
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Practical recipes for the model order reduction,
dynamical simulation and compressive sampling of
large-scale open quantum systems

John A Sidles1,6, Joseph L Garbini2, Lee E Harrell3,
Alfred O Hero4, Jonathan P Jacky1, Joseph R Malcomb2,
Anthony G Norman5 and Austin M Williamson2

1 Department of Orthopædics and Sports Medicine, Box 356500, School of
Medicine, University of Washington, Seattle, WA, 98195, USA
2 Department of Mechanical Engineering, University of Washington,
Seattle, WA 98195, USA
3 Department of Physics, US Military Academy, West Point, NY 10996, USA
4 Department of Electrical Engineering, University of Michigan,
MI 49931, USA
5 Department of Bioengineering, University of Washington,
Seattle, WA 98195, USA
E-mail: sidles@u.washington.edu

New Journal of Physics 11 (2009) 065002 (96pp)
Received 8 June 2008
Published 11 June 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/6/065002

Abstract. Practical recipes are presented for simulating high-temperature and
nonequilibrium quantum spin systems that are continuously measured and
controlled. The notion of a spin system is broadly conceived, in order to
encompass macroscopic test masses as the limiting case of large- j spins.
The simulation technique has three stages: first the deliberate introduction
of noise into the simulation, then the conversion of that noise into an
equivalent continuous measurement and control process, and finally, projection
of the trajectory onto state-space manifolds having reduced dimensionality and
possessing a Kähler potential of multilinear algebraic form. These state-spaces
can be regarded as ruled algebraic varieties upon which a projective quantum
model order reduction (MOR) is performed. The Riemannian sectional curvature
of ruled Kählerian varieties is analyzed, and proved to be non-positive upon
all sections that contain a rule. These manifolds are shown to contain Slater
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determinants as a special case and their identity with Grassmannian varieties
is demonstrated. The resulting simulation formalism is used to construct a
positive P-representation for the thermal density matrix. Single-spin detection
by magnetic resonance force microscopy (MRFM) is simulated, and the data
statistics are shown to be those of a random telegraph signal with additive white
noise. Larger-scale spin-dust models are simulated, having no spatial symmetry
and no spatial ordering; the high-fidelity projection of numerically computed
quantum trajectories onto low dimensionality Kähler state-space manifolds is
demonstrated. The reconstruction of quantum trajectories from sparse random
projections is demonstrated, the onset of Donoho–Stodden breakdown at the
Candès–Tao sparsity limit is observed, a deterministic construction for sampling
matrices is given and methods for quantum state optimization by Dantzig
selection are given.
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1. Introduction

The present paper describes practical recipes for the simulation of large-scale open quantum spin
systems. Our overall objective is to enable the reader to design and implement practical quantum
simulations, guided by an appreciation of the geometric, informatic and algebraic principles that
govern simulation accuracy, robustness and efficiency.

1.1. How does the Stern–Gerlach effect really work?

The present paper had its origin in a question that Dan Rugar asked of us five years ago: ‘How
does the Stern–Gerlach effect really work?’ The word ‘really’ is noteworthy because hundreds
of articles and books on the Stern–Gerlach effect have been written since the original 1921
experiments [1]–[3] . . . including articles by the authors [4, 5] and by Dan Rugar [6] himself.
Yet we were unable to find, within this large literature, an answer that was satisfactory in the
context in which the question was asked: the (ultimately successful) endeavor by Rugar’s IBM
research group to detect the magnetic moment of a single electron spin by magnetic resonance
force microscopy (MRFM) [7].

Subsequent experimental advances [8]–[13] have greatly expanded our conception of the
challenges and opportunities of quantum spin microscopy [14], and in particular have increased
our motivation to simulate, in microscopic detail, the quantum dynamics of spin microscopy.
The relevant state-spaces consist of (typically) the 102–105 nuclear spins in a protein molecule.

1.2. The feasibility of generic large-scale quantum simulation

We did not begin our investigations with the idea that the numerical simulation of large-scale
quantum spin systems was feasible. Indeed, we were under the opposite impression, based
upon the no-simulation arguments of Feynman [15] in the early 1980s. These arguments have
been widely—and often uncritically—repeated in textbooks [16, section 4.7]. But Feynman’s
arguments do not formally apply to noisy systems, and in the course of our analysis, it
became apparent that this provides an avenue for developing efficient simulation algorithms.
Furthermore, it became apparent that the class of noisy systems encompasses as a special case
the low-temperature and strongly correlated systems that are studied in quantum chemistry
and condensed matter physics. This helped us understand why—from an empirical point of
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view—simulation capabilities in quantum chemistry and condensed matter physics have been
improving exponentially in recent decades [17]–[19].

1.2.1. The geometry of reduced-order state-spaces. This paper’s mathematical methods are
novel mainly in their focus upon the geometry of reduced-order quantum state-spaces. We will
show that the quantum state-spaces that are most useful for large-scale simulations generically
have an algebraic structure that can be geometrically interpreted as a network of geodesic curves
(rules) having non-positive Gaussian curvature for all sections that contain a rule (section 2). We
will see that these curvature properties are essential to the efficiency and robustness of model
order reduction (MOR).

1.2.2. The central role of covert measurements. A technique that is central to our simulation
recipes is to simulate all noise processes (including thermal baths) as equivalent covert
measurement and control processes (section 3). From a quantum informatic point of view, covert
quantum measurement processes act to quench high-order quantum correlations that otherwise
would be infeasibly costly to compute and store (section 4).

1.2.3. Background assumed by the presentation. The methods that our analysis and simulation
recipes embody are (chiefly) quantum mechanics in both its physical and informatic aspects, the
engineering theory of MOR and dynamical control, and the mathematical tools and theorems
of algebraic and differential geometry. No reader will be expert in all these disciplines, and
recognizing this, we will describe all aspects of our recipes at a level that is intended to be
broadly comprehensible to non-specialists.

1.2.4. Overview of the analysis and simulation recipes. We begin by surveying our simulation
strategy in its entirety. Figures 1–4 concisely summarize the simulation recipes and their
geometric basis. In a nutshell, the recipes embody the orthodox quantum formalism of figure 1,
as translated into the practical numerical algorithm of figure 2, which is based upon the algebraic
structures of figure 3, whose functionality depends upon the fundamental geometric concepts of
figure 4.

1.3. Overview of the formal simulation algorithm

Formally, our simulation algorithms will be of the general quantum information-theoretic form
that is summarized in figure 1. Steps A.1 and A.2 of the algorithm are adopted (without
essential change) from the axioms of Nielsen and Chuang [16], and our discussion will assume
a background knowledge of quantum information theory at the levels of chapters 2 and 8 of
their text.

Step A.3 of the simulation algorithm—projection of the quantum trajectory onto a state-
space of reduced dimensionality—will be familiar to systems engineers as projective MOR,
a method that is familiar to physicists and chemists as a variational order reduction of
Dirac–Frenkel–McLachlan type [23]–[25] (see also the recent references [21, 22, 26]).

For purposes of exposition, we define quantum model order reduction (quantum MOR) to
be simply classical MOR extended to the complex state-space of quantum simulations.
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Figure 1. Formal simulation by quantum MOR. Steps A.1 and A.2 summarize
the formal theory of the simulation of quantum systems (see e.g. Nielsen
and Chuang [16] chapters 2 and 8). Step A.3 is a MOR of the Hilbert
states |ψn〉 by projection onto a reduced-dimension Kähler manifold K (see
e.g. Rewieński [20]). Equivalently, step A.3 may be viewed as a variety of
Dirac–Frenkel variational projection (see e.g. [21, 22]).

1.3.1. The embrace of quantum orthodoxy. Our simulation recipes will adopt a strictly
operational approach to measurement and control, in the sense that we will require that the only
information stream used for purposes of communication and control is the stream of binary
stochastic outcomes of the measurement operations of step A.2 of figure 1. Although it is not
mathematically necessary, we will associate these binary outcomes with the classical ‘clicks’
of physical measurement apparatuses and we will develop a calibrated physical model of these
clicks that will guide both our physical intuition and our simulation design.
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Figure 2. Numerical algorithm for quantum model order reduction simulations.
Steps B.1–B.3 are a numerical recipe that implements the simulation algorithm
of figure 1. The expressions (∂̄ ⊗ ∂κ) and (∂̄φ) that are introduced in step
B.3 serve solely as variable names for the stored partial derivatives of the
Kähler potential κ(c̄, c)≡

1
2〈ψ(c̄)|ψ(c)〉 and the dynamic potential φ(c̄, c)≡

1
2〈ψ(c)|δG|ψ(c)〉; it is evident that these partial derivatives wholly determine
the simulation’s geometry and dynamics.

Because the binary ‘clicks’ of measurement outcomes are all that we seek to simulate,
our analysis will regard the state trajectories {ψ1,ψ2, . . . ,ψn, . . .} as inaccessible for all
engineering purposes, which is to say, inaccessible for purposes relating to measurement and
control. We will analyze quantum state trajectories solely with the goal of tuning the simulation

New Journal of Physics 11 (2009) 065002 (http://www.njp.org/)

http://www.njp.org/


7

|Ψ〉 ≡


1c1+j...
1c1−j


⊗


1c2+j...
1c2−j


⊗


1c3+j...
1c3−j


⊗ . . . ⊗



1cn+j...
1cn−j




+



2c1+j...
2c1−j


⊗


2c2+j...
2c2−j


⊗


2c3+j...
2c3−j


⊗ . . . ⊗



2cn+j...
2cn−j




+ . . .

+



rc1+j...
rc1−j


⊗


rc2+j...
rc2−j


⊗


rc3+j...
rc3−j


⊗ . . . ⊗



rcn+j...
rcn−j




≡
j∑

i1,i2,...,in=−j
tr
[
A[1]i1A[2]i2 . . . A[n]in

] |i1, i2, . . . , in〉

Increasing order →

Increasing
rank→

Figure 3. The algebraic definition of a TN state-space (top) expressed
equivalently as a MPS (bottom). By definition, the order of |ψ〉 is the number
of elements (spins) in each row’s outer product, the rank of |ψ〉 is the number
of rows. The matrices A[l]m that appear at bottom are, by definition, r × r
matrices—hence rank r—having diagonal elements (A[l]m)kk≡

kcl
m and vanishing

off-diagonal elements. Note that the matrix products are Abelian, such that the
geometric properties of the state-space are invariant under permutation of the
spins. Note also that when the above algebraic structure is antisymmetrized with
respect to interchange of spins (equivalent to interchange of columns), the state
becomes a sum of Slater determinants, or equivalently a join of Grasssmanian
manifolds.

algorithms to compress the trajectories onto low-dimension manifolds. In practice, this will
mean that we mainly care about the geometric properties of quantum trajectories; this will be
the organizing theme of our analysis.

In the course of our analysis, we will confirm that traditional quantum computational
shortcuts that deal directly with wavefunctions (e.g. uncertainty principles, wavefunction
collapse and quantum Zeno effects) yield the same results as our ‘clicks-only’ reductive
formalism. But our simulations will not use these shortcuts, and in particular, we will
never simulate quantum measurement processes in terms of von Neumann-style projection
operators.

The resulting simulation formalism is wholly operational and can be informally described
as ‘ultra-orthodox’. The operational approach will require some extra mathematical work—
mainly in the area of stochastic analysis—but it will also yield some novel mathematical
results, including a closed-form positive P-representation [27] of the thermal density matrix.
We will derive this P-representation by methods that provably simulate finite-temperature baths.
Thus the gain in practical simulation power will be worth the effort of the extra mathematical
analysis.
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Figure 4. Geometric principles of quantum MOR. See section 1.5 for a
discussion of these principles.

1.3.2. The unitary invariance of quantum operations. Our analysis will focus considerable
attention upon the sole mathematical invariance of the simulation algorithm of figure 1, which
is a unitary invariance associated with the choice of the quantum operations M in step A.2. Our
main mathematical discussion of this invariance will be in section 3.2.1, our main discussion
of its causal aspects will be in section 3.3.6, our main review of the literature will be in
section 3.3.7, and it will be central to the discussion of all the simulations that we present in
section 4. We will see that the short answer to the question, ‘Why is this unitary invariance
important?’ is that (i) it ensures that measured quantities respect physical causality and (ii) it
allows quantum simulations to be tuned for improved efficiency and fidelity.
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1.3.3. Quantum operations are known by many names. Readers are cautioned that what we
will call ‘quantum operations’ are known by a great many other names too, including Kraus
operators, decomposition operators and operation elements. These operations are discussed
in textbooks by Nielsen and Chuang [16], Alicki and Lendi [28], Carmichael [29, 30],
Percival [31], Breuer and Petruccione [32], and Peres and Terno [33]. These texts build upon
the earlier work of the mathematicians Stinespring [34] and Choi [35] and the physicists Kraus
[36, 37], Davies [38] and Lindblad [39]. Shorter, reasonably self-contained discussions of open
quantum systems can be found in articles by Peres and Terno [33], Adler [40], Rigo and
Gisin [41], Garcia-Mata et al [42], in on-line notes by Caves [43] and by Preskill [44].

It is prudent for students to browse among these works to find congenial points of view,
because no two of the above references are alike in the significance that they ascribe to
the unitary invariance of quantum operations. This diversity arises because the invariance
can be understood in multiple ways, including physically, algebraically, informatically and
geometrically.

Much more than any of the above references, our approach to understanding and applying
quantum operations will be geometric.

1.3.4. Naming and applying the Theorema Dilectum. It is vexing that no short name for the
unitary invariance associated with quantum operations has been generally adopted. For example,
this theorem is indexed by Nielsen and Chuang under the unwieldy phrase ‘theorem: unitary
freedom in the operator-sum representation’ [16, theorem 8.2, section 8.2].

Because we require a short descriptive name, we will call this invariance the Theorema
Dilectum, which means ‘the theorem of choosing, picking out or selecting’ (from the Latin
deligo). As our discussions will demonstrate, this name is appropriate in both its literal sense
and in its evocation of Gauss’s Theorema Egregium.

In the present paper, we will regard the Theorema Dilectum as being mainly a theorem
about the geometry of quantum trajectories, with the main practical consequence of the theorem
being that noisy quantum trajectories can be algorithmically compressed, such that efficient
large-scale quantum simulation is feasible. To the best of our knowledge, no existing articles
or textbooks have assigned to the Theorema Dilectum the central geometric role that this paper
focuses on.

The Theorema Dilectum is the first of two main technical terms that we will introduce in
this review. To anticipate, the other is tensor network manifold (TN manifold), which is the
name that we will give to state-space manifolds that support a certain kind of affine algebraic
structure (see figures 3, 4 and section 1.5). When TN manifolds are endowed with a Kähler
metric, we will call the result a Kählerian tensor network manifold (KTN manifold).

KTN manifolds are the state-spaces onto which we will projectively compress the quantum
trajectories of our simulations, by exploiting the Theorema Dilectum. When we further impose
an antisymmetry condition upon the state-space, the result is a Grassmannian–Kahlerian
tensor network manifold (GKTN manifold), and we will identify these manifolds as being
(simultaneously) the Slater determinants of quantum chemistry and the Grassmannian varieties
of algebraic geometry.

1.3.5. Relation to geometric quantum mechanics. Our recipes will always embrace the strictly
orthodox point of view that linear quantum mechanics is ‘the truth’ to which our reduced-order
Kählerian state-spaces are merely a useful low-order approximation. However, at several points
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(e.g. section 2.12) our results will touch upon a more fundamental line of research, known as
geometric quantum mechanics, which is described by Ashtekar and Schilling as follows [45]
(see also [46, 47]):

[In geometric quantum mechanics] the linear structure that is at the forefront in
textbook treatments of quantum mechanics is, primarily, only a technical convenience
and the essential ingredients—the manifold of states, the symplectic structure and the
Riemannian metric—do not share this linearity.

Thus in geometric quantum mechanics, Kählerian geometry is regarded as a fundamental aspect
of nature, while in our quantum MOR discussion, this same geometry will be regarded as the
object of engineering design with a view toward optimizing simulation capability.

1.4. Overview of the numerical simulation algorithm

The numerical simulation algorithm of figure 2 is simply the formal algorithm of figure 1
expressed in a form suitable for efficient computation. Note that figure 2 adopts the MATLAB-
style engineering nomenclature of MOR, as contrasted with the physics-style bra-ket notation
of figure 1.

The algorithm of figure 2 is a fairly typical example of what engineers call MOR [48]–[52].
Rewieński’s thesis is particularly recommended as a review of modern nonlinear MOR ([20],
see also [53]).

1.4.1. The main ideas of projective MOR. We will now briefly summarize the main ideas of
projective MOR in a form that is well adapted to quantum simulation purposes. We consider a
generic MOR problem defined by the linear equation δψ = Gψ . Here ψ is a state vector, δψ is
a state vector increment and G is a (square) matrix. For the present, it is not relevant whether
ψ is real or complex. It commonly happens that ψ includes many degrees of freedom that are
irrelevant to the practical interests that motivate a simulation.

The central physical idea of MOR is to adopt a reduced order representation ψ(c), where
c is a vector of model coordinates, having dim c � dimψ . The central mathematical problem
of MOR is to describe the large-dimension increment δψ by a reduced-order increment δc.
It is convenient to organize the partial derivatives of ψ(c) as a nonsquare matrix A(c) whose
elements are [A(c)]i j ≡ ∂ψ i/∂c j . The reduced-order increment having the least mean-square
error is obtained by the following sequence of matrix manipulations:

δψ = Gψ → A δc = Gψ

→ δc = APG ψ → δc = (A† A)P(A†Gψ). (1)

Here P is the Moore–Penrose pseudo-inverse that is ubiquitous in data-fitting and MOR
problems [54], ‘†’ is Hermitian conjugation, and the final step relies upon the pseudo-inverse
identity XP

= (X † X)P X †, which is exact for any matrix X [55]. This is the key step by which
the master simulation equation is obtained that appears as step B.3 at the bottom of figure 2.

The great virtue of (1) for purposes of large-scale simulation is that (A† A) is a low-
dimension matrix and (A†G ψ) is a low-dimension vector. Provided that both (A† A) and
(A†G ψ) can be evaluated efficiently and provided also that ψ(c) represents the ‘true’ ψ with
acceptable fidelity, substantial economies in simulation resources can be achieved.
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1.4.2. The natural emergence of Kählerian geometry. The simulation equations, when
expressed in covariant form (step B.3 at the bottom of figure 2), provide a natural venue for
asking fundamental geometric questions.

For example, the low-dimension matrix ∂̄⊗∂κ ≡
1
2 A† A is obviously Hermitian (whether

ψ is real or complex). Of what manifold is it the Hermitian metric tensor? How does this
manifold’s geometry influence the simulation’s efficiency, fidelity and robustness?

To answer these questions, we will show that κ is the Kähler potential of differential
geometry, that the metric tensor ∂̄ ⊗ ∂κ determines the Riemannian curvature of our reduced
order state-space, and that the choice of an appropriate curvature for this state-space is vital to
the simulation’s efficiency, fidelity and robustness.

In preparing this paper, our search of the literature did not find a previous analysis of MOR
state-space geometry from this Riemannian/Kählerian point of view. We did, however, find
recent work in communication theory by Cavalcante [56] and Cavalcante et al [57, 58] that
adopts a similarly geometric point of view in the design of digital signal codes. Like us, these
authors are unaware of previous similarly geometric work [58]: ‘To the best of our knowledge
this [geometric] approach was not considered previously in the context of designing signal sets
for digital communication systems’. Like us, they recognize that ‘[these state-spaces] have
rich algebraic structures and geometric properties so far not fully explored’. They find [57]:
‘The performance of a digital communication system depends on the sectional curvature of
the manifold . . . the best performance is achieved when the sectional curvature is constant and
negative’. We will reach similar conclusions regarding the desirable properties of non-positive
sectional curvature in the context of quantum MOR.

The mathematical origin of this convergence of geometric ideas between the MOR theory
and coding theory is not presently understood (by us at least) and we will not comment further
upon it. Moreover, it is entirely possible that related work exists of which we are not aware.
Model order reduction is ubiquitously practiced by essentially every discipline of mathematics,
science, engineering and business: the resulting literature is vast, and its nomenclature so varied,
that a comprehensive review is infeasible.

It is fair to say, however, that the central role of Riemannian and Kählerian geometry
in MOR is not widely appreciated. A major goal of our paper, therefore, is to analyze the
Riemannian/Kählerian aspects of MOR, and especially, to link the Kählerian geometry of
quantum MOR to the fundamental quantum informatic invariance of the Theorema Dilectum.

1.4.3. Preparing for a Kählerian geometric analysis. To prepare the way for our geometric
analysis, at the bottom of figure 2 the pseudo-code defines storage variables named ‘(∂̄ ⊗ ∂κ)’
and ‘(∂̄φ)’. For coding purposes these names are purely conventional (i.e. any arbitrary strings
of characters would suffice), but these particular names are deliberately suggestive of partial
derivatives of two scalar functions: κ and φ.

To anticipate, κ will turn out to be the Kähler potential of complex differential geometry,
which determines the differential geometry of the complex state-space, and φ will turn out
to be a stochastic dynamical potential, which determines the drift and diffusion of quantum
trajectories on the Kählerian state-space.

The link between geometry and simulation efficiency thus arises naturally because both
the geometry and the physics of our quantum trajectory simulations are determined by the same
two scalar functions.
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1.5. Overview of the algebraic geometry of quantum MOR

The main algebraic and geometric features of our state-space are summarized in figures 3 and 4.

1.5.1. The algebraic structure of the reduced-order state-space. The state-space of all our
simulations will have the algebraic structure shown in figure 3. We will regard this algebraic
structure as a geometric object that is embedded in a larger Hilbert space, and we will seek to
understand its geometric properties, including especially its Riemannian sectional curvature, in
relation to our central topic of quantum MOR.

In the language of algebraic geometry [59, 60], the geometric objects we will study are
the algebraic manifolds that are associated with the projective algebraic varieties defined by the
products and sums of figure 3. Although the literature on algebraic varieties is vast (and includes
many engineering applications [59]) and the literature on Riemannian sectional curvature is
similarly vast, the intersection of these two subjects apparently has been little studied from
an engineering point of view. This intersection, and especially its practical implications for
quantum MOR, will be the main focus of our geometric investigations.

The general algebraic structure of figure 3 is known by various names in various
disciplines. As noted in the caption to figure 3, these structures are known to physicists as
matrix product states (often abbreviated MPS) that are widely used in condensed matter physics
and ab initio quantum chemistry [61]–[67]; these references provide entry to a rapidly growing
body of MPS-related literature.

Quantum chemists have known the algebraic structures of figure 3 as Hartree product
states [68] since 1928. Antisymmetrizing the outer products yields the Slater determinants [69]
that are the fundamental building-blocks of modern quantum chemistry. Summing Slater
determinants and (optionally) imposing linear constraints upon these sums yields post-
Hartree–Fock quantum states [70]. All of the theorems we derive will apply to Slater
determinants and post-Hartree–Fock states as special cases (see section 2.9). Nuclear physicists
embrace these same ideas under the name of wavefunction factorization [71]. Beylkin and
Mohlenkamp [72] note that statisticians call essentially the same mathematical objects canonical
decompositions and study them in the context of parallel factors.

To quote Leggett and co-authors, who in the context of two-state quantum systems
attempted to review a similarly vast and diverse literature: ‘The topic of [this] paper is of course
formally a problem in applied mathematics. . . . Ideas well known in one context have been
discovered afresh in another, often in a language sufficiently different that it is not altogether
trivial to make the connection’. In such circumstances ‘the primary purposes of citations are
to help the reader understand the paper and the references in the text are chosen with this in
mind’ [73]. These same desiderata will be understood to guide our present discussion.

The general utility of affine algebraic structures for modeling purposes first came to
our attention in a highly readable Mathematical Intelligencer article by Mohlenkamp and
Monzón [74]; two further articles by Beylkin and Mohlenkamp [72, 75] are particularly
recommended also. Beylkin and Mohlenkamp call the algebraic structure of figure 3 a separated
representation and they have this to say about it [75]:

When an algorithm in dimension one is extended to dimension d, in nearly every
case its computational cost is taken to the power d . This fundamental difficulty is
the single greatest impediment to solving many important problems and has been
dubbed the curse of dimensionality. For numerical analysis in dimension d , we
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propose to use a representation for vectors and matrices that generalizes separation
of variables while allowing controlled accuracy. . . . The contribution of this paper is
twofold. First, we present a computational paradigm. With hindsight it is very natural,
but this perspective was the most difficult part to achieve, and it has far-reaching
consequences. Second, we start the development of a theory that demonstrates that
separation ranks are low for many problems of interest.

In a subsequent article Beylkin and Mohlenkamp go on to say [72]: ‘The representation seems
rather simple and familiar, but it actually has a surprisingly rich structure and is not well
understood’. These remarks are remarkably similar in spirit to the coding theory observations
of Cavalcante et al that were reviewed in section 1.4.

For our simulation purposes, Kählerian algebraic geometry will provide a shared
foundation for understanding the accelerating progress that all of the above large-scale
computational disciplines have witnessed in recent decades.

1.5.2. The medieval idea of a gabion and its modern embodiments. Deciding what to call the
geometric state-space of quantum MOR is a vexing problem, and it seems that few authors can
resist adding to a list of names that includes ‘Hartree products,’ ‘Slater determinants,’ ‘separated
representations,’ ‘matrix product states,’ ‘wave function factorizations,’ ‘product–sum states’
and ‘canonical decompositions’. Desiring a short name having a long-established engineering
etymology, our quantum systems engineering laboratory took to calling them by the medieval
name of gabions [76], or more formally, gabion manifolds (this name arose spontaneously in
the course of a seminar).

‘Gabion’ is the generic engineering name for a mesh basket that is filled with a weighty but
irregularly shaped material such as rocks or lumber, then stacked for purposes of reinforcement,
erosion control and fortification. Most readers will have seen gabions on numerous occasions,
perhaps without recognizing that they have a well-established name.

In medieval times gabions were made of wicker or reed; figure 4(a) shows a typical
medieval gabion. We will see that a defining geometry property of quantum MOR state-space
manifolds is that they are possessed of a web of geodesic lines that constrain the curvature of
the manifold, rather as the wicker reeds of a physical gabion constrain the curved rocks and
boulders held inside. Like physical gabions, gabion manifolds come in a wide variety of sizes
and shapes that are suitable for numerous practical purposes.

However, having praised the gabion, we will instead henceforth embrace what in recent
months has become the most widely used name for algebraic quantum state-space manifolds:
tensor network manifolds (TN manifolds) [77]–[87].

1.5.3. The geometric properties of TN manifolds. The main geometric properties of TN
manifolds that are relevant to quantum simulation are depicted in figure 4(b)–(h). We will
now survey these properties, and in doing so, we will introduce some of the nomenclature of
Kählerian geometry.

We begin our geometric overview by remarking that even though Hilbert space is a complex
state-space, a common viewpoint among mathematicians is that a complex manifold is a real
manifold that is endowed with an extra symmetry, called its complex structure (see sections 2.2
and 2.6 for details). For purposes of our geometric analysis, we will simply ignore this complex
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structure until we are ready to apply the quantum Theorema Dilectum (section 2.6). Until then
we will treat tensor network manifolds as real manifolds.

In particular, like any Riemannian state-space, the state-space of quantum mechanics has a
real-valued measure of length. Specifically, along a time-dependent quantum trajectory |ψ(t)〉
it is natural to define a real-valued velocity v(t) whose formal expression can be written
equivalently in several notations:

v(t)2 = g(ψ̇(t), ψ̇(t))= 〈ψ̇(t)|ψ̇(t)〉

=
˙̄ψ(t) · ψ̇(t)=

dimH/2∑
i=1

˙̄ψ i(t)ψ̇i(t). (2)

Here ψ̇(t)≡ ∂ψ(t)/∂t , and we have used first the abstract notation of differential geometry
(in which g(· · ·) is a metric function), then the Dirac bra-ket notation of physics, then the
matrix–vector notation of engineering and numerical computation and finally the cumbersome
but universal notation of components and sums over indices. We will assume an entry-level
familiarity with all four notations, since this is a prerequisite for reading the literature.

As a token of considerations to come, the factor of dimH/2 in the index limit of (2) above
arises because we will regard a complex manifold like C n as being a real manifold of dimension
2n. Thus we will regard the complex plane C as a two-dimensional (2D) (real) manifold, and a
spin-1/2 quantum state as a point in a Hilbert spaceH having dimH= 4 (real) dimensions. This
viewpoint leads to an ensemble of conventions that we will review in detail in section 2.6. For
now, we note that the arc length s along a trajectory is s =

∫
v(t) dt , so that geometric lengths

in quantum state-spaces are dimensionless. An equivalent differential definition is to assign a
length increment ds to a state increment |dψ〉 via (ds)2 = 〈dψ |dψ〉.

Since we can now compute the real-valued length of an arbitrary curve on the TN manifold,
all of the usual techniques of differential geometry can be applied, without special regard for
the fact that the state-space is complex.

1.5.4. TN manifolds are endowed with rule fields. Beginning a pictoral summary of our
geometric results, we first note that TN state-spaces resemble physical gabions in that they
are naturally endowed with a geometric mesh, which is comprised of a network of lines called
rules, as depicted in figure 4(b). More formally, they are equipped with vector fields having
certain mathematical properties (see (14) and definition 2.1) such that the integral curves of the
rule fields have the depicted properties.

Postponing a more rigorous and general definition of TN manifolds until later (see
section 2.5), we can informally define a TN rule to be the quantum trajectory associated with
the variation of a single coordinate nck

r in the algebraic structure of figure 3, holding all the other
coordinates fixed to some arbitrary set of initial values. We see that TN rules are rays (straight
lines) in the embedding Hilbert space, and hence, the TN rules are geodesics (shortest paths) on
the TN manifold itself. As depicted in figure 4(c), the set of all TN manifold points that belong
to a rule is (trivially) the set of all TN manifold points itself, which is the defining characteristic
of a TN manifold being ruled. Furthermore, we will show that at any given point, the vectors
tangent to the rules that pass through that point are a basis set.

1.5.5. TN geometry has singularities. Are TN manifolds geometrically smooth, or do they
have singularities? As depicted in figure 4(d), we will show that TN manifolds have
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pinch-like geometric singularities. Algebraically these singularities appear whenever two or
more rows of the product–sum in figure 3 are equal. Geometrically, we will show that the
Riemann curvature diverges in the neighborhood of these singular points. However, it will turn
out that the continuity of the geodesic rules is respected even at the singular points, so that TN
manifolds are geodesically complete. Pragmatically, this means that our numerical simulations
will not become ‘stuck’ at geometric singularities.

1.5.6. TN projection yields compressed representations. As depicted in figure 4(e) MOR is
achieved by the high-fidelity projection of an ‘exact’ state |ψ〉 in the large-dimension Hilbert
space onto a nearby point |ψK〉 of the small-dimension TN manifold. It can be helpful to
view this projection as a data-compression process. By analogy, the state |ψ〉 is like an
image in TIFF format; this format can store an arbitrary image with perfect fidelity but
consumes an inconveniently large amount of storage space. The projected state |ψK〉 on the
TN manifold is like an image in JPEG format; less fidelity, yet good enough for many practical
purposes and small enough for convenient storage and manipulation. We thus appreciate that
data compression can be regarded as a kind of MOR; the two processes are fundamentally
the same.

1.5.7. TN manifolds have negative sectional curvature. Practical quantum simulations require
that the computation of order-reducing projections be efficient and robust, just as we require
image compression programs to be efficient and robust. As depicted in figure 4(f), order-
reduction projection becomes ill conditioned when the state-space manifold is ‘bumpy’, in
which case a numerical search for a high-fidelity projection can become stuck at local minima
that yield poor fidelity. We will prove that the presence of a ruled net guarantees that TN
manifolds are always smooth rather than bumpy.

Resorting to slightly technical language to say exactly what we mean when we assert that
TN manifolds are not bumpy, in our theorem 2.1 we will prove that a TN manifold has non-
positive sectional curvature for all sections on its geodesic net. This means that TN manifolds
can be envisioned as a net of surfaces that have the special property of being saddle-shaped
everywhere (as contrasted with generic surfaces having dome-shaped ‘bumps’). As depicted in
figure 4(g), the saddle-shaped curvature helps ensure that order-reducing projection onto TN
manifolds is a numerically well-conditioned operation.

1.5.8. TN manifolds have an efflorescing global geometry. As depicted in figure 4(h), when
the number of state-space dimensions becomes very large, it becomes helpful to envision non-
positively curved manifolds as flower-shaped objects composed of a large number of locally
Euclidean ‘petals’. This physical picture has been vividly conveyed by recent collaborative
work between mathematicians and fabric artists [88]; the work of Henderson and Taimina on
hyperbolic manifolds is particularly recommended [89].

When working in large-dimension spaces we will heed also Dantzig’s remark that ‘one’s
intuition in higher dimensional space is not worth a damn!’ [90]. For purposes of quantitative
analysis we will rely upon Gauss’s Theorema Egregium [91] to analyze the Riemannian and
Kählerian geometric properties of TN manifolds. We will prove that the ‘number of petals’
becomes exponentially large, relative to dimK, such that the petals loosely fill the embedding
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Hilbert space. In this respect, our geometric analysis will parallel the informatic analysis of
Nielsen and Chuang [16]; their figure 4.18 is broadly equivalent to our figure 4(h).

Our analysis will therefore establish two geometric properties of TN manifolds: they are
strongly curved and they are richly endowed with straight-line rules. We will show that these TN
properties are essential to the efficiency, robustness and fidelity of large-scale MOR. Later on, in
sections 4.6.4–4.6.6, we will establish a relation between these properties and the compressive
sampling (CS) theory.

1.5.9. TN basis vectors are overcomplete. We will nowhere assume that the basis vectors of
the underlying algebraic structure of figure 3 are orthonormal; they might refer, for example, to
the non-orthonormal Gaussian basis states of quantum chemistry. A major geometric theme of
our analysis, therefore, is that the negative sectional curvature of TN manifolds helps generically
account for the observed efficiency, fidelity and robustness of TN-based modeling techniques in
many branches of science, engineering and mathematics.

1.5.10. TN manifolds allow efficient algebraic computations. Upon restricting our attention
to the special Kählerian tensor network (KTN) manifolds, we will show that the existence
of a ruled geodesic net allows the sectional curvature and the Riemann curvature tensors of
KTN manifolds to be calculated easily and efficiently. To anticipate, we will present data
from Riemann curvature tensors having dimension up to 188, which we believe are the largest
dimension curvature tensors yet numerically computed. We will see that it is Kraus’s ‘long list
of miracles’ that makes large-scale numerical curvature computations feasible and that these
same miracles are equally essential to large-scale quantum dynamical calculations.

1.5.11. KTN and the Theorema Dilectum. One geometric idea remains that is key to our
simulation recipes. For KTN manifolds to represent quantum trajectories with good fidelity,
some physical mechanism must be invoked to compress quantum trajectories onto the petals of
the state-space. That key mechanism is, of course, the Theorema Dilectum that was mentioned
in section 1.3.4.

From a geometric perspective, the Theorema Dilectum guarantees that noise can always
be modeled as a measurement process that acts to compress trajectories onto the KTN petals.
As depicted in figure 4(i), quantum simulation can be envisioned geometrically as a process
in which compression toward the KTN petals, induced by measurement processes, competes
with expansion away from the petals, induced by quantum dynamical processes. The balance of
these two competing mechanisms determines the MOR dimensionality that is required for good
fidelity—the ‘petal thickness’. Algebraically this petal thickness increases in proportion to the
rank of the product–sum algebraic structure of figure 3.

Thus for us, trajectory compression is not a mathematical ‘trick,’ but rather is a reasonably
well-understood and well-validated quantum physical mechanism, originating in the Theorema
Dilectum, that compresses quantum trajectories to within an exponentially small fraction of the
Hilbert phase space.

This noise-induced trajectory compression is the loophole by which quantum MOR
simulations evade the no-simulation arguments of Feynman [15] and of Nielsen and Chuang
[16, see their section 4.7].
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1.5.12. KTN manifolds support thermal equilibria. We will see that this covert-measurement
approach encompasses numerical searches for ground states. Specifically, by explicit con-
struction, we will show that contact with a zero-temperature thermal reservoir can be modeled
as an equivalent process of covert measurement and control, in which the role of ‘temperature’
is played by the control gain, such that zero temperature is associated with optimal control.

From this quantum MOR point of view, the calculation of a ground-state quantum
wavefunction is a special kind of noisy quantum simulation, in which noise is present but
masked by optimal control. This is how quantum MOR reconciles the strong arguments for the
general infeasibility of ab initio condensed-matter calculations (as reviewed by, e.g. Kohn [92])
with the widespread experience that numerically computing the ground states of condensed
matter systems is often reasonably tractable [18].

1.5.13. KTN manifolds support fermionic states. Readers familiar with ab initio quantum
chemistry and in particular with density functional theory (DFT) ([92]–[94] see Cappelle [95]
for an introduction) will by now recognize that quantum MOR and DFT are conceptually
parallel in numerous fundamental respects: the central role of the low-dimension Kähler
manifold of quantum MOR parallels the central role of the low-dimension density functional
of DFT; the closed-loop measurement and control processes of quantum MOR parallel the
iterative calculation of the DFT ground state; quantum MOR’s fundamental limitation of being
formally applicable only to noisy quantum systems parallels DFT’s fundamental limitation of
being formally applicable only to ground states; quantum MOR and DFT share a favorable
computational scaling with system size.

Yet to the best of our knowledge—and surprisingly—the geometric techniques that this
paper will deploy in service of quantum MOR have not yet been applied to DFT and related
techniques of quantum chemistry and condensed matter physics [18]. A plausible starting point
is to impose an antisymmetrizing Slater determinant-type structure upon the algebraic outer
products of (3).

Some analytic results that we have obtained regarding the Kählerian geometry of Slater
determinants are summarized in section 2.9. With further work along these lines, we believe
that there are reasonable prospects of establishing a geometric/informatic interpretation—via
the Theorema Egregium and the Theorema Dilectum—of the celebrated Hohenberg–Kohn and
Kohn–Sham theorems of DFT [93] and their time-dependent generalization the Runge–Gross
theorem [94].

A physical motivation for this line of research is that the Theorema Dilectum of quantum
MOR and the Hohenberg–Kohn theorem of DFT embody essentially the same physical insight:
the details of exponentially complicated details of quantum wavefunctions are only marginally
relevant to the practical simulation of both noisy systems (quantum MOR) and systems near
their ground-state (DFT).

At present, the two formalisms differ mainly in their domain of application: quantum MOR
is well suited to simulating spatially localized systems at high temperature (e.g. spin systems)
while DFT is particularly well suited to simulating spatially delocalized systems (e.g. molecules
and conduction bands) at low temperature. In the future, as quantum MOR is extended to
the Grassmannian state-spaces of fermionic dynamical systems, and the methods of quantum
chemistry are extended to dynamical systems [18, 94], opportunities will in our view arise for
cross-fertilization of these two fields, both in terms of fundamental mathematics and in terms of
practical applications.
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1.6. Overview of contrasts between quantum and classical simulation

In aggregate, the formal, numerical, algebraic and geometric concepts summarized in the
preceding sections and in figures 1–4 strikingly parallel similar concepts in the computational
fluid dynamics (CFD), solid mechanics, combustion theory and many other engineering
disciplines that entail large-scale simulation using MOR. However, quantum MOR is
distinguished from real-valued (classical) MOR by at least four major differences, which we
will now summarize.

1.6.1. The Theorema Dilectum is fundamental and universal. The first difference is that
the Theorema Dilectum describes an invariance of quantum dynamics that is fundamental
and universal. Its physical meaning (as we will see) is that it enforces causality. Nonlinear
classical systems do not possess any similarly universal invariance, which in our view is a
major contributing reason that ‘developing effective and efficient MOR strategies for nonlinear
systems remains a challenging and relatively open problem’ [20, p 20]. Our results, both
analytical and numerical, will suggest that noisy quantum systems are fundamentally no harder
to simulate than nonlinear classical systems, provided that the Theorema Dilectum is exploited
to allow high-fidelity dynamical projection of quantum trajectories onto a reduced-order state-
space.

1.6.2. Quantum state-spaces are veiled. The second difference is a consequence of the first.
As discussed in section 1.3, to fully exploit the power of the Theorema Dilectum we are required
to embrace the ultra-orthodox principle of ‘never looking at the quantum state-space’. And upon
examining classical state-spaces more closely, we will find that they too are encumbered with
ontological ambiguities that precisely mirror the ‘spooky mysteries’ of quantum state-spaces.
As discussed in section 3.2.6, this modern recognition of spooky mysteries in classical physics
echoes work in the 1940s by Wheeler and Feynman [96, 97].

1.6.3. Noise makes quantum simulation easier. The third difference is that higher noise levels
are beneficial to quantum MOR simulations, because they ensure stronger compression onto the
KTN petals, which allows lower rank, faster running KTN state-spaces to be adopted. Later we
will discuss the interesting question of whether this principle, together with the concomitant
principle ‘never look directly at the quantum state-space,’ has classical analogues. We will
tentatively conclude that the Theorema Dilectum does have classical analogues, but that the
power of this theorem is much greater in quantum simulations than in classical ones.

1.6.4. Kählerian manifolds are geometrically special. Broadly speaking, Kählerian geometry
is to Riemannian geometry what analytic functions are to ordinary functions. This additional
structure is one of the reasons why the mathematician Shing-Tung Yau has expressed the
view [98, p 46], ‘The most interesting geometric structure is the Kähler structure’. From this
point of view, the geometry of real-valued MOR state-spaces is mathematically interesting and
the analytic extension of this geometry to Kählerian MOR state-spaces is even more interesting.

Let us state explicitly some of the analogies between analytic functions and Kähler
manifolds. We recall that generically speaking, analytic functions have cuts and poles. These
cuts and poles are of course exceedingly useful to scientists and engineers, since they can be
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intimately linked to physical properties of modeled systems. Similarly, the KTN manifolds that
concern us have singularities (as depicted in figure 4(d)). Physically speaking, quantum MOR
singularities are associated with regions of quantum state-space that locally are more nearly
‘classical’ than the surrounding regions, in the sense that the local tangent vectors that generate
high-order quantum correlations become degenerate. It is fair to say, however, that the deeper
geometric significance of Kählerian MOR singularities remains to be elucidated.

Just as contour integrals of analytic functions can be geometrically adjusted to make
practical reckoning easier, we will see the Theorema Egregium allows the trajectories arising
from the drift and diffusion of noise and measurement models to be geometrically (and
informatically) adjusted to match state-space geometry, and thereby improve simulation fidelity,
efficiency and robustness.

Yau notes [98, p 21]: ‘While we see great accomplishments for Kähler manifolds with
positive curvature, very little is known for Kähler manifolds [having] strongly negative
curvature’. It is precisely these negatively curved Kähler manifolds that will concern us in
this paper, and we believe that their negative curvature properties are intimately linked to
the presence of the singularities mentioned in the preceding paragraph. We hope that further
mathematical research will help us understand these connections better.

2. The curvature of KTN state-spaces

We will now proceed with a detailed derivation and analysis of our quantum simulation recipes.
Our analysis will ‘unwind’ the preceding overview: here in section 2, we will analyze the
geometry of figure 4, as embodying the algebraic structure of figure 3. Then in subsequent
sections, we will apply the numerical techniques of figure 2 and only at the very end calibrate
our recipes in physical terms and give illustrative examples via the quantum physics of figure 1.

Some readers may prefer to skip this initial geometry-oriented section—at least on first
reading—because it focuses on the geometric reasons why our simulation recipes work, rather
than on the (equally important) algebraic and informatic details of how they work.

2.1. Quantum MOR state-spaces viewed as manifolds

To construct our initial example of a KTN state-space, we will consider the following algebraic
function ψ(c), whose domain is a 4D manifold of complex coordinates c = {c1, c2, c3, c4

} and
whose range in a 4D Hilbert space is the set of points that can be algebraically represented as
{c1c3, c1c4, c2c3, c2c4

}. In the notation of figure 2 this function is

ψ(c)=

[
c1

c2

]
⊗

[
c3

c4

]
⇔


ψ1 − c1c3

= 0,
ψ2 − c1c4

= 0,
ψ3 − c2c3

= 0,
ψ4 − c2c4

= 0,

(3)

where ‘⊗’ is the outer product. The superscripts on the ci variables are indices rather than
powers, as will be true throughout this section. From an algebraic geometry point of view,
(3) defines a projective algebraic variety [59] (also called a homogeneous algebraic variety)
over variables {ψi : i ∈ 1, 4} that is specified above in parametric form in terms of parameters
{ci : i ∈ 1, 4}.
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Our example of a TN state-space manifold is the solution set of this algebraic variety, and
thus our state-space is an algebraic manifold. Physically speaking, ψ(c) is the most general
(unnormalized) quantum state of two spin-1/2 particles sharing no quantum entanglement.

We will now show that this state-space is a Kählerian manifold that has negative sectional
curvature (under circumstances that we will describe) and that this property is beneficial for
simulation purposes (for reasons that we will describe).

2.1.1. Practical computational considerations. We begin by remarking that the basic algebraic
construct ‘arg1⊗ arg2’ that appears in (3) can be readily implemented by the built-in
functions of most scientific programming languages and libraries; for example in MATLAB
by the construct ‘reshape((arg1*arg2’)’,[],1)’ and in Mathematica by the construct
‘Outer[Times,arg1,arg2]//Flatten’.

Similar idioms exist for the efficient evaluation of more complex product–sum structures.
Although we will not describe our computational codes in detail, they are implemented in
MATLAB and Mathematica in accord with the general ideas and principles for efficient
addition, inner products and matrix–vector multiplication that are described (for example) by
Beylkin and Mohlenkamp [72].

2.1.2. The abstract geometric point of view. The algebraic structure (3) can be regarded as a
sequence of maps

C
surjective
−→ K

injective
−→ H, (4)

where C is the manifold of complex variables {c1, c2, c3, c4
}, the KTN manifold K is the range

of ψ in H and H is the larger Hilbert space within which K is embedded. To appreciate
the surjective and injective nature of these maps, we note in (3) that ψ(c) is invariant under
{c1, c2, c3, c4

} → {1, c2/c1, c1c3, c1c4
} and hence in our example (3), the dimensions of the three

manifolds C, K and H are

dim C = 2 × 4 = 8, dimK = 2 × 3 = 6, dimH= 2 × 4 = 8, (5)

where the factors of 2 arise because these are complex manifolds. We see that the map C→ K is
surjective (because dimK < dim C ), while K→H is injective (because K is immersed in H).

2.1.3. Defining KTN pseudo-coordinates. We will call the variables {c1, c2, c3, c4
} pseudo-

coordinates. They are not ordinary coordinates because C→ K is surjective rather than bijective;
or to say it another way, open sets on C are not charts on K. Whenever we require an explicit
coordinate basis, we can simply designate any one ck to be some arbitrary fixed (nonzero) value
and take the remaining {ci : i 6= k} to be coordinate functions.

In practical numerical calculations—where these algebraic structures are called ‘separated
representations,’ ‘matrix product states,’ ‘tensor network states,’ or ‘Slater determinants’—
pseudocoordinate representations are adopted almost universally. For reason of simplicity, we
will often (inaccurately) call the c’s ‘coordinates’; this will make it easier to link the numerical
algorithm of figure 2 to the geometric properties of K.
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2.2. Regarding KTN manifolds as real manifolds

Now we will begin analyzing in detail the curvature of the KTN manifold K. For geometric
purposes it is convenient to regard H not as a complex vector space, but as a Euclidean space,
such that ψ is a vector of real numbers that in our simple example has the eight components
{ψm

} = {<(ψ1), . . .,<(ψ4),=(ψ1), . . .,=(ψ4)}. Similarly, we can specify real coordinates on
C via ck

= x k + iyk , and we agree to specify these real coordinates in the conventional order
{x1, . . . , x4, y1, . . . , y4

} ≡ {r 1, . . . , r 8
} = {ra

}. Then {∂/∂ra
} is a complete set of vectors on C.

2.2.1. Constructing the metric tensor. The map ψ : C→H induces a metric tensor g upon C
via the Euclidean metric of H whose components evidently are

gab ≡ g

(
∂

∂ra
,
∂

∂r b

)
=

[
∂ψ(c(r))
∂ra

]
·

[
∂ψ(c(r))
∂r b

]
. (6)

This also suffices to define g as a metric tensor on K, provided we restrict our attention—as
for quantum MOR purposes we always will—to functions on K having the functional form
f (ψ(c(r))), such that the tangent vectors {∂/∂ra

} always act either directly or indirectly (via
the chain rule) upon ψ(c(r)). Then knowledge of g allows us to compute, via (2), the velocities
and path lengths of arbitrary trajectories on K, as is required of a metric on K.

2.2.2. Raising and lowering the indices of a pseudo-coordinate basis. Considered as a
covariant matrix, the indices of gab range over an over-complete basis set, and therefore gab

is a singular matrix. It follows that we cannot construct a contravariant matrix gab in the usual
manner, by taking a matrix inverse of gab. To evade this difficulty we define the contravariant
metric tensor to have components gab

≡ (gab)
P, where ‘P’ is the same Moore–Penrose matrix

pseudo-inverse that appears in step B.3 of figure 2, and that was discussed following
equation (1).

It is easy to verify that gab and gab act to raise, lower, and contract tensor indices in the
usual way, with a single important difference: the operation of raising followed by lowering is
no longer the identity operator, but rather is a projection operator, in consequence of the general
pseudo-inverse identity (X P X)2 = X P X . Physically this projection annihilates tangent vectors
on K whose length is zero.

2.2.3. Constructing projection operators in the tangent space. From these identities it follows
that at a specified point ψK of K, the local operator PK(ψK) that projects vectors in H onto the
tangent space of K at ψK is[

PK(ψK)
]

mn
=

dim C∑
a,b=1

[
∂ψK(c(r))

∂ra

]
m

gab

[
∂ψK(c(r))

∂r b

]
n

. (7)

In the interest of compactness, we will often write PK rather than PK(ψK). We readily verify
that the projective property PKPK = PK follows from the definition of gab given in (6) and the
general pseudo-inverse identity X P X X P

= X P.
The ability to construct the projection PK solely from tangent vectors and the local metric

tensor g will play a central role in our geometric analysis of K.
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2.3. ‘Push-button’ strategies for curvature analysis

At this point we can analyze K’s intrinsic geometry by either of two strategies. The first strategy
can be wholly automated: we fix in our example problem (say) r 7

= 1 and r 8
= 0, such that

the remaining {r 1, r 2, . . . , r 6
} can be regarded as conventional coordinate functions on the 6D

KTN manifold K. The now-restricted set of tangent vectors associated with {r 1, r 2, . . . , r 6
}

constitutes a coordinate basis, such that (6) specifies the metric tensor for this basis.
By construction, this metric has no null vectors, and hence gab is invertible. The intrinsic

geometric properties of K can then be automatically computed by any of the many symbolic
manipulation packages that are available for research in general relativity. This automated
approach allows us to ‘push the button’ and verify that for our simple example the scalar
Riemann curvature R of K is given by the remarkably simple expression R = −8/(ψ ·ψ).

2.3.1. The deficiencies of push-button curvature analysis. Such automated analyses are
unsatisfactory, however, because the simple integer result for the Riemann curvature is obtained
as the result of seemingly miraculous cancellations of high-order polynomials: the automated
method produces no insight as to why such a simple integer result is obtained, or why the sign
of the curvature is negative or whether this simplicity is linked to K’s ruled structure.

Another objection to coordinate-based analysis is that it forces us to ‘break the symmetry’
of the coordinate manifold C by designating arbitrary fixed values for arbitrarily selected
coordinates. This is undesirable because our quantum simulation algorithms in figures 1 and 2
do not break this symmetry. To do so in our geometric analysis would unnecessarily obstruct
our goal of linking quantum simulation physics to the Kählerian geometry of K.

We will therefore develop a Riemannian/Kählerian curvature analysis of the KTN
manifold K that (by using pseudo-coordinates) respects the algebraic symmetries, not of K,
but of C. For this purpose the sectional curvature proves to be an ideal mathematical tool.

2.4. The sectional curvature of KTN state-spaces

Because K has a natural embedding in the Euclidean manifold H, we will be able to analyze
the sectional curvature of our MOR state-space by methods that follow quite closely the
embedded geometric reasoning of Gauss’s original derivation of the Theorema Egregium [91].
This approach has the advantage of yielding immediate physical insight. Equally important for
our purposes, Gauss’s methods can be readily adapted to accommodate the pseudo-coordinate
tangent basis that is most natural for analyzing KTN geometry.

As depicted in figure 4(e), we choose an arbitrary point on K and define tangent vectors U
and V on K to be directional derivatives

U ≡

dim C∑
a=1

ua ∂

∂ra
and V ≡

dim C∑
a=1

va ∂

∂ra
. (8)

Because the map C→ K is surjective, we recognize that the representation of U and V as a sum
over components ua and va is non-unique (and we will take care to establish that our sectional
curvature calculations are not thereby affected).

2.4.1. Remarks on KTN normal vectors. Now we consider the space of vectors in H that
are normal to the tangent space of K at a given point labeled by ψ(r). We specify n̂ to be a
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(arbitrarily chosen) unit vector in that normal space, i.e. to be a vector in H satisfying

n̂ · n̂ = 1 and n̂ ·
∂ψ(r)
∂ra

≡ n̂ ·ψ,a = 0 , (9)

where we have adopted the usual notation that a comma preceding a subscript(s) indicates
partial differentiation with respect to the indexed variable(s). The sign of n̂ will not be material.
We remark that n̂ is not unique because the codimension of K (by definition codimK ≡

dimH− dimK) is in general greater than unity. Looking ahead, in some of our large-scale
numerical examples codimK will be very large indeed, of the order of 2 × 218

' 512 000.

2.4.2. Computing the directed sectional curvature. With reference to the vectors U , V and n̂
depicted in figure 4(e), we define a scalar function S(U, V, n̂), which we will call the directed
sectional curvature, to be

S(U, V, n̂)=

dim C∑
a,b,c,d=1

∣∣∣∣ n̂ ·ψ,ac n̂ ·ψ,ab

n̂ ·ψ,cd n̂ ·ψ,bd

∣∣∣∣ uavbucvd

dim C∑
a,b,c,d=1

∣∣∣∣ ψ,a ·ψ,c ψ,a ·ψ,b
ψ,c ·ψ,d ψ,b ·ψ,d

∣∣∣∣ uavbucvd

. (10)

Here | . . . | denotes the determinant.
Keeping in mind that n̂ ·ψ,a = 0, per (9), it is straightforward to verify that S is a scalar

under coordinate transformations. Furthermore, S evidently satisfies the identity

S(U, V, n̂)= S(αU +βV, γU + δV, n̂) (11)

for arbitrary real α, β, γ and δ. Thus S(U, V, n̂) is a real-valued geometric invariant of the 2D
tangent subspace spanned by U and V .

In the preceding paragraph we emphasize that α, β, γ and δ are real-valued because later
on, when we admit a complex structure, it will not be true that phase-shifting U and/or V leaves
the sectional curvature invariant (see section 2.7).

The denominator of (10) has a simple physical interpretation as the geometric area of the
section defined by U and V ; this quantity is often written as |U ∧ V |

2. In terms of the metric
function g(U, V )≡

∑
a,b gabuvvb we have

|U ∧ V |
2
= g(U,U )g(V, V )− g(U, V )2 . (12)

2.4.3. Physical interpretation of the directed sectional curvature. For a 2D surface embedded
in a 3D space—the case considered by Gauss—the above expression reduces to the familiar
expression S(U, V, n̂)= 1/(R1 R2), where R1 and R2 are the principal radii of curvature of the
surface. In higher dimensions S(U, V, n̂) describes the Gaussian curvature of a 2D section of
K—a 2D submanifold that is locally tangent to U and V —that has been projected onto the
three-space spanned by {U, V, n̂}.

For quantum MOR purposes, this means that whenever S(U, V, n̂) is negative we are
guaranteed local concavity of the state-spaceK, as viewed along n̂ (i.e. as viewed ‘from above’),
along at least one curve that is locally tangent to some linear combination of U and V . The
resulting physical picture is shown in figure 4(g). We will see that for MOR purposes it will
be advantageous to choose state-space manifolds such that S(U, V, n̂) is negative, such that the
local concavity of K improves the algorithmic robustness of projective MOR.
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2.4.4. Definition of the intrinsic sectional curvature. Mathematicians generally prefer to
describe the curvature of K in intrinsic terms. To accomplish this it is convenient to sum over
a complete orthonormal set {n̂i} of vectors tangent to K. We use the identity

∑
i n̂ ⊗ n̂ = P̄K =

I − PK, where I is the identity operator and PK is the projection matrix given in (7), to obtain

S(U, V )≡

codimK∑
i=1

S(U, V, n̂i)

=

dim C∑
a,b,c,d=1

[
ψ,ac · P̄K ·ψ,bd −ψ,ab · P̄K ·ψ,cd

]
uavbucvd

|U ∧ V |2
. (13)

Now all reference to unit normals has disappeared, because we established in (7) that PK can
be described in intrinsic terms. Later on (following (27)) we will exhibit an explicit form for
S(U, V ) solely in terms of the metric tensor and its derivatives.

2.5. The formal definition of a KTN manifold

For general tangent vectors U and V , the directed sectional curvature S(U, V, n̂) and the
intrinsic sectional curvature S(U, V ) can be either positive or negative. We will now derive
a condition on U and V that is sufficient for S(U, V, n̂) and S(U, V ) to be non-positive and we
will use this condition to motivate an intrinsic definition of a KTN manifold.

We recall that K is a reduced-dimension state-space manifold that is embedded in a larger
dimension Euclidean manifold H. Thus each individual component of the state-vector ψ of H
defines a scalar function on K. If we wish, we may regard the metric g of (6) and the normal
vector n̂ of (9) as intrinsically defined in terms of the scalar functions ψ ; this eliminates any
formal reference to the embedding manifold H. We define a rule vector field, or simply rule
field, to be any vector field V on K satisfying

∇V∇Vψ = 0 . (14)

The motivation for this definition is simply that the above equation is both intrinsic and
geometrically covariant, and furthermore, it is manifestly satisfied by the vector field associated
with each KTN pseudo-coordinate; these coordinates thus are canonical examples of rule fields.
We define rule lines, or simply rules, to be the integral curves of a rule field. It is straightforward
to show that rule lines are geodesics; this formally justifies our earlier depiction of rules as
‘straight lines’ in figure 4 and in section 1.5. We define rule tangent vectors, or simply rule
vectors, to be vectors that are locally tangent to a rule line.

We now intrinsically define a KTN manifold as follows:

Definition 2.1. A KTN manifold is a manifold endowed with rule fields whose rule tangent
vectors constitute a local basis at every point of the manifold.

This definition is more restrictive than the usual definition of a ruled manifold [99], in
which there is no requirement that the rule vectors provide a local basis. In intrinsic geometric
terms, a KTN manifold is a ruled manifold that is exceptionally rich in rule structure.

Associated with a rule vector V , at any given point on K, we define local rule coordinates
such that ∇V ∇Vψ = 0 takes the component form

∑
a,b v

avbψ ,ab = 0. Thus KTN pseudo-
coordinates are local rule coordinates. Evaluating (13) in local rule coordinates, we see that
whenever either U or V is a rule vector, the first numerator term vanishes, and the remaining
numerator term is non-positive. This proves the following theorem:
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Theorem 2.1 Let U be a rule vector at an arbitrary point on a manifold K, let V be an arbitrary
tangent vector at that same point, and let n̂ be an arbitrary unit vector normal to the tangent
space. Then the directed sectional curvature satisfies S(U, V, n̂)6 0 and therefore, the intrinsic
sectional curvature satisfies S(U, V )6 0.

In physical terms, any 2D section of K that includes a rule vector has negative sectional
curvature. Since for KTN manifolds, the local rule tangents form an overcomplete local basis
at each point in K, we see that negative sectional curvature is ubiquitously present in our KTN
state-spaces. We remark that in deriving theorem 2.1 we have never used the complex structure
of K; thus the theorem applies more broadly, to ruled TN manifolds in general.

2.5.1. Recipes for constructing rules and rule fields. In the context of MOR analysis, rule
lines are easy to construct, via the product–sum algebraic structure of figure 3, by varying
any one {

lcm
n } while holding the others fixed. The tangents to the rule lines then constitute an

overcomplete local basis, as depicted in figure 4(c).
More generally, rule fields can be constructed by selecting an arbitrary order (column)

in the algebraic structure of figure 3, selecting arbitrary basis vectors for the Hilbert subspace
associated with that order (equivalent to imposing an arbitrary rotation on the basis vectors of
that column’s subspace), selecting an arbitrary rank (row), selecting an arbitrary element of the
substate of that order and rank, choosing a coordinate system (in the strict sense of section 2.3)
such that the selected element is one of the coordinate functions, and identifying a rule field on
K with the partial derivative with respect to that coordinate.

From an algorithmic point of view, a rule vector is a direction in the state-space along which
trajectories can move with great algorithmic efficiency, since only one state-space coordinate
need be updated.

2.5.2. The set of KTN rules is geodesically complete. Whenever any two rows of the
product–sum in figure 3 are algebraically degenerate, the tangent space of K will be
geometrically degenerate, yet according to the construction of the geometric rules, and in
particular because the underlying algebraic structure is polynomial, the rules pass through
curvature singularities without disruption of their geodesic properties, as depicted in figure 4(d).

Furthermore, it is evident that the sectional curvature (13) diverges in the neighborhood of a
rule singularity, in consequence of the divergence of the pseudo-inverse metric gab that appears
in the projection operator PK as given in (7). Numerical experiments confirm this expectation.
These phenomena suggest that KTN manifolds might fruitfully be analyzed in terms of affine
algebraic varieties. The authors have not pursued this line of analysis.

2.6. Sectional curvature on Kählerian manifolds

We now specialize (13) to complex manifolds having a Kählerian metric. In so doing, we
will adopt certain ‘tricks’ of indexing that Kählerian geometers use. We begin by writing the
numerator and denominator of (13) in matrix notation, with all quantities still real:

num =

dim C∑
a,b,c,d=1

[
(ψ ,ac ·ψ ,bd)−

dim C∑
e, f =1

(ψ ,ac ·ψ ,e)g
e f (ψ , f ·ψ ,bd)

−(ψ ,ab ·ψ ,cd)+
dim C∑
e, f =1

(ψ ,ab ·ψ ,e)g
e f (ψ , f ·ψ ,cd)

]
uavbucvd, (15a)
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den =

dim C∑
a,b,c,d=1

[
(ψ,a ·ψ,c)(ψ,b ·ψ,d)− (ψ,a ·ψ,c)(ψ,c ·ψ,d)

]
uavbucvd . (15b)

Now we reason as follows. S(U, V ) is a real number that is independent of coordinate system.
We are therefore free to analytically continue our coordinates, transforming (for example)
the coordinate pair {x1, y1} → {c1, c̄1} via c1 = x1 + iy1 and c̄1 = x1 − iy1. Since the sectional
curvature is a geometric invariant, the (real) value of S(U, V ) will not be altered thereby, even
though the coordinates themselves are now complex.

2.6.1. Kählerian indexing and coordinate conventions. It is evident that analytic continuation
to complex coordinates treats c1 and c̄1 as independent coordinates for symbolic manipulation
purposes (such as partial differentiation), just as x1 and y1 are independent coordinates. It is
only at the very end of a calculation, when we assign (complex) numerical values to c1 and c̄1,
that they can no longer be varied independently.

It is helpful too to replace Latin indices with unbarred and barred Greek indices, in a
convention that associates barred indices with barred coordinates (see [100], p 8 or [101]). Then
the vector V has components {v1, v2, . . ., v̄1̄, v̄2̄, . . .}, for example, and is represented in terms
of partial derivatives by

V =

dim C/2∑
α=1

vα
∂

∂cα
+

dim C∑
ᾱ=1̄

v̄ᾱ
∂

∂ c̄ᾱ
. (16)

In this convention a barred index k̄ ≡ dim C/2 + k, such that the index 1̄ is a shorthand for
the integer dim C/2 + 1 and (vα)? = v̄ᾱ.

With regard to the embedding Hilbert space H, we will adopt the physics convention that
the ‘ket’ vector ψ(c)≡ |ψ(c)〉 is a complex vector of dimension dimH/2, with the ‘bra’ vector
ψ̄(c̄)≡ 〈ψ̄(c̄)| being the conjugate vector.

Thus ψ(c) is a holomorphic function (also known as an ‘analytic function’) of complex
pseudocoordinates c, and ψ̄(c̄) is similarly a holomorphic function of c̄. Defining the
biholomorphic Kähler potential function κ(c̄, c) to be

κ(c̄, c)≡
1
2ψ̄(c̄) ·ψ(c)=

1
2〈ψ̄(c̄)|ψ(c)〉 , (17)

the components of the metric tensor g are given in terms of κ(c̄, c) by

gᾱβ = gβᾱ =
∂κ(c̄, c)
∂ c̄ᾱ∂cβ

and gαβ = gᾱβ̄ = 0. (18)

It immediately follows that in any holomorphic coordinate system

gαβ̄ = gβ̄α and gαβ = gᾱβ̄ = 0 . (19)

The simplest explicit example of this convention is the complex plane regarded as a 2D
Kähler manifold. Indexing its two coordinates by {1, 1̄} yields coordinates {c1, c̄1̄}, which in
analytic function theory are conventionally called {z, z̄}. The real-valued Kähler potential is
κ = c1c̄1̄/2 = zz̄/2, the components of the metric tensor are

gab =

(
0 1/2

1/2 0

)
and gab

=

(
0 2
2 0

)
, (20)
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and the length element ds2 is

ds2
=

∑
ab

gab dca dcb
= g11̄ dc1 dc̄1̄ + g1̄1 dc̄1̄ dc1

=
1
2(dz dz̄ + d z̄dz)= dz dz̄, (21)

which is the usual normalization. Note the ubiquitous factors of 2 and 1/2, which require
careful attention in practical calculations. A general scalar function on this manifold is of the
form f (z̄, z), and functions of the special form f (z) are the familiar holomorphic functions of
analytic function theory.

In programming calculations on Kähler manifolds of larger dimension, it is helpful that
(18) and (19) take the block-matrix forms[
gab

]
=

[
[0] [gαβ̄]

[gᾱβ] [0]

]
and

[
gab

]
=

[
[0] [gαβ̄]

[gᾱβ] [0]

]
=

[
[0] [gᾱβ]P

[gαβ̄]P [0]

]
, (22)

where ‘[. . . ]’ is a square matrix. Environments like MATLAB, etc provide built-in functions
for block-matrix constructs of this type. We further see that in consequence of gab = gba and
gαβ̄ = ḡᾱβ , which follow from (18), the individual block matrices in (22) are Hermitian and
semipositive; for this reason the submatrix [gαβ̄] is sometimes called the Hermitian metric of
the complex manifold. In practical calculations, it is considerably more efficient to work solely
with the Hermitian metric and its pseudo-inverse, than with the larger matrix gab.

Numerically minded readers who are new to the literature of Kähler manifolds will
appreciate that the above indexing conventions elegantly resolve a contradiction of our intuition.
On the one hand, we expect that a coordinate transformation cannot change the range of an
index. On the other hand, we expect on physical grounds that a manifold described by complex
coordinates will need only half the number of coordinate variables as the same manifold
described by real coordinates. The resolution of this dilemma is in the block structure and
symmetry properties of g, which ensure that in practical geometric calculations, only half the
index range need be summed over.

2.6.2. Sectional curvature in physics notation. It is then a straightforward exercise to write
(15a,15b) compactly, in the bra-ket notation of physics:

num =
1
2

[
〈∂ū∂ūψ̄ |P̄K|∂v∂vψ〉 + 〈∂v̄∂v̄ψ̄ |P̄K|∂u∂uψ〉 − 2∂ū∂v̄ψ̄ |P̄K|∂u∂vψ〉

]
, (23a)

den =

[
〈∂ūψ̄ |∂uψ〉〈∂v̄ψ̄ |∂vψ〉 −

1
4(〈∂ūψ̄ |∂vψ〉 + 〈∂v̄ψ̄ |∂uψ〉)

2
]2
, (23b)

where the partial derivatives and the projection operator P̄K ≡ I − PK are given in terms of
components by

|∂vψ〉 =

dim C/2∑
α=1

vα
∂

∂cα
|ψ(c)〉 (etc) (23c)

PK =
1

2

dim C/2∑
α=1

dim C∑
β̄=1̄

gαβ̄
∂2

∂cα∂ c̄β̄
|ψ(c)〉〈ψ̄(c̄)|. (23d)
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The above expressions show explicitly that bra-ket notation allows the sectional curvature to
be computed by summing over half-ranges of coordinate indices. This notational compactness
constitutes (from a Kählerian geometry point of view) the main practical rationale for the bra-ket
notation of the physics literature.

2.6.3. Defining the Riemann curvature tensor. Now we define the Riemann curvature tensor
to be that scalar function R(A, B,C, D), defined at each point on the KTN manifold K, with
A, B,C, D being arbitrary vectors, such that the local sectional curvature and the local Riemann
curvature are related by

S(U, V )= R(U, V,U, V )/|U ∧ V |
2
= Rabcd uavbucvd/|U ∧ V |

2. (24)

It is known (see [102, theorem 3.8] or [101, theorem 7.51]) that the Riemann curvature so
defined is unique, for both real and Kähler manifolds, provided that the following index
symmetries are imposed:

R(A, B,C, D)= −R(B, A,C, D)= −R(A, B, D,C)= R(C, D, A, B), (25)

which are the conventional antisymmetries of the Riemann tensor; and provided in addition the
following identity is satisfied

R(A, B,C, D)+ R(B,C, A, D)= R(C, A, B, D)= 0 , (26)

which is called the first Bianchi identity.
On real manifolds, the implicit definition (24) of the Riemann curvature in terms of the

sectional curvature is difficult to work with, in the sense that the general expression for Rabcd as
a function of g turns out to be too complicated to readily derive by inspection or manipulation
of (13).

Fortunately, on Kähler manifolds we have the simpler definition of S(U, V ) given in
(23a)–(23d), from which the Riemann curvature can be read-off as

Rαβ̄γ δ̄ = κ,αβ̄γ δ̄ − κ,β̄δ̄µ gµν̄ κ,ν̄αγ = gαβ̄,γ δ̄ − gβ̄µ,δ̄ gµν̄ gν̄γ,α, (27)

where κ(c̄, c) is the biholomorphic Kähler potential introduced in (17) and gµν̄ is the pseudo-
inverse of gµν̄ = κ,µν̄ introduced in (22). We further specify that all components of R not fixed
by (27) vanish, save those required by the symmetries (25). Since the following components of
R cannot be obtained from (27) by symmetry, we take them to be zero

Rαβcd = Rᾱβ̄cd = Rabγ δ = Rabγ̄ δ̄ = 0, (28)

and we see that the resulting Kählerian Rabcd has a block structure similar to that of the Kählerian
metric gab in (22). In consequence of this block structure, it is straightforward to verify that the
Bianchi identity (25) is equivalent to the following Kählerian Bianchi index symmetries (which
we have not found explicitly given in the literature):

Rαβ̄γ δ̄ = Rγ β̄αδ̄ = Rαδ̄γ β̄ = Rγ β̄αδ̄, (29)

and which (27) respects. Thus the definition, symmetries, and identities (24)–(26) all are
satisfied, and we conclude that the Kählerian sectional curvature (23a)–(23d) uniquely
determines the Riemann curvature to be (27). We remark that the elegant functional simplicity
of the Kähler–Riemann curvature tensor (27)—which in many textbooks mysteriously appears
only at the end of a long algebraic derivation—emerges quite simply and naturally in our Gauss-
style immersive derivation.
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2.6.4. The Theorema Egregium on KTN manifolds. Because S(U, V ) and R(A, B,C, D)
depend solely on the intrinsic metric g, we have thus derived—solely by analysis of
sectional curvature—the celebrated Gauss/Riemann Theorema Egregium as it applies to Kähler
manifolds. As mentioned above, we have not found in the Kählerian geometry literature any
similar derivation of the Riemann tensor by sectional curvature analysis. However, the Kähler
geometry literature is so vast that we can say with confidence only that the above derivation of
(27) is quite different from the usual (intrinsic) derivations in the literature (see [101, theorem
12.5.6] and [103, chapter 6]).

To better serve our MOR purposes, we have generalized Rαβ̄γ δ̄ by allowing its indices to
range over dim C rather than dimK, and we have defined the contravariant tensor gµν̄ in terms
of the matrix pseudo-inverse. These extensions do not alter the functional form of (24)–(29),
and they make practical numerical calculations very much easier to program.

It is apparent that the generalized metric tensor gµν̄ that appears in the Riemann curvature
tensor (27) is identical to the matrix (∂̄⊗∂κ)P that appears in the simulation algorithm of step
B.3 of figure 2. This is the first of many links that we will establish between Kählerian geometry
and quantum simulation.

2.6.5. Readings in Kählerian geometry. Having derived the Kählerian version of the Riemann
curvature tensor, we will attempt a brief survey of the Kähler geometry literature. The
literature on Kähler geometry is comparably vast to the literature on quantum measurement
and information, and so our review necessarily will be exceedingly sparse and subjective.

Our development and indexing conventions in this section have paralleled the Riemannian
conventions of Weinberg [104], as extended to Kählerian geometry by Flaherty [100], as further
extended to abstract notation by Martin [101] and Moroianu [103]. However, our analysis has
been centered upon sectional curvature, rather than Riemann curvature as in the preceding
texts. Other suitable texts include Kobayashi [105], Frenkel [106], Gallot [102], Flanders [107],
Jost [108], Hou and Ho [109] and a lengthy review by Yau [98]. Many more textbooks and
review articles on Kähler geometry exist and it is largely a matter of individual taste to choose
among them.

2.7. Remarks upon holomorphic bisectional curvature

We have seen that the sectional curvature of both real and Kählerian KTN manifolds is
constrained by theorem 2.1. We now review additional (known) sectional curvature theorems
that relate particularly to KTN manifolds. These theorems concern a geometric measure called
the holomorphic bisectional curvature [110].

We begin by remarking that physicists in particular are accustomed to thinking of ψ and
iψ as being physically the same vector. In Kählerian notation, the notion of ‘multiplying by i’
is associated with an almost complex structure J , which is defined to be a linear map J , defined
on every point in K, satisfying J 2V = −V for V an arbitrary tangent vector, and differentially
smooth, that leaves the metric tensor invariant, i.e. g(U, V )= g(JU , J V ). The effect of J upon
the components {vα, v̄ᾱ} of an arbitrary vector V is simple:

{vα, v̄ᾱ}
J

−→ {ivα,−iv̄ᾱ}. (30)

The functional form of (23a, 23b) then implies the identities S(U, V )= S(JU , J V ) and
S(JU , V )= S(U, J V ).
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We now consider the sum S(U, V )+ S(U, J V )= S(U, V )+ S(JU , V ), which by
definition is called the holomorphic bisectional curvature [110]. The fundamental inequality
of holomorphic bisectional curvature

S(U, V )+ S(U, J V )6 0 (31)

follows immediately from (23a, 23b), because the ‘multiply by i’ rule implies that the first term
in the denominator cancels in the sum.

We will call (31) the holomorphic bisectional curvature non-positivity theorem (HBCN
theorem). The HBCN theorem is a long-known result [110] that applies in general to any Kähler
manifold that is a complex submanifold of a Euclidean space. Physically speaking, if a given
Kählerian section {U, V } has positive curvature, then the ‘rotated’ section {U, J V } will have
negative curvature. It is readily shown [110] that the HBCN theorem implies the non-positivity
of the eigenvalues of the Ricci tensor, and therefore, the non-positivity of the scalar curvature.

As a technical point, the HBCN theorem applies only to Kähler manifolds that have
(or can be given) a complex embedding in a larger Euclidean manifold, which is the case
of greatest interest in quantum MOR applications. The HBCN theorem does not apply to
Kähler manifolds that have no complex Euclidean embedding. For example, Kähler manifolds
having a Fubini–Study metric can (and we shall see, sometimes do) exhibit positive scalar
curvature. This is incompatible with the HBCN theorem; these manifolds therefore have no
Euclidean embedding.

The functional form of (23a) allows us to immediately extend the HBCN theorem to
encompass the directed sectional curvature S(U, V, n̂) as follows:

Theorem 2.2. (directed extension of the HBCN theorem). At an arbitrary point on a Kähler
manifold K that has a complex embedding within a Euclidean spaceH, let U and V be arbitrary
tangent vectors and let n̂ be an arbitrary unit vector normal to K. Then the directed sectional
curvature satisfies S(U, V, n̂)+ S(U, J V, n̂)6 0.

Our theorem 2.1 is a different result from both the HBCN theorem and its directed
extension theorem 2.2. Most obviously, theorem 2.1 applies to all manifolds that possess one
or more rule fields, whether they are Kählerian or not, while both the HBCN theorem and our
theorem 2.2 apply solely to Kähler manifolds.

Even on Kähler manifolds, the HBCN theorem and theorem 2.1 have substantially differing
implications. It follows from the defining equation of a rule field (14) that if W is a rule field,
then so is JW , hence if V is a rule vector, then so is J V . It then follows from theorem 2.1 that
S(U, V ) and S(U, J V ) are both non-positive, which is a strictly stronger condition than the
non-positivity of their sum that is implied by the HBCN theorem.

It further follows immediately from (15a, 15b) that if V is a rule vector, then S(U, V )=

S(U, J V ). More generally, if U and V are both rule vectors, then S(U, V )= S(U, J V )=

S(JU , V )= S(JU , J V ) and all of these sectional curvatures are non-positive. From this
‘gabionic’ point of view (see figure 4(a)), we see that on KTN manifolds the rule vectors U and
JU are effectively the same vector, i.e. rule vector phases are irrelevant to sectional curvature
properties, as is natural in quantum mechanical analysis.

The ubiquity of non-positive sectional curvature on KTN manifolds therefore can be
viewed as arising from the confluence of rule structure and complex structure, both of which
are associated with strong theorems that imply negative sectional curvature.
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2.7.1. Practical implications of sectional curvature theorems. From an MOR point of view,
the non-positive sectional curvature implied by theorem 2.1 can be regarded as helping to ensure
the robustness of MOR on both real and complex manifolds, while the HBCN theorem helps
make MOR even more robust on complex manifolds. This is one of two fundamental reasons
why quantum MOR can be regarded as intrinsically easier than classical MOR (the other reason
being the algorithmic resources that are provided by the Theorema Egregium, as we will discuss
in the following section).

We remark that not all sectional curvatures S(U, V ) are negative on KTN manifolds. In
small-dimension KTN manifolds we have constructed analytical examples of positive-curvature
sections—with some trouble because neither U nor V can be rule vectors—and in large-
dimension KTN manifolds numerical searches find them. According to our present (limited)
understanding, these positive-curvature Kählerian sections seem rather artificial, and so we will
not discuss them further. It is possible that their significance has eluded us.

2.8. Analytic gold standards for KTN curvature calculations

The Riemann tensor specifies the Gaussian curvature of every section of K and on large-
dimension MOR manifolds the Riemann tensor therefore carries a vast amount of information.
To compress this information (among other purposes) it is conventional to condense the four-
index Riemann tensor Rabcd into the two-index Ricci tensor Rab by

Rab =

dim C∑
c,d=1

gcd Rcadb, (32)

which in Kählerian index notation can be written

Rαβ̄ = Rᾱβ ≡

dim C∑
c,d=1

gcd Rcαdβ̄ =

dim C/2∑
γ=1

dim C∑
δ̄=1̄

−gγ δ̄Rαδ̄γ β̄ . (33)

Further compression is achieved by the scalar curvature R defined by

R =

dim C∑
a,b=1

gab Rab = 2
dim C/2∑
α=1

dim C∑
β̄=1̄

gαβ̄Rβ̄α. (34)

Caveat: various authors entertain diverse conventions regarding which indices should be
contracted to obtain the Ricci tensor, and the minus signs and factors of 2 that appear above
are commonly associated with minor imprecisions and errors. However, one sectional curvature
convention is universal: the directed sectional curvature on a unit hypersphere Sn (the ordinary
sphere embedded in R3 being S2) satisfies S(U, V, n̂)= 1 for all linearly independent U and
V . In a locally orthonormal basis there are n(n − 1) such pairs; it follows that on a unit
hypersphere the eigenvalues of the Ricci tensor are all n − 1, and the scalar curvature itself
is therefore R = n(n − 1). This result is a useful ‘gold standard’ for testing symbolic and
numerical calculations on real manifolds.

To construct a similar gold standard for testing symbolic and numerical curvature
calculations on Kählerian manifolds, it is convenient to consider the manifold of rank-one,
order-n KTN states (see figure 3). We allow the spin quantum numbers { ji : i ∈ 1, n} associated
with successive product subspaces to vary independently. Then by a straightforward (but not
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short) calculation, it can be shown that the scalar curvature of a general rank one, order-n
product state is

R = −
8

κ

n∑
k,m=1

{
jk jm for m 6= k,

0 otherwise,
(35)

where κ is the Kähler potential function of (17). See the following section for a summary of the
assorted algebraic techniques used to obtain this result.

To the best of our knowledge, this general analytic result has not previously appeared in
the literature. For the simple example manifold of (3), we have order n = 2 and j1 = j2 = 1/2,
so the above yields R = −4/κ = −8/〈ψ |ψ〉 = −8/(ψ ·ψ), in agreement with the automated
‘push-button’ analysis of section 2.3.

2.9. The Riemann–Kähler curvature of Slater determinants

We now have all the tools we need to compute the scalar Riemann curvature of Slater
determinant states, which are the main state-space of quantum chemistry [18, 69, 70]. The
strategy of the calculation is straightforward, and although the details are lengthy, the final
result is simple.

We begin by considering, as the simplest example having nontrivial curvature, the quantum
states that are obtained by antisymmetrizing the outer products of a rank-one order-two
product–sum state of spin j = 3/2 (see figure 3)

ψ(c)≡


c1

a

c2
a

c3
a

c4
a

 ⊗


c1

b

c2
b

c3
b

c4
b

 −


c1

b

c2
b

c3
b

c4
b

 ⊗


c1

a

c2
a

c3
a

c4
a

 . (36)

In the language of quantum chemistry, we can equivalently regard ψ(c) as the variational state-
space of the (unnormalized) Slater determinant states of two electrons ‘a’ and ‘b’ occupying
linear combinations of four orbitals.

With ψ(c) given, we can compute its scalar curvature R by either numerical or analytic
means. To compute R numerically, we can simply set the eight pseudo-coordinates c =

{ci
a, ci

b; i = 1, 4} to any desired value (thereby choosing the point in state-space at which R is to
be evaluated) then compute first the Kähler potential κ from (17), then the Riemann curvature
R from (27), and (32)–(34), evaluating the pseudo-inverse metric gµν̄ of (27) numerically.

Empirically we find that for our simple example (36) these numerical calculations
invariably yield a Riemann scalar curvature of R = −8/κ (to machine precision) for all values
of the pseudo-coordinates {ci

a, ci
b}.

The simplicity of the numerical result motivates and guides the following analytic
evaluation of R in closed form. We designate by ψ0 the point in the state-space ψ(c) at which
the Riemann curvature is to be evaluated. We write ψ0 in the following standard form by an
appropriate choice of basis vectors

ψ0 = c0




1
0
0
0

 ⊗


0
1
0
0

 −


0
1
0
0

 ⊗


1
0
0
0


 . (37)
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An arbitrary state in a neighborhood of ψ0 can be written as an explicit holomorphic function
of five complex coordinates {c0, c3

a, c4
a, c3

b, c4
b} as follows:

ψ(c)= c0




1
0
c3

a

c4
a

 ⊗


0
1
c3

b

c4
b

 −


0
1
c3

b

c4
b

 ⊗


1
0
c3

a

c4
a


 . (38)

That the above variety is in fact equivalent to (36) can be demonstrated by the ‘push-button’
method of computing their respective Gröbner bases [59] and verifying that these bases generate
the same homogeneous ideal in the variables {ψi}

7.
In the transition from (36) to (38), four pseudo-coordinates {c1

a, c2
a, c1

b, c2
b} have disappeared

and been replaced by the ‘0’ and ‘1’ entries. These are physically accounted as follows: c1
a and

c2
b have been merged into the overall (complex) normalization c0 by a simple rescaling; c1

b and
c2

1 have tangent vectors that vanish at ψ0, such that they do not induce coordinate charts on ψ(c)
at ψ0 and can safely be dropped. In numerical calculations, their tangent vectors at ψ0 are in the
null-space of gαβ̄ and gαβ̄ .

The remainder of the analytic calculation is straightforward. The metric components gµν̄
are given from (38) by (17, 18), and when evaluated at ψ0, yield a 5 × 5 matrix that is diagonal
and non-singular. Computing the inverse gν̄µ is therefore trivial. The Riemann components
Rαβ̄γ δ̄ are given by (27) and the Ricci components Rµν̄ are given by (33). Finally, the scalar
Riemann curvature given by (34) is found to be R = −8/κ , in accord with the numerical result.

This reasoning is readily generalized. Upon antisymmetrizing a general rank-one, order-
n product–sum state (see figure 3) under the exchange of all pairs of spins—thus converting
it to a single n-particle Slater determinant—and evaluating the metric and Riemann tensors
in the diagonal basis of (37,38), the dimensionality of the Kähler manifold is evidently dimK =

2(1 + n(norb − n)), and the scalar curvature is found in closed analytic form to be

R = −
2

κ
×

{
n(n − 1)(norb − n)(norb − n − 1) for norb > n,

undefined because ψ(c)= 0 for norb < n.
(39)

Here norb = 2 j + 1 is the dimension of the individual states in the Slater product–sum, with the
mnemonic ‘orb’ referring to ‘orbitals’ in token of the practical use of these states in quantum
chemistry. Since the scalar curvature is a geometric invariant, this result holds in any basis.

The curvature of a Slater determinant manifold having a Fubini–Study metric, i.e. having a
Kähler potential κ = 1/2 log 〈ψ̄ |ψ〉 instead of κ = 1/2〈ψ̄ |ψ〉, can similarly be calculated from
(38) and its multidimensional generalizations. The result is

R =

{
4nnorb(norb − n) for norb > n,
undefined because ψ(c)= 0 for norb < n.

(40)

Physically speaking, the Fubini–Study metric describes a manifold of normalized states in
which a phase rotation of δφ radians has a path length of zero rather than δφ. Furthermore,

7 Specifically, the Gröbner basis of both (36) and (38) is found to be {ψ1, ψ6, ψ11, ψ16, ψ2 +ψ5, ψ3 +ψ9, ψ7 +ψ10,

ψ12 +ψ15, ψ4 +ψ13, ψ8 +ψ14, ψ10ψ13 +ψ5ψ15 −ψ9ψ14}. The disadvantage of the Gröbner basis is that it obscures
the symmetries of the parametric representation (36); for example the rule structure of the manifold is not
evident. Furthermore, implicit representations like this one are poorly suited to sectional and Riemannian curvature
calculations.
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it is a straightforward (but lengthy) algebraic exercise to verify during the course of the above
calculation that gαβ̄ ∝ Rαβ̄ , i.e. Slater determinant manifolds having a Fubini–Study metric
are Ricci–Einstein manifolds [111]. An immediate consequence is that Slater determinant
manifolds are solitons under Ricci flow [112]. We note that Ricci soliton manifolds are of central
importance to the mathematical community, because they represent (in a sense that can be made
precise) the unique ‘smoothest’ manifolds of a given topological class. In recent years this idea
has been central to the Ricci flow [113] proofs of several long-standing topological conjectures.

To the best of our knowledge, the above algebraic/geometric properties of Slater
determinants have never been noted in the literature. This gap is noteworthy, in view of the
central role that Slater determinants play in chemistry and condensed-matter physics, and the
similarly central role of Kählerian algebraic geometry in numerous branches of mathematics. It
reflects what the National Research Council has called [17]

‘[. . . the anomaly that] although theoretical chemists understand sophisticated
mathematics and make heavy use of the mathematical literature, they have typically
not involved mathematicians directly in either the development of models or
algorithms or the derivation of formal properties of equations and solutions. In fact,
theoretical chemists have become accustomed to self-reliance in mathematics’.

A central objective of this paper’s geometric approach to quantum simulation is to more closely
link the formal mathematical tools of algebraic geometry to practical problems in quantum
simulation, and thereby, to help ensure that the emerging discipline of quantum systems
engineering is not needlessly ‘self-reliant in mathematics’.

2.10. Slater determinants are Grassmannian KTN manifolds

We thank our colleague Joshua Kantor for directing our attention to the facts that the
Slater determinants associated with n particles distributed among norb orbitals have a natural
isomorphism to the Grassmannian manifolds classified as G(n, norb) [60], that Grassmannian
manifolds have a known presentation as projective algebraic varieties via the Plücker
embedding [99], and that the Plücker embedding is possessed of isometries having a Lie group
structure that is known to be compatible with a Kähler–Einstein metric [111].

From this algebraic geometry point of view, the example of a Slater determinant that we
present in (36), having n = 2 and norb = 4, can be identified with what Harris’s classic textbook
Algebraic Geometry calls [60, p 65] ‘the first nontrivial Grassmannian—the first that is not
a projective space—[namely] G(2, 4)’. Further investigation of this convergence of algebraic
geometry with quantum chemistry is in progress.

2.11. Practical curvature calculations for quantum MOR on KTN manifolds

Now our appetite is whetted to ask even more difficult questions: What are the curvature
properties of higher rank KTN manifolds? And what are the implications of these curvature
properties for quantum simulation? We will turn to numerical experiments to learn more about
these issues.

As we begin numerical curvature calculations on Kähler state-spaces of increasingly large
dimension, we first consider what we may expect to learn from these calculations that would
have practical implications for MOR.
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It is known [114, 115] that at each point on K we can construct locally Euclidean Riemann
normal coordinates such that the local curvature tensor has the expansion

gab = δab −

dimK∑
c,d=1

1
3 R(0)cadb yc yd , (41)

and the local volume element dV ∝ | detg |
1/2 therefore has the expansion

dV = dV (0)
(

1 −

dimK∑
a,b=1

1
6 R(0)ab ya yb

)
. (42)

We see that the square roots of the eigenvalues of the Ricci tensor determine the length scale
over which curvature effects dominate the volume of the state-space. Physically speaking, this
sets the length scale over which KTN petals are locally Euclidean. We further see that negative
curvature is associated with an exponential ‘flowering’ of the state-space volume, in accord with
the beautiful knitted representations of hyperbolic spaces by Taimina and Henderson [89].

We note that since the Ricci tensor eigenvalues are geometric invariants (meaning
specifically, the eigenvalues of the mixed Ricci tensor Ra

b =
∑

c gac Rcb are geometric
invariants), we can compute them in any coordinate system we please. We further note that
our adoption of an overcomplete Kählerian basis creates no anomalies in the Ricci eigenvalue
distribution, because the extra eigenvalues of Rα

β =
∑

γ̄ gαγ̄ Rγ̄ β vanish identically, due to the
projective definition (22) of gαγ̄ .

Our first goal, therefore, will be to compute the Ricci tensor eigenvalues for high-rank KTN
manifolds, expecting thereby to gain quantitative insight into the ‘flowering’ KTN geometry that
is depicted in figure 4(h).

As our first test case, we will consider the rank-6, order-9, spin-1/2 KTN manifold. This
manifold has (real) dimension dimK = 2 × 9 × (6 + 1)= 126 and it is embedded in a Hilbert
space of (real) dimension dimH= 2 × 26

= 128. The KTN state-space therefore ‘almost’ fills
the Hilbert state-space, since only codimK = dimH− dimK = 2 dimensions are missing.

Choosing a random point in K and computing the Ricci eigenvalues numerically yields the
typical eigenvalues shown in figure 5. We take the square root of the largest eigenvalue to be
(roughly) the linear extent of a KTN petal; they evidently have an extent of the order of 0.01.

We emphasize that K is large enough to contain exponentially many such petals. See
Nielsen and Chuang for a quantitative analysis [16, section 4.5.4], noting that the ‘patches’
of Nielsen and Chuang are broadly equivalent to our petals and therefore, their figure 4.18
is broadly equivalent to our figure 4(h). This mathematically justifies our physical picture
of a KTN manifold as a geometric ‘flower’ having exponentially many petals. Later on, in
sections 4.6.4–4.6.6, we will count the number of petals using ideas from coding theory.

2.12. Numerical results for projective quantum MOR onto KTN manifolds

Suppose we generate a random (normalized) quantum state ψ0 and numerically search for a
highest fidelity projection of ψ0 onto K. We will call this high-fidelity image point ψK. Based
on our geometric analysis so far, we have two strong expectations relating to quantum MOR by
projection onto K. We expect first, that projections exist for which |ψK−ψ0| is no greater than
∼0.01, since at greater separations the negative curvature ofK is great enough to ensure a better
solution, via the mechanism of figure 4(g). Secondly, we expect that the numerical search for
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ψK will be well conditioned. That is, it will robustly converge to a high-fidelity representation,
despite the exponentially convoluted geometry of K, without becoming trapped in local minima
(because every local section that contains a rule is negatively curved).

In numerical trials both expectations are fulfilled. The achieved fidelity is in good accord
with the geometric expectation of ∼0.01: the median value of |ψK−ψ0| in a trial of 100
projective reductions was 0.005, and the maximal value was 0.025.

We computed the reduced-order KTN representation ψK by a simple gradient search.
Specifically, we integrated to convergence the dynamical equation of step B.3 of figure 2, with
the potential φ replaced by

φ →
1
2 ψ̄(c),a · (ψ0 −ψK(c)). (43)

Upon conversion to Kähler index notation, the resulting reduction equation is manifestly
geometrically covariant:

∂cα(t)

∂t
=

1

2

dim C∑
β̄=1̄

gαβ̄(c)

[
ψ̄(c)

∂cβ̄
· (ψ0 −ψ(c))

]
. (44)

From an algorithmic point of view, this reduction equation can be regarded as a downhill
gradient search for a reduced-order representation ψK = limt→∞ψ(c(t)) of ψ0. The search
evidently converges when ψK is directly ‘underneath’ ψ0, i.e. when PK(ψK)(ψ0 −ψK)= 0,
where we recall that PK(ψK) projects vectors in H onto the tangent space of K at ψK. As
an alternative to gradient search, we note that Beylkin and Mohlenkamp [72, section 3.1]
describe an alternating least-squares algorithm that in their hands gives excellent results, but
we have not ourselves tried this method. In section 4.6.1, we derive the above equation (44)
using the language (and nomenclature) of CS, and we describe the numerical calculations in
greater detail.

No attempt was made to optimize the efficiency of the gradient search; instead we simply
reused the existing dynamical code implementing step B.3 of figure 2 (this code exploits
the KTN algebraic structure of ψ(c) to evaluate (44) efficiently). This duplication of internal
algorithmic structure again illustrates the intimate relation between trajectory calculations and
geometric calculations.

No gross failures of convergence, such as might be expected from trapping of the trajectory
induced by (44) on a distant KTN ‘petal,’ were observed in this (or any) of our numerical trials.
Our geometric analysis explains this robustness as originating in the negative sectional curvature
of the ruled net of the KTN state-space K, as depicted in figure 4(g).

We now increase the order of the KTN manifold to 10, keeping the rank at 9. This increases
the dimensionality of the Hilbert space to 2 × 210

= 2048, and the dimensionality of the KTN
manifold to dimK = 2 × 9 × (10 + 1)= 188. With codimK = 1048 − 188 = 860, our MOR is
now discarding ∼90% of the dimensions of the larger Hilbert space. Thus, in deliberate contrast
to the previous example, the MOR is now fairly aggressive. Typical resulting Ricci eigenvalues
are shown in figure 5. A pronounced flattening of the eigenvalue distribution is evident in this
large-codim example. The plotted straight line is simply rank × order, which seems empirically
to describe the average Ricci eigenvalue in this particular case, and also in many other trials
that we have run. This rule-of-thumb is simply the analytic result for rank-1 curvature (35)
multiplied by the rank.

There is at present no analytic theory that justifies this rule-of-thumb, or explains the
observed flattening of the eigenvalue distribution. Obviously, such a theory would be welcome.
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Figure 5. Typical Ricci tensor eigenvalues for KTN manifolds. Points on
the KTN manifold are randomly selected by first randomly generating an
independent normalized product state for each KTN rank (i.e. each row of
figure 3), then summing the ranks, then normalizing the final state. The sparsely
dotted line contains typical Ricci eigenvalues of the spin-1/2, rank-9, order-6
KTN manifold, the densely dotted line contains the eigenvalues of the spin-1/2,
rank-9, order-10 KTN manifold. The dashed line is an empirical ‘rank ×

order’ estimate of the mean Ricci eigenvalue of KTN manifolds having large
codimension.

We remark that to the best of our knowledge, the Ricci eigenvalues of figure 5, having
dimK = 188, are the largest-dimension curvature eigenvalues ever numerically computed.

We then calculated projective MOR approximations by integrating (44) as before. We
generated our targets ψ0 by randomly selecting target points on K, and moving a distance of
0.05 along a random vector n̂ perpendicular to K. Again, robust convergence to high-fidelity
reduced-order representations was observed. Of 100 trials, in 98 cases the separation distance
was precisely 0.050, representing convergence to the correct ‘petal’. In the remaining two cases
the separation distances were 0.123 and 0.120, representing sporadic convergence to a wrong-
but-nearby ‘petal’. Thus even wrong-petal convergence yielded a high-fidelity representation.
This robustness can again be ascribed to the negative sectional curvature of the state-space
manifold’s ruled net, according to the geometric mechanism depicted in figure 4(g).

2.13. Avenues for research in geometric quantum mechanics

Although our presentation focuses on practical applications of quantum MOR, a broad class of
fundamental physics questions can be given a geometric interpretation. We temporarily adopt
the point of view of geometric quantum mechanics in which—as reviewed in section 1.3—the
manifold K is regarded as the ‘real’ arena on which physics takes place.

We begin by noting that the rule-field equation (14) specifies the dimensionality of Hilbert
space to be the number of (linearly independent) scalar rule-fields that the (postulated) ‘real’
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KTN manifold of geometric quantum mechanics supports. The question then arises, what
determines the number of these embedding state-space fields? The present paper suggests that
this question is best investigated from a blended informatic–algebraic–geometric point of view.

As another example, suppose p and q are arbitrary linear Hermitian operators in the
embedding Hilbert space H. At a given point of the Kahler manifold K, specified by a state
|ψ(c)〉, we can construct tangent vectors Vq and Vp whose components are

vαq =

dim C∑
β̄=1̄

gαβ̄
∂

∂ c̄β̄
〈ψ̄(c̄)|q|ψ(c)〉 and v̄ᾱq = (vαq )

?, (45)

and similarly for Vp. With this normalization we have g(Vq, Vq)= 〈ψ̄ |q PKq|ψ〉. Physically
speaking, Vq defines a Kählerian velocity field along which the projected dynamical equation
∂|ψ(t)〉/∂t = PKq|ψ(t)〉 moves state trajectories.

The sectional curvature S(Vp, Vq) then can be regarded as a fundamental property of the
‘true’ physical manifold K. The Theorema Egregium guarantees that the sectional curvature
is an intrinsic property of K, and our physical intuition suggests that it should therefore
be measurable. A host of fundamental questions then arises quite naturally, that intimately
unites physics and mathematics in the context of quantum simulation. If the quantum sectional
curvature is physically measurable—whether in reality or within projective simulations—then
by what kinds of experiment? Are these experiments practical in our real world? Is there any
experimental evidence already at-hand to indicate that quantum sectional curvature vanishes in
the physical world? If so, to what precision has this been verified?

It is apparent that quantum chemists can apply a reverse strategy to create a geometric
context for assessing the fidelity of chemical quantum simulations. Set p to be the kinetic
energy of the electrons of a molecule, q to be the potential energy (including perturbations
due to applied potentials) and the KTN state-space to be a sum of Slater determinants. Then the
vanishing of the sectional curvature S(Vp, Vq) indicates that the state-space section generated
by {p, q} is Euclidean, as is (presumably) desirable in chemical simulations, most particularly,
DFT simulations.

And finally, to anticipate, in section 3.2.1 we will discuss how the Theorema Dilectum
manifests itself on KTN state-spaces. This will turn out to raise thorny issues of how causality
works in geometric quantum mechanics. For the present we will say no more about these
difficult fundamental questions, instead referring the reader to Leggett’s recent review [116],
and we return instead to our central topic of practical quantum spin simulations.

3. Designing and implementing large-scale quantum simulations

Our goal in this section is to join the Riemannian/Kählerian geometric ideas of the preceding
section with well-known principles of linear quantum mechanics.

We have reason to worry that perhaps very few principles of linear quantum mechanics will
survive the transition to reduced-order, nonlinear quantum MOR mechanics. After all, we have
seen that KTN state-spaces are strongly curved, so that when we project quantum trajectories
onto them, we (seemingly) dispense with all of the mathematical properties of Hilbert space that
depend upon its linearity. Furthermore, depending upon the degree of the MOR imposed, the
KTN projection of quantum MOR mechanics may even discard all but an exponentially small
fraction of the dimensions of the embedding Hilbert space.
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In this section we will seek, therefore, to establish that the principles of linear quantum
mechanics hold true in quantum MOR simulations, and in particular, to establish precisely the
mechanisms by which they can hold true.

For convenience, whenever we derive a result that is novel or expressed in a new form,
we state it as a (numbered) theorem that is accompanied by (numbered) definitions. Whenever
a result is unsurprising, or can be found in the literature, or is obtained from previously given
equations by standard manipulations and reductions, we outline the derivation but omit details.

3.1. Quantum MOR mechanics

The subject of our discussion is quantum MOR mechanics:

Definition 3.1. Quantum MOR mechanics is the mechanics of a physical system simulated
according to the orthodox principles of linear quantum mechanics, as modified for purposes
of quantum MOR by projection onto a lower dimension manifold having a Kähler geometry.

Quantum MOR mechanics is concretely embodied in the algorithms and algebraic
structures of figures 1–4. We seek to construct recipes by which quantum MOR mechanics
simulates linear quantum mechanics as closely as feasible. Our analysis seeks to be orthodox
in its respect for linear quantum mechanics, operational in the traceability of its predictions to
measurement processes and reductive in the sense that its principles are summarized by closed-
form analytic design rules. Our analysis strives also to be synoptic in the sense that whenever
we choose between equivalent analysis formalisms, we state a rationale for our choice, and we
note the practical consequences of alternative choices.

3.2. Quantum MOR respects the principles of quantum mechanics

We begin by establishing that the mathematical structure of quantum MOR mechanics is
sufficiently rich to respect the following principles of quantum and classical mechanics:

• the causal invariance of the Theorema Dilectum is respected (section 3.2.1),

• the entropy of systems in thermodynamic equilibrium is respected (section 3.2.2),

• the principles of classical linear control theory are respected (section 3.2.3), and

• the quantum limits to measurement noise and back-action are respected (section 2.2.8).

After all, quantum MOR mechanics did not respect these fundamental physical principles, it
would scarcely be useful for simulating real-world quantum systems. Conversely, by stating
these principles in a quantitative form, we gain a fairly clear picture of the mathematical topics
that our quantum MOR analysis needs to address.

3.2.1. Quantum MOR respects the Theorema Dilectum. We now state the Theorema Dilectum
in an algebraic form that is well adapted to the formal quantum MOR algorithm of figure 1. Our
mathematical analysis parallels that of Nielsen and Chuang [16, see their theorem 8.2 in section
8.2], whose analysis in turn derives from a 1975 theorem of Choi [35] (see section 1.3.4).

We suppose that at the end of step n the quantum MOR simulation algorithm of figure 1
has computed a wavefunction |ψn〉. For simplicity, we further suppose that precisely one
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measurement operator pair {M(+),M(−)} acts during the subsequent timestep. These operators
satisfy the normalization condition

M(+)M
†
(+) + M(−)M

†
(−) = I, (46)

where I is the identity operator. In the absence of KTN projection the post-timestep density
matrix ρn+1 is readily shown to be

ρn+1 = M(+)ρn M†
(+) + M(−)ρn M†

(−) ≡ L[ρn], (47)

where ρn ≡ |ψn〉〈ψn|. This expression implicitly defines the well-known linear superoperator
L to be that linear operation on (Hermitian) matrices that takes ρn → ρn+1. The existence and
strict positivity of this linear map is one of the main defining characteristics of linear quantum
mechanics (as reviewed in section 1.3.4).

Now we ask ‘What mathematical operations upon {M(+),M(−)} leave L invariant?’ The
Theorema Dilectum, in its algebraic form due to Choi [35], states that all such invariance
operations are of the general form[

M(+)

M(−)

]
→ U

[
M(+)

M(−)

]
, (48)

where U is an arbitrary 2 × 2 unitary matrix of complex numbers (i.e. a matrix acting on the
linear space of measurement operators, not the Hilbert space of |ψn〉, such that the matrix
elements of U are c-numbers). This is the sole general mathematical invariance of the first two
steps of the simulation algorithm of figure 1, and so (from the quantum MOR point of view) it
is the most fundamental invariance of linear quantum mechanics.

In section 3.3.6, we will establish that U -transform invariance enforces physical causality.
We are thereby motivated to ask: how is the U -transform invariance of the Theorema Dilectum
affected by KTN projection? According to the algorithm of figure 1, KTN projection modifies
(47) to

ρn+1 = (PK)n M(+)|ψn〉〈ψn|M
†
(+)(PK)n

〈ψn|M
†
(+)M(+)|ψn〉

〈ψn|M
†
(+)(PK)n M(+)|ψn〉

+ (PK)n M(−)|ψn〉〈ψn|M
†
(−)(PK)n

〈ψn|M
†
(−)M(−)|ψn〉

〈ψn|M
†
(−)(PK)n M(−)|ψn〉

, (49)

where we recall that (PK)n ≡ PK(|ψn〉) was defined in (7) as the operator that projects onto
the local tangent space of the KTN manifold at |ψn〉. It is easy to check that tr[ρn+1] = 1
(i.e. probability is conserved), and that the above expression reduces to the linear result (47)
whenever the commutators [(PK)n,M(+)] and [(PK)n,M(−)] both vanish, which physically
means, whenever the local basis vectors of K encompass the quantum dynamics of the system.

The nonlinear projective evolution (49) is not U -transform invariant, and hence it does not
always respect the Theorema Dilectum. We therefore introduce the further assumption (which
our quantum MOR simulations will always respect) that both M(+) and M(−) are near to being
multiples of the identity operator. We quantify ‘near’ by introducing an artificial expansion
parameter ε such that

M(+) = cI + ε δM(+) and δM(−) = s I + ε δM(−), (50)

where

c = tr M(+)/dim M(+) and s = tr M(+)/dim M(+). (51)
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We see that (50), (51) uniquely define the products ε δM(+) and ε δM(−); therefore we can
uniquely define ε, and thereby uniquely define δM(+) and δM(−) too, as follows:

ε2
= tr[(ε δM(+))

† (ε δM(+))+ (ε δM(−))
† (ε δM(−))]/dim M(+). (52)

Equations (46)–(52) then imply the (exact) normalization relations

|c|2 + |s|2 + |ε|2 = 1, (53)

tr[(δM(+))
† (δM(+))+ (δM(−))

† (δM(−))] = dim M(+) . (54)

and so we can regard all operator products involving δM(+) and δM(−) to be O(1).
In aggregate, our definitions and normalizations ensure that ρn+1 as given by (49) has a well-

defined power series expansion in ε; it is therefore a straightforward (but not short) calculation
to verify that this expansion can be written in the form:

ρn+1 = (PK)n L
[
|ψn〉〈ψn|

]
(PK)n + |ψn〉〈ψn| tr

[
(P̄K)nL

[
|ψn〉〈ψn|

]
(P̄K)n

]
+ O

[
ε3

|c|
,
ε3

|s|

]
, (55)

where P̄K = I − PK. We note that the leading terms are determined solely by L and PK, and
therefore are invariant under the U -transform (48) of the Theorema Dilectum. Furthermore, it
can be shown that the value of the small parameter ε is itself invariant under the U -transform,
and so is the sum |c|2 + |s|2. And finally, note that we have calculated the (exact) c- and
s-dependence of the O(ε3) terms.

We will establish in section 3.3 that in the continuum limit of infinitesimally small
timestep intervals δt , physical quantities (for example, relaxation rates) are O(ε2/δt).
Physically this means that the O(ε3) terms in (55) are negligible in the continuum
limit, provided the technical conditions |c|> 0 and |s|> 0 are satisfied (these technical
conditions provide the rationale for calculating the c- and s-dependence of the O(ε3)

terms in (55)). These results motivate us to adopt from Carlton Caves [43] the following
definition:

Definition 3.2. Measurement operations of the first class (or sometimes first-class
measurements) are measurement operations satisfying ε � |c| and ε � |s|.

Our result (55) then expresses a fundamental design rule of quantum MOR:

Theorem 3.1. Quantum trajectory simulations of first-class measurement processes respect the
unitary invariance of the Theorema Dilectum.

In physical terms, first-class measurements are characterized in the continuum limit by
stochastic drift and diffusion processes on KTN manifolds, rather than quantum jumps. To
ensure that the Theorema Dilectum is respected, quantum MOR mechanics must therefore
simulate all quantum systems wholly in terms of drift and diffusion processes upon strongly
curved, low-dimension state-space manifolds of KTN type. This low-dimension, curved-
geometry, stochastic description of quantum MOR mechanics differs considerably from the
high-dimension, linear-geometry, ‘jump-oriented’ description of quantum mechanics that is
commonly given in textbooks (although the formalisms are equivalent).
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3.2.2. Quantum MOR respects thermal equilibrium. Our recipes for simulating contact with
thermal reservoirs in quantum MOR mechanics yield an algebraic result (not previously known)
that holds exactly even in linear quantum mechanics and that can be verified without reference
to drift and diffusion equations. We state and prove this result now, so that it can provide a
well-defined mathematical target for our subsequent quantum MOR analysis.

We begin with a brief summary of coherent states, referring the reader to classic
textbooks, such as those by Gardiner [117], Gottfried [118], Klauder and Skagerstam [119],
Perelomov [27], Rose [120] and Wigner [121], for details. We will mainly follow Gottfried’s
notation. We start by identifying a spin= j state having z-axis quantum number m with the
ket-vector | j,m〉. Then a coherent state |x̂〉 associated with a unit-vector spin direction x̂ is
by definition |x̂〉 = D(φ, θ, 0) j, j | j, j〉, where the rotation operator D that carries t̂ = (0, 0, 1)
into x̂ = (sin θ cosφ, sin θ sinφ, cos θ) is

D(φ, θ, ψ)= e−iφs3e−iθs2e−ψs3 . (56)

The rotation operators are well understood; in particular, an identity [118, 120] (due originally
to Wigner) gives 〈 j,m|x̂〉 in closed form as

〈 j,m|x̂〉 = D j
m j(φ, θ, 0)=

(
2 j

j + m

)1/2

e−imφ
(
cos 1

2θ
) j+m (

sin 1
2θ

) j−m
. (57)

It follows that 〈x̂|x̂〉 = 1 and 〈x̂|s|x̂〉 = j x̂. It is well known [27, 117, 122, 123] (and not hard
to show from (57)) that a resolution of the identity operator I is

I =
2 j + 1

4π

∫
4π
, d2 x̂ |x̂〉〈x̂| . (58)

The Q-representation and P-representation of a Hermitian operator ρ are then defined
(following Perelomov’s conventions [27]) as

Q(x̂|ρ)= 〈x̂|ρ|x̂〉, (59)

ρ =
2 j + 1

4π

∫
4π

d2 x̂ P(x̂|ρ) |x̂〉〈x̂|. (60)

Given an arbitrary Hermitian operator ρ, it is known that in general a P-representation
P(x̂|ρ) can always be constructed. In brief, the construction is as follows: from the ansatz
P(x̂|ρ)=

∑
∞

l=0

∑ j
m=−l al,mY l

m(θ, φ), with Y l
m(θ, φ) a spherical harmonic, a set of linear

equations for the coefficients al,m is obtained by substituting (60) into (59) and expanding
both sides in spherical harmonics. Solving the resulting linear equations always yields a valid
P-representation. However, such P-representation constructions are non-unique in consequence
of the identity [27, 122]∫

4π
d2 x̂ Y l

m(x̂) |x̂〉〈x̂| = 0 for all integer l > 2 j, (61)

which can be proved directly from (57) as a consequence of the addition law for angular
momenta. This result shows explicitly that the set of coherent states |x̂〉 is overcomplete (as
is well known).

With the above as background, we now slow the pace of presentation. We consider
the problem of finding a positive P-representation for a given operator ρ, that is to say,
a representation for which P(x̂|ρ)> 0 for all x̂. Positive P-representations have the useful
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property (for simulation purposes) of allowing us to interpret P(x̂|ρ) as a probability
distribution over spin directions x̂. But from a mathematical point of view, distressingly little is
known about positive P-representations, in the sense that there is no known general method for
constructing them, or even for determining whether they exist in a given case.

We will now exhibit a positive P-representation for an operator that often appears in
practical quantum MOR simulations: the thermal operator ρ th

j defined by

ρ th
j = exp(−β t̂ · s) , (62)

where {s1, s2, s3} are the usual spin- j operators satisfying [s1, s2] = is3 (and cyclic
permutations), and t̂ is a unit axis along which a spin is thermally polarized with inverse-
temperature β. By inserting a complete set of states into (59) and then substituting Wigner’s
expression (57), we obtain a simple (and well known [27, 123]) closed-form expression for the
Q-representation of ρ th

j :

Q(x̂|ρ th
j )=

j∑
m=− j

j∑
m′=− j

〈x̂| j,m〉〈 j,m|ρ th
j | j,m ′

〉〈 j,m ′
|x̂〉,

= (cosh 1
2β − x̂ · t̂ sinh 1

2β)
2 j . (63)

We now claim:

Theorem 3.2. A positive P-representation for the spin- j thermal operator ρ th
j is given in terms

of the Q-representation by

P(x̂|ρ th
j )= 1/Q

(
−x̂|ρ th

j+1

)
.

To our knowledge this is the first such P-representation given (other than the j → ∞ limit
of quantum optics in which P and Q are both simple Gaussians).

If we regard the above result solely as a mathematical theorem to be proved by the most
expedient means, we can do so by treating it as an ansatz. The resulting proof is short. Taking
matrix elements of the defining relation (60) between states 〈 j,m| and | j,m ′

〉, and without loss
of generality setting t̂ = (0, 0, 1), theorem 3.2 is equivalent to

e−βmδmm′ =
2 j + 1

4π

∫
4π

d2 x̂
〈 j,m|x̂〉〈x̂| j,m ′

〉

Q(−x̂|ρ th
j+1)

. (64)

Substituting the Wigner representation (57) and the Q-representation (63) into (64), we can
check by numerical integration that (64) is correct for randomly chosen values of j , m, m ′

and β. Thereby encouraged, we soon discover an integration strategy by which (64) yields to
analytic evaluation in the general case. In brief, the φ-angle integration yields the requisite δmm′

factor; the θ -angle integration can be transformed into an integral over rational functions in
z = cos θ via identities like cos2 j 1

2θ = (1 + z) j/2 j ; and the resulting integral is recognizably a
representation of the Gauss hypergeometric series [124, equations (15.1.8) and (15.3.8)] that
evaluates to (64).

Our quantum MOR analysis will answer the natural question, ‘Where did the ansatz come
from?’ by ‘It is the solution to a Fokker–Planck equation that describes spin-systems in thermal
equilibrium’. From a physical point of view this assures us that the dimensional reduction
associated with quantum MOR mechanics preserves at least some crucial thermodynamic
physics. From a practical point of view it provides a consistency check that the (rather lengthy)
chain of theorems and stochastic analysis that leads to the P-representation is free of algebraic
errors.
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3.2.3. Quantum MOR respects classical linear control theory. Quantum MOR simulations of
macroscopic objects (like MRFM cantilevers) regard them as spin- j quantum objects having
very large j . We will see that the resulting dynamics typically are linear. Engineers have their
own idioms for describing linear dynamical systems, which are summarized in block diagrams
like this one:

. (65)

To show that quantum MOR simulations can accurately model systems like the above, we
will transform the above diagram—using strictly classical methods—into several operationally
equivalent forms that naturally map onto quantum MOR algorithms and geometry. These
(wholly classical) equivalences are summarized as the theorems in figures 6, 7. Experienced
researchers will recognize these equivalences as being elementary, but to the best of our
knowledge, they have not previously been recognized in the literature, either of engineering
or of physics.

As with the Feynman diagrams of physics, the block diagrams of engineering depict
systems of equations. Our diagram conventions are standard, as briefly follows. The block
diagram (65) corresponds to a set of linear relations between force noise f n(t), measurement
noise qn(t), input external force f ext(t), and output measurement qm(t), which we take to be
classical real-valued functions. In particular, we specify that f n(t) and qn(t) are white noise
processes having correlation functions C satisfying

C(qn(t)qn(t ′))=
1
2 Sqnδ(t − t ′), (66a)

C( f n(t) f n(t ′))=
1
2 S f nδ(t − t ′), (66b)

C( f n(t)qn(t ′))= 0, (66c)

so that Sqn and S f n are (one-sided) white-noise spectral densities. A circle is a node whose
inputs are added and subtracted, a cross is a node whose inputs are multiplied, a triangle
indicates a positive real scalar gain γ and a square box indicates convolution with a general
real-valued stationary kernel K such that

b(t)=

∫
∞

−∞

dt ′ K (t − t ′)a(t ′) ⇐⇒
(is depicted as)

a b. (67)

Alternatively, convolution blocks can be specified in the Fourier domain. Our Fourier transform
convention is that ã(ω) is defined to be

ã(ω)≡

∫
∞

−∞

dτ e−iωτa(t), (68)

and similarly for b̃(ω), K̃ (ω), etc. Therefore a frequency-domain description of (67) is

b̃(ω)= K̃ (ω)ã(ω) ⇐⇒
(is depicted as)

a b. (69)

We build our quantum MOR block diagrams from three classes of linear classical kernels:
dynamical kernels ( ), feedback kernels ( ) and backaction kernels ( ), whose
defining mathematical properties are specified in figure 6.
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Class Block Definition Remarks

Dynamical: G̃(ω) = G̃(−ω)
{
Dynamical kernels are
time-reversal invariant.

Feedback: H(τ) = 0 for τ < 0



Feedback kernels are causal
(including feedback from
thermodynamic reservoirs).

Backaction:
H̃(ω) = i sgn ω
γ > 0 is real


Backaction kernels
are Hilbert transforms
followed by a gain γ.

Figure 6. The three kernel classes of linear, classical quantum MOR simulations.

In brief, dynamical kernels by definition are time-reversal invariant, feedback kernels by
definition are causal and the backaction kernel is the Hilbert transform that is well known (and
much used) by signal processing engineers. We remark that the Hilbert transform is formally
non-causal, but in practical narrowbandwidth applications (such as radio transmitters, acoustic
processors, MRFM cantilever controllers, etc) its effects can be closely approximated by a
causal derivative transform.

For causal kernels, analytic continuation from the Fourier variableω to the Laplace variable
s = iω is well defined. Partly because causal kernels are of central importance in control
engineering and partly by tradition, Laplace variables are more commonly adopted in the
engineering literature than Fourier variables (although both are used). However, the Laplace
analytic continuation of the non-causal Hilbert transform kernel H̃(ω)= i sgn(ω) is not well
defined. For this reason our analysis will focus exclusively upon time-domain and frequency-
domain (Fourier) kernel representations.

3.2.4. The Hilbert transform. Developing design rules for quantum MOR mechanics is
considerably easier if we habituate ourselves to the Hilbert transform that appears in all three
classical theorems of figure 7. From a physical point-of-view, the Hilbert transform is simply
the stationary linear map

H: sinαt → cosαt, (70)

and therefore (letting t → t +π/2)

H: cosαt → − sinαt. (71)

Although the time-domain Hilbert transform has a non-causal kernel, we remark that in
narrowband signal processing it is both easy and useful to approximate the Hilbert transform
with a (causal) derivative filter; consequently the Hilbert transform is much-discussed in
textbooks on signal processing.

From an abstract point of view, we see that the Hilbert transform defines a complex
structure on the spaceR of real-valued functions r , i.e. a mapH:R→R that satisfiesH2

= −I .
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Classical theorems that clarify ‘spooky mysteries of quantum physics’

Theorem 3.3. The net action of two independent white noise processes acting upon op-
posite sides of a linear dynamical kernel is operationally equivalent to a single white
noise process that acts with (noncausal) Hilbert backaction-and-gain as follows:

+

+

qn

fn G0

qm ≡
+

+

qn

qm

H γ G0

Theorem 3.4. A linear dynamical system that is subject to independent force noise and
measurement noise is operationally equivalent to the same linear dynamical system acted
upon only by measurement noise having Hilbert backaction as follows:

G0

H

+
+

+

−

+

qnfn

f ext qm ≡ G0

H

H
+

+
+

−

+

qn

f ext qm

γ

Theorem 3.5. In narrowband dynamical systems, defined as those having a Hilbert gain
γ satisfing γ k, where k is the scale of the system spring constant, it is feasible in practice
to operationally approximate zero-noise internal system dynamics as follows:

G0

H

+
+

+

−

+

qnfn

f ext qm

(for in-band frequencies)

≈ G0
−

+
+

+
f ext qm

Hγ

qn

Figure 7. Three theorems that reflect ‘spooky mysteries of classical physics’.
These theorems follow from elementary classical considerations as (briefly)
follows. Theorem 3.3 follows from the time-reversal invariance of the dynamical
kernel G0 (see figure 6) plus the statistical properties of Gaussian noise.
Theorem 3.4 is then obtained by adjoining a causal feedback kernel H to the
diagram of theorem 3.3. Theorem 3.5 then follows as a practical application
of theorem 3.4, in which a causal kernel H approximates a non-causal Hilbert
backaction kernel H within a device’s finite operational bandwidth.
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This corresponds to two diagrammatic identities

= and . (72)

Since the right-hand sides of these diagrams are causal, it is apparent that the non-causal
aspects of vanish when it is applied an even number of times. Because the even-numbered
moments wholly determine the statistical properties of (zero-mean) Gaussian noise, we begin
to see how it is that non-causal Hilbert transforms can appear in the equivalences of our
classical design rules without inducing observable causality violations. In the broader context of
quantum simulations, causality is assured by the Theorema Dilectum, and we will establish in
a later section that the Theorema Dilectum is directly responsible for the appearance of Hilbert
transforms in the classical limit.

3.2.5. Classical linear equivalences. Central to quantum MOR analysis and simulation is the
purely mathematical fact (which also appears in figure 7 as theorem 3.4) that the following
classical systems are operationally equivalent:

≡

γ=
S
fn

S
qn

1/2

. (73)

By ‘operationally equivalent’ we mean that the dynamical relation between the applied forces
f ext(t) and the measured position qm(t) is identical for the two sets of equations, as are the
stochastic properties of qm(t). The internal state of the system is of course very different for the
two cases, but so long as we adhere to the strict operational principle ‘never observe the internal
state of a system (even a classical system)’ this difference is immaterial.

We saw already (in section 1.5.3) that complex structures are a defining geometric
characteristic of Kähler manifolds, so the appearance of Hilbert transforms in real-valued
classical dynamics is a mathematical hint that noisy classical dynamical trajectories support
a complex structure that projects naturally onto KTN manifolds. This complex structure is
manifest not in the (real-valued) state variables of classical systems, but in the causal properties
of the response of classical systems to noise.

3.2.6. Remarks upon the spooky mysteries of classical physics. For teaching purposes, it is
helpful (and amusing) to pretend that we live in a world in which linear control theory is
taught according to a non-standard ontology in which the Hilbert transform has a central role.
This ontology was conceived as a philosophical provocation (a herausforderung [125]), but it
has subsequently proved to be useful in teaching and a fertile source of technical inspiration.
We will call it the classical Hilbert ontology, or sometimes just the Hilbert ontology. Our
motivation for emphasizing the mysterious properties of classical measurement theory is similar
to the motivation of Wheeler and Feynman [96, 97] in proposing their non-causal classical
electrodynamic ontology in the 1940s.
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The tenets of Hilbert ontology are taken to be:

• By Occam’s razor, ontologies that invoke one noise source are preferred over ontologies
that invoke two. Therefore the Hilbert ontology regards backaction as being a physically
real phenomenon that is universally present in all noisy dynamical systems, even classical
ones (its mathematical expression being theorem 3.3 of figure 7).

• It follows (by theorem 3.4) that measurement noise always backacts upon system dynamics
in such a way as to ‘drag’ the state of the system into agreement with the measurement.
This state-dragging Hilbert backaction has a central ontological role: it is the fundamental
mechanism of nature that causes measurement processes to agree with reality.

• As a measurement process approaches the zero-noise limit, the increasingly strong state-
dragging Hilbert backaction from that measurement process dynamically ‘collapses’ the
variable being measured, so as to force exact agreement with the measurement.

• As a corollary, zero-noise measurements are unphysical, because they imply infinitely
strong backaction. That is the explanation in Hilbert ontology of why all real-world
measurement processes are noisy.

• In narrowband systems, it is possible to cancel the Hilbert backaction noise via causal
feedback control. This means that zero-temperature narrowband systems can be simulated,
or even realized in practice, provided that all noise processes are accessible for purposes of
feedback (as mathematically expressed by theorem 3.5 of figure 7).

• Although the mathematical kernel associated with Hilbert feedback is non-causal, this
non-causality cannot be exploited for purposes of communication, because the backaction
kernel transmits only noise.

For purposes of this article, we designate the above Hilbert ontology to be the ‘true’ classical
reality of the world, and we seek to provide a microscopic justification of it from orthodox
quantum mechanics.

From a teaching point of view, the Hilbert ontology helps students appreciate that the
mysteries and ambiguities that traditionally are taught as belonging exclusively to quantum
mechanics—such as ‘wavefunctions collapsing to agree with measurement’ and ‘non-causal
correlations’—are manifest too in our wholly classical ontology.

It is traditional in both the popular and the scientific literature to call these ontological
mysteries and ambiguities ‘spooky’. The popularity of ‘spooky’ in the scientific literature can
be traced to an influential article by Mermin [126], who adopted it from an idiomatic phrase
‘spukhafte Fernwirkungen’ that Einstein used in the Einstein–Bohr correspondence; this phrase
is generally translated as ‘spooky action at a distance’ [127]–[129]. Given the central importance
of the spookiness of quantum mechanics, it would be astonishing if quantum spookiness were
wholly invisible at the classical level. Our Hilbert ontology makes this classical spookiness
visible.

3.2.7. Experimental protocols for measuring the Hilbert parameters. A crucial test of an
ontology is whether it motivates us to proceed to practical calculations that yield useful and/or
surprising results; we now do so. We consider a laboratory course in which students are guided
by the Hilbert ontology to explore the fundamental and practical limits of low-noise sensing
and amplification. For definiteness, we assume that the students work with nanomechanical
oscillators as force detectors (as in MRFM technology), but a similar course could feasibly
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be organized around radio-frequency (RF) sensing and amplification, optical sensing and
amplification, or acoustic sensing and amplification.

We consider the experimental problem of measuring the two Hilbert parameters of a
nanomechanical oscillator, namely the measurement noise Sq and the Hilbert gain γ . We
neglect the intrinsic damping of the oscillator, such that the dynamical kernel is G̃0(ω)=

1/[m(ω2
0 −ω2)], where m is the mass of the oscillator and ω0 is the resonant frequency.

The measurement is readily accomplished by the following protocol. Derivative feedback
control is applied having a kernel H̃(ω)= i0ω, and the value of the controller gain 0 is adjusted
until the spectral density Sqm of the measured cantilever displacement qm(t) is observed to
be flat in the neighborhood of the cantilever frequency ω0. The control gain adjustment is
straightforward: if the spectrum of qm(t) has a peak, then 0 is too small; if the spectrum has a
hole, then 0 is too large.

The preceding protocol is perfectly feasible in practice (i.e. it is not a Gedankenexper-
iment). The protocol fails only when the required dashpot gain is impractically large, such
that 0ω0 & k, where k = mω2

0 is the spring constant of the cantilever. Such failures typically
indicate that a measurement process has a noise level that is too large to be of practical in-
terest. In practical device engineering the required control gain typically satisfies 00 � 0 � k,
where 00 = k/(ω0 Q) is the intrinsic damping of a cantilever having quality Q. In such cases the
intrinsic damping 00 has negligible effect on the time-scale of the controlled response, and so
we can regard the cantilever’s dynamical kernel as having the time-reversal-invariant dynamical
form G0 described in figure 6. The design rules of our Hilbert classical ontology therefore can
be applied without modification. Specifically, theorem 3.5 determines the Hilbert backaction to
be γ = 0ω0, and determines the measurement noise to be Sqn = Sqm(ω0).

Of course, theorem 3.5 mathematically assures us that the adherents of traditional
classical ontology can—without operational contradiction—ascribe these same measurements
to a fictitious force noise f n(t) having spectral density S f n = γ 2Sqn , so that the (apparently)
fundamental question of whether the force noise backaction is ‘fictitious’ or ‘real’ is (even
classically) operationally immaterial.

3.2.8. Quantum MOR simulations respect the fundamental quantum limits. We now apply
the results of the preceding section to establish criteria that quantum MOR simulations must
satisfy in order to respect the known fundamental quantum limits to amplifier noise and force
measurement.

We suppose that a force signal f (t)= f0 cos(ω0t +φ0) is applied to the oscillator. The
carrier frequency ω0 is tuned to match the oscillator resonance frequency, and the unknown
magnitude f0 and unknown phase φ0 of the signal are to be determined from measurement. This
is a common task in practice.

When the oscillator is configured according to the measurement protocol of the preceding
section, then according to the right-hand block diagram of theorem 3.5 of figure 7, the
mean power p0 absorbed by the oscillator’s (wholly classical) feedback controller during the
measurement process is p0 = f 2

0 /(2γ ). The absorbed power inferred from the (wholly classical)
measurement record qm(t) has an equivalent (one-sided) noise PSD Soutput

p0
whose expression in

terms of the Hilbert parameters is readily shown to be

Soutput
p0

= 4p0ω0γ Sqn . (74)
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Now we connect this result with a known fundamental quantum limit on noise in power
amplifiers. We adopt the definition of Caves [130]:

An amplifier is any device that takes an input signal, carried by a collection of
bosonic modes, and processes the output to produce an output signal, also carried by
a (possibly different) collection of bosonic modes. A linear amplifier is an amplifier
whose output signal is linearly related to its input signal.

Following a line of reasoning put forth in the 1960s by Heffner [131] and by Haus [132],
which Caves’s article develops in detail [130], we suppose that the input power is supplied
by a bosonic mode-type device (like a resonant circuit, or an RF wave-guide, or a single-mode
optical fiber) whose power level has been independently measured with a shot-noise-limited
photon counting device. According to orthodox quantum mechanics such counting processes
have Poisson statistics (we will establish in section 3.4 that quantum MOR simulations respect
this rule), and therefore the input power has a quantum-limited noise PSD given by

Sinput
p0

= 2p0h̄ω0. (75)

The measured power and phase suffice to create an arbitrary-gain replica of the input signal, and
the noise-figure (NF) of this effectively infinite-gain power amplifier is simply given from (74)
and (75) by

NF = Soutput
p /Sinput

p = 2γ Sqn/h̄ = 2(S f n Sqn)1/2/h̄. (76)

In Caves’s nomenclature, we are regarding our continuously measured oscillator as an
equivalent ‘phase-insensitive linear amplifier’ having infinite gain. The analyses of Heffner,
Haus, and Caves [130]–[132] establish that what Caves calls the ‘fundamental theorem for
phase-insensitive power amplifiers’ is simply NF> 2 (in the infinite-gain limit), which in
decibels is 10 log102 ' 3 dB.

We remark that the 3 dB quantum limit to power amplifier noise has been experimentally
observed [133] and theoretically analyzed [134] since the early days of maser amplifiers in
the 1950s; our review focuses upon the work of Heffner, Haus and Caves solely because their
analyses are notably rigorous, general, clearly stated and (importantly) their predicted quantum
limits are mutually consistent and consonant with subsequent experiments.

Our result (76) then establishes that the Heffner–Haus–Caves noise-figure limit finds its
expression in quantum MOR analysis in the following three equivalent ways:

NF> 2
the Heffner–Haus–Caves limit

⇔ S f n Sqn > h̄2

the Braginsky–Khalili limit

⇔ γ Sqn > h̄
the Hilbert limit

. (77)

The middle expression we recognize as the continuous-measurement version of the standard
quantum limit to force and position measurement, in precisely the quantitative form derived
by Braginsky and Khalili [135], which in turn derives from earlier seminal work by Braginsky
et al [136]. Although the Braginsky–Khalili limit was derived by very different methods from
the Heffner–Haus–Caves limit, we see that the two quantum limits are equivalent. To the best
of our knowledge, this equivalence has not previously been stated in the above quantitative
form. What we have chosen to call ‘the Hilbert limit’ on the right-hand side of (77) has (to
our knowledge) not previously been recognized anywhere in the literature, and yet from the
viewpoint of Hilbert ontology it is the most fundamental of the three. We express the above
three-fold equivalence as a fundamental quantum MOR design rule:
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Theorem 3.6. Quantum MOR simulations respect the quantum measurement limit in all its
equivalent forms: the NF limit in power amplifiers (NF> 2), the standard quantum limit to
the measurement of canonically conjugate variables (S f n Sqn > h̄2), and the Hilbert limit that
measurement noise and state-dragging Hilbert backaction cannot both be small (γ Sqn > h̄).

We present a quantum derivation of these limits in section 3.4, in the context of a more
general analysis that encompasses nonlinear quantum systems.

3.3. Physical aspects of quantum MOR

We now turn our attention to the physical aspects of measurement, our goal being to establish
connections between the concrete description of measurement in terms of hardware and
experimental protocols on the one hand, and the measurement operator formalism of our
quantum MOR algorithms on the other hand.

3.3.1. Measurement modeled as scattering. We adopt as the fundamental building block of
our simulations a single particle of spin j , described by a wavefunction |ψ〉, and numerically
encoded as a complex vector with dim |ψ〉 = 2 j + 1. We will simulate all noise and all
measurement processes by scattering photons off the spin, one photon at a time, and we associate
each scattering event with a single time-step.

We envision photon scattering as the sole mechanism by which noise is injected into
our simulations, and interferometry as the sole means of measurement. We describe photon
scattering as a unitary transformation acting on the spin state

(before scattering) |ψn〉 → exp(i2θsop) |ψn〉 (after scattering). (78)

A purely conventional factor of 2 is inserted in the above to simplify our calibration rules.
We will call sop a measurement generator. In general sop can be any Hermitian matrix, but

in our simulations it will suffice to confine our attention to sop
∈ {s1, s2, s3}, where {s1, s2, s3} are

rotation matrices satisfying the commutation relation [s j , sk] = iε jklsl . These matrices generate
the rotation group, and our discussion will assume a basic knowledge of their algebraic
properties, which are discussed at length in many textbooks (e.g. [118, 120, 121, 137]).

We adopt the near-universal convention of working exclusively with spin operator matrix
representations that are irreducible and sparse, having dimension 2 j + 1 for j the spin quantum
number, with s3 a real diagonal matrix, s1 real and bidiagonal and s2 imaginary and bidiagonal.
The scattering strength is set by the real number θ , which in our simulations will always satisfy
θ � 1.

3.3.2. Physical and mathematical descriptions of interferometry. Figure 8 provides three
idealized diagrams for thinking about the physical, scattering-theoretic and algebraic aspects of
photon interferometry, similar to the idealized diagrams in the Feynman Lectures [138, chapters
5 and 6] that depict the Stern–Gerlach effect.

Figure 8(a) depicts physical fiber–optic interferometers that confine photons within low-
loss optical fibers [139, 140]. The region of overlap between the fibers allows photons to transfer
from one fiber to another with an amplitude that is subject to engineering control. This overlap
region plays the role of the semisilvered mirror in a traditional Michelson interferometer.
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Physical interferometer Four-port description Transfer matrix description

Figure 8. Three aspects of photon interferometry. Photon interferometry from
the (a) physical, (b) scattering theory and (c) algebraic points of view. See
section 3.3.2 for discussion.

Figure 8(b) depicts optical couplers in terms of scattering theory, as general-purpose
devices for linking incoming and outgoing optical amplitudes. Couplers thus can be braided
into optical networks of essentially arbitrary topology.

Figure 8(c) depicts optical couplers algebraically, as linear maps between incoming
complex optical amplitudes ain

= {ain
tl , ain

tr , ain
bl, ain

br} and outgoing optical amplitudes aout
=

{aout
tl , aout

tr , aout
bl , aout

br } such that aout
= S · ain, with S the optical scattering matrix. With regard

to figure 8(c), the index ‘tl’ is the ‘top left’ port, ‘br’ is the ‘bottom right’ port, etc. Our
normalization convention is such that the probability of detection of an outgoing photon
is |aout

|
2. Optical losses in real-world couplers are small, such that |aout

|
2
= |ain

|
2, i.e. the

scattering matrix S is unitary.

3.3.3. Survey of interferometric measurement methods. The stochastic measurement and noise
processes in our simulations can be conceived as interferometric measurements performed on
each scattered photon, and this physical picture will prove very useful in designing MOR
techniques. Such measurements require that each incoming photon be interferometrically
split before it scatters from the spin, to allow subsequent interferometric recombination and
measurement. It is convenient to conceive of this initial splitting as performed by a 2 × 2 single-
mode optical fiber coupler, as illustrated in figures 9(a)–(c). The devices of this figure may be
regarded as physical embodiments of the simulation algorithm of figure 1.

This physical picture embodies the idealizing assumptions that optical couplers are
exactly unitary, that photon emission into the fiber takes place at equally spaced intervals
δt , and that photon detectors register a single classical ‘click’ upon detection of each
photon, which occurs with detection probability |aout

|
2. The unitarity of photon scattering and

interferometric propagation then ensures that each incoming photon results in precisely one
detection click.

With respect to the algorithm of figure 1, the stochastic selection of operator Mk
(+) versus

Mk
(−) is physically identified with these clicks, such that the sole data set resulting from a

simulation is a set of classical binary data streams, with each stream comprising the recorded
clicks for a measurement operator pair. Such binary streams closely resemble real-world MRFM
experimental records, in which signals corresponding to photoelectrons from an optically
monitored cantilever are low-pass filtered and recorded.

We remark that the interferometers of figures 9(a)–(c) can be regarded with equal validity
either as idealized abstractions or as schematic descriptions of real-world experiments. For
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(a) quantum simulation by ergodic unraveling

(+)

(−)

ei2θsop

Photon
scattering

Photon
input

}

Vacuum
input

}





Photon detected
with probability p = 1/2
(Poisson shot noise)




Photon detected
with probability p = 1/2
(Poisson shot noise)

(b) quantum simulation by batrachian unraveling (dark port tuning)

ei2θsop

Photon
scattering

Photon
input

}

Vacuum
input

}





Sporadic detection
with probability
p = θ2〈ψ|(sop)2|ψ〉
(the dark port)




Detection with
probability ∼unity
(the bright port)

(+)

(−)

. . .

(c) quantum simulation by synoptic unraveling (balanced tuning)

e

e

i2θsop

−iπ 2

Photon
phase shift

Photon
scattering

Photon
input

}

Vacuum
input

}





Photon detected
with probability
p = 1

2+θ〈ψ|sop|ψ〉
(balanced port)




Photon detected
with probability
p = 1

2−θ〈ψ|sop|ψ〉
(balanced port)

(+)

(−)

Figure 9. A physical illustration of the Theorema Dilectum. This physical
embodiment of the formal quantum MOR simulation algorithm of figure 1,
using 2 × 2 fiber–optic couplers to scatter photons off a spin state. In (a),
the photons are detected with equal probability, such that no information
about the state is obtained. In (b), the phase is detected via homodyne (self-
interfering) interferometry, such that a small amount of information about the
state is obtained. To an outside observer, the fate of the downstream photons is
immaterial, hence (a) and (b) must embody physically indistinguishable noise
processes, despite their differing quantum description. This is the physical
content of the Theorema Dilectum. From a mathematical point of view, the free
choice of an arbitrary downstream unitary transform upon the photon paths is
manifested in the U -transform invariance of (48). Photons causally downstream
of the scattering can be measured in arbitrary fashion without altering the
physically observable properties of the noise being simulated.
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example, in our simulations we will regard MRFM cantilevers as spins of large quantum
number j , in which case the interferometer geometry of figure 9(c) is identical (in the
topology of its light path) to the real-world fiber-optic interferometers used in typical MRFM
experiments [7, 139, 140].

Trapped-ion experiments are examples of continuously observed small- j quantum systems,
since the quantum mechanics of a two-state atom is identical to the quantum mechanics of
a spin-1/2 particle. Such experiments presently are conducted with photons detected directly
as in figure 9(b) [141]–[143]. We remark that it would be theoretically interesting, and
experimentally feasible, to conduct trapped ion experiments with weakly interacting photons
detected interferometrically, as in figure 9(c).

In trapped ion experiments, the observed transitions in the photon detection rates are
observed to have random telegraph statistics, which are typically attributed to ‘quantum
jumps’ [142, 143] or to ‘instantaneous transitions between energy levels’ [141]. As was
recognized by Kraus more than twenty years ago [37, p 98], ‘such reasoning is unfounded,’
and we will see explicitly that observation of telegraph statistics does not imply discontinuous
evolution of |ψ〉. Thus, readers having a classical MOR background need not regard discussions
of quantum jumps in the physics literature as being literally true.

3.3.4. Physical calibration of scattering amplitudes. The calibration of our simulations will
rely upon a physical principle that is well established, but somewhat counterintuitive. The
principle is this: measurements of the scattering phase (78) suffice to provide detailed
information about the Hamiltonian that is responsible for the scattering. Gottfried’s discussion
of Fredholm theory in atomic scattering [118, section 49.2] provides a good introduction to this
topic.

As a calibration example, we consider here the measurement process associated with the
simple interferometer of figure 9(a). Using the S-matrix of figure 8(c) to propagate the input
photon in figure 9(a) through the apparatus, the measurement operators {M (a)

(+),M (a)
(−)} associated

with detection on the (+) and (−) channels are[
M (a)
(+)(θ, sop)

M (a)
(−)(θ, sop)

]
=

[
ei2θsop

0
0 1

]
1

√
2

[
1 i
i 1

] [
1
0

]
=

1
√

2

[
ei2θsop

i

]
. (79)

The above equation follows the convention that the optical amplitudes of the top (bottom)
fiber path in figure 9(a) are listed as the top (bottom) element of the above column arrays,
such that successive interferometric couplings are described by successive 2 × 2 unitary matrix
operations. This convention is common in optical engineering because it unites the geometric
and algebraic descriptions of figures 8(b) and (c). In the context of our quantum simulations,
each element of the above arrays is formally an operator on the wavefunction |ψ〉, but for
c-number (complex number) array elements like ‘0’, ‘1’ and ‘i’ an implicit identity operator is
omitted for compactness of notation. These identity operators physically correspond to events
that are not dynamically coupled to the spin state, such as photon emission, propagation through
interferometers and subsequent detection.

The resulting overall measurement operators {M (a)
(+),M (a)

(−)} describe the state dependence of
the scattered phase of the detected photon and it is evident that they satisfy the measurement
operator completeness relation (46).

New Journal of Physics 11 (2009) 065002 (http://www.njp.org/)

http://www.njp.org/


55

3.3.5. Noise-induced Stark shifts and renormalization. We now consider an optical scattering
effect known as the ac Stark shift, as induced by the scattering process of figure 9(a). Applying
the simulation algorithm, we find that during a time 1t � δt the final state of the simulation
accumulates a state-dependent phase shift such that

|ψ(1t)〉 = exp(i2n(+)θsop) |ψ(0)〉, (80)

where n(+) is the number of photons detected on the (+)-channel. It is easy to show that n(+) has
mean µ(+) =1t/(2δt) and standard deviation σ(+) =

√
µ(+)/2.

We see that the average effect of the photon scattering is equivalent to a dynamical
Hamiltonian H op, such that

H op
= −θsoph̄/δt, (81)

which we identify as the effective Hamiltonian of a Stark shift. The Stark shift fluctuates due
to statistical fluctuations in the number of photons detected on the (+)-channel, such that in the
continuum limit the photon detection rate r(t) is a stochastic process having mean µr = 1/(2δt)
and white-noise spectral density Sr = 1/(2δt) (in a one-sided spectral density convention). This
implies that the Stark shift fluctuations have an operator-valued power spectral density (PSD)

SHop = 2θ2(sop)2h̄2/δt = 2(H op)2δt. (82)

This result calibrates the externally observable Stark shift parameters {H op, SHop} in terms of
the internal simulation parameters {θsop, δt} and vice versa.

The preceding two equations (81) and (82) reflect the well-known phenomenon in physics
that interaction with a measurement process or thermal reservoir renormalizes the physical
properties of a system. But as presented here, these same equations exhibit a known pathology
in the limit δt → 0: if we take θ ∝

√
δt such that the Stark noise (82) has a finite limit, then the

magnitude of the Stark shift Hamiltonian (81) diverges. The origin of this (unphysical) infinite
energy shift is our (equally unphysical) assumption that measurement ‘clicks’ occur at infinitely
short intervals, such that the PSD of the measurement noise is white; such white noise processes
inherently are associated with infinite energy densities.

In the present paper, we will repair this white-noise pathology by simply adding a counter-
term to the measurement process, such that the Stark shift is zero in all our measurement
processes. In the language of renormalization theory, we redefine all of our measurement
operators so that they refer to the ‘dressed’ states of the system. See (e.g.) [144] and [145]
for further discussion of this delicate point, whose detailed analysis is beyond the scope of the
present article.

3.3.6. Causality and the Theorema Dilectum. In section 3.2.1, we discussed the Theorema
Dilectum from a mathematical point of view that defined it terms of the (unitary)
U -transformation of (48). In figures 9(a)–(c) we associate the U -transformation with the
physical choice of what to do ‘downstream’ with photons that have scattered off the spin. If
we regard this downstream choice as being made made Alice, and we assume that Bob is
independently monitoring the same spin as Alice, then the physical content of the Theorema
Dilectum is that Alice’s downstream measurement choices can have no observable consequences
for Bob, and in particular, Alice cannot establish a communication channel with Bob via her
measurement choices.

We therefore physically identify U in (48) with the downstream optical couplers in
figures 9(a)–(c), such that the algebraic freedom to specify an arbitrary unitary transform U is
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identified with the physical freedom to ‘tune’ the interferometer by adjusting its coupling ratio
and fiber lengths (that adjust the phase of the output amplitudes relative to the input amplitudes).
Because experimentalists are familiar with this process and with the phrase ‘interferometer
tuning’ to describe it, we adopt the word ‘tuning’ to describe the process of adapting U to
optimize {M(+),M(−)} for our simulation purposes.

3.3.7. The Theorema Dilectum in the literature. The invariance associated with U has received
most of its attention from the physics community only recently; it is not mentioned in most older
quantum physics texts. Both Preskill’s class notes [44] and Nielsen and Chuang’s text [16] give
physics-oriented proofs of the Theorema Dilectum. The crux of all such proofs is that the choice
of U does not alter the density matrix associated with the ensemble average of all possible
trajectories, such that the choice has no observable consequences.

Carmichael [29, p 122] seems to have been among the first to use the now-widely used
term unraveling in describing quantum trajectory simulations, and he explicitly recognized that
this unraveling is not unique:

We will refer to the quantum trajectories as an unraveling of the source dynamics since
it is an unraveling of the many tangled paths that the master equation evolves forward
in time as a single package. It is clear [···] that the unraveling is not unique.

(emphasis in the original). Diverse points of view regarding the ambiguity of trajectory
unraveling can be found in the physics literature. Rigo and Gisin [41] argue that it is central
to our understanding of the emergence of the classical world and they make their case by
presenting four different unravelings of a single physical process; we will adopt a similar
multiple-unraveling approach in analyzing the IBM single-spin experiment (see section 4.2).
Percival’s text adopts the equally valid but sharply contrasting view that [31, p 46]: ‘the
ambiguity [···] is a nuisance, so it is helpful to adopt a convention which reduces this choice’.
Breuer and Petruccione [32] simply state a result equivalent to the Theorema Dilectum, without
further comment or attribution.

Preskill’s course notes and Nielsen and Chuang’s text both take a middle point of view.
They briefly describe the Theorema Dilectum as a ‘surprising ambiguity’ [44, section 3.3] that
is ‘surprisingly useful’ [16, section 8.2.4]. The word ‘surprising’ invites readers to think for
themselves about unraveling and the word ‘ambiguity’ suggests (aptly) that the implications
of this invariance are not fully understood. Nielsen and Chuang’s text notes that up to the
present time, the main practical application of the Theorema Dilectum has come in the theory of
quantum error correction, where the freedom to choose unravelings that facilitate the design
of error correction algorithms has been ‘crucial to a good understanding of quantum error
correction’ [16, section 8.2.4].

In the context of quantum computing theory, Buhrman et al [146] have exploited the
informatic invariance of the Theorema Dilectum to show that certain logical gates that are
essential to universal quantum computing, when made noisy, can be indistinguishably replaced
by randomly selected gates from a restricted set of gates that can be simulated classically.
Their proofs build upon earlier work by many authors [147]–[149] and in particular upon the
Gottesman–Knill theorem [150]. To our knowledge, this is the first formal quantum informatic
proof that additional noise makes systems easier to simulate.
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3.4. Designs for spinometers

We now present some basic designs for measurement operators constructed from the
fundamental set of spin operators {s1, s2, s3} for particles of arbitrary spin j .

We call this family of measurement operators spinometers, and we will characterize their
properties in such sufficient detail that in section 4.2 we will be able to simulate the single-spin
MRFM experiment both numerically and by closed-form analysis. Most of these results have
not appeared previously in the literature.

3.4.1. Spinometer tuning options: ergodic, synoptic and batrachian. Starting with the
fundamental spinometer pair {M (a)

(+),M (a)
(−)} that was defined in (79) and physically illustrated

in figure 9(a), ergodic spinometers are constructed by applying the following tuning:[
Merg
(+)(θ, sop)

Merg
(−)(θ, sop)

]
=

[
e−iθsop

0

0 e−iθsop

] [
1 0

0 e−iπ/2

] [
M (a)
(+)

M (a)
(−)

]
,

=
1

√
2

[
eiθsop

e−iθsop

]
. (83)

Note that immediately following photon detection, and independent of the channel on which the
photon is detected, a compensating Hamiltonian θsop is applied to cancel the mean Stark shift
that was noted in section 3.3.4. The fluctuating portion of the Stark shift is not thereby cancelled,
and it follows that ergodic spinometers are well suited for simulating physically realistic noise,
e.g. random magnetic fields that decohere spin states.

We construct batrachian spinometers from ergodic spinometers by adding a downstream
coupler, as shown in figure 9(b). Our phase and tuning conventions are:[

Mbat
(+)(θ, sop)

Mbat
(−)(θ, sop)

]
=

[
e−iπ/2 0

0 e−iπ/2

]
1

√
2

[
1 i

i 1

] [
1 0

0 eiπ/2

] [
Merg
(+)

Merg
(−)

]
,

=

[
sin θsop

cos θsop

]
. (84)

The upper-right output port is tuned to be as dark as possible, such that detection clicks occur
only sporadically; in experimental interferometery this is called dark port tuning. Each click
that a dark port records is accompanied by a discrete jump in the wavefunction, hence the name
‘batrachian’ for these measurement operators. We will see that batrachian tuning is well suited
to the analysis of data statistics.

We construct synoptic spinometers similarly, but with a different phase tuning, as shown in
figure 9(c). Algebraically our tuning convention is[

M syn
(+) (θ, sop)

M syn
(−)(θ, sop)

]
=

[
e−iπ/4 0

0 e−iπ/4

]
1

√
2

[
1 i

i 1

] [
Merg
(+)

Merg
(−)

]
,

=
1

√
2

[
cos θsop + sin θsop

cos θsop
− sin θsop

]
. (85)

We will see that synoptic spinometers do provide information about the quantum state—hence
the name ‘synoptic’—and also that they compress quantum trajectories.
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We can now discern the general strategy of quantum MOR analysis: we model physical
noise in terms of ergodic operators, we predict data statistics by the analysis of batrachian
operators, and we compress simulated trajectories by applying synoptic operators.

3.4.2. Spinometers as agents of trajectory compression. The following derivations assume
a knowledge of basic quantum mechanics at the level of chapters 2 and 8 of Nielsen and
Chuang [16] (an alternative text is Griffiths [151]), knowledge of coherent spin states at the
level of Perelomov [27, equations (4.3.21)–(4.3.45)] (alternatively see Klauder [119] or del
Castillo [152]), and knowledge of stochastic differential equations at the level of Gardiner
[153, section 4.3] (alternatively see Rogers and Williams [154]).

Generally speaking, the design rules of this section were first heuristically suggested by the
Hilbert ontology of section 3.2, then confirmed by numerical experiments, and finally proved
by analysis. Some of the lengthier proofs would have been difficult to discover otherwise; this
shows the utility of the Hilbert ontology backed up by numerical exploration.

Nowhere in the derivations of this section will we make any assumption about the
dimensionality of the Hilbert space in which the trajectory {|ψn〉} resides. Therefore, we are
free to regard |ψn〉 as describing a spin- j particle that is embedded in a larger multi-spin Hilbert
space. Thus all the theorems and calibrations that we will derive will be applicable both to the
single-spin MRFM Hilbert space of section 4.2 and to the large-dimension ‘spin-dust’ spaces
that we will discuss in section 4.5.

3.4.3. Spinometers that einselect eigenstates. We define a uniaxial spinometer to be a
measurement process associated with a single pair of measurement operators having generator
sop. We can regard sop as an arbitrary Hermitian matrix, since in a uniaxial measurement there
are no other operators for it to commute with. We consider ergodic, synoptic and batrachian
tunings as defined in (83) and (84). Without loss of generality we assume tr (sop)2 = dim |ψ〉,
i.e. the mean-square eigenvalues of sop are unity, which sets the scale of the coupling θ .

For a general state |ψn〉 and general Hermitian operator sop, we define the operator variance
1n(sop) to be

1n(s
op)= 〈ψn|(s

op
− 〈ψn|s

op
|ψn〉)

2
|ψn〉, (86)

remarking that in a finite- j Hilbert space

1n(s
op)

{
= 0 if |ψn〉 is an eigenstate of sop,

> 0 otherwise.
(87)

Physically speaking, the smaller the variance 1n(sop), the smaller the quantum fluctuations in
the expectation value 〈ψn|sop

|ψn〉.
We will now calculate the rate at which measurement operators act to minimize the above

variance. Considering an ensemble of simulation trajectories, we define the ensemble-averaged
variance at the nth simulation step to be E[1n(sop)]. The algorithm of figure 1 evolves this mean
variance according to

E[1n+1(s
op)] =

m∑
k=1

∑
j∈{(+),(−)}

E

[
〈ψn|(M

k
j )

†(sop)2 Mk
j |ψn〉 −

〈ψn|(Mk
j )

†sop Mk
j |ψn〉

2

〈ψn|(Mk
j )

† Mk
j |ψn〉

]
. (88)
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For compactness we write the increment of the variance as δ1n(sop)≡1n+1(sop)] −1n(sop).
Then for ergodic, synoptic and bratrachian tunings the mean increment is

E[δ1n(s
op)] =


0 ergodic tuning,

−4θ 2 E[12
n(s

op)] synoptic tuning,

−θ 2 E[Fn(sop)] batrachian tuning.

(89)

These results are obtained by substituting in (88) the spinometer tunings of (83) and (84), then
expanding in θ to second order. Here F is the non-negative function

Fn(s
op)=

(〈ψn|(sop)3|ψn〉 − 〈ψn|sop
|ψn〉〈ψn|(sop)2|ψn〉)

2

〈ψn|(sop)2|ψn〉
. (90)

Each term in the sequence {E[11], E[12], . . .} is non-negative by (86), and yet for synoptic
and batrachian tuning the successive terms in the sequence are non-increasing (because in (89)
the quantities 12

n(s
op) and Fn(sop) are non-negative and there is an overall minus sign acting on

them); the sequence therefore has a limit. For synoptic tuning the limiting states are evidently
such that 1n(sop)→ 0, while for batrachian tunings Fn(sop)→ 0, which in both cases implies
that the limiting states are eigenstates of sop. This proves

Theorem 3.7. Uniaxial spinometers with synoptic or batrachian tunings, but not ergodic
tunings, asymptotically einselect eigenstates of the measurement generator.

3.4.4. Convergence bounds for the einselection of eigenstates. We now prove a bound on the
convergence rate of theorem 3.7. For quantum MOR purposes, this bound provides an important
practical assurance that an ensemble of uniaxially observed spins never becomes trapped in a
‘dead zone’ of state-space.

To prove the convergence bound, we note that in the continuum limit θ � 1 the increment
(89) can be regarded as a differential equation in simulation time t ≡ n δt . For synoptic
tuning the inequality E[12

n(s
op)]> E[1n(sop)]2 then allows us to derive—by integration of

the continuum-limit equation—the power-law inequality

E[1n(s
op)]6 E[10(s

op)]/(1 + 4nθ 2). (91)

This implies that the large-n variance is O(n−1). This proof nowhere assumes that the initial
ensemble is randomly chosen; therefore the above bound applies to all ensembles, even
those whose initial quantum states are chosen to exhibit the slowest possible einselection. We
conclude that for synoptic tuning the approach to the zero-variance limit is never pathologically
slow. We have not been able to prove a similar bound for batrachian tuning, but numerical
experiments suggest that both tunings require a time t∼δt/θ2 to achieve einselection. Proofs of
stronger bounds would be valuable for the design of large-scale quantum MOR simulations.

3.4.5. Triaxial spinometers. We now consider triaxial spinometers, in which three pairs of
synoptic measurement operators (85) are applied, having as generators the spin operators
{sx , sy, sz}, applied with couplings {θx , θy, θz}.
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3.4.6. The Bloch equations for general triaxial spinometers. In the general case, we take
θx 6= θy 6= θz. We define xn = {xn, yn, zn} = j〈ψn|s|ψn〉| to be the polarization vector at the nth
simulation step. This vector is normalized such that |xn|6 1, with |xn| = 1 if and only if |ψn〉 is
a coherent state. We further define δxn = xn − xn−1. Taking as before E[ · ··] to be an ensemble
average over simulations, such that the density matrix of the ensemble is ρn = E[|ψn〉〈ψn|],
and therefore E[xn] = j tr sρn, we readily calculate that the Bloch equation that describes the
average polarization of the ensemble of simulations isE[δxn]

E[δyn]

E[δzn]

 = −
1

2

θ
2
y + θ 2

z 0 0

0 θ 2
x + θ2

z 0

0 0 θ 2
x + θ2

y


E[xn−1]

E[yn−1]

E[zn−1]

 . (92)

Since it depends only linearly upon ρn, the above expression is invariant under the U -transform
of the Theorema Dilectum. We are free, therefore, to regard our spinometers as being ergodically
tuned (83), such that the simulation can be equivalently regarded, not as three competing axial
measurement processes, but as independent random rotations being applied along the x-, y- and
z-axes. The above Bloch equation therefore has the functional form that we expect upon purely
classical grounds.

3.4.7. The einselection of coherent states. Now we confine our attention to balanced triaxial
spinometers, i.e. those having θx = θy = θz ≡ θ , such that no one axis dominates the
measurement process. Numerical simulations suggest that for synoptically tuned measurement
processes, in the absence of entangling Hamiltonian interactions, simulated quantum trajectories
swiftly converge to coherent state trajectories, regardless of the starting quantum state. We adopt
Zurek’s (exceedingly useful) concept of einselection [155] to describe this process. We now
prove that synoptic spinometric observation processes always induce einselection by calculating
a rigorous lower bound upon the rate at which einselection occurs.

Given an arbitrary state |ψ〉, we define a spin covariance matrix 3n to be the following
3 × 3 Hermitian matrix (of c-numbers):

(3n)kl ≡ 〈ψn|sksl |ψn〉 − 〈ψn|sk|ψn〉〈ψn|sl |ψn〉. (93)

This matrix covariance is a natural generalization of the scalar variance 1n(sop) (86) and in
particular it satisfies a trace relation that is similar to (87)

tr3n

{
= j if |ψn〉 is a coherent spin state,
> j otherwise.

(94)

Here a coherent spin state is any spin- j state |x̂〉, conventionally labeled by a unit vector x̂,
such that 〈x̂|s|x̂〉 = j x̂ (see e.g. Perelomov [27, equation (4.3.35)]). The algorithm of figure 1
evolves the mean spin covariance according to

(E[3n+1])lm =

m∑
k=1

∑
j∈{(+),(−)}

E

[
〈ψn|(M

k
j )

†slsm Mk
j |ψn〉−

〈ψn|(Mk
j )

†sl Mk
j |ψn〉〈ψn|(Mk

j )
†sm Mk

j |ψn〉

〈ψn|(Mk
j )

† Mk
j |ψn〉

]
.

(95)

For compactness we define the 3-increment δ3n ≡3n+1 −3n. Then by a series expansion
of (95) similar to that which led from (88) to (89)—but with more indices—we find that for
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ergodic, synoptic and batrachian tuning the mean increment is

tr E[δ3n] =

0 ergodic tuning,
−4θ2 tr E[3n ·3?

n] synoptic tuning,
(see text) batrachian tuning.

(96)

The ‘see text’ for batrachian tuning indicates that we have found no closed-form expression
simpler than several dozen terms; numerical experiments show that for this tuning the
covariance exhibits random jump-type fluctuations that seemingly have no simple limiting
behavior. In contrast, synoptic tuning’s increment has a strikingly simple analytic form, which
was guessed as an ansatz and subsequently verified by machine algebra.

Proceeding as in the proof of theorem 3.7 and temporarily omitting the subscript n for
compactness, we now prove that for 3 computed from |ψ〉 by (93), the scalar quantity tr3 ·3?

is non-negative for all |ψ〉, and vanishes if and only if |ψ〉 is a coherent state. We remark that
this proof is nontrivial because tr3 ·3? is by no means a positive-definite quantity for general

Hermitian 3 (an example is 3=

(
0 +i
−i 0

)
, for which tr3 ·3?

= tr

(
−1 0
0 −1

)
= −2).

Because 3 is a Hermitian 3 × 3 matrix, it can be decomposed uniquely into a real
symmetric matrix 3̄ and a real vector v = 〈ψ |s|ψ〉/j by 3ik = 3̄ik + i/2

∑3
l=1 εiklvl . Because

the increment (96) is a scalar under rotations, without loss of generality we can choose a
reference frame having basis vectors {x̂, ŷ, ẑ} such that {v·x̂, v· ŷ, v· ẑ} = {0, 0, z} and z > 0.
In this reference frame, the following decomposition is valid for any Hermitian matrix 3 (i.e. it
holds for 3̄ an arbitrary symmetric matrix and z an arbitrary real number):

tr3 · (3?)= j2(1 − z2)/2 + j4(1 − z2)2/4 + 2pa + 1
2 pb + 1

2 pc + 1
4 pd + 1

2 pe + j pf, (97)

where the residual terms pa, pb, . . . , pf are

pa = 3̄2
12 + 3̄2

13 + 3̄2
23, pd = ( j2(1 − z2)− 23̄33)

2,

pb = (3̄11 − 3̄22)
2, pe = (3̄11 + 3̄22)

2
− ( j ( j + 1)− (3̄33 + j2z2))2,

pc = (3̄33)
2, pf j2

= (1 − z2)− 3̄33.

(98)

We now prove that each term in this decomposition is non-negative. The terms pa, pb, pc,
and pd are non-negative prima facie. The term pe vanishes for arbitrary |ψ〉 in consequence
of the spin operator identity 3̄11 + 3̄22 + 3̄33 + j2z2

= 〈ψ |s2
1 + s2

2 + s2
3ψ〉 = j ( j + 1). That the

remaining terms are non-negative in general follows from the spin operator inequalities − j 6
〈ψ |s3|ψ〉6 j and 06 〈ψ |s2

3 |ψ〉6 j2, which together with our reference-frame convention
imply the inequalities −16 z 6 1 and 3̄33 < j2(1 − z2).

Next, we show that the sum of terms (97) vanishes if and only if |ψ〉 is coherent, i.e.
if and only if |ψ〉 = | ẑ〉. It is a straightforward exercise in spin operator algebra to show
that |ψ〉 = | ẑ〉 if and only if all of the following are true: z = 1, 3̄33 = j2, 3̄11 = 3̄22 and
3̄12 = 3̄23 = 3̄13 = 0; it follows that (97) vanishes if and only if |ψ〉 = | ẑ〉. By reasoning similar
to theorem 3.7, we conclude:

Theorem 3.8. Triaxial spinometers with synoptic tunings asymptotically einselect coherent
spin states.

3.4.8. Convergence bounds for the einselection of coherent states. We now exploit the identity
(97) to prove a bound on the convergence of theorem 3.8. Our strategy is similar to our previous
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proof of the bound for theorem 3.7. Substituting the identity j2(1 − z2)= tr3n − j in the first
two terms of (97), and taking into account the non-negativity of the remaining terms pa, pb, pc,
pd and pe, we obtain the following quadratic inequality in (tr3n − j):

tr3n ·3?
n >

1
2(tr3n − j)+ 1

4(tr3n − j)2 > 0. (99)

As an aside, our starting identity (97) was devised so as to imply a general inequality having the
above quadratic functional form, in service of the proof that follows, but we have not been able
to prove that the above coefficients {

1
2 ,

1
4} are the largest possible.

Upon taking an ensemble average of the above inequality, followed by substitution in (96),
followed by a continuum-limit integration, we obtain the following convergence bound for the
ensemble-averaged trace covariance:

tr E[3n] − j 6
2(tr E[30] − j)

(tr E[30] − j)(exp(2nθ 2)− 1)+ 2 exp(2nθ 2)
. (100)

It is instructive to restate this bound in terms of simulation time t = n δt . Taking the continuum
limit 3n →3(t), noting that the timescale T1 = δt/θ 2 is the conventional T1 that appears in
the Bloch equations (92), defining for compactness of notation the initial trace covariance to be
κ0 ≡ tr E[3(0)] − j , and assuming for the sake of discussion that κ0 � 1 (i.e. we assume that
the initial ensemble is far from classical) the functional form of the above bound exhibits three
asymptotic intervals, whose t-dependence is respectively O(1), O(1/t) and O(exp(−2t/T1)):

(tr E[3(t)] − j) .


κ0(1 − κ0t/T1) for 06 t/T1 . 1/κ0,

T1/t for 1/κ0 . t/T1 . 1,

2 exp(−2t/T1) for 1. t/T1.

(101)

The O(1) and O(1/t) behavior is functionally similar to the convergence bound established
in (91) for the eigenvalue variance of theorem 3.7, namely, an initial linear decrease, followed
by an O(1/t) fall-off. Unique to triaxial spinometry (as far as the authors know) is the final
exponentially rapid convergence to a coherent state.

We note that convergence is complete within a time ∼T1 that is independent of both the
spin quantum number j and the overall dimensionality of the Hilbert space in which the spin is
embedded. As with theorem 3.7, this is a worst-case bound that applies to all ensembles, including
(for example) exotic ensembles initialized with ‘Schrödinger’s cat’ states. More particularly, it
applies to large-dimensional ensembles in which each of n spins in a Hilbert space of overall
dimension (2 j + 1)n is synoptically observed.

3.4.9. Implications of einselection bounds for quantum simulations. We now begin to have a
quantitative appreciation of the geometric assertion of figure 4(i), that quantum simulations can
be regarded as theaters in which the trajectory compression of synoptic observation opposes
the creation of entanglement by Hamiltonian dynamics, with the balance between compression
and expansion determining the dimensionality of the quantum MOR state-space required for
accurate simulation.

Even stronger convergence bounds than those we have proved would be valuable in
designing quantum MOR simulations. Especially useful would be more tunings in which noise
is realized as an entangled measurement. Physically speaking, an entangled measurement is
performed by interferometrically splitting a photon along n paths, scattering the photon from a
different spin along each path, then recombining and measuring the photon by freely choosing
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among any of an exponentially large set of braidings and interferometric couplings of the
downstream optical fibers.

The analysis of such noise-equivalent tunings would require mathematical methods
considerably more sophisticated than those we have employed in this article. A known
consequence of the Holevo–Schumacher–Westmoreland (HSW) theorem (which is the quantum
analogue of the Shannon channel capacity theorem) is that entangled measurements are
necessary to maximize the information capacity of quantum channels [16, section 12.3.2].

If we hypothesize that quantum trajectory compression is in some sense proportional to
information extracted by measurement, then the HSW theorem tells us that entangled measures
will be more effective for quantum MOR purposes than the single-spin measures that we
consider in this article. It is likely, therefore, that the search for more efficient quantum MOR
techniques will benefit considerably from continued progress in quantum information theory.

3.4.10. Positive P-representations of the thermal density matrix. Now we focus upon control
and thermodynamics. For t̂ the thermal axis defined in (62), we modify the synoptic spinometer
matrices such that

Mk
(+) = e−iαθ( t̂×s)k [cos(θsk)+ sin(θsk)]/

√
2 , (102)

Mk
(−) = e+iαθ( t̂×s)k [cos(θsk)− sin(θsk)]/

√
2 , (103)

where α is the control gain. We will call this a closed-loop triaxial spinometer with unitary
feedback, because (as we will see) the unitary operators exp(±iαθ t̂ × s) act cumulatively to
align the spin axis with t̂ .

Closing the control loop does not alter the coherent einselection because the sole effect
of a post hoc unitary operator on σ n is a spatial rotation. Since tr σ n · σ ?n is a rotational scalar,
(96) still holds. Thus we have

Theorem 3.9. Closed-loop triaxial spinometers with unitary feedback asymptotically einselect
coherent states.

The density matrix ρ of an ensemble of closed-loop triaxial spinometer simulations is
described by sequence {ρ1, ρ2, . . .} whose increment is

δρn =

3∑
k=1

(
Mk
(+)ρn M†k

(+) + Mk
(−)ρn M†k

(−) − ρn

)
, (104)

By a straightforward (but not short) calculation we find that δρn vanishes for ρn = ρ th if and
only if the closed-loop gain α satisfies

α = −tanh 1
4β or 1/α = −tanh 1

4β. (105)

The following two trigonometric identities hold for either choice and will be used in section 4.1
to establish that the choice is immaterial in practical numerical simulations.

1/α +α = −2 coth 1
2β and 1/α−α = −2 csch 1

2β. (106)

Defining as usual the dimensionless temperature T = 1/β, we see that an optimal control
gain α → ±1 establishes a temperature T → ∓0, while a control gain |α| 6= 1 establishes a
finite temperature. We will establish later on that ρ th solves δρn = 0 uniquely, because the
Fokker–Planck equation for ρ has a unique stationary solution (thus the approach of the density
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matrix ρ to thermodynamic equilibrium never ‘stalls’ or becomes trapped at false solutions).
These results prove

Theorem 3.10. The density matrix of an ensemble of closed-loop triaxial spinometer
simulations is asymptotically thermal.

To connect (104) with the thermodynamic literature, we set t̂ = (0, 0, 1) and expand to
order θ 2. The result is equivalent to a thermal model given by Perelomov (equation 23.2.1
of [27]). Gardiner gives a similar model (equation (10.4.2) of [153]). In Lindblad form we find

δρn = −
1
2γ (ν + 1)(s+s−ρ− 2s−ρs+ + ρs+s−)

−
1
2γ ν(s−s+ρ− 2s+ρs− + ρs−s+)

− θ2(s3s3ρ− 2s3ρs3 + s3s3), (107)

where s+ = (s1 + is2)/
√

2 and s− = (s1 − is2)/
√

2 are raising and lowering operators, and we
have adopted Perelomov’s variables γ = −4αθ 2 and ν = −1/2 − (α + 1/α)/4.

3.4.11. The spin-1/2 thermal equilibrium Bloch equations. The special case of spin-1/2
particles in thermal equilibrium often arises in practice. Setting the polarization axis t̂ = ẑ,
and allowing independent spinometric couplings {θx , θy, θz} as in (92), we find that the finite-
temperature synoptic measurement operators (102) imply the following asymmetric Bloch
equations (valid for j = 1/2 only):E[δxn]

E[δyn]

E[δzn]

 = −
1

2

(α
2θ 2

x + θ2
y + θ 2

z ) E[xn−1]

(θ 2
x +α2θ2

y + θ 2
z ) E[yn−1]

(1 +α2)(θ2
x + θ 2

y )(E[zn−1] + tanh 1
2β)

 . (108)

As expected on thermodynamic grounds, we see that the equilibrium polarization is E[z] =

− tanh 1
2β. These equations are a generalization of the usual Bloch equations, in the sense that

the relaxation rates along the x-, y- and z-axes can differ independently. We remark that for
j > 1/2 the thermal Bloch equations do not appear to have a closed analytic form; that is why
this more general case is not considered here.

3.4.12. The spinometric Itô and Fokker–Planck equations. Now we focus on Itô and
Fokker–Planck equations, aiming by our analysis to obtain both the already validated positive
P-representation of theorem 3.2 and (in the large- j limit) both the linear theorems 3.3–3.5 and
the fundamental quantum limits of theorem 3.6.

We define a binary data three-vector dn = (d1
n , d2

n , d3
n ) by

dk
n =

{
+1 for |ψn+1〉 ∝ Mk

(+) |ψn〉,

−1 for |ψn+1〉 ∝ Mk
(−) |ψn〉 .

(109)

Then {d1, d2, . . .} is a binary data record with calibration E[dn] = gs E[xn], where

gs = 2θ j (110)

is the spinometer gain. We define a zero-mean stochastic variable W n by

dn = gs xn + W n, (111)
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such that (to leading order in θ ) W n has the second-order stochastic properties of a discrete
Wiener increment:

E[(W n)k(W n′)k′] = δnn′δkk′ . (112)

Then via an identity valid for |ψn〉 a coherent state,

〈ψn|sksl |ψn〉 =
1
2 jδkl + j ( j −

1
2)xk x j + 1

2 i j εklm xm, (113)

the spinometer increments (102–b) are equivalent to an Itô increment

δxn = xn+1 − xn = g2
s a(xn)+ gs b(xn) · W n. (114)

For the drift vector a and diffusion matrix b we find

a(x)= −
1

4 j2
x

[
α(2 j − 1)x · t̂ + (1 + 1

2α
2)

] 1

4 j2
t̂
[
α(2 j + 1)− 1

2α
2 x · t̂

]
, (115a)

b(x)=
1

2 j
[I − x ⊗ x +α( t̂ ⊗ x − x · t̂ I)] . (115b)

Theorem 3.9 asserts that the Itô increment (114) confines the trajectory of xn to the unit sphere.
The mean increment of the mth radial moment |x|

m must therefore vanish when |x| = 1. We
check this by direct calculation, finding

δEn[|x|
m] ∝

1
2m(m − 2)E[xn · b(xn) · b†(xn) · xn]

+ m E
[
|xn|

2(xn · a(xn)+ 1
2 tr b(xn) · b†(xn))

]
, (116)

which indeed vanishes for the a and b of (115a) and (115b). By well-known methods [153], the
Itô increment (114) immediately yields a Fokker–Planck equation for the PDF pj(x̂). Setting
z = x̂ · t̂ we obtain the stationary state equation

0 = −
∂

∂z
[α(1 + z2)+ 2 jα(1 − z2)− z(1 +α2)]pj(z)

+
1

2

∂2

∂z2
[(1 − z2)(1 − 2αz +α2)]pj(z) , (117)

which (when properly normalized) has a unique solution

pj(x̂)= (α + 1/α− 2z)−2 j−2 (118)

×(2 j + 1)
[
(α + 1/α− 2)−2 j−1

− (α + 1/α + 2)−2 j−1
]−1
/π, (119)

in which we see that the symmetry α → 1/α is indeed respected. Substituting α + 1/α =

−2 coth 1
2β per (106), and adjusting the normalization to match the P-representation

convention (60) yields theorem 3.2.

3.4.13. The standard quantum limits to linear measurement. To connect these results to
theorems 3.2–3.6, we first write the Itô equation (114) in Langevin form by substituting

δxn →

∫ t+δt

t
dt ′ ẋ(t ′), (120)

a(xn)→ r
∫ t+δt

t
dt ′ a(x(t ′)) , (121)

New Journal of Physics 11 (2009) 065002 (http://www.njp.org/)

http://www.njp.org/


66

b(xn) · W n → rgs

∫ t+δt

t
dt ′ b(x(t ′)) · xN(t ′) , (122)

where r = 1/δt is the rate at which increments occur and xN(t) is white noise with cross-
correlation

E
[
xN

k (t)x
N
k′ (t ′)

]
= δkk′δ(t − t ′)/(rg2

s = δkk′δ(t − t ′)/(4r j2θ 2) . (123)

Then (114) becomes the integral of the Langevin equation

ẋ = rg2
s [a(x)+ b(x) · (xM

− x)] , (124a)

where xM(t)= x(t)+ xN(t) is the measured spin axis.
We see that x(t) is dynamically attracted toward the measured axis xM(t). Even open-loop

spinometers exhibit this attraction, since for α = 0 we find

ẋ|α=0 = rg2
s

[
−

1

4 j2
x +

1

2 j
(I − x ⊗ x) · (xM

− x)
]
. (124b)

We remark that in uniaxial spinometry we saw that a similar einselection-by-attraction generates
the ‘collapse’ of |ψn〉 to an eigenstate, as described by theorem 3.7. This attraction is of course
a fundamental tenet of the Hilbert ontology of section 3.2.6.

We now transform (124b) to the second-order Newtonian equation of an oscillator. To do
this, we introduce a spring k and frequency ω0 by defining the operators

qop
= (h̄ω0/jk)1/2 (+s1 cosω0t − s2 sinω0t ) , (125a)

pop
= (kh̄/jω0)

1/2 (−s1 sinω0t − s2 cosω0t ) . (125b)

We confine our attention to those coherent states that have z ' −1, which with our sign
conventions means systems having positive inverse temperature β, negative Hilbert feedback
gain α, and oppositely directed spin x̂ and polarization t̂ , such that x̂ · t̂ ' −1. For these states
the canonical commutator [qop, pop] = −i h̄s3/j ' i h̄ holds in the large- j limit. Defining the
coherent oscillator coordinate q(t) to be

q(t)= ( j h̄ω0/k)1/2 (x(t) cosω0t − y(t) sinω0t) , (126)

we find that (124b) takes the linearized Newtonian form

mq̈ = −k q + f n , (127a)

qm
= q + qn. (127b)

Here the spring k, mass m = k/ω2
0, and coordinate q are to be understood in a generalized sense

in which the system energy is 1
2mq̇2 + 1

2kq2. The measurement noise qn(t) is given from (126)
in terms of the spinometer noises xN(t) and yN(t) of (123) by

qn(t)= ( j h̄ω0/k)1/2 (xN(t) cosω0t − yN(t) sinω0t), (128)

and we find from (123) and (126) that the measurement noise qn(t) has a PSD Sqn of

Sqn(ω)|ω'ω0 = h̄ω0/(4kr jθ2). (129)

The force noise f n(t) is then determined from (124b) to be f n(t)= γH[qn(t)], where H is the
Hilbert transform and the Hilbert gain γ is found to be

γ = 4kr jθ 2/ω0. (130)
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3.4.14. Multiple expressions of the quantum noise limit. It follows from the preceding results
that the PSD of the spinometric force noise f n(t) can be expressed in multiple equivalent forms:

expression physical interpretation

S f n(ω)|ω'ω0 = γ 2Sqn(ω)|ω'ω0 force noise ∝ measurement noise, (131a)

= h̄2/Sqn(ω)|ω'ω0 force noise ∝ 1/(measurement noise), (131b)

= h̄γ force noise ∝ Hilbert backaction gain, (131c)

= 4kh̄r jθ 2/ω0 raw spinometer parameters. (131d)

Each of the above relations has a plausible claim to expressing the ‘most natural’ or ‘most
fundamental’ relation between measurement noise and force noise . . . despite the fact that no
two physical interpretations are the same and even though the interpretations given (131a)
and (131b) seem contradictory. We further see by theorem 3.6 that these spinometric relations
saturate the Hilbert noise limit (γ Sqn = h̄), the Braginsky–Khalili limit (Sqn S f n = h̄2), and the
Hefner–Haus–Caves limit (NF = 2); thus in some sense all of these fundamental quantum limits
are embodied in the above family of spinometric relations.

Acknowledging the self-consistency of this diversity—and appreciating its mathematical
origin in the diversity of equivalent noise models that are supported by the Theorema
Dilectum—helps us appreciate how the quantum noise literature can be so immensely large,
and support so many different notations, physical arguments and conclusions, and yet maintain
its internal consistency.

In a teaching environment, it is not practical to sustain a dispassionately anarchical equality
among physical interpretations (131a)–(131d). This article’s Hilbert ontology (section 3.2.6)
designates (131a) to be the fundamental relation, because it embodies the central Hilbert tenet
that ‘measurement noise always backacts upon system dynamics in such a way as to bring the
state of the system into agreement with the measurement’.

3.5. Summary of the theorems and design principles

In summary, we have established by theorems 3.7–3.9 the quantum mechanism by which
synoptic noise processes compress simulated quantum trajectories onto lower dimension KTN
manifolds (as was promised in section 1.5.11). We have established by theorem 3.10 that the
effects of thermal reservoirs can be modeled as equivalent processes of covert measurement
and control (as was promised in section 1.5.12). And we have established by theorem 3.6 that
the Hefner–Haus–Caves, Braginsky–Khalili and Hilbert quantum noise limits are respected by
quantum MOR simulations (as was promised in section 3.2.8).

The focus of the remainder of this article is to show, by explicit examples, that these design
rules are sufficient to ‘enable the reader to proceed to the design and implementation of practical
quantum simulations, guided by an appreciation of the geometric and informatic principles that
are responsible for the overall simulation accuracy, robustness, and efficiency’ (as was promised
in the first paragraph of this paper).

4. Examples of quantum simulation

Now we turn our attention toward applying the preceding results in practical quantum
simulations.
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4.1. Calibrating practical simulations

Our simulations provide data via the binary stream of clicks defined in (109), which is low-
pass filtered to produce a classical data record. We now work through, in detail, the process of
computing and calibrating this data stream.

We begin by considering the problem of determining the measurement operation
parameters {θ, α} in (102) and the clock rate r = 1/δt from physical system parameters.
This calibration process requires that we invert systems of equations that include the Bloch
equations (92) and (108), the Langevin equation (124b), and the mapping of spinometer
parameters onto oscillator parameters (126).

4.1.1. Calibrating the Bloch equations. A common system to be simulated is a spin j =
1
2 in

contact with a thermal reservoir. We desire that the three thermal relaxation rates along the x-, y-
and z-axes be {0x , 0y, 0z} = {1/Tx , 1/Ty, 1/Tz} and that the equilibrium thermal density matrix
be ρ th

∝ exp(−βsz), such that the equilibrium spin polarization p0 is −tanh 1
2β as in (108).

We thus have four physical parameters {0x , 0y, 0z, β} with which to determine five raw
spinometer parameters {θx , θy, θz, α, r}. Needing one more physical parameter, we note that the
ε-parameters of the KTN-projected Theorema Dilectum (55) are given for j = 1/2 spinometers
from (108) by ε2

= θ 2(1 +α2)/4, and so we impose as our fifth condition ε . 0.1 for all three
spinometers (the cut-off 0.1 yielding in our experience well-converged numerical results). The
equations below then follow from (104), (106) and (108):

α = −tanh 1
4β or −1/ tanh 1

4β (freely chosen), (132a)

ε2
x =

[
0z − sgn (1 −α2)(0x −0y) cosh 1

2β
]
/(4r), (132b)

ε2
y =

[
0z + sgn(1 −α2)(0x −0y) cosh 1

2β
]
/(4r), (132c)

ε2
z =

[
0x +0y −0z

]
/(4r), (132d)

θ2
i = 4ε2

i /(1 +α2) for i ∈ {x, y, z}. (132e)

Now Bloch-parameter calibration can proceed as follows. We first determine the spinometer
gain α from (132a) (and we will soon see that the choice ‘gain too big’ versus ‘gain too small’ is
immaterial). The value of the spinometer click-rate r is then set from (132b)–(132d) by requiring
that min{εx , εy, εz}. 0.1 for the reasons noted above. The values of the three spinometer phases
{θx , θy, θz} are then determined from (132e).

We remark upon three aspects of this calibration process. Firstly, we see that insofar
as simulation efficiency and numerical conditioning are concerned, the choice between the
two options for the feedback gain α in (132a) is immaterial, since according to the above
construction the spinometer click-rate r and the ε-parameters are unaffected. Secondly, for the
special case Tz = T1 and Tx = Ty = T2 the above results reduce to the usual Bloch equations.
Thirdly, the positivity of the ε-parameters in (132b)–(132d) requires that the Bloch relaxation
rates satisfy the inequality

|0x −0y| cosh 1
2β 6 0z 6 (0x +0y). (133)

The authors suspect that the above Bloch inequality is tight, in the sense that no spin-1/2
Lindblad-form master equation can violate it, but we have not proved this. We remark that
the above triaxially asymmetric Bloch equations and their associated relaxation rate inequality
have (to the best of our knowledge) not appeared in the literature before.
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4.1.2. Calibrating test-mass dynamics in practical simulations. Now we consider test-masses
(e.g. MRFM cantilevers) in contact with thermal reservoirs. Calibration proceeds by a line
of reasoning similar to the above. We take the test-mass to be described by two physical
parameters: the (dimensionless) temperature β = h̄ω0/(kBT ) and the (dimensionless) quality Q
of the ring-down wave-form q(t)∝ cos(ω0t)exp(ω0t/(2Q)). The four spinometer parameters
to be determined are { j, θ, α, r}. The spin number j we take to satisfy j � 1, and we will find
that the precise value chosen for j is immaterial. For coherent states with z ' −1 as discussed in
section 3.4.12, the ε-parameter is found to be ε ' jθ2(1 +α2). Calibration proceeds as follows:

α = −tanh 1
4β or −1/ tanh 1

4β, (134a)

ε2
= (ω0/(2Qr)) coth 1

2β, (134b)

jθ 2
= ε2/(1 +α2). (134c)

We first determine the spinometer gain α from (134a). The value of the spinometer click-rate r is
then set from (134b) by requiring that ε . 0.1 as in the Bloch equation case, and the spinometer
phase θ is determined from (134c). We remark again that insofar as simulation efficiency is
concerned, the choice between the two options for the feedback gain α in (134a) is immaterial,
since the spinometer click-rate r is unaffected. We see also that for fixed quality Q, the
simulation rate r is O(coth 1

2β), which physically means that hot cantilevers are computationally
more expensive to simulate than cold ones, as is reasonable.

4.1.3. Calibrating purely observation processes. It can happen that we wish to directly
observe a spin-1/2 particle along a single axis, nominally the z-axis, in an observation process
in which the measured z-axis polarization zm(t)= z(t)+ zn(t) has a specified (one-sided) noise
PSD Szn . No thermodynamical feedback is applied. Then by reasoning similar to the preceding
cases, we find from (123) that the calibration relations are

ε2
= 1/(2r Szn), (135a)

θ2
= 4ε2, (135b)

and as before, the spinometer click-rate r is determined by requiring ε . 0.1.
Similarly, if we wish to simulate the continuous observation of a test-mass coordinate q(t),

with no thermodynamical feedback, the required calibration equations are given from (123)
and (126) in terms of the measurement noise PSD Sqn by

ε2
= h̄ω0/(4rkSqn), (136a)

jθ 2
= ε2, (136b)

where again the spinometer click-rate r is determined by requiring ε . 0.1.
We remark that in all of the above cases the raw binary data stream (109) of the simulation

must be low-pass filtered in order to obtain a (noisy) data record that will have the above
statistical properties within the filter passband. This filtering closely models the way that real
experimental signals (for example, a continuously measured cantilever motion) are displayed
upon oscilloscopes.
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Figure 10. Three equivalent simulations of single electron moment detection
by MRFM. We model the experimental data as a single measurement process
that continuously observes the z-axis of a single electron spin. We unravel the
electron decoherence process in three different ways: (a) as a batrachian ‘jump’
process at the left, (b) as an ergodic noise process in the middle and (c) as a
(covert) synoptic measurement process at the right. For all three simulations
the blue lines give the quantum trajectories, whereas the red lines give the
data streams associated with the measurement operations. We note that the sole
quantity that is experimentally accessible is the data associated with the z-axis
measurements. As guaranteed by the Theorema Dilectum, it is evident that the
statistical properties of the z-axis data are identical for all three simulations. We
further remark that the time-averaged density matrix of the quantum trajectory is
the same for all three simulations, even though the dynamical properties of the
trajectories themselves are qualitatively very different.

4.2. Three single-spin MRFM simulations

With reference to figure 10, we now turn our attention to the simulation of the IBM single-
spin MRFM experiment [7]. We initially present the simplest possible class of simulations that
reproduce the data of that experiment, postponing a discussion of more detailed simulations
until section 4.4.
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What we will keep in our simulation is the simplest model of spin measurements that
reproduces the statistics of the IBM experiment. The details that we will discard are the details
of the cantilever dynamics in interaction with a thermal batch. These details will be modeled
as equivalent noise in the measurement process. Our goal is to illuminate the central role of
the Theorema Dilectum in answering the question that was raised in section 1.1: ‘How does the
Stern–Gerlach experiment work?’

All three columns of figure 10 show a simulated thirteen-hour experiment (the length of
the IBM experiment). The time-spacing δt = 1/r between spinometric clicks is set to 7.1 ms;
thus approximately 6.6 × 106 time-steps were simulated. In each column, the experimental
data are simulated as arising from three competing spinometric processes. Spin relaxation
was simulated by x- and y-axes spinometers having θx = θy = 0.093. The consequent spin
relaxation time from (108) is Tz = 2/(r(θ 2

x + θ2
y ))' 0.76 s as was observed in the IBM

experiment. Measurement effects were simulated by a z-axis spinometer having θz = 0.026,
and the consequent measurement noise PSD from (123) is Szn = 2/(rθ 2

z ), which numerically
corresponds to a noise level of 11.5 Bohr magnetons of noise in one root-Hertz of bandwidth,
as was observed in the IBM experiment.

For visualization purposes only, all time-domain data streams shown in figure 10 were
low-pass filtered with a time constant τ = Tz = 0.76 s.

The following discussion is insensitive to the above experimental details, and applies to all
experiments of Stern–Gerlach type in which the signal-to-noise ratio (SNR) is low, such that
continuous monitoring over extended periods of time is required to observe the effect.

In the next three sections, we simulate the spin relaxation of the IBM single-spin MRFM
experiment by three different unravelings: batrachian, ergodic and synoptic. We will see that
the three unravelings lead to three very different classes of quantum trajectories, and hence,
three very different answers to the question, ‘How does the Stern–Gerlach experiment work?’
Nonetheless, as guaranteed by the Theorema Dilectum, we will soon see that the simulated
experimental data are identical for all three unravelings.

4.2.1. A batrachian single-spin unraveling. The left-hand column of figure 10 shows a
simulation in which thermal noise is unravelled as a batrachian process, whose measurement
operations are given algebraically in (84) and which are depicted in hardware-equivalent form in
figure 9(b). This is by far the easiest simulation to analyze in closed form: the spin polarization
jumps randomly between ±1, driven by the batrachian jumps of the thermal reservoir, while
being continuously measured by the (noisy) cantilever.

The simulated data stream is therefore a random telegraph signal with added white noise,
such that the mean-square quantum spin polarization inferred from the data is unity. We
conclude that from the batrachian point of view, the Stern–Gerlach effect (meaning that the
mean-square spin polarization is measured to be unity) comes about because noise is a quantized
jump process, such that the mean-square spin polarization always is unity.

4.2.2. An ergodic single-spin unraveling. The middle column of figure 10(b) shows a
simulation in which thermal noise is unravelled as an ergodic process, whose measurement
operations are given algebraically in (83) and which are physically depicted in figure 9(a).
Physically speaking, the spin polarization is driven by random magnetic fields, such that the
mean-square quantum polarization is 1/3.
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Now a subtle effect comes into play. The z-axis measurement process backacts upon
the spin state, such that whenever an ‘up’ fluctuation in the data is observed, the spin state
is ‘dragged’ toward a positive polarization. This effect is evident in the simulated data. The
consequence of state-dragging backaction is that the measured mean-square polarization is
larger than the mean-square polarization of the underlying quantum state.

It would be quite a complicated task to calculate the resulting data statistics from (e.g.) the
appropriate Itô, Langevin and Fokker–Planck equations. Fortunately, the Theorema Dilectum
does this mathematical work for us: the data statistics are guaranteed to be exactly the same
random telegraph statistics as in the Batrachian case.

We conclude that from the ergodic point of view, the Stern–Gerlach effect (meaning that
the mean-square spin polarization is measured to be unity) comes about because measurement
is a Hilbert process (meaning it accords with the state-dragging Hilbert backaction ontology of
section 3.2.6).

4.2.3. A synoptic single-spin unraveling. The right-hand column of figure 10(c) shows a
simulation in which thermal noise is unravelled as a synoptic process, whose measurement
operations are given algebraically in (85) and which are physically depicted in figure 9(c).

In synoptic unraveling, all processes are measurement processes and each process seeks
to align the spin polarization along its own axis. In our simulation, the x-axis and y-axis
measurement processes are considerably stronger than the z-axis process. In consequence of the
Hilbert state-dragging effect, the spin polarization now points predominantly in the equatorial
direction, such that the mean-square quantum polarization is only ∼0.05.

Again it would be quite a complicated task to calculate the resulting data statistic from Itô
equations, etc, and again the Theorema Dilectum does this mathematical work for us: in the
sense that (as in the preceding two cases) the data statistics are random telegraph statistics with
added white noise. We conclude that from the synoptic point of view, the Stern–Gerlach effect
is not associated with ‘wave function collapse,’ but rather comes about (as in the ergodic case)
because measurement is a Hilbert process.

4.3. So how does the Stern–Gerlach effect really work?

We are now in a position to answer more completely Dan Rugar’s question of section 1.1:
‘How does the Stern–Gerlach effect really work?’ We answer as follows: ‘Nothing definite
can be said about the internal state of noisy systems, either at the classical or at the quantum
level. It is best to pick an ontology that facilitates rapid calculations and suggests interesting
mathematics. For purposes of large-scale quantum simulation, a particularly useful ontology is
one in which all noise processes are conceived as equivalent covert measurement processes. In
this ontology, the Stern–Gerlach effect works because competing measurement processes exert a
Hilbert backaction mechanism that ‘drags’ quantum states into agreement with measurement. In
consequence of these competing Hilbert measurements, experimental data having the statistics
of random telegraph signals are obtained even when no quantum jumps are present’.

4.4. Was the IBM cantilever a macroscopic quantum object?

The least realistic element of the proceeding simulations is the modeling of the cantilever as a
single z-axis spinometer having quantum number j = 1/2. A more realistic model would have
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treated the cantilever as a large- j quantum object subject both to thermal noise processes and to
experimental measurement processes.

However, we can appeal to the Theorema Dilectum to show that these refinements would
not change the simulated data at all. The reason is that both the cantilever thermal reservoir and
the experimental (interferometric) cantilever measurement process can be modeled as synoptic
processes that compress the cantilever’s quantum state to a coherent state. Then modeling the
spin relaxation as a batrachian process, the output of the resulting (effectively semi-classical)
batrachian simulation will be precisely the random telegraph signal that was obtained in the
simpler batrachian simulation of section 4.2.1 above.

It follows by the Theorema Dilectum that all quantum simulations of the cantilever, even
elaborate large- j simulations in which a non-coherent quantum cantilever state is entangled with
the quantum spin state, will simulate the same random telegraph data statistics as the simpler
simulations already given, and in particular, will yield an observed mean-square polarization of
unity.

This leads to an interesting question: what was the ‘real’ quantum state of the IBM
cantilever? We have seen that this question has a well-posed answer only insofar as there is
agreement upon the ‘real’ noise and observation processes acting upon the cantilever, such that
the tuning ambiguity of the Theorema Dilectum does not come into play.

If we stipulate that the ‘real’ cantilever thermal noise and the ‘real’ spin relaxation are due
to ergodic physical processes, then the IBM experiment can only be ‘really’ described in terms
of a spin-state that is quantum-entangled with the cantilever state, in which the observed mean-
square polarization of unity is ‘really’ due to the state-dragging Hilbert backaction associated
with the cantilever measurement process. In other words, the IBM experiment ‘really’ observed
the cantilever to be a macroscopic quantum object.

As quantum objects go, the IBM cantilever was exceptionally large [7]: its resonant
frequency was ω0/(2π)= 5.5 kHz, its spring constant was k = 0.011 mN m−1, and its motional
mass was m = k/ω2

0 = 9.1 pg. The preceding paragraphs are an argument for regarding
this cantilever to be among the stiffest, slowest, most massive dynamical systems whose
quantum nature has been experimentally confirmed. Such measurements are significant from a
fundamental physics point of view, in probing the limits of quantum descriptions of macroscopic
objects, as reviewed by Leggett [116, 145, 156, 157].

Any line of reasoning that is as brief as the preceding one, about a subject that is as
subtle as macroscopic quantum mechanics, is sure to have loopholes in it. A major loophole
is our modeling of decoherent noise as a Markovian process. As reviewed by Leggett et al [73],
spin decoherence in real experiments is (of course) due to non-Markovian quantum-entangling
interactions. We now turn our attention to the algorithmic and numerical challenges of
simulating such systems.

4.5. The fidelity of projective quantum MOR in spin–dust simulations

As test cases, we computed what we will call spin–dust simulations. Spin–dusts are quantum
systems that are deliberately constructed so as to have no symmetries or spatial ordering. Their
sole purpose is to provide a well-defined test-bed for numerical and analytic studies of the
fidelity of projective quantum MOR.
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Spin–dusts couple pairs of spin-1/2 particles { j, k} via a dipole–dipole interaction
Hamiltonian H jk that is given by

H jk =

{
s j ·

[
I − 3n jk ⊗ n jk

]
· sk for j 6= k,

s j · n jk for j = k.
(137)

The unit vectors n jk are chosen randomly and independently for each { j, k}, and we note that
self-coupling is allowed. Physically we can think of spin–dusts as broadly analogous to—but
less structured than—systems such as the interacting spins in a protein molecule.

In our simulations each spin is randomly coupled to four other spins, in addition to its
self-interaction. Then it is easy to show that tr H = 0 and tr H 2/ dimH= nspin, which is to say,
the per-spin energy of our spin–dusts has zero mean and unit variance. The timescale of the
spin dynamics of the system is therefore unity. We further stipulate that each spin is subject to
a triaxial spinometric observation process having relaxation time Tx = Ty = Tz = 10. Thus the
timescale of decoherent observation is ten-fold longer than the dynamical timescale.

Simulations are computed with a time-step δt = 0.1 and spinometric couplings θx = θy =

θz = 0.1, using the sparse matrix routines of Mathematica. The numerical result is an ‘exact’
(meaning full Hilbert space) quantum trajectory |ψ0(t)〉. These trajectories are then projected
on KTN manifolds of various order and rank by the numerical methods of section 2.12. The
main focus of our numerical investigations is the fidelity of the projected states |ψK(t)〉 relative
to the exact states |ψ0(t)〉.

4.5.1. The fidelity of quantum state projection onto KTN manifolds. With reference to
figure 11(a), simulations are conducted with numbers of spins n ∈ 1, 18, having random dipole
coupling links as depicted. The median quantum fidelity is then computed, as a function of n, for
KTN rank r ∈ {1, 2, 5, 10, 20, 30} (see figure 3 for the definition of KTN rank). Both synoptic
and ergodic unravelings are simulated. Typically |ψ0〉(t) was projected at thirty different time-
points along each simulated trajectory, always at times t > 100 to ensure that memory of the
(randomly chosen) initial state was lost. We remark that numbers of spins n > 18 could not
feasibly be simulated on our modest computer (an Apple G5).

The quantum fidelity of a projected state |ψK〉 is defined to be [16, section 9.2.2]

f = |〈ψK|ψ0〉|/
[
〈ψK|ψK〉〈ψ0|ψ0〉

]1/2
. (138)

As shown in figure 11(b), for ergodic unravelings large-n quantum fidelity falls off
exponentially, while for synoptic unravelings large-n fidelity remains high.

No mathematical explanation for the observed exponential fall-off in ergodic unraveling
fidelity is known. The asymptotic large-n behavior of the synoptic fidelity also is unknown. In
particular, for systems of hundreds or thousands of spins, would the empirical rule-of-thumb
‘KTN rank fifty yields high fidelity for spin-dust systems’ still hold true? These are important
topics for further investigation.

For synoptic simulations the achieved algorithmic compression is large: an 18-spin exact
quantum state |ψ0(t)〉 is described by 218 independent complex numbers, while an order-18 rank
30 KTN state |ψK(t)〉—as seen at lower right in figure 11(b)—is described by 30 × (18 + 1)=

570 independent complex variables. The dimensional reduction is therefore 460-to-1.

4.5.2. The fidelity of spin polarization in projective quantum MOR. We now turn our attention
to measures of local quantum fidelity, as depicted in figure 12. All simulated trajectories in this
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Figure 11. The dependence of quantum MOR fidelity upon KTN order and rank.

figure are for n = 15 spin–dust. The first such measure we consider are the direction cosines
〈ψ |s · m̂|ψ〉/j for randomly chosen spins, randomly chosen trajectory points and randomly
chosen unit vectors m̂. One hundred randomly chosen data points are shown. We observe that
the rank-one KTN manifold does an excellent job of representing the spin direction cosines,
which can be regarded as (essentially) classical quantities.

4.5.3. The fidelity of operator covariance in projective quantum MOR. As a measure of
pairwise quantum correlation, we examine the spin operator covariance. With reference to (93),
this quantity is given by

6 jk = 43kl = 〈ψ |σ jσk|ψ〉 − 〈ψ |σ j |ψ〉〈ψ |σk|ψ〉, (139)

which vanishes for rank-1 (product states).
The second row of figure 12 plots 6kl for one hundred randomly chosen trajectory points,

and randomly chosen spins, having randomly chosen indices j and k. We observe that KTN
ranks in the range 20–50 are necessary for projection to preserve pairwise quantum correlation
with good accuracy.
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Figure 12. Measures of projective fidelity for n = 15 spin–dust.

4.5.4. The fidelity of quantum concurrence in projective quantum MOR. As a measure of
pairwise quantum entanglement, we examine Wootters’ quantum concurrence [158]. The
concurrence is computed as follows. Let ρAB be the reduced density matrix associated with
spins A and B. Let λi be eigenvalues of the non-Hermitian matrix ρABρ̃AB, in decreasing order,
where ρ̃AB = (σy ⊗ σy)ρ

?
AB(σy ⊗ σy). Then the concurrence c is defined to be

c =

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4. (140)

It can be shown that the concurrence vanishes for product states, and that spins are pairwise
entangled if and only if c > 0.

In the third row of figure 12, we observe that coupled spin-pairs are far more likely to be
quantum-entangled than non-coupled spin-pairs, as expected on physical grounds. We further
observe that KTN ranks in the range 20–50 are necessary for projection to preserve concurrence
with good accuracy.

4.5.5. The fidelity of mutual information in projective quantum MOR. As a measure of
pairwise quantum information, we computed von Neumann’s mutual information [16,
section 11.3] as follows. For a general density matrix ρ we define the von Neummann entropy
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S(ρ)= −tr ρ log2 ρ. Then for spins A and B the mutual information is given by

S(ρA)+ S(ρB)− S(ρAB). (141)

The mutual information is non-negative and vanishes only for product states.
In the fourth row of figure 12, we observe that coupled spin-pairs share more mutual

quantum information than non-coupled pairs, as expected on physical grounds. We further
observe that KTN ranks in the range 20–50 are necessary for projection to preserve mutual
quantum information with good accuracy.

As a quantitative summary of this observation, the 15-spin simulations of figure 12 predict
15 single-spin density matrices ρA and 105 pairwise reduced density matrices ρAB (in addition
to higher order correlations). Each of the single-spin density matrices has 3 (real) degrees of
freedom, and each pairwise density matrix introduces 9 more (real) independent degrees of
freedom, for a total of 990 independent degrees of freedom associated with the one-spin and
two-spin reduced density matrices. In comparison, the rank-50 KTN manifold onto which
the quantum states are projected is described by Kählerian coordinates having (it can be
shown) 1600 locally independent coordinates. Using 1600 state-space coordinates to encode
990 physical degrees of freedom represents a level of MOR fidelity that (obviously) cannot be
improved by more than another factor of 2 or so. The mathematical origin of this empirical
algorithmic efficiency is not known.

4.6. Quantum state reconstruction from sparse random projections

We will conclude our survey of spin–dust simulations with some concrete calculations that
are motivated by recent advances in the theory of CS and sparse reconstruction. It will become
apparent that synoptic simulations of quantum trajectories mesh very naturally with CS methods
and ideas. To the best of our knowledge, this is the first description of CS methods applied to
quantum state-spaces.

Our analysis will mainly draw upon the ideas and methods of Donoho [159] and of Candès
and Tao [160], and our discussion will assume a basic familiarity with these and similar CS
articles [161]–[165], especially a recent series of articles and commentaries on the Dantzig
selector [166]–[172]. Our analysis can alternatively be viewed as an extension to the quantum
domain of the approach of Baraniuk, Hegde and Wakin [173]–[175] to manifold learning [176]
from sparse random projections.

Our objectives in this section are:

• establish that synoptically simulated wavefunctions ψ0 are compressible objects in the
sense of Candès and Tao [160],

• establish that high-fidelity quantum state reconstruction from sparse random projections is
algorithmically tractable,

• describe how nonlinear KTN projection can be described as an embedding within a larger
linear state-space of a convex optimization problem, and thereby

• specify algorithms for optimization over quantum states in terms of the Dantzig selector
(a linear convex optimization algorithm) of Candès and Tao [160].

At the time of writing, the general field of compressive sensing, sampling and simulation is
evolving rapidly—‘Nowadays, novel exciting results seem to come out at a furious pace, and
this testifies to the vitality and intensity of the field’ [171]—and our overall goal is to provide
mathematical recipes by which quantum researchers can participate in this enterprise.
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4.6.1. Establishing that quantum states are compressible objects. To establish that ψ0 is
compressible, it suffices to solve the following sparse reconstruction problem. We begin by
specifying what Donoho and Stodden [177] call the model matrix and what Candès and
Tao [160] call the design matrix to be an n × p matrix X . The projected state φ0 = Xψ0 is
given, and our reconstruction task is to estimate the ψ0 (the ‘model’) from the φ0 (the ‘sensor
data’). In general n 6 p, and we particularly focus upon the case n � p.

We initialize the elements of the design matrix X with i.i.d. zero-mean unit-norm
(complex) Gaussian random variables. Then the rows and columns of X are approximately
pairwise orthogonal, such that X satisfies the approximate orthogonality relation X X †

' p I
and therefore satisfies the approximate projective relation (X † X)2 ∼ pX † X . As a remark, if we
adjust X to make these orthogonality and projective relations exact instead of approximate—for
example by setting all n nonzero singular values of X to unity—our sparse reconstructions are
qualitatively unaltered.

In CS language, we have specified random design matrices X that satisfy the uniform
uncertainty principle (UUP) [160, 162, 178], meaning physically that the columns of X are
approximately pairwise orthogonal; see [160] for a definition of UUP design matrices that is
more rigorous and general.

From a geometric point of view, this means we can regard X † X—which turns out to be
the mathematical object of interest—as a projection operator from our (large) p-dimensional
quantum state-space onto a (much smaller) n-dimensional subspace.

We have already seen in sections 2.12 and 4.5 that the following minimization problem can
be tractably solved by steepest-descent methods:

min
c

‖ψ0 −ψκ(c)‖
2
l2
, (142)

where we have adopted the CS literature’s practice of specifying the l2 norm explicitly. Here
ψκ(c) is a vector of multilinear KTN polynomials as defined in section 2 and depicted in
figure 3. Inspired by the CS literature, we investigate the following CS generalization of (142):

min
c

‖X
(
ψκ(c)−ψ0

)
‖

2
l2

= min
c

‖φ0 − Xψκ(c)‖
2
l2
, (143)

Now we are minimizing not on the full Hilbert space, but on the n-dimensional subspace
projected onto by X . We recognize the right-hand expression as a nonlinear Kählerian
generalization of a standard minimization problem (it is discussed by Donoho and Stodden [177,
equation (3)] and by Candès and Tao [160, equation (1.15)]). To make this parallelism more
readily apparent, we can write the above minimization problem in the form

min
β

‖y − Xβ‖
2
l2

s.t. β = ψκ(c) (144)

for some choice of c, where we have substituted φ0 → y and introduced β as an auxiliary
variable. Comparing the above to the well-known LASSO minimization problem [172, 177]

min
β

‖y − Xβ‖
2
l2

s.t. ‖β‖l1
6 t, (145)

for some t , we see that the sole change is that the LASSO problem’s l1 sparsity constraint
‖β‖l16 t has been replaced with the KTN representability constraint β = ψκ(c). We remark
upon the parallelism that both constraints are highly nonlinear in β.

But this parallelism in itself does not give us much reason to expect that the
minimization (144) is tractable, since we saw in section 2 that the space of feasible solutions
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ψκ(c) is (floridly) nonconvex. Consequently, unless some ‘KTN magic’ of comparable
algorithmic power to the well-known ‘l1 magic’ of CS theory [179] should come to our rescue,
there seems to be little prospect of computing the minimum (144) in practice.

Persisting nonetheless, we compute successive approximations {c1, c2, . . . , ci} by a
projective generalization of the same steepest-descent method that produced the results of
figures 11 and 12. Specifically, we expand the KTN coordinates via ci+1 = ci + δci and iterate
the resulting linearized equations in δci

δci = −(A† X † X A)P A† X † X(ψκ(ci)−ψ0). (146)

Empirically, good minima are obtained from O(dimK) iterations of this equation from
randomly chosen starting points. This benign behavior is surprising, given that our objective
function (143) is a polynomial in O(dimK) variables having O((dimH)2) independent
terms, because generically speaking, finding minima of large polynomials is computationally
infeasible. According to the geometric analysis of section 2.5, the existence of feasibly
computed minima is explained by the rule structure of KTN state-space, which ensures that
almost all state-space points at which the increment (146) vanishes are saddle points rather than
local minima, in consequence of the nonpositive directed sectional curvature that is guaranteed
by theorem 2.1.

We now discuss KTN geometry from the alternative viewpoint of CS theory, further
developing the idea that KTN rule structure provides the underlying geometric reason why CS
‘works’ on KTN state-spaces.

4.6.2. Randomly projected KTN manifolds are KTN manifolds. With reference to the
algorithm of figure 2, we immediately identify (A† X † X A)P in (146) as the Kählerian metric
of a KTN manifold having an algebraic Kähler potential (see (17)) that is simply

κ(c̄, c)=
1
2ψ̄(c̄)X

† Xψ(c). (147)

Since X is constant, we see that the projected Kähler potential is a biholomorphic polynomial
in the same variables and of the same order as the original Kähler potential. It follows that a
projected KTN manifold is itself a KTN manifold, and in particular the KTN rule structure is
(of course) preserved under projection. This means that all of the sectional curvature theorems
of section 2 apply immediately to quantum MOR on KTN state-spaces.

This KTN inheritance property is mathematically reminiscent of the inheritance properties
of convex sets and convex functions, and it suggests that a calculus of KTN polynomials and
manifolds might be developed along lines broadly similar in both logical structure and practical
motivation to the calculus of convex sets and convex functions that is presented in the standard
textbooks of CS [180]; we discuss this further in section 4.6.9.

4.6.3. Donoho–Stoddard breakdown at the Candès–Tao bound. Putting these ideas to
numerical test, using the same spin–dust model as in previous sections, we find that random
CS does allow high-fidelity quantum state reconstruction, provided that the state trajectory to
be reconstructed has been synoptically unraveled (figure 13).

These numerical results vividly illustrate what Donoho and Stodden [177] have called
‘the breakdown point of model selection’ and we note that Candès and Tao have described
similar breakdown effects in the context of error-correcting codes [178]. Our results show that
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Figure 13. Quantum state reconstruction from sparse random projections.
A (typical) state from an 11-spin trajectory was reconstructed from sparse
projections onto random subspaces (horizontal axis) and the resulting quantum
fidelity was evaluated (vertical axis). Each point represents a single minimization
of (146), by iteration of (146) with a conjugate gradient correction, from a
random starting point chosen independently for each minimization. Convergence
to ‘false’ local minima was sporadically encountered for low-rank KTN
projections (graphs a and b, KTN ranks 1 and 2) but not for higher rank
KTN projections (graphs c–f, KTN ranks 5, 10, 20 and 30). The onset of
Donoho–Stodden breakdown was observed to occur near the Candès–Tao
bound (148)—plotted as a dotted vertical line—for all KTN ranks tested. The
ergodic spin–dust simulation yielded states whose reconstruction properties were
indistinguishable from random states, as expected.

a Donoho–Stodden breakdown occurs in quantum modeling whenever too many wave function
coefficients are reconstructed from too few projections.

For discussion, we direct our attention to the rank-30 block of figure 13(f), where
(as labeled) we reconstruct the p = dimH= 2nspin = 2048 (complex) components of ψ0
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from n random projections onto a KTN manifold having S = dimK = (KTN rank)× (1 +
log2(dimH))= 30 × 12 = 360 (complex) dimensions. All six blocks (a–f) of the figure are
similarly labeled with p and S.

Given our example with p = 2048 and S = 360, what does CS theory predict for the
minimum number n of random projections required for accurate reconstruction? According to
Candès and Tao [160],

With overwhelming probability, the condition [for sparse reconstruction] holds
for S = O(n/log(p/n)). In other words, this setup only requires O(log(p/n))
observations per nonzero parameter value; for example, when n is a nonnegligible
fraction of p, one only needs a handful of observations per nonzero coefficient. In
practice, this number is quite small, as few as 5 or 6 observations per unknown
generally suffice (over a large range of the ratio p/n).

We naively adapt the above Candès–Tao big-O sampling bound to the case at hand by recalling
that S = n/log(p/n) implies n ' S log(p/S) for p � n [181]. We therefore expect to observe
Donoho–Stodden breakdown at a (complex) projective dimension nsb(p, S) (which we will call
the sampling bound) that to leading order in S/p is

nsb(p, S)' S log(p/S)|S = dimK
p = dimH

. (148)

Here we recall that dimH is the (complex) dimension of the Hilbert space within which
the efflorescent KTN state-space manifold of (complex) dimension dimK is embedded (see
sections 2.6.4 and 2.11, and also (5), for discussion of how to calculate dimK).

The above sparsity bound accords remarkably well with the numerical results of figure 13.
This empirical agreement suggests that quantum MOR and CS may be intimately related, but on
the other hand, there are the following countervailing reasons to regard the agreement as being
possibly fortuitous:

1. the Candès–Tao bound applies to state-spaces that are globally linear, whereas we are
minimizing on a KTN state-space that is only locally linear, and

2. the onset of Donoho–Stodden breakdown in figure 13 is (experimentally) accompanied by
the onset of multiple local minima of (143), which are not present in the convex objective
function of Candès and Tao, and

3. high-accuracy numerical agreement with a ‘big-O’ estimate is fortuitous; the agreement
seen in figure 13 is better than we have reason to expect.

So although the Candès–Tao bound seems empirically to be the right answer to ‘when does
Donoho–Stodden breakdown occur in quantum MOR?’ the numerical calculations do not
explain why it is the right answer.

We now present some partial results—which, however, are rigorous and deterministic
insofar as they go—that begin to provide a nontrivial explanation of why the Candès–Tao bound
applies in the sparse reconstruction of quantum states. The basic idea is to embed the nonlinear
minimization (142) within a larger dimension problem that is formally convex. We will show
that this larger dimension optimization problem can be written explicitly as a Dantzig selection.

The main mathematical tool that we will need to develop is sampling matrices X whose
(small) row dimension is n = dim H , and whose (large) column dimension p is a power of
dim H . These matrices are too large to be evaluated explicitly—they are what Cai and Lv call
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‘ultrahigh-dimensional’ [169]. A novel aspect of our analysis is that we construct these matrices
deterministically, such that their analytic form allows the efficient evaluation of matrix products.

4.6.4. Wedge products are Hamming metrics on KTN manifolds. Let us consider how the
efflorescent KTN geometry that we described in sections 1.5.8 and 2.11 can be made the basis
of a deterministic algorithm for constructing good sampling matrices.

Our basic approach is to construct a deterministic lattice of points on KTN manifolds,
together with a labeling of the lattice for which the Hamming distance between two labels is a
monotonic function solely of the wedge product between that pair of points, such that the larger
the Hamming distance between two points, the closer they approach to mutual orthogonality.
The problem of constructing good sampling matrices then becomes equivalent to the problem
of constructing good error-correction codes.

We now construct the desired KTN lattice. We consider sampling matrices X whose
columns are not random vectors, but rather are constrained to satisfy ψ = ψκ(c) for some
KTN state-space ψκ(c). We wish these vectors to be approximately orthogonal. To construct
these vectors (and simultaneously assign each vector a unique code-word), we specify an
alphabet of four characters {a, b, d, e}, we identify the four characters with the four vertices
of a tetrahedron having unit vectors {n̂a, n̂b, n̂d, n̂e}, and we identify the unit vectors with the
four spin- j coherent states {|n̂a〉, |n̂b〉, |n̂d〉, |n̂e〉}, such that for s = {sx , sy, sz} the usual spin
operators, the tetrahedron vertices are n̂a = 〈n̂a|s|n̂a〉/j , etc. Soon it will become apparent that
the vertices of any polytope, not only a tetrahedron, suffice for this construction, and that the
vertices of Platonic solids are a particularly good choice.

We recall from our study of KTN geometry that a wedge product (12) can be associated to
each letter-pair {a, b} as follows:

|a ∧ b|
2
≡ 〈n̂a|n̂a〉〈n̂b|n̂b〉 − 〈n̂a|n̂b〉〈n̂b|n̂a〉. (149)

From Wigner’s identity (57) we have |〈n̂a|n̂b〉|
2
= |D j

j j(0, θab, 0)|2 = cos(θab/2)4 j where
cos(θab)= n̂a · n̂b, so the spin- j wedge product is easily evaluated in closed form as

|a ∧ b|
2
j = 1 − cos(θab/2)

4 j , (150)

which for our tetrahedral alphabet is simply

|a ∧ b|
2
j =

{
0 for a = b,

1 − 9− j for a 6= b.
(151)

Here and henceforth we have added a subscript j to all wedge products for which an analytic
form is given that depends explicitly on the total spin j .

Now we specify a dictionary to be a set of n-character words {wk
} with each word

associated with an ordered set of tetrahedral characters wk
= {ck

1, ck
2, . . . , ck

n}. We further
associate with each word a petal-vector |wk

〉

|wk
〉 = |n̂ck

1
〉 ⊗ |n̂ck

2
〉 · · · ⊗ |n̂ck

n
〉. (152)

Given two words {wi , wk
}, their mutual Hamming distance h(wi , wk) is defined to be the

number of symbols that differ between wi and wk . We also can associate with any two petal-
vectors their mutual wedge product |wi

∧wk
| defined by

|wi
∧wk

|
2
= 〈wi

|wi
〉〈wk

|wk
〉 − 〈wi

|wk
〉〈wk

|wi
〉. (153)
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The Hamming distance h(wi , wk) is a Hamming metric on our codeword dictionary, and it is
easy to show that this code metric is related to the petal-vector wedge product |wi

∧wk
| by the

simple expressions

|wi
∧wk

|
2
= 1 −

nspin∏
m=1

|〈n̂ci
m
|n̂ck

m
〉|

2 in general, from (152, 153), (154)

|wi
∧wk

|
2
j = 1 − 9− j h j (w

i ,wk) tetrahedral dictionary, from (150, 151). (155)

or equivalently for a tetrahedral petal-vector dictionary

h j(w
i , wk)= −log9(1 − |wi

∧wk
|
2
j)/j. (156)

The main result of this section is the above monotonic functional relation between a Hamming
distance and a wedge product. We are not aware of previous CS work establishing such a
relation.

The practical consequence is that given a dictionary of n-character words {wk
} having

mutually large Hamming distances (i.e. a good error-correcting code), this construction
deterministically specifies a set of nearly orthogonal petal-vectors {|wk

〉} (i.e. good vectors
for sparse random sampling). Conversely, the general problem of constructing a deterministic
set of nearly orthogonal petal-vectors is seen to be precisely as difficult as deterministically
constructing a good error-correcting code.

4.6.5. The n and p dimensions of deterministic sampling matrices. The column dimension
p of the petal-vector sampling matrices thus constructed is given in table 1 for Hamming
distances 1–4 as a function of the row dimension n, the number of polytope vertices nver, and the
dimensionality of the polytope space dimV0 (e.g. for our tetrahedral construction nver = 4 and
dimV0 = 2). We see that for fixed row dimension n, larger Hamming distances are associated
with smaller column dimension p, as is intuitively reasonable: the more stringent the pairwise
orthogonality constraint, the smaller the maximal dictionary of sampling vectors that meet this
constraint.

The construction has a further dimensional constraint as follows: it is straightforward
for values of n that are powers of 2 (because the tetrahedral construction can be used), more
complicated when n has factors other than 2 (because larger dimension polytope vertices must
be specified), and infeasible when n is large and prime. These constraints are reminiscent of
similar constraints that act upon the fast Fourier transform.

4.6.6. Petal-counting in KTN geometry via coding theory. These sampling theory results
have a direct quantitative relation to the efflorescent KTN geometry that we discussed in
sections 1.5.8 and 2.11. Specifically, we are now able to construct a petal-vector description
of KTN manifolds and verify that they indeed have exponentially many petals.

We consider a spin-1/2 rank-1 KTN manifold having nspin spins. The preceding tetrahedral
KTN construction deterministically generates a dictionary of petal-words {wk :k ∈ 1, 4nspin}

in one-to-one correspondence with petal-vector states {|wk
〉:k ∈ 1, 4nspin}. This dictionary of

states is exponentially overcomplete, since its number of words is 4nspin = 2nspin dimH. Yet
we also know that random pairs of petal-vectors in our tetrahedral dictionary are pairwise
orthogonal to an excellent approximation, because their median Hamming distance is 3nspin/4,
and consequently from (155) their median pairwise wedge product is |wi

∧wk
|
2
= 1 − 3−3nspin/4.
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Table 1. Recipes for the deterministic construction of sampling matrices by the
methods of section 4.6.4. The design variables are taken to be the dimensionality
of polytope space dimV0, the number of polytope vertices nver and the desired
number of sampling matrix rows n. All expressions are exact and the results
apply to both real and complex vector spaces. The expressions are organized
to show that increased minimal Hamming distance is associated with decreased
column-length p; this is the central design trade-off.

Hamming
distance

type
of code

constraints
upon (wC, wD)

number of columns in the
constructed sampling matrixc

1
identity
code wC = wD p = n

log2(nver)
log2(dimV0)

2
one-character
parity codea wC = wD + 1 p = n

log2(nver)
log2(dimV0)

− log2(nver)
log2(n)

3
m-character
Hamming code

wC = 2m − 1
wC = wD +m p = n

log2(nver)
log2(dimV0)

− log2(nver)
log2(n)

log2
log2(ndimV0)
log2(dimV0)

4
Hamming code
and parity checkb

wC = 2m
wC = wD +m+ 1 p = n

log2(nver)
log2(dimV0)

− log2(nver)
log2(n)

log2
2 log2(n)
log2(dimV0)

Summary of symbol definitions
p = number of sampling matrix columns wC = length of codewords, thus n = (dimV0)wC
n = number of sampling matrix rows wD = length of data words, thus p = (nver)wD

nver = number of polytope vertices m = (integer) index of Hamming code
dimV0 = dimensionality of the polytope space

a Parity characters are calculated mod nver rather than the (more common in the literature) mod 2.
bHamming-and-parity codes are sometimes called SECDED codes (single-error correct, double-error detect).
c The given functions p(n,nver,dimV0) are exact, and are valid for both real and complex vector spaces.

As a concrete exercise in petal-counting, we consider a system of nspin = 16 spin-1/2
particles. The tetrahedral construction generates a dictionary of 416

= 232 petal-vectors for
this system, each word of which labels a petal whose state-vector has a wedge separation of
|wi

∧wk
|
2 > 2/3 from the state-vector of all other petals. A subset of that petal dictionary

having minimal Hamming distance 4 is specified by the SECDED code of table 1. This
SECDED subset has Hamming parameter m = 4 and hence m + 1 = 5 characters out of 16 in
each word are devoted to error-correcting. The resulting (smaller) error-corrected dictionary has
416−5

= 411
= 222 petal-vectors, and the sampling matrix whose columns are the petal-vectors of

this dictionary therefore has n = 216 rows and p = 222 columns, whose column wedge products
satisfy the (exact) pairwise inequality

|wi
∧wk

|
2 > 1 − 3−4 for all i 6= k. (157)

These calculations confirm our previous conclusion from Riemann curvature analysis, that even
a rank-one KTN manifold contains exponentially many petals. They also illustrate that the
deterministic construction of high-quality sampling matrices involves sophisticated trade-offs
in error-correcting codes.
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4.6.7. Constructing a Dantzig selector for quantum states. We now have all the ingredients
we need to establish the following remarkable principle: any quantum state that can be
written as a (sparse) sum of petal-vectors can be recovered from sparse random projections
by convex programming methods. The method is as follows. We approximate the minimization
problem (142) that began this section in the form

min
c

‖ψ0 −ψκ(c)‖
2
l2

' min
w̃

‖ψ0 − Xw̃‖
2
l2
. (158)

Here the columns of X are the petal-states of our dictionary (the preceding tetrahedral dictionary
will do) and w̃ is a column vector of petal coefficients (one coefficient for every vector in our
dictionary).

We then further approximate the above minimization problem in any of several standard
forms [172], see also [166, 168, 179]. These forms include (e.g.):

min
w̃

‖w̃‖l1
s.t. ‖X †(ψ0 − Xw̃)‖l∞ 6 λ Dantzig selector, (159a)

min
w̃

‖ψ0 − Xw̃‖
2
l2

s.t. ‖w̃‖l1
6 λ LASSO, (159b)

min
w̃

‖w̃‖l1
+ λ‖ψ0 − Xw̃‖

2
l2

basis pursuit. (159c)

Here λ is a parameter that is adjusted on a per-problem basis. Although the relative merits of
the above optimizations are the subject of lively debate, for many practical problems they all
work well. The Dantzig selector optimization (159a) in particular can be posed as an explicitly
convex optimization problem that can be solved by a Dantzig-type simplex algorithm [160]
(among other methods).

To recapitulate, the key physical idea behind the first step (158) of the above two-step
transformation is to represent a general state as a sparse superposition of petal-states. The key
mathematical idea behind the second step (159a)–(159c) is to approximate the resulting sparse
minimization problem as any of several forms that can be efficiently solved by numerical means.

A second key mathematical idea is that the column dimensions of X can be very large—
much larger than the Hilbert space dimension dimH—provided that efficient algorithms exist
for calculating the product Xw̃ without calculating either X or w̃ explicitly (as was discussed
earlier in section 2.1.1). This is why deterministic methods for constructing X are essential to
the feasibility of quantum optimization by Dantzig selection and related methods.

This construction provides a nontrivial mathematical explanation of why the numerical
optimizations of this article are well behaved: the early coarse-grained, nonlinear stages can be
regarded as implicitly solving a convex optimization problem over petal-states, and the later
fine-grained stages are solving a problem which is linear to a reasonable approximation.

Boyd and Vandenberghe’s textbook on optimization asserts [180, in the preface]

With only a bit of exaggeration, we can say that, if you formulate a practical problem
as a convex optimization problem, then you have solved the original problem.

But this assertion must be regarded with caution when it comes to convex optimization over
quantum state-spaces, because the matrices and vectors involved are of enormously larger
dimension than is usually the case in convex optimization. Figueiredo et al [182] and also Cai
and Lv [169] discuss this domain and it is clear that Cai and Lv’s conclusion ‘Clearly, there
is much work ahead of us’ applies especially to compressive quantum sensing, sampling and
simulation.
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Table 2. RIP properties of 8 × 16 sampling matrices that have been generated
via a deterministic tetrahedral construction, contrasted with same-size random
Gaussian sampling matrices. By definition, matrices for which 100% of subsets
have δS ∈ (0, 1) are RIP in order S. For all sparsities the tetrahedral construction
yields RIP properties that are superior to random constructions.

The 8× 16 sampling matrix generated by
a tetrahedral construction having Hamming distance 2

key: hue encodes phase, brightness encodes amplitude

Sparsity
S

16
S

Subsets with Subsets with
δS ∈ (0, 1)
(tetrahedral)a

δS ∈ (0, 1)
(gaussian)b

Median λmin

of subsets
(tetrahedral)

Median λmin

of subsets
(gaussian)

Median λmax

of subsets
(tetrahedral)

Median λmax

of subsets
(gaussian)

1 16 16 (100%) 16 (100%) 1.000000 1.000000 1.000000 1.000000
2 120 120 (100%) 120 (100%) 0.666666 0.691952 1.333333 1.308047
3 560 560 (100%) 545 (97%) 0.490824 0.445988 1.509175 1.594857
4 1820 1804 (99%) 1350 (74%) 0.394501 0.283165 1.664513 1.855300
5 4368 3852 (88%) 1376 (32%) 0.265070 0.173275 1.815779 2.104026
6 8008 4408 (55%) 413 (5%) 0.168143 0.096862 1.971790 2.341109
7 11440 1360 (12%) 21 (0%) 0.100638 0.044849 2.103133 2.572424
8 12870 12 (0%) 0 (0%) 0.044634 0.012520 2.240730 2.787555

aTetrahedral results are exact (8× 16 sampling matrix, tetrahedral construction with Hamming distance 2).
bGaussian results are median values from 100 trials (8× 16 random complex matrix with columns normalized).

4.6.8. Orthogonality properties of deterministic sampling matrices. It is clear from the
preceding discussion that overcomplete dictionaries of word-states {|wi

〉} having the
approximate orthogonality property 〈wi

|w j
〉 = (X X †)i j ' δi j are desirable both for simulation

purposes and for sampling purposes. Stimulated by the work of Candès and Tao [160], an
extensive and rapidly growing body of work characterizes such matrices in terms of the
restricted isometry property (RIP). We now briefly discuss the RIP of tetrahedral sampling
matrices, mainly following the notation and discussion of Baraniuk et al [183].
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We regard the word indices i and j in 〈wi
|w j

〉 as the row index and column index of a
Hermitian matrix. We specify a subset T of word indices, and we define the sparsity S of that
subset to be S = #T . Then 〈wi

|w j
〉T ≡ 〈wi

|w j
〉: i, j ∈ T is an S × S Hermitian matrix, which

we take to have minimal (maximal) eigenvalues λmin (λmax). Then the isometry constant δS of
Candès and Tao is by definition

δS = max(1 − λmin, λmax − 1). (160)

Our word-state dictionary is said to have the restricted isometry property for order S iff
δS ∈ (0, 1) for all subsets T having sparsity S. Physically speaking, a dictionary of p word-states
having the RIP property in order S has the property that any set of S words is (approximately)
mutually orthogonal.

Testing for the RIP property is computationally inefficient, since (at present) no known
algorithm is significantly faster than directly evaluating λmin and λmax for all

( p
S

)
distinct

subsets T . Referring to table 1, we see that a spin-1/2 tetrahedral dictionary of three-letter
words, one of which is a parity-check character, such that the minimal Hamming distance is 2,
yields a sampling matrix having p = 42

= 16 columns and n = 23
= 8 rows. To calculate the RIP

properties of this dictionary, the maximal sparsity we need to investigate is S = n = 8, for which
(

p
n )= (

16
8 )= 12 870 subsets must be evaluated, which is a feasible number. As summarized in

table 2, the tetrahedral construction yielded sampling matrices having the RIP property for
sparsity S = 1, 2, 3, while for higher values of S the fraction of subsets having δS ∈ (0, 1)
dropped sharply.

For purposes of comparison, we computed also the median RIP properties of 8 × 16
random Gaussian matrices. We found that for all values of sparsity, the RIP properties of the
Gaussian random matrices are inferior to those of the deterministic tetrahedral construction. We
are not aware of any previous such random-versus-deterministic comparisons in the literature.
Since it is known that the Gaussian random matrices are RIP in the large = p limit, we were
surprised that their RIP properties are unimpressive for moderate values of p.

In preliminary studies of larger matrices, we found that known asymptotic expressions
for the extremal singular values of Gaussian random sampling matrices—due to Marčenko and
Pastur [184], Geman [185] and Silverstein [186], as summarized for CS purposes by Candès and
Tao [178, see their section III]—were empirically accurate for tetrahedral sampling matrices too,
for all values of the row dimension n 6 256 and all values of the sampling parameter S 6 n.

We emphasize, however, that although the average-case performance of these petal-vector
sampling matrices is empirically comparable to Gaussian sampling matrices, their worst-case
performance is presently unknown, and in particular such key parameters as their worst-case
isometry constants are not known.

As Baraniuk et al [183] note: ‘the question now before us is how can we construct matrices
that satisfy the RIP for the largest possible range of S.’ It is clear that answering this question,
in the context of the deterministic geometric construction given here, comprises a challenging
problem in coding theory, packing theory and spectral theory, involving sophisticated trade-
offs among the competing goals of determinate construction, large (and adjustable) p/n
ratio in the sampling matrix and small isometry constants for all values of the sparsity
parameter S 6 n.

It is also clear that many other considerations than the RIP property enter into the design
and construction of sampling matrices. For example, in imaging applications it may be desirable
to generate sampling matrices in real-time, either digitally or by analogue means [187]. In
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consequence, we are presently considering whether non-RIP measures, such as the sparsity-
coherence measures of Candès and Romberg [188], offer a more appropriate figure-of-merit
for KTN-based state reconstruction from sparse random samples. These investigations are in an
embryonic stage.

4.6.9. Why compressive sampling works in quantum simulations. Guided by the preceding
analysis, we now try to appreciate more broadly why CS principles apply in quantum MOR
simulations by systematically noting mathematical parallels between the two disciplines. We
will see that these parallels amount to an outline for extending the mathematical foundations of
CS to provide foundations for quantum MOR.

As our first parallel, we remark that what Candès and Tao call [160] compressible objects
are ubiquitous in both the classical and quantum worlds. This ubiquity is not easily explained
classically, and so almost always it is simply accepted as a fact of nature; for example almost
all visual fields of interest to human beings are compressible images. In contrast, we have
seen that the ubiquity of quantum compressible objects has a reasonably simple explanation:
most real-world quantum systems are noisy, and noisy systems can be modeled as synoptic
measurement processes that compress state trajectories; working through the mathematical
details of this synoptic compression was of course our main concern in section 3. From this
quantum informatic point of view, it is a fundamental law of nature that any quantum system
that has been in contact with a thermal reservoir (or equivalently, a measurement-and-control
system) is a compressible object.

The second parallel is the availability of what the CS field calls dictionaries [189] of the
natural elements onto which both classical and quantum compressible objects are projected. For
example, wavelet dictionaries are well suited to image reconstruction. In the quantum MOR
formalism of this paper, the parallel quantum dictionary is (of course) the class of multilinear
biholomorphic KTN polynomials that define the Kählerian geometry of quantum MOR state-
spaces (section 2). This is not a linear dictionary of the type generally discussed in the CS
literature, but rather it is an algebraic generalization of such dictionaries. In the language of
Donoho [159], open quantum systems exhibit a generalized transform sparsity whose working
definition is the existence of high-fidelity projections onto KTN manifolds.

The third parallel is the existence of robust, numerically efficient methods for projection
and reconstruction. It is here that the mathematical challenges of aligning quantum MOR
with CS are greatest. In our own research, we have tried non-CS/non-MOR optimization
techniques—such as regarding ψ0 −ψ(c)= 0 as the definition of an algebraic variety, and
decomposing it into a Gröbner basis—but in our hands these methods perform poorly. Turning
this observation around, it is possible that the efficient methods of quantum MOR-CS might find
application in the calculation of (specialized algebraic forms of) Gröbner bases.

Although a substantial body of literature exists [190] for minimizing functions that are
convex along geodesic paths on Riemannian state-spaces—which generalizes the notion of
convexity on Euclidean spaces—there does not seem to be any similar body of literature on
the convexity properties of holomorphic functions on Kählerian state-spaces.

We have previously quoted Shing-Tung Yau’s remark [98, p 21]: ‘While we see great
accomplishments for Kähler manifolds with positive curvature, very little is known for Kähler
manifolds [having] strongly negative curvature.’ By the preceding construction, we now
appreciate that (negatively curved) KTN manifolds have embedded within them lattices that
display all the intricate mathematical structure of coding theory—so that it is not surprising that
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the geometric properties of these manifolds resist easy analysis. It seems that the ultrahigh-
dimensional model selection of Cai and Lv [169] can be described—with more or less
equal mathematical justification—in terms of the differential geometry of ruled manifolds, or
alternatively in terms of coding theory, or alternatively in terms of optimization theory.

4.6.10. Other numerical research avenues. A recent theme issue of IBM Journal of Research
and Development describes large-scale simulation codes running on ‘Blue Gene’ hardware
that is approaching petaflop-scale computation speeds [198]. Both classical [199]–[203] and
quantum [204]–[206] simulations are reviewed, and it is fair to say that the boundary between
these two kinds of simulations is becoming indistinct, in particular when it comes to computing
inter-atomic potentials that are both numerically efficient (classical) and accurate (quantum).
This continues a sixty-year record of mutually supportive progress in hardware, software and
algorithm development [207].

This progress is by no means finished. Efficient numerical means for evaluating the Penrose
pseudo-inverse of (146) are needed, as this inversion is the most computationally costly step of
our sparse reconstruction codes as they are presently implemented. Preconditioned conjugate
gradient techniques are one attractive possibility [208]–[210], because these techniques lend
themselves well to the large-scale parallel processing. The algebraic structure of the KTN metric
tensor creates additional algorithmic challenges and opportunities that (so far as the authors
are aware) have not been addressed in the computing literature. Suites of test problems and
open-source software tools have contributed greatly to the rapid development of CS theory and
practice [189], and it would be valuable to have a similar suite of problems and tools for the
simulation of open quantum systems.

5. Conclusions

It is gratifying (yet mysterious too) that even after decades of progress, both classical and
quantum simulation research are still generating fresh ideas and new capabilities. It is now
routine to simulate even large-scale, non-equilibrium systems [61], [191]–[194]; a capability
that seemed infeasible a few years ago. Can this pace of progress be sustained in coming
decades? Our present understanding is insufficient to answer; we know only that new insights
from many fields are pointing to unexplored avenues for simulation research.

At the same time, multiple scientific and engineering disciplines are applying quantum
simulations in service of objectives that are global in scope. Nanotechnologists envision devices
that press against the quantum limits of size, speed, efficiency and sensitivity [130, 195].
Quantum spin microscopy researchers envision applying these ultra-small devices to observe
biological structures in 3D with atomic resolution [6]–[8], [13, 14]. Quantum chemists and
molecular biologists share an emerging vision that the functional properties of observed
molecular structures can be predicted ab initio [196]. New enterprises such as synthetic biology
and regenerative medicine stand ready to embrace these quantum tools on a global scale [197].

5.1. Summarizing some key elements

Although this paper is long, none of the mathematics in it has been particularly difficult. This is
because what Robert Geroch said of theoretical physics is also broadly true of the present state
of the art in quantum simulation science [211]:
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It seems to be the case in practice that the mathematics one needs . . . is not of a
highly sophisticated sort. One hardly ever uses elaborate theorems or long strings of
definitions. Rather, what one almost always uses, in various areas of mathematics,
is the five or six basic definitions, some examples to give the definitions life, a few
lemmas to relate various definitions to each other, and a couple of constructions.

Let us summarize ‘the basic definitions, examples and constructions’ of our recipes.

5.1.1. Key elements from quantum information theory (QIT). Our recipes have adopted from
quantum information theory the key idea that noise processes can be modeled as covert
measurement processes. This leads naturally to the idea that quantum states that have been in
contact with a thermal reservoir (or equivalently, subject to a measurement and control process)
are compressible objects.

5.1.2. Key elements from experimental physics. Our recipes have adopted from experimental
quantum physics the key idea that mathematical ingredients of quantum simulation map one-to-
one onto familiar physical systems such as measuring devices and also the operational principle
that the main deliverable of a quantum simulation is accurate prediction of the results of physical
measurements.

5.1.3. Key elements from algebraic and differential geometry. Our recipes have adopted from
algebraic geometry the key idea that reduced-order quantum state-spaces can be described as
geometric objects, using the language and methods of algebraic and differential geometry. In
particular, quantum trajectories can be described in terms of drift and diffusion processes upon
state-space manifolds, just as in classical modeling and simulation theory. We have borrowed
from Kählerian differential geometry the notion that the algebraic properties of tensor network
state-spaces are intimately related to their hyperbolic-type sectional curvature properties, and
that the hyperbolic-type sectional curvature, in turn, largely determines the efficiency and
reliability of trajectory integration upon these state-spaces.

5.1.4. Compressive sensing, sampling and simulation. Our recipes have adopted from CS the
idea that optimization problems involving quantum states as compressible objects can often be
solved with sparse and/or random data samples. This can lead to more efficient sensing, faster
reconstruction algorithms and improved physical insight.

5.1.5. The basic definitions, examples and constructions of quantum systems engineering (QSE).
The authors regard the above elements not as separate entities that have been merged together
from multiple separate disciplines, but rather (in Geroch’s phrase) as being ‘the basic definitions,
examples, and constructions’ of quantum simulation science and its sibling discipline of QSE.
The motivation for adopting this unitarian point of view is the dawning understanding that—in
multiple fundamental respects—large-scale quantum simulation is inherently easier than large-
scale classical simulation. It will take a long time and a lot of effort to realize the implications
and opportunities of this understanding.
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