989.

[12] Torben Æ. Mogensen. Self-applicable partial eval-
uation for pure lambda calculus. In Proc. ACM

SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, pages
116–121, 1992.

[13] Hanne R. Nielson and Flemming Nielson. Au-
tomatic binding time analysis for a typed λ-
calculus. Science of Computer Programming,
10:139–176, 1988.

[14] Jens Palsberg. Correctness of binding-time
analysis. Journal of Functional Programming,
3(3):347–363, 1993.

[15] Jens Palsberg. Closure analysis in constraint
form. ACM Transactions on Programming Lan-

guages and Systems, 1995. To appear. Also in
Proc. CAAP’94, Colloquium on Trees in Algebra
and Programming, Springer-Verlag (LNCS 787),
pages 276–290, Edinburgh, Scotland, April 1994.

[16] Jens Palsberg and Michael I. Schwartzbach.
Safety analysis versus type inference for partial
types. Information Processing Letters, 43:175–
180, 1992.

[17] Jens Palsberg and Michael I. Schwartzbach.
Safety analysis versus type inference. Informa-

tion and Computation, 118(1):128–141, 1995.

[18] Peter Sestoft. Replacing function parameters by
global variables. In Proc. Conference on Func-

tional Programming Languages and Computer

Architecture, pages 39–53, 1989.

[19] Olin Shivers. Control-Flow Analysis of Higher-

Order Languages. PhD thesis, CMU, May 1991.
CMU–CS–91–145.

[20] Mitchell Wand. A simple algorithm and proof
for type inference. Fundamentae Informaticae,
X:115–122, 1987.

