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Abstract

We introduce a method that enables scalable image

search for learned metrics. Given pairwise similarity and

dissimilarity constraints between some images, we learn a

Mahalanobis distance function that captures the images’

underlying relationships well. To allow sub-linear time sim-

ilarity search under the learned metric, we show how to en-

code the learned metric parameterization into randomized

locality-sensitive hash functions. We further formulate an

indirect solution that enables metric learning and hashing

for vector spaces whose high dimensionality make it infea-

sible to learn an explicit weighting over the feature dimen-

sions. We demonstrate the approach applied to a variety of

image datasets. Our learned metrics improve accuracy rel-

ative to commonly-used metric baselines, while our hash-

ing construction enables efficient indexing with learned dis-

tances and very large databases.

1. Introduction

As the world’s store of digital images continues to grow

exponentially, and as novel data-rich approaches to com-

puter vision begin to emerge, many interesting problems

demand fast techniques capable of accurately searching

very large databases of images or image features. For

instance, local feature-based recognition methods require

searching huge databases of patch descriptors [20], as do

new methods for computing 3D models from multi-user

photo databases [25]. Similarly, image- or video-based data

mining [27, 24] and example-based approaches to pose es-

timation [23, 2] seek to leverage extremely large image col-

lections, while nearest neighbor classifiers are frequently

employed for recognition and shape matching [31, 10]. For

most such tasks, the quality of the results relies heavily

on the chosen image representation and the distance met-

ric used to compare examples.

Unfortunately, preferred representations tend to be high-

dimensional [20, 24], and often the best distance metric is

one specialized (or learned) for the task at hand [10, 31, 13],

rather than, say, a generic Euclidean norm or Gaussian ker-

nel. Neither factor bodes well for large-scale image search:

known data structures for efficient exact search are inef-

fective for high-dimensional spaces, while existing meth-

ods for approximate sub-linear time search are defined only

for certain standard metrics. Thus, there is a tension when

choosing an image representation and metric, where one

must find a fine balance between the suitability for the prob-

lem and the convenience of the computation. We are inter-

ested in reducing this tension; to that end, in this work we

develop a general algorithm that enables fast approximate

search for a family of learned metrics and kernel functions.

A good distance metric between images accurately re-

flects the true underlying relationships, e.g., the category la-

bels or other hidden parameters. It should report small dis-

tances for examples that are similar in the parameter space

of interest (or that share a class label), and large distances

for examples that are unrelated. General-purpose measures,

such as Lp norms, are not necessarily well-suited for all

learning problems with a given data representation.

Recent advances in metric learning make it possible to

learn distance (or kernel) functions that are more effective

for a given problem, provided some partially labeled data

or constraints are available [30, 3, 15, 8, 10]. By taking

advantage of the prior information, these techniques of-

fer improved accuracy when indexing or classifying exam-

ples. However, thus far they have limited applicability to

very large datasets, since specialized learned distance func-

tions preclude the direct use of known efficient search tech-

niques. Data structures for efficient exact search are known

to be ineffective for high-dimensional spaces and can (de-

pending on the data distribution) degenerate to brute force

search [9, 28]; approximate search methods can guarantee

sub-linear time performance, but are defined only for cer-

tain generic metrics. As such, searching for similar exam-

ples according to a learned metric currently requires an ex-

haustive (linear) scan of all previously seen examples, in the

worst case. This is a limiting factor that thus far deters the

use of metric learning with very large image databases.

In this work we introduce a method for fast approxi-
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(a) Paired constraints (b) Original hash function (c) Semi-supervised hash function

Figure 1. (a) When learning a metric, some paired constraints can be obtained for a portion of the image database, specifying some examples that ought

to be treated as similar (straight line) or dissimilar (crossed out line). (b) Whereas existing randomized LSH functions hash examples similar under the

original distance together, (c) our semi-supervised hash functions incorporate the learned constraints, so that examples constrained to be similar—or other

pairs like them—will with high probability hash together. The circular red region in (b) denotes that existing LSH functions generate a hyperplane uniformly

at random to separate images, in contrast, as indicated by the blue “hourglass” region in (c), our hash functions bias the selection of random hyperplanes to

reflect the specified (dis)similarity constraints.

mate similarity search with learned Mahalanobis metrics.

We formulate randomized hash functions that incorporate

side-information from partially labeled data or paired con-

straints, so that examples may be efficiently indexed ac-

cording to the learned metric without resorting to a naive

linear scan of all items. We present a straightforward so-

lution for the case of relatively low-dimensional input vec-

tor spaces, and further derive a solution to accommodate

very high-dimensional data for which explicit input space

computations are infeasible. The former contribution makes

fast indexing accessible for numerous existing metric learn-

ing methods (e.g., [30, 3, 8]), while the latter is of particu-

lar interest for commonly used image representations, such

as bags-of-words, multi-dimensional multi-resolution his-

tograms, and other high-dimensional features.

We demonstrate the generality of our approach by apply-

ing it to three distinct large-scale image search problems:

exemplar-based recognition, pose estimation, and feature

indexing. Our method allows rapid and accurate retrieval,

and gains over relevant state-of-the-art techniques.

2. Related Work
Recent work has yielded various approaches to metric

learning, including several techniques to learn a combina-

tion of existing kernels [19, 29], as well as methods to

learn a Mahalanobis metric [30, 3, 8], and methods to learn

example-specific local distance functions [10]. Embedding

functions can be useful both to capture (as closely as possi-

ble) a desired set of provided distances between points, as

well as to provide an efficient approximation for a known

but computationally expensive distance function of inter-

est [1, 13]. In contrast to learned metrics, such geometric

embeddings are meant to mirror a fixed distance function

and do not adapt to reflect supervised constraints.

In order to efficiently index multi-dimensional data, data

structures based on spatial partitioning and recursive hy-

perplane decomposition have been developed, e.g. k − d-

trees [9] and metric trees [28]. Due to the particular im-

portance of indexing local patch features, several tree-based

strategies have also been proposed [4, 21] in the vision com-

munity. Some such data structures support the use of arbi-

trary metrics. However, while their expected query time re-

quirement may be logarithmic in the database size, selecting

useful partitions can be expensive and requires good heuris-

tics; worse, in high-dimensional spaces all exact search

methods are known to provide little query time improve-

ment over a naive linear scan [17].

As such, researchers have considered the problem of

approximate similarity search, where a user is afforded

explicit tradeoffs between the guaranteed accuracy ver-

sus speed of a search. Several randomized approximate

search algorithms have been developed that allow high-

dimensional data to be searched in time sub-linear in the

size of the database, notably the locality-sensitive hashing

(LSH) methods of [17, 6]. Data-dependent variants of LSH

have been proposed: the authors of [11] select partitions

based on where data points are concentrated, while in [23]

boosting is used to select feature dimensions that are most

indicative of similarity in the parameter space. This tunes

the hash functions according to the estimation problem of

interest; however, indexed examples must be sorted accord-

ing to the input space (non-learned) distance.

We address the problem of sub-linear time approximate

similarity search for a class of learned metrics. While ran-

domized algorithms such as LSH have been employed heav-

ily in vision to mitigate the time complexity of identify-

ing similar examples [22], their use has been restricted to

generic measures for which the appropriate hash functions

are already defined; that is, direct application to learned

metrics was not possible. We instead devise a method that

allows knowledge attained from partially labeled data or

paired constraints to be incorporated into the hash func-

tions (see Figure 1). Our algorithm is theoretically sound:

there is provably no additional loss in accuracy relative to

the learned metric beyond the quantifiable loss induced by

the approximate search technique.



3. Approach
The main idea of our approach is to learn a parameteri-

zation of a Mahalanobis metric based on provided labels or

paired constraints for some training examples, while simul-

taneously encoding the learned information into random-

ized hash functions. These functions will guarantee that the

more similar inputs are under the learned metric, the more

likely they are to collide in a hash table.

3.1. Parameterized Mahalanobis Metrics
Given n points {x1, . . . , xn}, with all xi ∈ ℜd, we wish

to compute a positive-definite (p.d.) d × d matrix A to pa-

rameterize the squared Mahalanobis distance:

dA(xi, xj) = (xi − xj)
T A(xi − xj), (1)

for all i, j = 1, . . . , n. Note that a generalized inner product
(kernel) measures the pairwise similarity associated with

that distance: sA(xi, xj) = x
T
i Axj . Given a set of inter-

point distance constraints, one can directly learn a matrix

A to yield a measure that is more accurate for a given clas-

sification or clustering problem. Many methods have been

proposed for Mahalanobis metric learning [30, 3, 8]; we

consider the information-theoretic metric learning method

of [8] because it is kernelizable. Since below we will derive

a new algorithm to systematically update semi-supervised

hash functions in concert with this metric learner, we next

briefly overview the necessary background and equations

from [8].

3.2. Information­Theoretic Metric Learning

Given an initial d × d p.d. matrix A0 specifying prior

knowledge about inter-point distances, the learning task

is posed as an optimization problem that minimizes the

LogDet divergence between matrices A and A0, subject to a

set of constraints specifying pairs of examples that are sim-

ilar or dissimilar. In semi-supervised multi-class settings,

the constraints are taken directly from the provided labels:

points in the same class must be similar, points in different

classes are constrained to be dissimilar.

To compute A, the LogDet divergence is minimized

while enforcing desired constraints:

min
A�0

Dℓd(A, A0)

s. t. dA(xi, xj) ≤ u (i, j) ∈ S,

dA(xi, xj) ≥ ℓ (i, j) ∈ D,

(2)

where Dℓd(A, A0) = tr(AA−1
0 ) − log det(AA−1

0 ) − d, S
and D are sets containing pairs of points constrained to be

similar and dissimilar, respectively, and ℓ and u are large

and small values, respectively (defined below).

Computing the optimal solution to (2) involves repeat-

edly projecting the current solution onto a single constraint,

via the update:

At+1 = At + βtAt(xit
− xjt

)(xit
− xjt

)T At, (3)

where xit
and xjt

are the constrained data points for iter-

ation t, and βt is a projection parameter computed by the

algorithm.

When the dimensionality of the data is very high, one

cannot explicitly work with A, and so the update in (3) can-

not be performed. However, one may still implicitly update

the Mahalanobis matrix A via updates in kernel space for an

equivalent kernel learning problem in which K = XT AX
for X = [x1, . . . , xn]. If K0 is an input kernel matrix for

the data, the appropriate update is:

Kt+1 = Kt + βtKt(eit
− ejt

)(eit
− ejt

)T Kt, (4)

where the vectors eit
and ejt

refer to the it-th and jt-th

standard basis vectors, respectively, and the projection pa-

rameter βt is the same as in (3) (see [8]). Note that it is

possible for the set of examples involved in constraints to

be a superset of the set of examples in the input kernel.

In the next section we show how to constrain the distri-

bution of randomized hash functions according to a learned

parameterization, in the event that At can be manipulated

directly. Then we derive an implicit formulation that en-

ables information-theoretic learning with high-dimensional

inputs for which At cannot be explicitly represented.

3.3. Hashing for Semi­Supervised Similarity Search

A family of locality-sensitive hash functions F is a dis-

tribution of functions where the following holds: for any

two objects x and y,

Pr
h∈F

[h(x) = h(y)] = sim(x, y), (5)

where sim(x, y) is some similarity function defined on the

collection of objects [6, 17]. When h(x) = h(y), x and y

collide in the hash table. Because the probability that two

inputs collide is equal to the similarity between them, highly

similar objects are indexed together in the hash table with

high probability. Existing LSH functions can accommodate

the Hamming distance [17], Lp norms [7], and inner prod-

ucts [6], and such functions have been explored previously

in the vision community [22, 23, 14].

In the following we present new algorithms to construct

LSH functions for learned metrics. Specifically, we

introduce a family of hash functions that accommodate

learned Mahalanobis distances, where we want to retrieve

examples xi for an input xq for which the value dA(xi, xq)
resulting from (1) is small, or, in terms of the kernel form,

for which the value of sA(xi, xq) = x
T
q Axi is high.

Explicit Formulation. Given the matrix A for a metric

learned as above1, such that A = GT G, we generate the

following randomized hash functions hr,A, which accept

1A variable without a subscript t denotes its value after convergence.



an input point and return a hash key bit:

hr,A(x) =

{

1, if r
T Gx ≥ 0

0, otherwise
, (6)

where the vector r is chosen at random from a d-

dimensional Gaussian distribution with zero mean and unit

variance. This construction leverages earlier results show-

ing that (i) the probability of two unit vectors having a dot

product with random vector r that are opposite in sign is

proportional to the angle between them [12], and (ii) the

sign of r
T
xi is therefore a locality-sensitive function for

the inner product of any two inputs xi and xj [6].

Thus by parameterizing the hash functions instead by G
(which is computable since A is p.d.), we obtain the follow-

ing relationship:

Pr [hr,A(xi) = hr,A(xj)] = 1 −
1

π
cos−1

(

x
T
i Axj

√

|Gxi||Gxj |

)

,

which sustains the LSH requirement of (5) for a learned Ma-

halanobis metric, whether A is computed using the method

of [8] or otherwise [30, 3]. Essentially we have shifted the

random hyperplane r according to A, and by factoring it by

G we allow the random hash function itself to “carry” the

information about the learned metric. The denominator in

the cosine term normalizes the learned kernel values.

In this case, we could equivalently transform all the

data according to A prior to hashing; however, the choice

of presentation here helps set up the more complex for-

mulation we derive below. Note that (6) requires that the

input dimension d be low enough that A can be explicitly

handled in memory, allowing the updates in (3).

Implicit Formulation. We are also interested in the case

where the dimensionality d may be very high—say on the

order of 104 to 106—but the examples are sparse and there-

fore representable (e.g., bags of words or histogram pyra-

mids [24, 13]). Even though the examples are each sparse,

the matrix A can be dense, with values for each dimension.

In this case, the kernelized metric learning updates in (4)

are necessary. However, this complicates the computation

of hash functions, as they can no longer be computed di-

rectly as in (6) above. Thus, in this section we derive a new

algorithm to make simultaneous implicit updates to both the

hash functions and the metric.

We denote high-dimensional inputs by φ(x) to mark

their distinction from the dense inputs x handled earlier.

We are initially given c examples that participate in simi-

larity constraints. Let Φ = [φ(x1), . . . , φ(xc)] be the d × c
matrix of those initial c data points, and let φ(xi)

T φ(xj) be

the initial (non-learned) kernel value between example xi

and the input xj . Initially, K0 = ΦT Φ, and so, implicitly,

A0 = I . As in the explicit formulation above, the goal is to

wrap G into the hash function, i.e. to compute r
T Gφ(x),

but now we must do so without working directly with G.

In the following, we will show that an appropriate hash

function hr,A for inputs φ(x) can be defined as:

hr,A(φ(x)) =



1, if r
T φ(x) +

Pc
i=1

γr
i φ(xi)

T φ(x) ≥ 0
0, otherwise

,

(7)

where φ(xi)
T φ(x) is the original kernel value between xi

and the query x, and γr
i are coefficients computed once

(offline) during metric learning (and will be defined be-

low). Note that while G is dense and therefore not manage-

able, computing r
T φ(x) is computationally inexpensive,

as only the entries of r corresponding to non-zero entries

in φ(x) need to be generated. Should the inputs be high-

dimensional but dense, our implicit form is still valuable, as

we bypass computing O(d2) products with G and require

only O(d) inner products for r
T φ(x).

Next we present a construction to express G in terms of

the initially chosen c data points, and thus a method to com-

pute (7) efficiently. Our construction relies on two technical

lemmas, which we list in the appendix. Recall the update

rule for A from (3): At+1 = At + βtAtvtv
T
t At, where

vt = φ(yt) − φ(zt), if points yt and zt are involved in the

constraint under consideration at iteration t. We emphasize

that just as this update must be implemented implicity via

(4), so too we must derive an implicit update for the Gt ma-

trix required by our hash functions.

Since At is p.d., we can factorize it as At = GT
t Gt,

which allows us to rewrite the update as:

At+1 = GT
t (I + βtGtvtv

T
t GT

t )Gt.

As a result, if we factorize I+βtGtvtv
T
t GT

t , we can derive
an update for Gt+1:

Gt+1 = (I + βtGtvtv
T
t G

T
t )1/2

Gt = (I + αtGtvtv
T
t G

T
t )Gt,

(8)

where the second equality follows from Lemma 1 using y =
Gtvt, and αt is defined accordingly.

Using (8) and Lemma 2, Gt can be expressed as Gt =
I + ΦStΦ

T , where St is a c × c matrix of coefficients that
determines the contribution of each of the c points to G.
Initially, S0 is set to be zero matrix, and from there every
St+1 is iteratively updated in O(c2) time via St+1 =

St+αt(I+StK0)(eit
−ejt

)(eit
−ejt

)T (I+K0S
T
t )(I+K0St).

Using this result, at convergence of the metric learning al-

gorithm we can compute Gφ(x) in terms of the c2 input

pairs (φ(xi), φ(xj)) as follows:

Gφ(x) = φ(x) + ΦSΦT φ(x)

= φ(x) +

c
∑

i=1

c
∑

j=1

Sijφ(xj)φ(xi)
T φ(x).

Therefore, we have

r
T
Gφ(x) = r

T
φ(x) +

c
X

i=1

c
X

j=1

Sijr
T
φ(xj)φ(xi)

T
φ(x)

= r
T
φ(x) +

c
X

i=1

γ
r
i φ(xi)

T
φ(x),



Step Explicit Implicit

Metric learning projection (offline) O(d2) O(c2)
Hashing: compute hr,A(x) O(d) O(z)
Search: identify the query’s ANNs O(Md) O(Mz)

Table 1. Computational complexity for the proposed method, using vari-

ables defined in the text.

where γr
i =

∑

j Sijr
T φ(xj), and is a notation substitution

for the first equality. This notation reflects that the values

of each γr
i rely only on known constrained points, and thus

can be efficiently computed in the training phase, prior to

hashing anything into the database. Finally, having deter-

mined the expression for r
T Gφ(x), we arrive at our hash

function definition in (7). Note the analogy between the use

of r
T Gx and r

T Gφ(x) in (6) and (7), respectively.

In this section we presented our main technical contri-

bution: explicit and implicit methods to construct semi-

supervised hash functions. We emphasize that our formu-

lation is theoretically sound and in itself is novel; what is

accomplished would not be possible with a simple merging

of the metrics in [8] with LSH.

3.4. Searching Hashed Examples

Having constructed LSH functions for learned metrics,

we can apply existing methods [17, 6] to perform sub-linear

time approximate similarity search. Given N data points

in a Hamming space and an input xq, approximate near-

neighbor (ANN) techniques guarantee retrieval of exam-

ple(s) within the radius (1 + ǫ)D from xq in O(N1/(1+ǫ))
time, where the true nearest neighbor is at a distance of D
from xq. We employ the method of [6], which requires

searching M = 2N1/(1+ǫ) examples to obtain the first

ANN. (Note that M << N for large databases.) After

hashing, we only need to compute the learned kernel val-

ues between the query and the examples with which it col-

lided. The hashed neighbors are ranked according to these

scores, and this ranked list is used for k-NN classification,

clustering, etc., depending on the application.

To generate b-bit hash keys, we select b random vectors

[r1, . . . , rb] to form b hash functions and concatenate the

resulting bits from (6) or (7). There is a tradeoff in the se-

lection of b: larger values will increase the accuracy of how

well the keys themselves reflect the learned metric, but will

increase computation time and can lead to too few colli-

sions in the hash tables. On the other hand, lower values of

b make hashing faster, but the key will only coarsely reflect

our metric, and too many collisions may result.

Table 1 summarizes the computational complexity for

the main steps of our algorithm: projections during offline

metric learning, computing each hash bit for a given point,

and computing the ANNs for a hashed query. z is the num-

ber of non-zero entries in the query, z ≤ d. See [18] for

more details on the complexity.

4. Results
The need to search for images or local image descrip-

tors within very large databases arises frequently. In the

following we apply our algorithm for image search in three

distinct domains: exemplar-based recognition, pose estima-

tion, and feature indexing. In all cases, our experimental

goal is twofold: 1) to evaluate the impact on accuracy a

learned metric has relative to both standard baseline metrics

and state-of-the-art methods, and 2) to test how reliably our

semi-supervised hash functions preserve the learned met-

rics in practice when performing sub-linear time database

searches. We therefore report results in terms of both accu-

racy improvements as well as speedups realized.

Throughout we select examples for (dis)similarity

constraints randomly from among a pool of examples. For

categorical data, (dis)similarity constraints are associated

with points having different (same) labels; for data with

parameter vectors, constraints are determined based on

examples’ nearness in the parameter space. We compute

the distance between all pairs of a subset (≈ 100) of the

database examples according to the non-learned metric,

and then let the distance constraints’ lower ℓ and upper

u limits be the 1-st and 99-th percentile of those values,

respectively. We measure accuracy in terms of the error of

the retrieved nearest neighbors’ labels, which is either a

parameter vector (in the case of the pose data) or a class

label (in the case of the patches and object images).

Human Body Pose Estimation. First we demonstrate our

method applied to single-frame human body pose estima-

tion. Example-based techniques to infer pose (e.g. [2, 23])

store a large database of image examples that are labeled

with their true pose (i.e., 3d joint positions or angles). A

query image is indexed into the database according to image

similarity, and the query’s pose is estimated based on the

pose parameters attached to those nearest neighbors (NN).

Thus our objective for this task is to learn a metric for the

image features that reports small distances for examples that

are close in pose space, and to make the search scalable by

hashing according to the learned metric. This is similar to

the goals of the parameter-sensitive hashing (PSH) method

of [23]. However our approach is distinct from [23] in that it

allows one to seamlessly both hash and search according to

the learned metric. As a result it may provide more accurate

retrievals, as we show empirically below.

We use a database of half a million examples provided by

the authors of [26], where PSH is employed within a pose

tracker. The images were generated with Poser graphics

software: human figures in a variety of clothes are rendered

in many realistic poses drawn from mocap data. Each im-

age is represented by a d = 24, 016-dimensional multi-scale

edge detection histogram (EDH). The vectors’ high dimen-

sion requires our implicit formulation for semi-supervised



Method d k=1 k=7 k=50

L2 linear scan 24K 8.9 12.0 15.1

L2 hashing 24K 9.4 12.8 15.6

PSH, linear scan 1.5K 9.4 12.2 15.9

PCA, linear scan 60 13.5 14.0 16.8

ML PCA, lin. scan 60 13.1 13.8 16.2

ML linear scan 24K 8.4 11.5 14.1

ML hashing 24K 8.8 12.1 14.9
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Figure 2. Pose results. Left: Mean pose error (in cm) obtained with each method. Our approach (denoted ML) outperforms the L2 baseline and PSH [23].

Middle: Error as a function of the number of hash bits. Fast search with the learned metric is more accurate than the L2 baseline. For both, the error

converges around b=500 bits. Right: Hashing error relative to an exhaustive linear scan as a function of ǫ, which controls the search time required.

M
L
−
H
A
S
H

I
N
P
U
T

L
2

−
H
A
S
H

P
S
H

Figure 3. Examples of pose estimates. Each column contains a different

pose. Top row contains query images, remaining rows show the best pose

retrieved by each method. Second row shows best pose obtained by our

method

hash functions. We use a linear kernel over c = 50 ran-

domly selected examples as the initial kernel (K0). We

hold out 1000 test query examples, and generate 1, 000, 000
similarity constraints among 50K of the remaining training

examples. For each, we constrain the distance of the 10
nearest exemplars (in terms of pose parameters) to be less

than ℓ. Similarly, of all the examples with a pose distance

greater than a threshold τ , 10 are randomly picked and their

distance to the example is constrained to be greater than u.

The values of tau and c are selected with cross-validation.

As baselines, we compute results for NN search with

both the Euclidean distance (L2) on the EDH’s, and the

Hamming distance on the PSH embeddings provided by the

authors of [26]. To hash with the L2 baseline we simply

apply [6]. We also use PCA to reduce the dimensionality of

the EDH vectors in order to apply our explicit formulation.

We measure the error for a query by the mean distance of

its true joint positions to the poses in the k-NN. To give a

sense of the variety of the data, a random database example

is on average at a distance of 34.5 cm from a query.

The table in Figure 2 shows the overall errors for each

method. (Throughout our approach is denoted by ‘ML’.)

With a linear scan, ML yields the most accurate retrievals

of all methods, and with hashing it outperforms all the

hashing-based techniques. The PCA-based results are rel-

atively poor, indicating the need to use the full high-d fea-

tures and thus our implicit formulation. A paired-error T -

test reveals that our improvements over PSH and L2 are sta-

tistically significant, with 99.95% confidence.

Figure 3 shows the NN retrieved by each method for

five typical queries. In most examples, L2 and PSH esti-

mate the overall pose reasonably well, but suffer on one or

more limbs, whereas our approach more precisely matches

all limbs and yields a lower total error. While PSH does not

improve over the L2 baseline for this dataset (as it did for

data in [23]), it does do nearly as well as L2 when using

about 16x fewer dimensions; it appears its main advantage

here is the ability to significantly reduce the dimension.

Our semi-supervised hash functions maintain the ac-

curacy of the learned metric, but for orders of magnitude

less search time than the linear scan. With our Matlab

implementation, a linear scan requires 433.25 s per query,

while our hashing technique requires just 1.39 s. On

average, metric learning with hashing searches just 0.5%
of the database. Figure 2 compares the error obtained by

ML+hashing and L2+hashing when varying the number

of hash bits (middle plot) and the search time allowed

(right plot). For a large number of bits, the hash keys are

more precise and hence the error drops (although hashing

overhead increases). Similarly, since M = 2N1/(1+ǫ),

for higher values of ǫ we must search fewer examples, but

accuracy guarantees decrease.

Exemplar-based Object Categorization. Next we evalu-

ate our method applied for NN object recognition with the

Caltech-101, a now common benchmark. To compare these

images we consider learning kernels on top of the pyramid

match kernel (PMK) [13] applied to SIFT features, and the

kernel designed in [31] applied to geometric blur features.
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Figure 4. Caltech-101 results. Left: Comparison against existing techniques. Our method outperforms all other single metric/kernel approaches. Middle:

Our learned kernels significantly improve NN search accuracy relative to their non-learned counterparts, the CORR and PMK kernels. Right: Comparison

of the k-NN classification error when hashing with the original and learned PMK. This plot shows the accuracy-search time tradeoff when using the original

or learned hashing functions. CORR refers to the kernel proposed by Zhang et al. [31]. (Best viewed in color.)

The PMK uses multi-resolution histograms to estimate the

correspondence between two sets of local image features.

To hash with the non-learned PMK, the pyramids can be

embedded in such a way that standard inner product LSH

functions are applicable [14]. The pyramid inputs are sparse

but extremely high-dimensional (d = O(106)), thus explic-

itly representing A is infeasible, and the implicit form of our

technique is necessary. The kernel in [31] also measures the

correspondences between local features, but by averaging

over the minimum distance to matching features in terms of

the descriptors and their position in the image; we will re-

fer to it as CORR. Note that we can learn kernels for both

the PMK and CORR using our implicit formulation, but can

only hash with the learned PMK, since explicit vector space

representation (φ(x)) for the CORR is unknown.

We first evaluate the effectiveness of metric learning it-

self on this dataset. We pose a k-NN classification task, and

evaluate both the original (PMK or CORR) and learned ker-

nels when used in a linear scan mode. We vary the number

of training examples T per class for the database, using the

remainder as test examples, and measure accuracy in terms

of the mean recognition rate per class, as is standard prac-

tice for this dataset.

Figure 4 shows our results relative to all other exist-

ing techniques (left) and specifically against the original

baseline kernels for NN (middle). Our approach outper-

forms all existing single-kernel classifier methods when us-

ing the learned CORR kernel: we achieve 61.0% accuracy

for T = 15 and 69.6% accuracy for T = 30. Our learned

PMK achieves 52.2% accuracy for T = 15 and 62.1% ac-

curacy for T = 30. The middle plot in Figure 4 reveals

gains in NN retrieval accuracy; notably, our learned kernels

with simple NN classification also outperform the baseline

kernels when used with SVMs [31, 13]. Only the results of

recent multiple-metric approaches [10, 29, 5] (shown with

dashed lines in the left plot) are more accurate, though they

also incur the greater cost of applying each of the base ker-

nels in sequence to all examples, while our method requires

only one comparison to be computed per example. We hy-

pothesize that using the kernels learned with our method

along with the ones used in [29, 5] would further boost the

accuracy; this remains as the subject of future experiments.

Now we consider hashing over the learned PMK. For

T = 15, our learned hash functions achieve 47% accu-

racy, and require about 10x less computation time than a

linear scan when accounting for the hash key computation

(here N = 1515, which is modest compared to the pose

data). The rightmost plot in Figure 4 shows the error of our

learned PMK-based hashing compared to the baseline [14]

as a function of ǫ. For these data the value of b had little

effect on accuracy. As with the linear scan search, we still

realize significant accuracy improvements, but now with a

guaranteed sub-linear time search.

Indexing Local Patch Descriptors. Finally, we evaluate

our approach on a patch matching task using data provided

from the Photo Tourism project [25] and [16]. The dataset

contains about 300K local patches extracted from interest

points in multiple users’ photos of scenes from different

viewpoints. The objective is to be able to rapidly identify

any matching patches from the same 3d scene point in or-

der to provide correspondences to a structure from motion

algorithm. For this application, classifying patches is not so

useful; rather, one wants to find all relevant patches. Thus

we measure accuracy in terms of precision and recall.

We add random jitter (scaling, rotations, and shifts) to all

patches as prescribed in [16], extract both the raw patch in-

tensities and SIFT descriptors, and then pose the retrieval

task to the L2 baseline and our learned metrics for each

representation. To learn metrics we gather constraints from

10,000 matching and non-matching patch pairs, with a 50-

50 mix taken from the Trevi and Halfdome portions of the

data. All methods are tested on 100K pairs from the Notre

Dame portion. The left plot in Figure 5 compares their accu-

racy via ROC curves for each feature and metric combina-

tion; the numbers in the legend summarize the error in terms

of the false positive rate once 95% of the true positives are

retrieved. ML+raw intensities yields a significant gain over
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Figure 5. Patch results. Left: This plot illustrates accuracy improvements

of the learned metric (ML) relative to L2 baselines, for both raw patches

(dimensionality d = 4096) and SIFT descriptors (dimensionality d =

128). Right: This plot shows the recall as a function of the number of

SIFT patches retrieved, for our method and the L2 baseline. Our semi-

supervised hash functions maintain accuracy close to a linear scan, while

requiring much less search time.

L2+raw, while ML+SIFT also gives some improvement.2

Finally, we consider our ML-hashing algorithm for the

SIFT patches. We measure accuracy by the relevance of

the NN ranking: for increasing values of k, we compute

the recall rate within the top k-NN. We calculate this score

with and without hashing, and before and after metric learn-

ing. In order to control k for the hashing, we consider as

many nearby hash bins as necessary. In the right plot in

Figure 5, we see that the learned metric outperforms the

L2 baseline, and that hashing does not noticeably degrade

accuracy. When k = 1000, we search only 16.1% of the

database when hashing over the learned metric, and when

k = 1, we search only 0.8%, leading to substantial gains in

retrieval time (about a factor of 80 vs. linear scan).

Conclusions: We have introduced a method to enable ef-

ficient approximate similarity search for learned metrics,

and experiments show good results for a variety of datasets.

Our main contribution is a new algorithm to construct theo-

retically sound locality-sensitive hash functions—for both

implicit and explicit parameterizations of a Mahalanobis

distance. For high-dimensional data, we derive simulta-

neous implicit updates for both the hash function and the

learned metric. Experiments with a variety of datasets

clearly demonstrate our technique’s accuracy and flexibil-

ity for large-scale image search tasks.

Appendix

Proofs are provided in [18].

Lemma 1. Let B = I + βyy
T be p.s.d. Then B1/2 =

I + αyy
T , with α = (±

√

1 + βyT y − 1)/y
T
y.

Lemma 2. For all t, if G0 = I and S0 = 0, then

Gt+1 = I + ΦSt+1Φ
T

2In this experiment we were able to reproduce the baseline for L2 given

in [16], however we were unable to do so for their SIFT baseline, for which

6% error is obtained. We suspect this is due to our un-optimized SIFT

extraction, and that ML would continue to yield similar improvements as

above if provided better descriptors.

St+1 = St + αt(I + StK0)(eit
− ejt

)(eit
− ejt

)T

(I + K0S
T
t )(I + K0St).
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