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ABSTRACT

Analyzing static snapshots of massive, graph-structured data

cannot keep pace with the growth of social networks, financial

transactions, and other valuable data sources. We introduce

a framework, STING (Spatio-Temporal Interaction Networks

and Graphs), and evaluate its performance on multicore, mul-

tisocket Intel R©-based platforms. STING achieves rates of

around 100 000 edge updates per second on large, dynamic

graphs with a single, general data structure. We achieve speed-

ups of up to 1000× over parallel static computation, improve

monitoring a dynamic graph’s connected components, and

show an exact algorithm for maintaining local clustering co-

efficients performs better on Intel-based platforms than our

earlier approximate algorithm.

Index Terms— social network analysis, streaming data,

graph analysis, parallel processing

1. INTRODUCTION

Applications ranging from business intelligence and finance to

computational biology and computer security are generating

data at a massive rate. Social networks such as those from

Facebook and Twitter boast hundreds of millions of users post-

ing billions of interactions per month. The NYSE processes

over four billion traded shares per day. The data generated are

not the dense arrays of signal processing’s traditional focus but

data connecting multiple entities with multiple attributes. This

graph-structured data already challenges high-performance

analysis.

The graph representing the data often is scale-free [1]. A

scale-free graph has low diameter, so connecting paths between

any two vertices are short. Many vertices have a small number

of neighbors, while a few vertices are connected with a large

part of the graph; the degrees follow a power-law distribution.

Scale-free graphs lack small separators and present unique

challenges for parallel algorithms. The degree distribution

also creates imbalance in workload when scheduling vertices

among processors. Incorporating dynamic information itself

poses new challenges to algorithm design and implementation.

Current large graph analysis tools like Pajek [2] are de-

signed primarily for static graphs. For dynamic inputs these

tools assume the properties to change slowly relative to ex-

ecution time. This assumption does not apply to emerging

applications, driving a need for more dynamic analysis. We

address these challenges with new algorithmic approaches and

new data structures targeting readily available Intel-based plat-

forms. Computing incremental updates to the dynamic graph

with batches of updates from the streaming data provides op-

portunities to improve parallel algorithm performance. We

use a new data structure for analyzing complex graphs and

networks with possibly billions of vertices that accumulates

as much of the recent graph data as possible in main memory.

Once the reserved memory is full, older or uninteresting edges

are aged off and removed. We update analytical kernels after

each batch of edge insertions or deletions and attempt to detect

significant changes in the corresponding metrics. We refer to

this new approach as massive streaming data analytics.

Our system, STING (Spatio-Temporal Interaction Net-

works and Graphs), achieves real-world rates of 100 000 edge

updates per second for monitoring a vertex-local property, clus-

tering coefficients, and 70 000 edge updates per second for

monitoring a global property, the connected components, on

artificial graphs with 4 million vertices and 67 million edges

on Intel R©-based platforms.

2. FRAMEWORK FOR STREAMING GRAPH
ANALYSIS

Our STING framework consists of a graph data structure,

STINGER (STING Extensible Representation) [3], that sup-

ports rapid updates and parallel queries as well as a general

algorithmic structure for applying analysis kernels to the dy-

namic data stream. STING maintains a single, large graph

image in memory to be used by multiple analysis kernels.

Changes accumulate within the single image; individual analy-

sis kernels maintain history and summary information when

necessary.

STING collects edge insertions and deletions into batches.

These batches amortize parallel overhead across many indi-
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vidual updates and hence improve parallel efficiency. The

trade-off lies in responsiveness. Large batch sizes will update

analysis metrics less frequently even while supporting more

aggregate updates per second. Interactions within a batch, as

when an edge is both added and removed, are reconciled be-

fore applying the changes to the graph representation to take

advantage of any locality within the batch itself.

The STINGER data structure [3] maintains a sparse adja-

cency matrix representation of the graph. The neighbors of

a vertex are stored in a linked list of dense arrays permitting

both dynamic growth and fast iteration. STINGER maintains

the graph structure (neighbors, weights) as well as meta-data

like edge semantic types and time stamps. Analysis kernels ac-

cess both the batch and the STINGER graph structure without

explicit locking. The edges are indexed to permit fast iteration

across neighbor lists and edge types.

3. CLUSTERING COEFFICIENTS AND
COMPONENTS

We investigate two analysis kernels on undirected, unweighted

graphs: local clustering coefficients and the global component

labeling. Local clustering coefficients monitor the density of

triangles surrounding each vertex and are related to the “small-

world” property of social networks [4]. Larger clustering

coefficients suggest formation of communities. Monitoring

the global component labeling provides information to other

kernels like path searching and sampling methods.

3.1. Clustering coefficients

We adopt the terminology of [4]. A triplet is an ordered set of

three vertices, (i, v, j), where v is considered the focal point

and there are undirected edges 〈i, v〉 and 〈v, j〉. An open triplet

is defined as three vertices in which only the required two are

connected. A closed triplet is defined as three vertices in which

there are three edges. A triangle is made up of three closed

triplets, one for each vertex of the triangle.

The local clustering coefficient of vertex v is

Cv =
number of closed triplets centered around v

number of triplets centered around v

=
Tv

dv(dv − 1)
,

where Tv is the closed triplet count around v and dv is the

degree of v (number of adjacent vertices).

The degrees dv are maintained in the STINGER data struc-

ture. In [5], the authors present three algorithms for main-

taining the triangle count Tv. Given a modified edge 〈u, v〉,
the brute force algorithm iterates over the neighbor lists of

u and v and checks for an intersection in O(dudv) time. An

improved algorithm, sorted list, sorts the shortest neighbor-

ing edge list and searches for an intersection with bisection

in O((du + dv) log du) time. An approximate Bloom filter

algorithm summarizes one edge list using a lossy bit array,

reducing the operation complexity to O(du + dv) in exchange

for possibly over-estimating the number of triangles.

The counts for each affected vertex in a batch of edge

changes are updated in parallel. There is a limited amount

of multi-level parallelism available within the brute force al-

gorithm on high-degree vertices, but we do not exploit that

here. On the Intel-based platforms discussed in Section 4, the

exact sorted list algorithm out-performed the other algorithms

overall.

3.2. Component labeling

In an undirected graph, there exists a path between any two

vertices within the same connected component and no paths

between between vertices in different connected components.

Knowing the connected components containing each vertex is

vital for search algorithms, sampling and approximation algo-

rithms, and many other applications. Maintaining the array that

labels each vertex with the connected component containing

that vertex may require global information. Whether a single

deletion splits a connected component depends on existence

of any other path connecting the deleted edge endpoints.

In scale-free graphs such as social networks, however,

many edge insertions and deletions lie entirely within a sin-

gle, large component. The authors’ updating algorithm in [6]

resolves edge insertions immediately, rules out some edge

deletions through a limited search, and delays the remain-

ing deletions for multiple batches before running a parallel

static connected components algorithm [7] on the accumulated

graph. An edge insertion looks up the component of each

endpoint. If the edge straddles two components, the smaller

component is relabeled and merged into the larger. This does

not require checking anything within the original graph, only

the component labels. Edges cannot cross components, so

deletions only occur within a single component. Deletions

may cleave the component into two pieces but rarely do. After

removing the deleted edges from the STINGER representation,

the affected edge endpoints are checked in the same manner

as when counting triangles for clustering coefficients. If the

vertices remain connected, the deletions have no effect. Oth-

erwise, the component is marked and queued for later testing

by the static algorithm. The static algorithm is applied only

when the pending deletion queue becomes so large as to affect

other results. This local search from [6] marks almost 90% of

deletions as having no effect in our tests.

We now discuss an improved heuristic that rules out far

more deletions with far less memory traffic. The static con-

nected components algorithm [7] forms a spanning tree for

each connected component as a by-product. A deletion can

cleave a component only if the deleted edge is an edge in that

spanning tree. If the deleted edge is in the tree, the endpoint

separated from the root checks its neighbors and tries to repair

the spanning tree locally. Only when all these tests fail are
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Model μ-arch Clock L3 size Sockets Cores

X5570 Nehalem-EP 2.93GHz 8 MiB 2 4

E7-8870 Westmere-EX 2.40GHz 30 MiB 4 10

Table 1. Intel R© Xeon R© Processor X5570 and E7-8870 plat-

forms both of which support Intel HyperThreading technology

with two threads

neighbors checked for connectivity. These tighter tests rule

out 99.7% of deletions as having no effect in our test data,

drastically decreasing the frequency of static checks while also

improving performance through reduced memory traffic.

4. EXPERIMENTS

Our experiments measure performance on an artificial graph

generated by the widely-used R-MAT[8] model derived by

sampling from a Kronecker product. The R-MAT generator

produces scale-free graphs similar to social networks. The

vertices’ degrees follow a power-law distribution with a few

very high-degree vertices and many vertices with small degree.

We generate an initial edge list of 16 × 222 ≈ 67 million

edges connecting 222 ≈ 4 million vertices. We use the R-

MAT probability parameters a = 0.55, b = 0.1, c = 0.1,

and d = 0.25 and perturb the parameters by ±5% at each

recursion.

We generate an input stream of edge actions (both inser-

tions and deletions) by the same R-MAT distribution and di-

vide this stream into batches. Each generated edge action is

an insertion, and insertions are selected with probability 1/16
to be entered into the deletion queue. Before generating the

actions, we apply the same selection to initial edges and enter

them into the deletion queue with probability 1/16. We only

delete edges that exist; the framework ignores deletions that

do not correspond to edges in the STINGER structure. The

batches are constructed by selecting the next insertion with

probability 15/16 or a deletion from the queue with probabil-

ity 1/16. Each experiment is run over ten batches of changes

on the same initial graph.

Table 1 lists the Intel-based test platform processor charac-

teristics. All are running Red Hat R© Enterprise GNU/Linux R©

6.1 and all codes are built with gcc 4.6.1. Each platform’s

DDR3 memory is fully banked and running at 1066MHz. The

memory is distributed across sockets, providing non-uniform

access (NUMA). Using only memory through one socket

added a 5%–100% penalty over striping pages across sockets.

Future work will investigate more advanced placement than

striping, but all results presented here use the numactl utility

to stripe allocated pages uniformly across sockets.

Ultimately, we are interested in maximizing the supported

edge updates per second while maintaining responsiveness.

Batches of many millions of edge actions may reach a million

updates per second, but not all applications can wait a second

between metric updates. We consider batch sizes of 100, 1000,

Architecture Algorithm Min. Median Max

E78870 Brute force 17062 31038 41716

77× 141× 190×
Bloom filter 57005 84418 97181

257× 379× 442×
Sorted list 84963 97079 118913

370× 437× 541×
Components 73650 74430 75050

79× 80× 82×
X5570 Brute force 9881 16509 21057

153× 256× 326×
Bloom filter 95755 113835 123203

1482× 1762× 1907×
Sorted list 104669 125667 129627

1620× 1945× 2007×
Components 10360 39580 88610

28× 52× 233×

Table 2. Achieved edge updates per second and speed-up over

parallel static recomputation for each clustering coefficient al-

gorithm and also the connected components for a batch size of

1000 actions and the maximum number of hardware-supported

threads. The speed-ups over parallel static recomputation are

variable but substantial. Note that the additional connected

component heuristics reduce memory access and greatly im-

prove performance on the dual-socket Intel R© Xeon R© proces-

sor X5570.

and 10 000. Figure 1 shows that clustering coefficient perfor-

mance reaches a point of diminishing returns between batches

of 1000 and 10 000 edge actions.

Also, we consider two kinds of speed-up. One is from

parallelization throughout our implementations. Another is

the speed-up from dynamic updates over static recomputation

on snapshots. For a batch size of 1000, Table 2 shows both

the achieved edge updates per second for our dynamic meth-

ods and the speed-up of that rate over the edges per second

achieved by re-running static analysis on the graph snapshot.

5. CONCLUSIONS

Using Intel-based platforms, our STING system supports rates

of updates expected with actual applications over existing so-

cial networks for both vertex-local and global graph properties.

STING can track clustering coefficients at rates exceeding

100 000 updates per second with batches small enough to re-

spond 100 times per second. STING tracks component labels

at over 70 000 updates per second and updates the component

labels 70 times per second.

Overall, batching edge updates provides useful parallel

computational opportunities on Intel-based platforms even

with small enough batches to react to changes quickly. Reduc-

ing graph searches and memory accesses with better heuris-
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Fig. 1. Updates per second for updating the metric, local clustering coefficients, and the STINGER representation for different

batch sizes and platforms. The four 2.4 GHz Intel R© Xeon R© processor E7-8870’s larger number of memory interfaces brings

performance beyond the dual 2.93 GHz Intel R© Xeon R© processor X5570 with a sufficiently large batch size.

tics while monitoring connected components increases per-

formance on systems with fewer pathways to memory. Also,

performing the exact sorted-list intersection on Intel-based

platforms performs better than the approximate Bloom filter.
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