
Information Security and Computer Fraud, 2014, Vol. 2, No. 3, 39-47
Available online at http://pubs.sciepub.com/iscf/2/3/2
© Science and Education Publishing
DOI:10.12691/iscf-2-3-2

Linear Mix-net and a Scheme for Collecting Data from
Anonymous Data Holders

Shinsuke Tamura*, Shuji Taniguchi

School of Engineering, University of Fukui, Fukui, Japan
*Corresponding author: tamura@dance.plala.or.jp

Received October 13, 2014; Revised November 01, 2014; Accepted November 04, 2014

Abstract To make e-society, e-governance and cloud computing systems be utilized more widely, this paper
proposes a scheme to collect attribute values belong to same data holders and calculate functions of them without
knowing correspondences between the attribute values and their holders or links among attribute values of same
holders. Different from most of other schemes the proposed scheme is based on linear Mix-net that exploits secret
key encryption functions such as linear equation based (LE-based) and multidimensional array based (MA-based)
ones, therefore it can handle real numbers that appear in many important business and engineering applications
efficiently in the same way as integers. In addition, anonymous tag based credentials used in the scheme ensure the
correctness of calculation results. Although the scheme can calculate only linear combinations of attribute values
when LE-based encryption functions are used, if they are replaced with MA-based ones, it can calculate also general
polynomial functions of attribute values.

Keywords: E-society, E-governance, cloud computing, privacy, homomorphic encryption functions, anonymous
tag based credentials

Cite This Article: Shinsuke Tamura, and Shuji Taniguchi, “Linear Mix-net and a Scheme for Collecting Data
from Anonymous Data Holders.” Information Security and Computer Fraud, vol. 2, no. 3 (2014): 39-47. doi:
10.12691/iscf-2-3-2.

1. Introduction
Data collection systems are ones that collect attribute

values belong to same data holders and calculate functions
of them, and by using these systems, government agencies
can quickly and correctly calculate taxes of citizens for
example. However, many people do not want such
systems because their all information are linked and may
be used for other purposes. Same difficulties exist in many
applications in e-society and e-governance systems. To
make e-society, e-governance and cloud computing
systems be utilized more widely, this paper proposes a
scheme that enables entities (e.g. servers in cloud
computing systems) to collect attribute values belong to
same data holders and calculate functions of them without
knowing links between attribute values and their holders
or among attribute values of same holders.

The above scheme can be developed by using Mix-nets
[2,4,5] as shown in Figure 1 that consist of data holders,
authority A, and mix-servers M1, M2, ---, MN in the
encryption and the decryption stages. Here, each data
holder P owns its attribute values XP(1), XP(2), ---, XP(Q),
and although each XP(q) is disclosed by some reasons (e.g.
if XP(q) is the amount of P’s deposit in a bank P must
disclose it to the bank) P wants to conceal the fact that
XP(q) belongs to it from others including A and mix-
servers (actually, P must conceal also links among XP(1), -
--, XP(Q) because they are good clues to identify P). On

the other hand, A needs to calculate functions of attribute
values of same data holders and let data holders take
actions according to the calculation results (e.g. pay taxes).

Figure 1. Configuration of a data collection system

To satisfy these requirements, mix-servers M1, ---, MN
in the encryption and the decryption stages repeatedly
encrypt individual attribute values and decrypt encrypted
function values respectively while disclosing their
encryption and decryption results publicly so that they can
convince others of their correct encryptions and
decryptions. An important things here are firstly
encryption functions are probabilistic (this means they
generate different encryption forms even for same plain

40 Information Security and Computer Fraud

texts) and secondly each Mh shuffles its encryption or
decryption results before it discloses them. Therefore no
one can know the correspondence between attribute values
received by M1 in the encryption stage and final
decryption results calculated by M1 in the decryption stage
unless all mix-servers conspire.

In detail, each data holder P informs 1st mix-server M1
in the encryption stage of its q-th attribute value XP(q)
without disclosing its identity, and provided that kh is an
encryption key of Mh’s encryption function E(kh, x) for
each h, M1, ---, MN repeatedly encrypt each XP(q) to E(kN*,
XP(q)) = E(kN, E(kN-1, --- E(k1, XP(q)) ---)) while
shuffling their encryption results. After that, authority A
collects E(kN*, XP(1)), E(kN*, XP(2)), ---, E(kN*, XP(Q))
that correspond to anonymous data holder P, and
calculates E(kN*, f(XP(1), ---, XP(Q))), an encryption form
of function value f(XP(1), ---, XP(Q)). Then, MN, MN-1, ---,
M1 in the decryption stage repeatedly decrypt each E(kN*,
f(XP(1), ---, XP(Q))) to f(XP(1), ---, XP(Q)) so that P that
owns XP(1), ---, XP(Q) can know value f(XP(1), ---, XP(Q)),
and finally A asks individual anonymous data holders to
take actions according to their function values.

But to implement this scheme the following difficulties
must be removed. The 1st difficulty is about the
anonymity of data holders, i.e. each data holder P must
convince 1st mix-server M1 of its eligibility without
disclosing its identity. About the 2nd and the 3rd
difficulties, authority A must collect P’s encrypted
attribute values E(kN*, XP(1)), ---, E(kN*, XP(Q)) from all
encryption results in the encryption stage, on the other
hand, P must identify its function value f(XP(1), ---, XP(Q))
from all decryption results in the decryption stage. The 4th
and the 5th difficulties relate to mechanisms to calculate
encryption form E(kN*, f(XP(1), ---, XP(Q))) and to ensure
mix-servers’ correct handlings of attribute values. Namely,
each encryption function E(kh, x) must have specific
features to enable A to calculate E(kN*, f(XP(1), ---, XP(Q)))
from E(kN* XP(1)), ---, E(kN*, XP(Q)). Also, even if some
entities behave dishonestly, A and data holders must detect
incorrect calculation results and identify entities liable for
them to re-calculate correct values.

Among these difficulties, the 1st difficulty can be
removed by anonymous authentication schemes [6,7,12],
in addition some of them can handle also the 2nd, the 3rd
and the 5th difficulties. But currently available schemes
are not practical for handling the 4th difficulty. Namely,
although simple ElGamal re-encryption schemes [4]
enable authority A to calculate encrypted weighted sum of
attribute values E(kN*, a1XP(1)+ --- +aQXP(Q)) as E(kN*,
a1XP(1))+ --- +E(kN*, aQXP(Q)) and recent fully
homomorphic encryption functions [8,9] may enable A to
calculate arbitrary function E(kN*, f(XP(1), ---, XP(Q))) as
f(E(kN*, XP(1)), ---, E(kN*, XP(Q))), they are designed for
handling integer values. Therefore they are not practical to
handle real number attribute values that appear in many
important business and engineering applications.

The scheme proposed in this paper exploits linear
equation based (LE-based) encryption functions [10] to
enable authority A to efficiently calculate weighted sums
of real number attribute values. A can calculate also their
general polynomial functions, when LE-based encryption
functions are replaced with multidimensional array based
(MA-based) ones [10] which are both additive and
multiplicative.

2. LE-based Encryption Functions
A linear equation based (LE-based) encryption function

considers information as integers or real numbers, and
encrypts an (H+G)-dimensional vector of integers or real
numbers X = {x1, x2, ---, xH, r1, r2, ---, rG } to (H+G)-
dimensional vector X* = {x*1, x*2, ---, x*H+G} by using
secret (H+G)x(H+G)-dimensional coefficient matrix Q =
{qij}, i.e. x*i = qi1x1+qi2x2+ --- +qiHxH+qi(H+1)r1+ ---
+qi(H+G)rG for each i [10]. Where, each xj constitutes a real
term that corresponds to information to be encrypted, on
the other hand, each rh is a random number secret of the
information holder and constitutes a dummy term.

Then, for an entity that does not know matrix Q it is
difficult to calculate X from X*; but when Q is known,
anyone can calculate X from X* by solving the linear
equations provided that Q has its inverse. Therefore,
coefficient matrices Q and Q-1 work as an encryption and
a decryption keys. Here, it is apparent that encryption
function E(Q, X) is additive, i.e. provided that s and t are
real numbers and sX represents the product of scalar
number s and vector X, when X and Y are encrypted to,
E(Q, X) and E(Q, Y), sE(Q, X)+tE(Q, Y) is decrypted to
sX+tY. Also, because each xj, rh and elements of matrix Q
are not limited to integers, LE-based encryption functions
can handle real numbers in totally the same way as integers.

However the above additive feature introduces a serious
drawback, i.e. LE-based encryption functions are weak
against plain text attacks. When mutually independent
(H+G)-dimensional vectors A1*, A2*, ---, A(H+G)* are known
as encryption forms of known vectors A1, A2, ---, AH+G,
because arbitrarily given (H+G)-dimensional vector X* is
represented as X* = g1A1*+ ---- +gH+GA(H+G)*, X* can be
easily decrypted to X = g1A1+ ---- +gH+GAH+G without
knowing coefficient matrix Q. Therefore, LE-based
encryption functions must be used in applications where
data are encrypted and decrypted by same entities, i.e. in
these applications entities that encrypt information do not
need to disclose at least dummy term values to others in
their plain forms and plain text attacks become difficult (it
must be noted that by various reasons real part values
must be disclosed in their plain forms in many
applications). Because entities that encrypt and decrypt
data are same, a fact that lengths of encryption keys are
prone to being long is not a disadvantage either.

LE-based encryption functions can be intensified
further by inserting secret dummy elements at random
positions in encrypted vectors, i.e. elements of encryption
form {x*1, x*2---, x*H+G} and secret dummy vector {w*1,
w*2, ---, w*L} are merged while being shuffled to constitute
(H+G+L)-dimensional encryption form {X*’} = {w*1, w*2,
x*3 w*3, x*1---, w*4} for example. As a consequence,
positions where x*1, x*2---, x*G+H are located in {X*’} must
be determined in order to decrypt {X*’}. When L-dummy
elements {w*1, w*2---, w*L} are added to (H+G)-
dimensional vector {x*1, x*2---, x*H+G}, H+G+LPH+G number
of possibilities must be examined to remove the dummy
elements, and when (H+G) and L are set to 50, H+G+LPH+G
is 100P50 > 2500.

On the other hand, solving linear equations is not
difficult when the coefficient matrix is given. For example,
LU-decomposition [3] solves linear equations with
sufficient performance in terms of both computation speed
and accuracy. Computation speed is fast enough compared

 Information Security and Computer Fraud 41

with that of modern asymmetric key encryption functions
such as RSA even the dimensions of coefficient matrices
are more than 100, also computation errors are small enough.

However, it is still easy to generate consistent
encryption forms even without knowing encryption keys.
By linearly combining known encryption forms, anyone
can generate consistent encryption forms of variety of data
without knowing the key as same as man in the middle
attacks in environments where public key encryption
functions are used. But many mechanisms are available to
remove these threats, e.g. implicit transaction links (ITLs)
[10] enable entities to detect forged encryption forms
without examining individual forms.

About the verifiability, although LE-based encryption
functions are secret key based, correctness of E(Q, x) can
be verified by using the additive property as follow.
Conceptually, entity V that verifies E(Q, x*), encryption
form of x, generates arbitrary vectors {E(Q, T1), ---, E(Q,
Tm)} as a set of encryption forms of test values, and asks P,
which had calculated E(Q, x*), to decrypt them to {T1, ---,
Tm}. After that, V calculates X = w0E(Q, x*)+w1E(Q, T1)+
--- +wmE(Q, Tm) while generating random numbers w0, w1,
----, wm secret from P, and asks P to decrypt X. Then,
because E(Q, x) is additive X must be decrypted to X =
w0x+w1T1+ ---- +wmTm if E(Q, x*) and E(k, T1), ---, E(k,
Tm) are correct. But if they are incorrect, P that does not
know w0, w1, ---, wm cannot calculate X from X.

Here, actually X, E(Q, x*), E(Q, T1), ---, E(Q, Tm) in the
above are vectors, therefore P obtains multiple relations
about (m+1)-variables w0, w1, ---- wm, which may enable
P to calculate w0, w2, ---- wm when m is small. But a slight
extension disables P to calculate w0, w1, ---- wm even
when m is small. This means P does not need to disclose
numbers of plain and encryption forms pairs of test values.
P does not need to disclose dummy terms of vector X and
each test vector Tj either; in other words, verification of
dummy terms has no meaning for V because they can
have any values without making real terms inconsistent.
Then, encryption function E(Q, x) can be protected from
plain text attacks even in environments where correctness
of numbers of encryption forms are verified.

3. Linear Mix-net
A scheme that enables authority A to calculate linear

combinations of attribute values belong to same data
holders without knowing correspondences between
attribute values and their holders can be developed by
linear Mix-nets as below [11]. As mentioned before, one
of advantages of linear Mix-nets is they use LE-based or
MA-based encryption functions and can handle real
numbers and integers efficiently totally in the same way.

Here, implementation of a re-encryption scheme based
on LE-based encryption functions E(k1, x), E(k2, x), ---,
E(kN, x) is straightforward, i.e. 1st mix-server M1 encrypts
real number or integer x to z1-dimensional vector {x1(1),
x1(2), ---, x1(z1)} based on its secret coefficient matrix
{q1(i, j)} and dummy terms, and merges it and dummy
elements {y1(z1+1), y1(z1+2), ---, y1(z*

1)} to construct z*
1-

dimensional vector E(k1, x) = {x1(1), x1(2), ---, x1(z*
1)}.

Then 2nd mix-server M2 adds dummy terms to {x1(1), ---,
x1(z*

1)} to construct z2-dimensional (z2 > z*
1) vector

{x1(1), ---, x1(z*
1), x1(z*

1+1), ---, x1(z2)}, encrypts it to

{x2(1), x2(2), ---, x2(z2)} by calculating each x2(s) as a
linear combination of x1(1), ---, x1(z2) while using secret
coefficient matrix {q2(i, j)}, and merges it and dummy
elements {y2(z2+1), y2(z2+2), ---, y2(z*

2)} to construct z*
2-

dimensional vector E(k2, E(k1, x)) = {x2(1), x2(2), ---,
x2(z*

2)}. Remaining mix-servers behave in the same way.
In the remainder, a linear Mix-net is configured based

on LE-based encryption functions, and notation E(kh*, x)
is used to represent re-encryption form E(kh, E(kh-1, ---
E(k1, x) ---)).

3.1. Configuration of LE-based Linear Mix-net
In LE-based linear Mix-net, mix-servers are arrayed

also in the verification stage and numbers of mix-servers
in the encryption and the decryption stages are not equal,
i.e. it consists of data holders, authority A, mix-servers M1,
---, MT in the encryption and the verification stages and
M1, ---, MN (N < T) in the decryption stage as shown in
Figure 2. As same as in Figure 1 mix-servers in the
encryption stage repeatedly encrypt individual attribute
values, and based on the encryption results, authority A
calculates encrypted weighted sums of individual data
holders’ attribute values to be repeatedly decrypted by
mix-servers in the decryption stage. But different form
Figure 1 mix-servers in the encryption stage encrypt single
attribute value XP(q) into multiple different forms, also
before entering the decryption stage mix-servers in the
verification stage decrypt individual encrypted attribute
values to convince others of their honest encryptions.

Figure 2. Configuration of LE-based linear Mix-net

42 Information Security and Computer Fraud

Where, although each Mh in all stages discloses its
encryption and decryption results publicly despite E(kh, x)
is weak against plain text attacks to prove its correct
handlings of attribute values, E(kh, x) is protected because
Mh in each stage shuffles its encryption or decryption
results. For an entity that does not know shuffling rules,
every possible input and output values pair of Mh is a
candidate of plain and encryption (or encryption and plain)
forms pair of E(kh, x), and provided that Ω and Ψ are the
number of data holders and the dimension of vector E(kh,
x) respectively, ΩPΨ number of possibilities must be
examined for obtaining Ψ-mutually independent plain and
encryption forms pairs (ΩPΨ is greater than 101000 when Ω
= 200 and Ψ = 100).

Figure 3 shows the data structure of data holder P’s q-th
attribute value XP(q) that P puts in the encryption stage.
Attribute ID and attribute parts correspond to q-th attribute
name Iq (e.g. height of persons) and attribute value XP(q)
itself (e.g. height of a particular person P). About copy ID
part value d, P generates multiple copies for single XP(q)
and d is the identifier of the d-th copy. The holder part
value Zr(q, d)·R

mod B is calculated by P from publicly known
integer Zr(q, d)

mod B as a used seal of P’s anonymous tag
based credential S(P, R) [12] (B is a publicly known
sufficiently large appropriate integer and notation mod B is
omitted in the remainder).

Figure 3. Data structure of attribute values

In detail, for its q-th attribute value XP(q), P shows D-
quadruplets E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} (d =, 1, 2,
---, D) to 1st mix-server M1 to be encrypted repeatedly to
quadruplets E1(XP(q, d)) = {Iq, d, E(k1, XP(q)d), Zr(q,

d)·R·u(1)}, ---, EN(XP(q, d)) = {Iq, d, E(kN*, XP(q)d), Zr(q,

d)·R·u*(N)}, ---, ET(XP(q, d)) = {Iq, d, E(kT*, XP(q)d), Zr(q,

d)·R·u*(T)}, (d =, 1, 2, ---, D) by M1, ---, MN, ---, MT in the
encryption stage, where E(kh*, XP(q)d) represents a re-
encryption form of XP(q) that is generated based on
dummy terms and dummy elements corresponding to copy
ID value d, therefore although E(kh*, XP(q)1), ---, E(kh*,
XP(q)D) are decrypted to same value XP(q) they have
different forms.

About the verification stage, authority A collects
quadruplets ET(XP(q, 1)), ---, ET(XP(q, D)), which are
calculated from E0(XP(q, 1)), ---, E0(XP(q, D)) in the
encryption stage corresponding to attribute value XP(q), to
construct single triplet ET(XP(q)) = {Iq, E(kT*, XP(q)*),
Zr(q)·R·u*(T)·w(A)} that has the same structure as in Figure 3
except it does not include the copy ID part. Then, MT, ---,
M1 decrypt ET(XP(q)) repeatedly to triplets ET-1(XP(q)), ---,
E0(XP(q)). Important things are firstly E(kT*, XP(q)*) in
triplet ET(XP(q)) is decrypted also to XP(q), and secondly,
each mix-server Mh cannot identify the correspondence
between Eh(XP(q, d)) in the encryption stage and Eh(XP(q))
in the verification stage for each d, in other words,
attribute and holder parts values in triplets ET(XP(q)), ---,
E1(XP(q)) have different forms from those in quadruplets
ET(XP(q, d)), ---, E1(XP(q, d)).

Finally, the data structure of the weighted sum of P’s
attribute values X(P) = a1XP(1)+ --- +aQXP(Q) put in the

decryption stage consists of attribute part and holder part
values pair EN(X(P)) = {E(kN*, X(P)), ZR·u*(N)·r*}. Its
attribute part and holder part values are aggregations of
those in 1st copies of re-encrypted quadruplets EN(XP(1,
1)), ---, EN(XP(Q, 1)) in the encryption stage, i.e. E(kN*,
X(P)) = a1E(kN*, XP(1)1)+ --- +aQE(kN*, XP(Q)1) and
ZR·u*(N)·r* = ZR·u*(N)·r(1, 1)·r(2, 1)---·r(Q, 1). Here, it must be noted
that authority A generates EN(X(P)) from EN(XP(1, 1)), ---,
EN(XP(Q, 1)) instead of ET(XP(1, 1)), ---, ET(XP(Q, 1)).

Under the above settings, first 3 difficulties in
Introduction are removed by anonymous credential S(P, R)
and holder part values of quadruplets in the encryption
stage and pairs in the decryption stage. In detail, to
register itself as an authorized entity, each data holder P
shows its exact identity to authority A, and A issues
integers Zr(1, d), ---, Zr(Q, d) (d = 1, 2, ---, D) and anonymous
credential S(P, R) that includes P’s secret unique integer R
to P. After that, P generates secret integer y(P, q),
calculates S(P, R)y(P, q), and shows S(P, R)y(P, q) together
with XP(q) to 1st mix-server M1 in the encryption stage.
At the same time, P calculates holder part value Zr(q, d)·R
from Zr(q, d) for each d as a used seal of S(P, R) to be
incorporated in each quadruplet E0(XP(q, d)) = {Iq, d,
XP(q), Zr(q, d)·R}, where, anonymous credential S(P, R)
forces P to honestly calculate holder part value Zr(q, d)·R
from Zr(q, d) by using secret integer R in S(P, R). About
integers Z and r(q, d), Z is common to all attribute vales of
all data holders and publicly known, on the other hand, r(q,
d) is unique to q-th attribute values for each d and it is
secret from all entities including A and mix-servers.

Then the 1st difficulty is removed, i.e. anonymous
credential S(P, R) enables P to convince M1 of its
eligibility without disclosing its identity or secret integer
R [12]. Here, P assigns different values to secret integers
y(P, 1), ---, y(P, Q), also each holder part value Zr(q, d)·R is
constructed by integers Z, r(q, d) and R with the above
properties. Therefore entities other than P cannot identify
links among P’s attribute values XP(1), ---, XP(Q) even if
they examine credential forms S(P, R)y(P, 1), ---, S(P, R)y(P,

Q) or used seals Zr(1, d)·R, ---, Zr(Q, d)·R. When difficulties of
solving discrete logarithm problems are considered, to
know that the above credential forms or used seals are
calculated from same S(P, R) or R is computationally
infeasible for entities that do not know y(P, q), R or r(q, d).

About the 2nd and the 3rd difficulties, holder part value
Zr(q, d)·R in initial quadruplet E0(XP(q, d)) is transformed to
Zr(q, d)·R·u(1)·u(2)---u(N) = Zr(q, d)·R·u*(N) by M1, ---, MN in the
encryption stage as a holder part value of re-encrypted
quadruplet EN(XP(q, d)), and before entering the
decryption stage, A asks mix-servers to calculate (Zr(q,

1)·R·u*(N))r(1, 1)·r(2, 1)---r(q-1, 1)·r(q+1, 1)---r(Q, 1) = ZR·u*(N)·r(1, 1)·r(2, 1)---r(Q,

1) = ZR·u*(N)·r* from Zr(q, 1)·R·u*(N) for each q. Therefore, value
ZR·u*(N)·r* becomes common to P’s all encrypted
quadruplets EN(XP(1, 1)), ---, EN(XP(Q, 1)), and as a result,
to calculate pair EN(X(P)) = {E(k*, X(P)), ZR·u*(N)·r*} A can
collect EN(XP(1, 1)), ---, EN(XP(Q, 1)) despite that M1, ---,
MN shuffle their encryption results. Here, u(h) is mix-
server Mh’s secret integer common to all attribute values
of all data holders, and although no one knows each r(q, d)
mix-servers can calculate ZR·u*(N)·r* from Zr(q, 1)·R·u*(N) as in
Sec. 3.2.3.

In the same way, A can collect all quadruplets ET(XP(q,
1)), ---, ET(XP(q, D)) corresponding to XP(q) to construct
triplet ET(XP(q)) to be decrypted in the verification stage.

 Information Security and Computer Fraud 43

Also, P can identify finally decrypted pair E*
0(X(P)) =

{X(P), ZR·u*(N)·r*·v*} in the decryption stage based on its
holder part value ZR·u*(N)·r*·v*, i.e. provided that mix-servers
calculate Zu*(N)·r*·v* separately, only P that knows R can
calculate ZR·u*(N)·r*·v* in pair E*

0(X(P)) from Zu*(N)·r*·v*.
Moreover although R is P’s secret, P must calculate it
honestly as a used seal of its credential S(P, R).

In the above, unique integer r(q, d) secret from all
entities can be generated easily. In detail, each Mh
generates its secret integer r(q, d; h) and calculates Zr(q, d;

1)·r(q, d; 2)---r(q, d; h-1)·r(q, d; h) from Zr(q, d; 1)·r(q, d; 2)---r(q, d; h-1)
received from Mh-1 to forward the result to Mh+1 so that
finally MT can calculate Zr(q, d; 1)·r(q, d; 2)---r(q, d; T) = Zr(q, d).
Namely, no one knows all r(q, d; 1), ---, r(q, d; T) and
calculating r(q, d) from Zr(q, d) is a discrete logarithm
problem. Also uniqueness of r(q, d) can be maintained by
discarding r(q, d) to replace it with new one when mix-
servers had calculated same value Zr(q, d) before. Integers
u*(N), v* and r* are generated in the same way. Therefore,
no one can know values of r(q, d), u*(N), v* or r*, and as a
result, anyone including P itself cannot examine holder
part values to know the correspondence between P and
encrypted quadruplet EN(XP(q, d)) or between finally
decrypted pair E*

0(X(P)) and each EN(XP(q, d)).
LE-based encryption functions and the verification

stage remove the remaining difficulties. Firstly, encryption
function E(kN*, x) is additive because each E(kh, x) is LE-
based. Therefore, authority A can calculate encryption
form E(kN*, a1XP(1)+a2XP(2)+ --- +aQXP(Q)) from
encrypted attribute values E(kN*, XP(1)1), E(kN*, XP(2)1), --
-, E(kN*, XP(Q)1) as E(kN*, a1XP(1)+ --- +aQXP(Q)) =
E(kN*, XP(1)1)+ --- +E(kN*, XP(Q)1). Namely, the 4th
difficulty is removed if function f(x1, ---, xQ) is a linear
combination of attribute values x1, ---, xQ.

About the 5th difficulty, mix-servers in the encryption
and the verification stages transform each attribute value
in different ways, i.e. corresponding to same attribute
value XP(q), mix-server Mh in the encryption stage
calculates quadruplet Eh(XP(q, d)), and Mh+1 in the
verification stage calculates triplet Eh(XP(q)) so that no
one can identify the correspondence between them.
Therefore, if initial quadruplet E0(XP(q, d)) was
dishonestly transformed to Eh(X*

P(q, d)) by Mh in the
encryption stage, even Mh in the verification stage cannot
replace E(kh*, X*

P(q)*) in Eh(X*
P(q)) with E(kh*, XP(q)*)

that is finally decrypted to XP(q), because it does not know
triplet Eh(X*

P(q)) corresponding to Eh(X*
P(q, d)). This

means authority A can verify the correct encryption of
each E0(XP(q, d)) by comparing XP(q) in it and X*

P(q) in
decrypted triplet E0(X*

P(q)) in the verification stage, i.e.
EN(X*

P(q)) is incorrect when XP(q) ≠ X*
P(q). Here, data

holder P can identify triplet E0(X*
P(q)) corresponds to it in

the same way as it finds pair E*
0(X(P)) in the decryption stage.

By exploiting, integers Zr(1, d), ---, Zr(Q, d), verifiable
features of LE-based encryption functions and features of
anonymous tag based credentials, A and data holders also
can detect dishonesties in the decryption stage, identify
liable entities, and re-calculate correct results without
knowing secrets of honest entities, i.e. the 5th difficulty is
removed.

3.2. Behaviours of the LE-based Linear Mix-net
After quadruplets E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R}

(d = 1, 2, ---, D) were disclosed publicly corresponding to

attribute value XP(q) of anonymous data holder P,
individual mix-servers and authority A behave as below.
In the remainder, u*(h), v*(h) and w*(h) represent products
u(1)u(2)---u(h), v(N)v(N-1)---v(h) and w(A)w(N)w(N-1)--
-w(h), and as a special case v* = v*(1) and w* = w*(1).
Where, u(h), v(h) and w(h) are integers common to all
attribute values of all data holders and secrets of h-th mix-
server Mh, and w(A) is a secret integer of authority A and
common to all attribute values of all data holders.

3.2.1. Encryption Stage
1st mix-server M1 in the encryption stage that picks

disclosed E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} encrypts
XP(q) to E(k1, XP(q)d) by encryption key k1, calculates
Mr(q, d)·R·u(1) from Mr(q, d)·R by using secret integer u(1), and
constructs quadruplet E1(XP(q, d)) = {Iq, d, E(k1, XP(q)d),
Zr(q, d)·R·u(1)}. Other mix-servers behave in the same way,
i.e. each Mh picks Eh-1(XP(q, d)) = {Iq, d, E(k(h-1)*, XP(q)d),
Zr(q, d)·R·u*(h-1)} disclosed by Mh-1, encrypts E(k(h-1)*, XP(q)d)
to E(kh*, XP(q)d) and calculates Zr(q, d)·R·u*(h) from Zr(q,

d)·R·u*(h-1) by its secret key kh and secret integer u(h), and
constructs Eh(XP(q, d)) = {Iq, d, E(kh*, XP(q)d), Zr(q, d)·R·u*(h)}
to disclose it publicly. As a result, E0(XP(q, d)) received
by M1 is finally transformed to EN(XP(q, d)) and ET(XP(q,
d)) by MN and MT respectively, where each Mh shuffles its
generating quadruplets of course.

Then, because no one knows all keys k1, ---, kN , ---, kT
nor integers u(1), ---, n(N), ---, u(T), anyone cannot link
E0(XP(q, d)) to EN(XP(q, d)) or ET(XP(q, d)) unless all mix-
servers conspire. Anyone except P cannot know links
among P’s attribute values XP(1), XP(2), ---, XP(Q) either.
About encryption function E(kh, x), although each Mh
shuffles its encryption results, anyone can obtain a plain
and encryption forms pair of E(kh, x). Namely, if an entity
calculates Xh-1 and Xh as sums of all attribute part values
in quadruplets that Mh receives and generates respectively,
{Xh-1, Xh} is a plain and encryption forms pair because
E(kh, x) is additive. But, Mh can protect E(kh, x) from
plaintext attacks because known pair is only {Xh-1, Xh}.

3.2.2. Verification Stage
After the encryption stage, authority A conducts the

verification stage to examine whether individual
quadruplets were honestly encrypted or not, and when
dishonestly handled quadruplets are detected it asks mix-
servers to carry out the encryption stage again while using
new secret values including encryption keys. Also, A
identifies dishonest mix-servers if necessary to replace
them with new ones as will be discussed in Sec. 3.4.2.
Therefore, the encryption stage eventually generates
correct encryption results.

To examine individual quadruplets, firstly authority A
collects ET(XP(q, 1)) = {Iq, 1, E(kT*, XP(q)1), Zr(q, 1)·R·u*(T)},
---, ET(XP(q, D)) = {Iq, D, E(kT*, XP(q)D), Zr(q, D)·R·u*(T)}
corresponding to each attribute value XP(q) of each data
holder P. Here, provided that r(q, d; h) and r(q) represent
products r(q, 1; h)·r(q, 2; h)---r(q, d-1; h)·r(q, d+1; h)---r(q,
D; h) and r(q, 1)·r(q, 2)---r(q, D) respectively, each Mh
receives Zr(q, d)·R·u*(T)·r(q, d; 1)·r(q, d; 2)---·r(q, d; h-1) from Mh-1 and
calculates Zr(q, d)·R·u*(T)·r(q, d; 1)·r(q, d; 2)---·r(q, d; h-1)·r(q, d; h) by using
its secret integer r(q, d, h) to forward it to Mh+1. As a result,
MT calculates Zr(q, d)·R·u*(T)·r(q, d; 1)---·r(q, d; T) = Zr(q, d)·R·u*(T)·r(q,

1)·r(q, 2)---·r(q, d-1)·r(q, d+1)---r(q, D) = Zr(q)·R·u*(T). Therefore, A can

44 Information Security and Computer Fraud

collect EN(XP(q, 1)), ---, EN(XP(q, D)) that include
Zr(q)·R·u*(T) as their holder part values.

After that, each Mh (h ≤ Y < N) calculates dh1E(kT*,
XP(q)1)+ --- +dhDE(kT*, XP(q)D)+E(kT*, 0h(P, q)) = E(kT*,
dh1XP(q)1+ --- +dhDXP(q)D+0h(P, q)) = E(kT*, XP(q; h)),
and A calculates {E(kT*, XP(q; 1))+ --- +E(kT*, XP(q;
Y))}/Y = E(kT*, XP(q)*). Here, dh1, dh2, ---, dhD are real
numbers secrets of Mh and relation dh1+ --- +dhD = 1 holds,
and E(kT*, 0h(P, q)) is Mh’s secret encryption form of
value 0. Therefore each E(kT*, XP(q; h)) is decrypted to
XP(q). In addition, E(kT*, XP(q)*) is also represented as
E(kT*, XP(q)*) = E(kT*, d1XP(q)1+ --- +dDXP(q)D+0*(P, q))
for some real number coefficients d1, ---, dD that satisfy
d1+ --- +dD = 1 (where E(kT*, 0*(P, q)) = {E(kT*, 01(P, q)+
--- +0Y(P, q))}/Y), and this means E(kT*, XP(q)*) is also
decrypted to XP(q). But no one knows coefficients d1, ---,
dD or encryption form E(kT*, 0*(P, q)) because dh1, dh2, ---,
dhD and E(kT*, 0h(P, q)) are known only to Mh.

About encryption form E(kT*, 0h(P, q)), each Mh can
generate it by choosing data holders P(h1), ---, P(hS),
attribute IDs Iq(h1), ---, Iq(hS) and copy IDs pairs {d(h1), d(h1)},
---, {d(hS), d(hS)} arbitrarily as its secrets and linearly
combining {E(kT*, XP(hs)(q(hs))d(hs))-E(kT*, XP(hs)(q(hs))d(hs))}
by its secret coefficients, i.e. E(kT*, XP(hs)(q(hs))d(hs)) and
E(kT*, XP(hs)(q(hs))d(hs)) are encryption forms of same value
XP(hs)(q(hs)). Mh also can identify pair {E(kT*,
XP(hs)(q(hs))d(hs)), E(kT*, XP(hs)(q(hs))d(hs))} because they are
accompanied by same holder part value Zr(q(hs))·R(hs)·u*(T).

Then A generates secret integer w(A), and constructs
triplet ET(XP(q)) = {Iq, E(kT*, XP(q)*), Zr(q)·R·u*(T)·w(A)} to
disclose it publicly, and mix-servers MT, ---, M1 in the
verification stage repeatedly decrypt ET(XP(q)) to E0(XP(q))
= {Iq, XP(q), Zr(q)·R·u*(T)·w*}. In detail, each Mh picks
Eh(XP(q)) = {Iq, E(kh*, XP(q)*), Zr(q)·R·u*(T)·w*(h+1)} disclosed
by Mh+1, decrypts E(kh*, XP(q)*) to E(k(h-1)*, XP(q)*)
calculates Zr(q)·R·u*(T)·w*(h) = Zr(q)·R·u*(T)·w*(h+1)·w(h) by using
key kh

-1 and integer w(h), constructs triplet Eh-1(XP(q)) =
{Iq, E(k(h-1)*, XP(q)*), Zr(q)·R·u*(T)·w*(h)}, and discloses it to be
picked by Mh-1. As a consequence, M1 generates decrypted
triplet E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*}.

Here, although A and MN, ---, M1 shuffle their
calculation results, links among copies of quadruplets
ET(XP(q, 1)), ---, ET(XP(q, D)) are revealed. Nevertheless,
P can preserve its privacy, i.e. they are encryption forms
of same attribute value XP(q). Also, mix-servers can
protect their encryption functions from plain text attacks
despite anyone can obtain plain and encryption forms pair
{0, E(kT*, 0)} as above, i.e. no one knows its dummy term
values.

<Detecting dishonesties in the encryption stage>
In the above, because no one knows coefficients d1, ---,

dD, encryption form E(kh*, 0*(P, q)) or integer w*(h),
anyone cannot link triplet Eh(XP(q)) = {Iq, E(kh*, XP(q)*),
Zr(q)·R·u*(T)·w*(h+1)} to corresponding quadruplet Eh(XP(q, d))
= {Iq, d, E(kh*, XP(q)d), Zr(q, d)·R·u*(h)}. This means if initial
quadruplet E0(XP(q, d)) is dishonestly encrypted to
ET(X*

P(q, d)) in the encryption stage, any Mh in the
verification stage cannot modify corresponding triplet
Eh(X*

P(q)) to Eh(XP(q)) so that it is finally decrypted to
E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*} (actually, 1st mix-
server M1 can do as will be discussed later).

Authority A detects dishonesties in the encryption stage
by using this property. In detail, firstly A requests mix-

servers to calculate integer Zr(q)·u*(T)·w* for each q to
disclose it publicly. After that for each q, each data holder
P calculates used seals Zr(q, 1)·R and Zr(q)·R·u*(T)·w* of its
credential S(P, R) from Zr(q, 1) and Zr(q)·u*(T)·w*, and based
on Zr(q, 1)·R and Zr(q)·R·u*(T)·w* finds E0(XP(q, 1)), i.e. 1st copy
of the initial quadruplet corresponding to attribute value
XP(q), and triplets E0(X*

P(q)) in the verification stage.
Then, P shows initial quadruplet and decrypted triplet

pair <E0(XP(q, 1)), E0(X*
P(1))> to A while convincing A of

its ownership of the pair by used seals Zr(q, 1)·R and
Zr(q)·R·u*(T)·w*, and A determines pair <E0(XP(q, 1)) = {Iq, 1,
XP(q), Zr(q, 1)·R}, E0(X*

P(q)) = {Iq, X*
P(q), Zr(q)·R·u*(T)·w*}> is

inconsistent, i.e. at least one copy E0(XP(q, d)) was
dishonestly handled, when XP(q) ≠X*

P(q). Here,
correctness of XP(q) in E0(XP(q, 1)) is ensured because P
shows XP(q) to M1 in its plain form. About privacy
preservation, P must report pairs separately and without
disclosing its identity of course.

A also can force all data holders to report their all pairs,
i.e. when no one appears as the holder of pair <E0(XP(q,
1)), E0(XP(q))>, it asks all data holders to calculate used
seals of their credentials from Zr(q, 1) and Zr(q)·u*(T)·w* while
disclosing their identities as will be discussed in Sec. 3.4.3.
In a case where mix-servers transform holder part value
Zr(q, d)·R in E0(XP(q, d)) to an invalid value P cannot
identify its decrypted triplet in the verification stage, but
even in this case A can detect the dishonestly handled
quadruplet as E0(XP(q, 1)) that is not paired with any
triplet.

In the above, mix-servers M1, ---, MT can calculate
Zr(q)·u*(T)·w* as same as Zr(q)·R·u*(T) at the beginning of this
subsection. Namely provided that r(q; h) represents
product r(q, 1; h)·r(q, 2; h)---r(q, D; h), each Mh calculates
Z{r(q; 1)·r(q; 2)----r(q; h-1)·r(q; h)}·{u(1)·u(2)----u(h-1)·u(h)}·{w(A)·w(1)·w(2)----w(h-

1)·w(h)} from Z{r(q; 1)----r(q; h-1)}·{u(1)----u(h-1)}·{w(A)·w(1)----w(h-1)}
given by Mh-1 to forward it to Mh+1 so that finally MT
calculates Z{r(q; 1)----r(q; T)}·{u(1)----u(T)}·{w(A)·w(1)----w(T)} =
Zr(q)·u*(T)·w*. Here, although P knows integer R, it cannot
identify triplet Eh(XP(q)) = {Iq, E(kh*, XP(q)*),
Zr(q)·R·u*(T)·w*(h+1)} based on Z{r(q; 1)----r(q; h)}·{u(1)----u(h)}·{w(A)·w(1)--

--w(h)} disclosed by Mh for h > 1, because r(q; 1)----r(q;
h)u(1)----u(h)w(A)w(1)----w(h) and r(q)u*(T)w*(h+1) are
different.

About privacy of data holder P, P is anonymous, and
because it reports pairs <E0(XP(1, 1)), E0(XP(1))>, ---,
<E0(XP(Q, 1)), E0(XP(Q))> separately, anyone other than P
cannot know links among XP(1), ---, XP(Q). Although
E0(XP(q)) includes plain attribute value XP(q), XP(q) is
publicly known from the beginning.

<Dishonest 1st mix-server M1>
1st mix-server M1 in the encryption stage can encrypt

E0(XP(q, d)) dishonestly while making triplet E0(XP(q)) in
the verification stage include consistent attribute value
XP(q). For example, provided that X*

P(q) is a unique value,
even if M1 dishonestly encrypted E0(XP(q, d)) = {Iq, d,
XP(q), Zr(q, d)·R} to E1(X*

P(q, d))= {Iq, d, E(k1, X*
P(q)), Zr(q,

d)·R·u(1)} in the encryption stage for each d, because X*
P(q)

is unique it can identify incorrect triplet E0(X*
P(q)) = {Iq,

X*
P(q), Zr(q)·R·u*(T)·w*} in the verification stage and replace

X*
P(q) in it with XP(q) to produce correct decrypted triplet

E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*}.
To disable above dishonesties, in other words, to

convince others that M1 is honest, after completing the

 Information Security and Computer Fraud 45

verification stage, A discloses its secret integer w(A) and
asks mix-servers M1, M2, ---, MY (Y < N) to disclose their
encryption keys k1, k2, ---, kY, and secret integers u(1),
u(2), ----, u(Y), w(1), W(2), ---, w(Y). Namely, by the
disclosed information, anyone can confirm M1 is honest.
On the other hand, encryption keys kY+1, ---, kN, ---, kT and
integers u(Y+1), ---, u(N), ---, u(T), w(Y+1), ---, w(N), ---,
w(T) are still secrets of MY+1, ---, MT, therefore secrets of
honest data holders can be preserved. Also, A and mix-
servers replace secret integers w(A), u(1), ---, u(T), w(1), -
--, w(T) and encryption keys k1, ---, kT with new ones for
handling new sets of attribute values.

About last mix-server MT, if it conspires with authority
A, it also can encrypt ET-1(XP(q, d)) to ET(X*

P(q, d))
dishonestly and decrypt ET(X*

P(q)) to ET-1(XP(q)) that is
finally decrypted to correct value XP(q), but incorrect
ET(X*

P(q, d)) does not affect the final calculation results
because MN+1, MN+2, ---, MT are not involved in the
decryption stage.

3.2.3. Calculating Encrypted Weighted Sums of
Attribute Values

To calculate encrypted weighted sums of attribute
values corresponding to individual data holders, provided
that rq(h) and r* represent products {r(1, 1; h)·r(2, 1; h)---
r(q-1, 1; h)·r(q+1, 1; h)---r(Q, 1; h)} and {r(1, 1)·r(2, 1)---
r(Q, 1)} respectively, authority A asks mix-servers M1, ---,
MT to transform the holder part value of each quadruplet
EN(XP(q, 1)) = {Iq, 1, E(kN*, XP(q)1), Zr(q, 1)·R·u*(N)} from
Zr(q, 1)·R·u*(N) to ZR·u*(N)·r*, i.e. each Mh calculates Zr(q,

1)·R·u*(N)·rq(1)·rq(2)---rq(h-1)·rq(h) from Zr(q, 1)·R·u*(N)·rq(1)·rq(2)--- rq(h-1)
received from Mh-1 to forward the result to Mh+1.
Therefore, finally MT calculates Zr(q, 1)·R·u*(N)·rq(1)---rq(T) =
ZR·u*(N)·r(1, 1)---r(Q, 1) = ZR·u*(N)·r*, and same value ZR·u*(N)·r* is
assigned to P’s quadruplets EN(XP(1, 1)), ---, EN(XP(Q, 1))
as their holder part values. Then, A can collect EN(XP(1,
1)), ---, EN(XP(Q, 1)) from all quadruplets disclosed by
MN to calculate the encrypted weighted sum of P’s
attribute values as E(kN*, X(P)) = E(kN*, a1XP(1)1+ ---
+aQXP(Q)1) = a1E(kN*, XP(1)1)+ --- +aQE(kN*, XP(Q)1) and
to construct pair E*

N(X(P)) = {E(kN*, X(P)), ZR·u*·r*}.

3.2.4. Decryption Stage
In the decryption stage, mix-servers MN, MN-1, ---, M1

repeatedly decrypt pair E*
N(X(P)) to E*

N-1(X(P)) = {E(k(N-

1)*, X(P)), ZR·u*(N)·r*·v(N)}, E*
N-2(X(P)) = {E(k(N-2)*, X(P)),

ZR·u*(N)·r*·v*(N-1)}, ---, E*
0(X(P)) = {X(P), ZR·u*(N)·r*·v*}. Here,

although each Mh shuffles its decryption results A can
verify correct decryptions of E*

N(X(P)) partially without
knowing secrets of mix-servers by exploiting additive
feature of each E(kh, x). Namely, if A calculates sums of
attribute part values in all pairs received and generated by
Mh as Xh and Xh-1 respectively, both Xh and Xh-1 must be
encryption forms of X, weighted sum of all attribute
values of all data holders. This means {Xh-1, Xh} is a plain
and encryption forms pair of E(kh, x), and additive (as a
result verifiable) feature of E(kh, x) enables A to force
mix-servers to decrypt pairs so that sums of their
decrypted attribute part values coincide with X even if
they decrypt individual pairs dishonestly.

About encryption function E(kh, x) of each mix-server
Mh, because Mh shuffles its decryption results, no one
other than Mh can identify plain and encryption forms pair
{E(k(h-1)*, X(P)), E(kh*, X(P))} except the above pair {Xh-1,

Xh}. Therefore, Mh can protect E(kh, x) from plain text
attacks also in the decryption stage.

Nevertheless, data holder P can find its pair E*
0(X(P)) =

{X(P), ZR·u*(N)·r*·v*} to take actions for the pair. Firstly, A
asks mix-servers to calculate Zu*(N)·r*·v* in the same way as
in Sec. 3.2.3. Then, each P calculates (Zu*(N)·r*·v*)R =
ZR·u*(N)·r*·v* from Zu*(N)·r*·v* based on integer R in its
credential S(P, R), finds pair E*

0(X(P)) according to
ZR·u*(N)·r*·v*, and convinces A of its ownership of E*

0(X(P)).
Where, although P is anonymous, A can confirm P’s
ownership of pair E*

0(X(P)), because P must calculate
ZR·u*(N)·r*·v* honestly as a used seal of S(P, R).

3.3. Detecting Dishonesties
In the encryption stage, data holder P puts its initial

quadruplet E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} honestly,
because P shows XP(q) in its plain form and it calculates
Zr(q, d)·R from Zr(q, d) as a used seal of its credential. This
means P cannot behave dishonestly in any stage. Also, the
verification stage ensures that mix-servers in the
encryption stage eventually generate correct encryption
results. Therefore, remaining dishonesties to be detected
are ones in the decryption stage, i.e. each mix-server Mh
may replace elements of pair E*

h(X(P)) with those of other
pair E*

h(X(P*)) and may simply decrypt E*
h(X(P))

incorrectly.
Provided that volume of duties P must accomplish

increases (or decreases) when weighted sum of P’s
attribute values X(P) increases, authority A can easily
detect above dishonesties as below. Namely as mentioned
in the previous subsection, each mix-server Mh in the
decryption stage must decrypt each pair E*

h(X(P)) it
receives from Mh+1 so that Xh-1, sum of attribute part
values in all pairs it generates, is finally decrypted to X,
the weighted sum of attribute values of all data holders.
Therefore, if dishonesties bring any benefit to a data
holder some other data holder necessarily suffers loss. For
example, if X(P*) is the amount data holder P* must pay,
when X(P*) becomes less than the actual value, for at least
one other data holder P, weighted sum of its attribute
values X(P) becomes larger than the actual value. As a
result, P claims decrypted pair E*

0(X(P)) is incorrect. It is
also possible to endow each P with the ability to
automatically notice A that E*

0(X(P)) is incorrect by
distributing adequate computer programs to data holders.

Also, each data holder P must appear to take actions for
E*

0(X(P)) as will be discussed in Sec. 3.4.3, although X(P)
in it may not be correct. Here, Mh may transform a holder
part value of E*

h(X(P)) = {E(kh*, X(P)), ZR·u*(N)·r*·v(h+1)} in
the decryption stage to an invalid value or to the one
corresponding to data holder P* different from P. But
decrypted pairs accompanied by invalid holder part values
are detected as the ones of which holders cannot be
identified by the procedure in Sec. 3.4.3. In the latter case,
some data holders claim that weighted sums of their
attribute values are incorrect.

3.4. Identifying Dishonest Entities

3.4.1. Dishonest Mix-servers in the Decryption Stage
When authority A determines some decrypted pairs

include invalid holder part values or some data holders
claim that decrypted pairs corresponding to them are

46 Information Security and Computer Fraud

incorrect, A can identify liable entities and re-calculate
correct pairs without knowing secrets of honest entities. In
the following, pair E*

0(X*(P)) = {X*(P), ZR·u*(N)·r*·v*} in the
decryption stage is assumed incorrect, i.e. it is a pair that
includes an invalid holder part value or that is claimed as
inconsistent by anonymous data holder P.

To identify mix-servers liable for each incorrect pair
E*

0(X*(P)), authority A requests mix-servers M1, ---, MN to
prove their correct decryptions. In detail, M1 finds pair
E*

1(X*(P)) = {E(k1, X*(P)), ZR·u*(N)·r*·v*(2)} that corresponds
to E*

0(X*(P)), and A confirms that M1 certainly had
received E*

1(X*(P)) from M2 in the decryption stage and
E*

0(X*(P)) is the correct decryption form of E*
1(X*(P)). In

the same way, each Mh finds pair E*
h(X*(P)) = {E(kh*,

X*(P)), ZR·u*(N)·r*·v*(h+1)} corresponds to E*
h-1(X*(P)) =

{E(k(h-1)*, X*(P)), ZR·u*(N)·r*·v*(h)} forwarded by Mh-1, and A
confirms Mh certainly had received E*

h(X*(P)) from Mh+1
and E*

h-1(X*(P)) is the correct decryption form of
E*

h(X*(P)). Namely, Mh is dishonest when E*
h(X(P)) that

is decrypted to E*
h-1(X*(P)) does not exist.

Here, A can examine the consistency of pair
<E*

h(X*(P)), E*
h-1(X*(P))> without knowing secrets of Mh.

Namely, consistency of attribute part values E(kh*, X*(P))
and E(k(h-1)*, X*(P)) can be verified because E(kh, x) is
additive and verifiable (moreover, encryption keys of M1,
---, MY are disclosed as in Sec. 3.2.2). About holder part
values, pair {ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if
ZR·u*(N)·r*·v*(h) is calculated from ZR·u*(N)·r*·v*(h+1) by using
Mh’s secret integer v(h) that is common to all attribute
values of all data holders. Therefore, when A calculates
product of holder part values in all pairs Mh had generated
in the decryption stage as Z*

R*·u*(N)·r*·v*(h) for each h and
defines Z-

R·u*(N)·r*·v*(h) = Z*
R*·u*(N)·r*·v*(h)/ZR·u*(N)·r*·v*(h), along

the scheme of Diffie and Hellman [1], it can determine
pair {ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if
ZR·u*(N)·r*·v*(h) and Z-

R·u*(N)·r*·v*(h) are calculated as
(ZR·u*(N)·r*·v*(h+1))v(h) and (Z-

R·u*(N)·r*·v*(h+1))v(h) by same
unknown integer v(h).

In the following notations ZP(h+1), Z-(h+1), ZP(h) and
Z-(h) represent ZR·u*(N)·r*·v*(h+1), Z-

R·u*(N)·r*·v*(h+1),
ZR·u*(N)·r*·v*(h) and Z-

R·u*(N)·r*·v*(h) respectively, therefore pair
{ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if relations
ZP(h+1)v(h) = ZP(h) and Z-(h+1)v(h) = Z-(h) hold for same
unknown v(h). Also it must be noted that ZP(h+1)Z-(h+1)
= Z*

R*·u*(N)·r*·v*(h+1). Then, to confirm relations ZP(h+1)v(h) =
ZP(h) and Z-(h+1)v(h) = Z-(h), A generates its secret
integers δ1, δ2, δ3, calculates pairs {ZP(h+1)δ1, ZP(h)δ1},
{Z-(h+1)δ2, Z-(h)δ2}, {(ZP(h+1)Z-(h+1))δ3, (ZP(h)Z-(h))δ3},
and shows ZP(h+1)δ1, Z-(h+1)δ2, (ZP(h+1)Z-(h+1))δ3 to Mh.
After that Mh calculates (ZP(h+1)δ1)v(h), (Z-(h+1)δ2)v(h),
{(ZP(h+1)Z-(h+1))δ3}v(h) from them and its secret integer
v(h), and finally A confirms that ZP(h) and Z-(h) were
calculated by same v(h) if relations (ZP(h+1)δ1)v(h) =
ZP(h)δ1, (Z-(h+1)δ2)v(h) = Z-(h)δ2 and {(ZP(h+1)Z-
(h+1))δ3}v(h) = {ZP(h)Z-(h)}δ3 hold.

In the above, even if Mh had calculated ZP(h) and Z-(h)
as ZP(h+1)λ and Z-(h+1)v(h) respectively while using
different integers λ and v(h), it still can satisfy relations
(ZP(h+1)δ1)λ = ZP(h)δ1 and (Z-(h+1)δ2)v(h) = Z-(h)δ2 despite
it does not know δ1 or δ2. But according to the difficulty of
solving discrete logarithm problems, it cannot find integer
λ* that satisfies relation {(ZP(h+1)(Z-(h+1))δ3}λ* = (ZP(h)Z-
(h))δ3 = (ZP(h+1)λZ-(h+1)v(h))δ3, because it cannot represent

ZP(h+1) or Z-(h+1) as a function of Z-(h+1) or ZP(h+1)
respectively.

Then, once Mh was identified as dishonest, Mh, ---, M1
must honestly decrypt E*

h(X(P)) to generate correct
decrypted pair E*

0(X(P)) = {X(P), ZR·u*(N)·r*·v*} (because A
can verify correct decryption of Mh as above). About data
holder P, it can conceal the correspondence between X(P)
and it because it is still anonymous. But it must be noted
that to protect E(kh, x) from plain text attacks (in other
words not to disclose many plain and encryption forms
pairs) A can examine only predefined number of incorrect
decrypted pairs even if many decrypted pairs are
determined as incorrect as will be discussed in Sec. 3.4.2.
In addition, in cases where last mix-server MN is dishonest,
incorrect pair <E*

N(X(P)), E*
N-1(X*(P))> is disclosed, and

corresponding data holder P may obtain plain and
encryption forms pairs {XP(1), E(kN*, XP(1)1)}, ---,
{XP(Q), E(kN*, XP(Q)1)}, i.e. P knows its attribute values
XP(1), ---, XP(Q) and can know encrypted quadruplets
EN(XP(1, 1)), ---, EN(XP(Q, 1)) as A collects them to
calculate E*

N(X(P)). Despite E(k1, x), ---, E(kN, x) are
weak against plain text attacks, still they can be protected
because the number of disclosed pairs is not large except
cases where many attribute values are assigned to each
data holder. But when individual data holders have many
attribute values A must carry out all stages again as below.

Namely, when A cannot identify dishonest mix-servers
among M1, M2, ---, MU (U < N), it conducts all stages
again from the encryption stage while arraying mix-
servers in the different order so that MU+1, MU+2, ---, MN
are allocated before M1, M2, ---, MU in the encryption
stage. Then, if MN behaves dishonestly again A can
identify it without worrying about the disclosure of
numbers of pairs {XP(1), E(kN*, XP(1)1)}, ---, {XP(Q),
E(kN*, XP(Q)1)}. Fortunately, usually authority A or mix-
servers do not behave dishonestly, because they are not
anonymous, their dishonesties are necessarily revealed
and they cannot continue their businesses after their
dishonesties are revealed. This means that in actual
applications authority A can conduct all stages again from
the start without degrading the performance. Another
fortunate thing is data holders are not required to put their
attribute values again to re-conduct individual stages.

3.4.2. Dishonest Mix-servers in the encryption and the
verification stages

As in Sec. 3.2.2, authority A conducts the encryption
stage again when initial quadruplet E0(XP(q, 1)) is not
paired with any triplet in the verification stage or some
data holder P claims pair <E0(XP(q, 1)), E0(X*

P(q))> is
inconsistent. But if A wants to remove dishonest mix-
servers or replace them with new ones, it must identify
dishonest mix-servers. A can identify dishonest mix-
servers in the encryption and the verification stages
without knowing secrets of honest entities as below.

Provided that pair <E0(XP(q, 1)), E0(X*
P(q))> is

inconsistent or E0(XP(q, 1)) is not accompanied by any
triplet, to identify dishonest mix-servers, firstly 1st mix-
server M1 encrypts E0(XP(q, 1)), ---, E0(XP(q, D)) to
E1(XP(q, 1)), ---, E1(XP(q, D)) by using secret parameters
that it had used in the encryption stage. In the same way,
each Mh encrypts quadruplets Eh-1(XP(q, 1)), ---, Eh-1(XP(q,
D) forwarded by Mh-1 to Eh(XP(q, 1)), ---, Eh(XP(q, D)) to
forward the result to Mh+1, and Mh is determined as

 Information Security and Computer Fraud 47

dishonest if it cannot show consistent pair <Eh-1(XP(q, d)),
Eh(XP(q, d))>.

Authority A identifies dishonest mix-servers in the
verification stage in the same way. Here, A can verify
Mh’s correct encryption of Eh-1(XP(q, d)) and correct
decryption of Eh(X*

P(q)) without knowing secrets of Mh as
same as in the decryption stage. But when the number of
inconsistent pairs is large, many plain and encryption
forms pairs are disclosed. Therefore, A examines only
predefined number of inconsistent pairs even if many pairs
are inconsistent as same as in Sec. 3.4.1. Namely, after
identifying dishonest mix-servers based on the limited
number pairs, it conducts the encryption and the
verification stages again, and identifies remaining
dishonest mix-servers if exist. Here, re-executions of the
stages do not degrade the performance in actual
applications because usually A or mix-servers do not
behave dishonestly as discussed previously.

3.4.3. Data Holders without Responses
In the decryption stage, authority A can force each

anonymous data holder P to honestly report decrypted pair
E*

0(X(P)) = {X(P), ZR·u*(N)·r*·v*} corresponds to it as below.
A in the verification stage also can force each P to report
pair <E0(XP(q, 1)), E0(XP(q))> honestly in the same way.

When no one appears as the holder of pair E*
0(X(P)),

conceptually, A asks all registered data holders to
calculate used seals of their credentials from value
Zu*(N)·r*·v*, which is calculated by M1, ---, MT as same as
ZR·u*(N)·r* in Sec. 3.2.3, while disclosing their identities,
and identifies P that calculates (Zu*(N)·r*·v*)R as the holder.
Namely, only P that knows R in credential S(P, R) can
calculate holder part value ZR·u*(N)·r*·v* in E*

0(X(P)) from
Zu*(N)·r*·v* and P must calculate it honestly.

But if honest data holder Pj calculates (Zu*(T)·r*·v*)R(j),
because Pj is disclosing its identity A can know that pair
E*

0(X(Pj)) = {X(Pj), ZR(j)·u*(N)·r*·v*} belongs to Pj despite Pj
is honest. Therefore instead of (Zu*(N)·r*·v*)R(j), Pj calculates
used seal (Zu*(N)·r*·v*·μ)R(j) while generating its secret integer
μ. In detail, Pj calculates pair {Z*

μ = Zu*(N)·r*·v*·μ, ZR
μ =

ZR·u*(N)·r*·v*·μ} from Z* = Zu*(N)·r*·v* and ZR = ZR·u*(N)·r*·v*,
and calculates used seal (Z*

μ)R(j) to show it with pair{Z*
μ,

ZR
μ}, after that A compares (Z*

μ)R(j) and ZR
μ. Then, Pj can

conceal the correspondence between it and E*
0(X(Pj))

because Pj did not calculate (Z*
μ)R(j) before.

Here, A can confirm that Pj used same μ for calculating
Z*

μ and ZR
μ without knowing μ as same as in Sec. 3.4.1

[12]. But it must be noted that different from pair
{ZR·u*(N)·r*·v*(h+1), Z-

R·u*(N)·r*·v*(h+1)} in Sec. 3.4.1, P that
knows its secret integer R can calculate ZR in pair {Z*, ZR}
as a function of Z*, i.e. ZR = Z*

R. Therefore, when P
defines integers μ* and μ2 arbitrarily, calculates μ1 as μ1 =
(R+1)μ*-Rμ2 and reports pair {Z*

μ1, ZR
μ2} instead of {Z*

μ,
ZR

μ}, for Z*
δ1, ZR

δ2 and (Z*ZR)δ3 that A calculates by using
its secret integers δ1, δ2, δ3, P can show consistent values
(Z*

δ1)μ1, (ZR
δ2)μ2 and {(Z*ZR)δ3}μ*. Namely, (Z*

δ1)μ1 =
Z*

μ1∙δ1, (ZR
δ2)μ2 = ZR

μ2·δ2 and {(Z*ZR)δ3}μ* = {(Z*
R+1)δ3}μ* =

(Z*
μ1+R·μ2)δ3 = (Z*

μ1ZR
μ2)δ3.

To disable P to use relation ZR = Z*
R, A defines integer

β and examines consistencies of 2 pairs {βμ, Z*
μ} and {βμ,

ZR
μ}. Then, because P cannot represent β or Z* as a

function of Z* or β, P must calculate βμ and Z*
μ by using

same integer μ. In the same way, P must calculate βμ and
ZR

μ by using same integer μ, as a consequence, A can

convince itself that Z*
μ and ZR

μ were calculated by same
integer μ.

4. Conclusion
As above, linear Mix-nets based on LE-based

encryption functions can calculate linear combinations of
real numbers owned by same data holders while
preserving privacies of data holders and protecting
encryption functions from plain text attacks. Here, it is
apparent that linear Mix-nets can have totally the same
features even if MA-based encryption functions are used
instead of LE-based ones. Therefore, when LE-based
encryption functions are replaced with MA-based ones
which are both additive and multiplicative, they can
calculate also general polynomial functions of attribute
values.

About dishonesties of relevant entities, proposed linear
Mix-net successfully detects inconsistent encryption and
decryption results, and identifies dishonest entities to
generate correct results without disclosing secrets of
honest entities. An advantage in handling dishonesties is
data holders cannot behave dishonestly. Therefore,
together with the fact that authority A or mix-servers do
not behave dishonestly usually (because they are not
anonymous and their dishonesties are necessarily
revealed), procedures including re-executions of stages for
identifying dishonest entities and re-calculating correct
encryption and decryption results do not degrade the
performance in actual applications.

References
[1] Diffie, W. and Hellman, M. E., “New directions in cryptography,”

IEEE Trans. On Information Theory, IT-22 (6). 644-654. 1976.
[2] Chaum, D., “Untraceable electronic mail, return address and

digital pseudonyms,” Communications of the ACM, 24 (2). 84-88.
1981.

[3] Cormen, T., Leiserson, C., Rivest, R. and Stein, C., Introduction to
algorithms, MIT Press and McGraw-Hill, 2001.

[4] Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., and Yoo, S.,
“Providing receipt-freeness in Mixnet-based voting protocols,”
Proc. of the ICISC ’03, 261-274. 2003.

[5] Golle, P. and Jakobsson, M., “Reusable anonymous return
channels,” Proc. of the 2003 ACM Workshop on Privacy in the
Electronic Society, 94-100. 2003.

[6] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M.,
Lysyanskaya, A. and Shacham, H., “Randomizable proofs and
delegatable anonymous credentials,” Proc. of the 29th Annual
International Cryptology Conference on Advances in Cryptology,
108-125. 2009.

[7] Shahandashti, S. F. and Safavi-Naini, R., “Threshold attribute-
based signatures and their application to anonymous credential
systems,” Proc. of the 2nd International Conference on
Cryptology in Africa: Progress in Cryptology, 198-216. 2009.

[8] Gentry, C., “Fully homomorphic encryption using ideal lattices,”
Proc. of Symposium on theory of computing –STOC 2009, 169-
178. 2009.

[9] Chung, K., Kalai, Y. and Vadhan, S., “Improved Delegation of
Computation Using Fully Homomorphic Encryption,” CRYPT
2010, LNCS 6223, 483-501. 2010.

[10] Tamura, S., Anonymous Security Systems and Applications:
Requirements and Solutions, Information Science Reference, 2012.

[11] Tamura, S. and Taniguchi, S., “A scheme for collecting
anonymous data,” Proc. of IEEE-ICIT2013, 1210-1215. 2013.

[12] Tamura, S. and Taniguchi, S., “Enhanced Anonymous Tag Based
Credentials,” Information Security and Computer Fraud, 2 (1). 10-
20. 2014.

