
 1 

Forecasting technology costs via the Learning 
Curve – Myth or Magic? 

Stephan Alberth* 

Forward – by Yuri Ermoliev† 

The concept of learning curves (experience curves) was first introduced by 
Wright (1936).  By way of empirical evidence he found that unit costs for 
different inputs when compared to the cumulative production of airplanes 
exponentially declines with the cumulative level of production as a result of 
“learning-by-doing”.  This relates heavily to so-called increasing returns, non-
convexities and the path dependence of technological developments with 
potential “lock-in” states.  As a result, purely market mechanisms fail to select 
new “expensive” technologies which may become “cheap” and environmentally 
sound under proper early investments.  The learning curve, in fact, shows the 
investment necessary to make the new technology competitive with cheap 
mature technologies, but it does not predict when the break-even point occurs.  
The time of break-even depends on policy variables affecting deployment rates 
of new technologies and various uncertainties affecting their learning curves 
restricting straight forward extrapolations of declining costs.  Since learning 
curves represent combined effects of a large number of factors (see D.L. 
Bodde, Technological Review, March/April 1976), they cannot be used reliably 
for short-term decisions.  As IIASA‟s studies show (Gritsevski, Nakicenovic, 
2000), the use of learning curves plays a decisive role for comparative analysis 
of long-term competitive technologies, in particular low-cost paths to CO² 
stabilization.  A key issue in this analysis is proper treatment of involved 
uncertainties.  Unfortunately, there are only a few publications attempting to 
systematically analyse uncertainties affecting learning curves.  In general it may 
require a rather delicate approach that is able to deal with potential outliers, 
“hard” historical observations and “staff” data from expert‟s opinions and 
scenarios.  The main goal of this paper is to fill a gap in this important research 
area. 
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Abstract 

To further our understanding of the effectiveness of learning or experience 
curves to forecast technology costs, a statistical analysis using historical data 
has been carried out. Three hypotheses have been tested using available data 
sets that together shed light on the ability of experience curves to forecast 
future technology costs. The results indicate that the Single Factor Learning 
Curve is a highly effective estimator of future costs with little bias when errors 
were viewed in their log format. However it was also found that due to the 
convexity of the log curve an overestimation of potential cost reductions arises 
when returned tothe results were considered in their monetary units. 
Furthermore the effectiveness of increasing weights for more recent data was 
tested using Weighted Least Squares with exponentially increasing weights. 
This resulted in forecasts that were typically less biased than when using 
Ordinary Least Square and highlighted the potential benefits of this method. 
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1. Introduction 

In order to improve our understanding of the effectiveness of learning curves or 
experience curves for forecasting technology costs, a statistical analysis of a 
range of technologies has been carried out. Three hypotheses have been 
tested using available data sets that together shed light on the ability for 
learning curves to forecast future technology costs. The aims of this research 
are similar to that of McDonald and Schrattenholzer (2001, p255) who analysed 
the variability and evaluated the usefulness of learning curves for applications in 
long-term energy models. However, where they focused on the variability of the 
actual long term learning rates between energy technologies, this research 
directly evaluates the ability for the Single Factor Learning Curve (SFLC) to 
make forecasts about future costs using historical data. Throughout the text 
reference has been made to both learning curves and experience curves. The 
term „learning curve‟ has been used to refer to the general concept while the 
term “experience curve” refers more specifically to the calculation of costs (or 
prices) as a function of cumulative experience. 

Initially the hypothesis that experience curves can be used as an unbiased 
estimator of future costs has been tested by calculating the distribution of 
forecast errors when using historical experience curve rates as a predictor. The 
second hypothesis tested refers to the question „do experience curves as a 
predictor of future costs improve as more experience is accumulated?‟ This has 
been tested by way of an empirical analysis comparing the forecasts made with 
fewer data points to forecasts that were made later on with access to a greater 
number of data points. Finally the hypothesis has been tested relating to 
whether the explaining power of older data is less important than that of the 
more recent data by using weighted least squares with exponentially higher 
weights being placed on more recent data. Together the results of this research 
provides an initial appraisal of the usefulness of experience curves for 
forecasting as well as some interesting data in terms of variability of forecasting 
errors both for the individual technologies tested as well as the set of forecasts 
aggregated over all technologies.  

In the absence of easy to use and reliable models or methods to make cost 
projections for new technologies, experience curves have been used 
extensively in the literature to provide indications of “potential” cost reduction as 
experience is gained and “potential” learning investments required to reach a 
situation of break-even, the point where a new technology surpasses an 
incumbent technology in terms of cost-effectiveness. The method has 
nevertheless been criticised for a number of its inherent weaknesses. First it is 
important to note that learning curves are a heuristic measure without a solid 
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theoretical basis although further work continues in this area (such as by Wene 
author of IEA 2000). The simplicity of the SFLC that calculated cost/price 
uniquely as a function of cumulative experience, can also be seen as a 
weakness since, for instance, it does not take into account R&D or other 
technology specific factors. On the other hand the 2 Factor Learning Curve 
(2FLC), usually incorporating cumulative production and cumulative R&D 
spending, is difficult to implement due to its need for hard to acquire data and 
also, in the case for wind and solar at least, because it has shown poor results 
(Papineau 2004). Studies based on multi-factor learning curves use technical 
factors to explain changes in the dependant variable (usually price or cost) and 
have been shown to offer highly informative results, such as in the case of the 
flying fortress (Mishina 1999), the chemical industry (Lieberman 1984) and wind 
power (Coulomb & Neuhoff 2005) . Nevertheless, despite their evident 
relevance in describing historical trends, when it comes to predicting future 
costs one faces a problem of compounding uncertainties. That is, not only 
should the relationship between independent and dependant variables be 
maintained but one must also be able to forecast future values for what are 
generally highly uncertain independent variables.  

A further perceived limitation is the absence of floor costs that have been shown 
to exist particularly for technologies that reach maturity. One explanation is that 
when growth of experience begins to decline, „forgetting by not doing‟ becomes 
an important factor. On the other hand, most technologies relevant to climate 
change are still far from reaching maturity. One fortuitous result is that learning 
curves used in this field may be somewhat more accurate than learning curves 
used to describe cost reductions in more mature technologies. To take 
advantage of this situation focus has remained during the project on 
technologies that continued to grow. Another possible limitation is that 
improvements in quality, such as in the automotive industry, can offset the 
expected reductions in cost (examples given in McDonald & Schrattenholzer 
2001and Colpier & Cornland 2002). Coulomb & Neuhoff (2005) suggest that in 
the case of wind power, turbine size could also have an important effect on 
learning rates and that wind turbines have suffered from recent diseconomies of 
scale, at least on the production side. Once they converge to an optimal size, 
one could expect “faster cost reductions” since simple cost reductions would 
then be the main focus. Such examples of structural change can lead to a 
dynamically shifting learning rate, something that exponentially increasing 
weights given to more recent data points would help to rectify.  

To better understand the usefulness and robustness of the experience curve 
paradigm, this paper measures the effectiveness a posteriori of the simple 
SFLC to forecast future costs for a range of technologies. A number of different 
methods to calculate the experience curve parameters are compared including 
Ordinary Least Squares (OLS), the standard method used for experience curve 
calculations and Weighted Least Squares (WLS) with exponentially higher 
weightings going to more recent information. This assumes that the most recent 
data offers a better representation of how a technology will continue to learn 
than older data. The Robust Least Squares (RLS) method, that weights the data 
according to the deviation from the line of best fit, was also utilised with the aim 
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of reducing the effect of outliers. This puts less weight on sudden changes in 
market conditions or various sources of data error that could cause strong 
temporary fluctuations in price.  

In all, the fundamental concept of this research paper is similar to that of Everett 
and Farghal (1994, 1997a and 1997b) in their use of learning curves to predict 
total time or cost required for future cycles of a repetitive construction activity. 
The emphasis and methods used, however, are quite different. In particular 
their work focussed on an area that should in theory be far easier to forecast 
since the projects were generally over a shorter time period, remained more or 
less identical and did not cross regional boundaries. Furthermore they focused 
on the use of smoothing techniques that reduced the importance of the more 
recent data and looked at the error of total costs required to reach the „final‟ 
cumulative output. Since in this paper we are dealing with technologies that are 
changing over 10 or 20 years or longer with a greater likelihood of fundamental 
shifts in the learning curve, we have considered weighing data in such a way 
that recent data has a stronger influence over forecasts. Furthermore, since 
there is generally no pre-decided limit to the total output of a technology, this 
paper also makes forecasts for a set number of doublings of cumulative 
capacity with special effort to capture the uncertainty distributions of the 
forecasts made. Despite the strong grounding of this paper in actual historical 
statistics there still remains scope for sample selection bias since all of the 
technologies selected have certainly reached some level of success. 
Nevertheless by evaluating the effectiveness of the learning curve and 
measuring the uncertainties surrounding its forecasts, the paper is able to 
respond in part to the acknowledged limitations of the experience curve model. 
Such limitations include comments by Wene (IEA 2000) where he highlighted 
“the risk that expected benefits will not materialise,” and of Grübler et al. (1998 
p510) who warned of the dangers of “„best guess‟ parameterisation”. 

The following section provides a literature review of learning curves and their 
ability to predict future learning investments. The forecast model is then 
discussed as are the assumptions made and the data sources used. This is 
followed by the results of the model and a discussion on the ability for 
technology learning investments to be predicted through learning curve 
methods. 

 

2. Literature review of learning curves 

In the overview of the 1998 Energy Economics special issue on „The Optimal 
Timing of Climate Abatement‟, Carraro and Hourcade pointed out the notable 
influence that learning appeared to have on the calculation of abatement costs. 
According to their survey of Energy-Economics-Environment (E3) models, 
learning introduced around a 50% drop in abatements costs. The IEA 
publication „Experience Curves for Energy Technology Policy‟ (IEA 2000) 
presents a broad overview of the work covered up to the end of the 1990‟s and 
also presents the findings from the 1999 IEA workshop on this subject. Their 
recommendation was that experience effects should be “explicitly considered in 
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exploring scenarios to reduce CO2 emissions and calculating the cost of 
reaching emissions targets” (IEA 2000, p114). 

Empirical evidence for learning curves was first discovered in 1925 at the 
Wright-Patterson Air Force Base where it was discovered found that plotting an 
aeroplane‟s manufacturing input against cumulative number of planes built on a 
log-log scale produced a linear result as presnted. The benefits in efficiency 
found were proclaimed by Wright as being the result of “Learning by Doing” in 
his 1936 publication. This “learning curve” was calculated for a manufacturing 
input such as time as shown in Equation (1), where Nt was the labour 
requirements per unit output for period (t), Xt the cumulative output in units by 
the end of the period. In the equation „a‟ is the constant and „b‟ the learning 
coefficient as determined by regression analysis: 

tt XbaN loglog
                                      (1) 

The next major advancement in learning curves was made by Arrow in his 1962 
publication (Arrow 1962, IEA 2000). He generalised the learning concept and 
put forward the idea that technical learning was a result of experience gained 
through engaging in the activity itself. Undertaking an activity, Arrow suggested, 
leads to a situation where “favourable responses are selected over time” (Arrow 
1962, p156). 

During the 1960‟s the Boston Consulting Group (BCG) popularised the learning 
curve. They further developed the theory and published a number of articles on 
the subject (BCG 1968 in IEA 2000, Henderson 1973a, Henderson 1973b). 
They also coined the term “experience curve”, as distinct from “learning curve” 
which related to „unit total costs‟ as a function of „cumulative output‟, rather than 
„unit inputs‟ as a function of „cumulative output‟ as shown in Equation (2). In this 
equation the cost per unit „Ct‟ depends on the cumulative number of units 
produced „Xt‟ and the constant „a‟ and coefficient „b‟ that that can be found using 
regression analysis. This can be rewritten into a simpler form, as shown by 
Equations (3) to Equation (4). The Progress Ratio (PR) defined in Equation (5) 
and Equation (6) is a widely used ratio of final to initial costs associated with a 
doubling of cumulative output. The Learning Rate (LR) represents the 
proportional cost savings made for a doubling of cumulative output as 
presented in Equation (7). 
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                                     ,2 bPR                                                (6) 

PRLR 1 .                                          (7) 

Despite a strong preference for the use of cost data for this type of analysis, 
lack of such information often leads to replacing cost with price data which is 
more readily available (IEA 2000). This leads to an equivalent formulation as 
presented in Equation (8) and Equation (9).  

                   tt XbaP loglog
,                                    (8) 
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,                                     (9) 

Where b is the learning coefficient and P0 and X0 are the price and cumulative 
output during the initial period. 

The use of price data reduces the quality of the empirical analysis as prices can 
vary due to market influences. As proposed by BCG, reductions in cost that are 
made early in the product‟s development are often not passed on to the buyer, 
as shown in Figure 1. This situation can remain until there is a „shake-up‟ of the 
industry due to increased competition (BCG 1968 in IEA 2000). Furthermore, 
due to the discovery that knowledge diffusion could have a serious impact on 
long-term cost advantages (Lieberman 1987), learning curves began to lose 
favour. 

 

Figure 1   Price development of a new product as formulated by BCG 
(Source IEA 2000) 

Figure 2 presents learning rates for a number of electricity producing 
technologies where electricity costs are shown in 1990 US dollars per kWh and 
are graphed against cumulative production in TWh. The graphic shows the lines 
of best fit on a log-log scale with associated progress ratios included. For each 
technology the linear slope shown is equal to the „-b‟ as described in Equation 
(2). This can also be transferred into a Learning Rate (LR) by using Equation 
(7).  For example in this study, photovoltaics has a PR of 65% (the very upper 
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limit of published findings) which means that if there was a doubling of 
cumulative photovoltaic electricity production then the price according to the 
learning curve theory should be reduced to 65% of the present value. 
Alternatively one could say that for every doubling of cumulative production, 
there is a cost reduction equal to the Learning Rate (LR) which is 1-PR, or 35%.  

 

Figure 2   Progress Ratios of Electric Technologies in EU, 1980-1995 
(Source IEA 2000) 

In Figure 3, the shaded area represents the cumulative costs needed to reach 
the break-even point. What is important to note here is that only the area that 
lies above the baseline alternative is considered a learning investment (in the 
case of renewable electricity the baseline assumption is generally considered to 
be traditional fossil fuel power stations, hence making a further assumption that 
such a value for cost can be forecasted).  In situations where niche markets 
exist (for example solar PV electricity for remote areas or hand held devices), 
the required learning investments is further reduced as shown by the unshaded 
step-like area of the diagram. Unfortunately, even a small error of plus or minus 
.02 in the learning rate can lead to very large errors in the final Break-even point 
which can limit the usefulness of learning curves in making reliable forecasts of 
learning investments.  
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Figure 3   Cumulative learning investment requirements with different 
value niche markets (Schaeffer 2004 p18). 

Not only has the standard SFLC been used, but a number of more complex 
versions have also been developed. One common example is the 2FLC which 
combines both „learning-by-doing‟ and „leaning-by-searching‟ that relates cost 
reductions to both cumulative experience and cumulative R&D as described in 
Equation (10).   
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This presupposes that spending on R&D can also help achieve cost reductions, 
through all stages of a product‟s life cycle, and thus can become an important 
factor when forecasting the effects of, say, increasing R&D spending. There 
are, however, serious limitations on publicly available data about private R&D 
expenditure and so it can be very difficult to make an accurate representation of 
this factor (Junginger 2005). Lack of such data explains perhaps why the SFLC 
is often the preferred choice in technology modelling though it has also been 
suggested by some authors that R&D has only a minor and often statistically 
insignificant effect on costs when used with historical data. Papineau (2006) for 
example found the results of R&D “disappointing” for wind and solar production. 
She suggested that this may be due in part to the relative benefits of other 
forms of government intervention “such as direct subsidisation” that lead to 
increased cumulative production, rather than increases in R&D. Furthermore 
the relationship between R&D investment and cost reductions involve relatively 
long delays, which may go part way to explaining the lack of statistical evidence 
for the benefits of R&D investments. Rubin et al. (2004) also note that 
“cumulative production or capacity can be considered a surrogate for total 
accumulated knowledge gained from many different activities whose individual 
contributions cannot be readily discerned or modelled”. One explanation for 
some of the difficulty in arriving at accurate results for the 2FLC is a “„virtual 
cycle‟ or positive feedback loop between R&D, market growth and price 
reduction which stimulated its development” (Wanatabe 1999 in Barreto & 
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Kypreos 2004, p616). Here the authors concluded that “sound models for the 
role of R&D in the energy innovation system are not yet available” (Barreto & 
Kypreos 2004, p616).  

When looking at learning in the wider environment as well as in firm specific 
situations, an important role is played by technology spillover effects. Here the 
learning mechanism is associated not just with learning of a single technology 
but instead the entire cluster of related technologies. Learning rates that 
incorporate spillovers within clusters of technologies have also been calculated 
and included in energy technology models (Gritsevski & Nakicenovic 2000). To 
what extent clustering technologies together can improve forecasts within the 
learning curve paradigm remains unclear due to added uncertainties that comes 
with the inclusion of other factors. 

The question of floor-costs has also been raised and efforts to calculate their 
value with respect to minimum material costs for specific technologies have 
been carried out (Zweibel 1999, Neuhoff 2005). Zweibel (1999) looked at long 
term goals for the solar market and concluded that costs of 1/3 USD/Wp could 
be reached, thus making it a financially viable alternative to fossil fuel electricity 
despite the existence of the floor costs calculated. However as these 
calculations are based on engineers perceptions of how a technology will 
develop, they may not be able to take into account important advancements in 
the core materials, technologies or methods that engineering assessments are 
based on. According to Schaeffer (2004) “engineering studies have always 
been far too optimistic in assessing future costs”. He notes that although some 
of the predictions with learning curves were “just as bad”, with a longer history 
of statistics, the match of experience curves based projections with actual 
realisations can be pretty good” (2004 p8). As can be seen from Table 1Table 1 
neither method used to predict future costs were very accurate and this was in 
part due to an assumed continuous growth rate of the most recent years 
statistics (sometimes as high as 50%) that did not materialise. Nevertheless, 
Schaeffer suggested that the experience curve projections were generally more 
accurate than the optimistic engineering predictions found in the literature.  

Table 1 Comparison of engineering versus learning curve estimates to 
actual costs. Figure from Schaeffer (2004 p8). 
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Ongoing research has endeavoured to search ever deeper into the causes and 
agents of learning, far beyond the simple experience curves commonly found in 
the literature and many of the energy or E3 models. Generally the results of 
these more complex models can allow for a greater understanding of various 
technical factors relevant to the technology being tested (Nemet 2005, Coulomb 
& Neuhoff 2005, Mishina 1999). Nevertheless models based on technical 
factors suffer a limitation that experience curve models do not; they rely on 
intimate knowledge of the mechanisms leading to cost reductions. Although this 
makes perfect sense in terms of explaining past cost (or price) trends it may not 
be as valuable when trying to forecast future costs where new challenges may 
require unforeseen mechanisms that can not be endogenised into a technical 
factor model (as suggested by Coulomb & Neuhoff 2005). Furthermore such 
models would be difficult if not impossible to include in many E3 models due to 
their complexity and the lack of the required data within most models.  

The heterogeneity of these and many other aspects of the innovation process is 
a reminder of the arbitrary nature of the learning curve paradigm. The 
unexplainable or unforeseen leaps and periods of stagnation or cost inflation 
visible in many learning curves studied only serve to remind us of the 
precarious reliance on learning curves found in many E3 models. This is true 
not only for assessing the costs associated with new technologies but also for 
forecasting the costs associated with existing technologies such as the 
requirement for SOx and NOx scrubbers in coal plants. This returns us once 
again to what has been asserted by various authors as the largest limitation to 
the use of experience curves: the need for more accurate data and the inherent 
uncertainty associated with the learning model itself (for instance Papineau 
2004, IEA 2000). One approach to deal with this problem is to “incorporate 
stochastic learning curve uncertainty” directly into the model (Papineau 2004, 
p10), potentially reducing the dangers of using the learning curve method for 
forecasting. This research project aims to support the inclusion of stochastic 
modelling of learning by providing statistical data on the effectiveness of 
learning curves to forecast future technology costs. 

 

3. A Statistical model for evaluating learning curve cost forecasting 

Regression analysis has been used to test 3 hypotheses relating to the use of 
experience curves for forecasting technology costs (please note that prices 
have been used as a proxy for costs throughout). These are: 

H1: Experience curves can be used as an unbiased estimator of future 
technology costs 

H2: The ability to forecast technology costs improves as more data points are 
added 

H3: Recent data is more important than older data for forecasting the cost of a 
specific technology 

Hypothesis 1 was tested by considering the shape of the error distribution both 
in terms of mean deviation and skewness.  
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Hypothesis 2 was tested by comparing the distribution of the forecast errors 
using only the first half of the forecast data set to that using the second half.  

Hypothesis 3 was tested using the Weighted Least Squares (WLS) regression 
function from Matlab and using exponentially increasing weights by 10% to 20% 
per year.  Here an annual increase in the weighting factor of „w‟ percent has 
been used and a number of different values of this weighting factor „w‟ tested 
with the results for 10% and 20% presented here. Schaeffer (2004) proposed 
using weighting factors for the calculation of learning curves, however rather 
than weighting data according to the uncertainty in the cost/price estimate of 
each data point as he suggested, exponential weightings have been used to 
describe the (potential) reduced importance of older data as compared to newer 
data in explaining future costs of a given technology. There is also an important 
problem relating to data quality at the early stages of production, in particular 
due to the pricing strategies of companies. Forward selling for instance in the 
hope of creating a market and reaching desired cost levels or monopolistic 
behaviour aiming to cream profits and recover previous investments are 2 such 
examples. Although we have not endeavoured to account for such uncertainties 
in this paper, the development of criteria and weighting factors specific to these 
kind of problems could lead to more accurate results. Nevertheless by 
considering increasing weightings for newer data we are able to test the 
importance of earlier information as compared to more recent information for 
making long term forecasts. 

The steps of this model executed in Matlab can be summarised by the flowchart 
in Figure 4Figure 4. The regression analysis of step 1 has been undertaken 
using logarithmic base 2 of both price and cumulative output. In step 2, using 
the resulting learning curve, forecasts were made for one to six doublings of 
cumulative learning. The error of the forecast is calculated both in logarithmic 
terms, as well as calculating the percentage error in monetary units.  Finally, 
each forecast has been compared to the actual historical data from which 
forecast error histograms are drawn.  When comparing the forecasts to the 
historical data, simple linear interpolation has been used between future data 
points. Error has been calculated as a deviation from the forecasted value, such 
that a positive value indicates that the forecast was too low, while a negative 
value indicates that the forecast was too high. Finally another data point is 
added to the data series and forecasts are updated. 
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Figure 4 Flowchart of the statistical model developed in Matlab 

 

It is important to note here that the „future‟ is considered not in terms of time 
units, but in terms of extra units of cumulative experience (output) gained. 
Hence predictions are made for a certain cumulative experience without 
knowing in which year it will be reached. Furthermore, for the reasons described 
above and also stated by Junginger et al. (2005) and many others, price data 
has been used as a proxy for cost data and only the simplest of the experience 
curve methods, the SFLC, has been used to reduce the issue of data 
availability. 

 

4. Data Sources 

As wide a variety as possible of technologies and processes relevant to large 
scale renewable energies and falling more or less equally into the three 
categories, namely „Big plants‟, „Modules‟ and „Continuous Operation‟ have 
been collected. The data came from a variety of sources with a number of the 
data sets being made available from previous studies that took place at IIASA 

0 Acquire Data Points 

Starting with first 2 data points  

1 Regression Analysis 

Using all data to date 

2 Generate Forecasts 

Based on the regression line of best fit 

3 Error Calculations 

Compare forecasts to actual historical data 

4 Add Data Point 

Re-evaluate the regression and forecasts  
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(McDonald & Schrattenholzer 2001). In general the raw data provided (in real 
monetary units) was used without any conversions, filtering or smoothing. One 
exception is the Combined Cycle Gas Turbine (CCGT) where data provided by 
Colpier was already converted from „costs per installed capacity‟ to „costs per 
electricity produced‟ (2002). The focus has been on technologies that remained 
in their growth stages in order to avoid problems associated with „forgetting by 
not doing‟ and where data for forecasting at least 3 doublings of technologies 
was available, the exception being nuclear where less data was available as 
shown in Table 2Table 2.  

The result of using this selecting criteria has been that all of the technologies by 
their very inclusion are technologies that have had at least some degree of 
success. This selection bias means that the results may not be representative 
of all technologies. Furthermore, due to limited access to data and the selection 
criterion, the set of 12 technologies which combined allow for up to 130 
individual short term forecasts (1 doubling of cumulative experience) can not be 
assumed to be representative of all technologies but does offer a number of 
highly relevant initial findings with regards to energy technology forecasting and 
modelling. 

 

Table 2 Technology details and sources included in the study 

Units

Initial 

Year

Final 

Year

Data 

Points

Forecasted 

doublings Source

CCGT Electricity Usc(90)/kWh - TWh 1981 1997 15 3.6 Cleason Colpier 2002 

Nuclear Instalation US$(90)/W - GW 1975 1993 19 2.0
Kouvaritakis et al. (2000) in M&S 

2001

SCGT Instalation US$(90)/W - GW 1956 1981 14 8.9  IIASA-WEC (1998), p.50

Solar Production $/Wp - MWp 1975 2003 29 9.6 Maycock (2005)

Sony Laser Diode Production yen - 1000*units 1982 1994 13 13.3
Lipman and Sperling (1999) in 

M&S 2001

Ford Model-T Shipments
$(58)/unit - Million 

units
199 213 12 7.3

Abernathy and Wayne (1974),  in 

M&S 2001

Average Dram MBit Production $/Mbit - Mbit 1974 1998 25 20.6 Victor & Ausubel (????)

Ethanol Production $/GJ-GJ 1980 2004 25 5.3 Goldemberg et al. (2004)

Acrylonitrile Production $(66)/unit - units 1959 1972 14 3.0 Lieberman (1984)

Polyethylene-LD Production $(66)/unit - units 1958 1972 15 3.5 Lieberman (1984)

Polyethylene-HD Production $(66)/unit - units 1958 1972 15 3.9 Lieberman (1984)

Polyester Fibers Production $(66)/unit - units 1960 1972 13 4.4 Lieberman (1984)

Big plants

Modules

Continuous 

Operation

Technology type
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5. Results 

As well as the aggregated results presented in the final subsection, 3 individual 
case studies of particular relevance to energy and renewable energy 
technologies will initially be presented in detail. Each case study comes from 
one of the three technology groups as set out by Christiansson (1995), namely 
„continuous operation‟, „modules‟ and „big plants‟.  

Continuous operation case study – Brazilian Ethanol 

Although Brazilian ethanol production may not be the most general example of 
a “continuous operation” technology, it does provide a valuable case study for 
evaluating the effectiveness of learning by doing as a mechanism for a 
technology to reach cost effectiveness. It may also be considered as one of the 
few large scale renewable energy technologies that has been able to reach cost 
effectiveness. For each technology the output graphics use the lightest lines to 
represent the learning curve made with fewer data points and the darkest lines 
with the largest set of data points. In the case of Ethanol in Figure 5Figure 5, it 
can be seen that the slope of the learning curve has mostly increased as 
experience has been gained. The 4 individual graphics represent the 4 methods 
modelled, namely OLS, WLS where the weightings are exponentially increasing 
by 10% and 20% per year and finally RLS.  

Figure 5 Log-log representation of learning curve fit to Brazilian ethanol 
data using various methods 

 

 

As one would expect for WLS with exponentially increasing weightings, the later 
predictions represented by the darker lines are able to follow more closely the 
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trend of Ethanol to become cheaper faster than the initial experience curve 
projected. The curve for ethanol also shows many of the non-linear 
characteristics as has been demonstrated in the literature such as the 
“deviations from log-linearity at the beginning and tail of the curve” (Antes, Yeh 
& Berkenpas 2005; p7), however this effect was not generally systematic across 
technologies. Despite these deviations it can be seen when looking at the non-
linear graphical representation (using standard format rather than log-log format 
as shown in Figure 6Figure 6), that even during this earlier period very 
significant cost reductions took place. 

Figure 6 Non-linear representation of learning curve fit to Brazilian ethanol 
data using OLS and Weighted LS methods 

 

Finally, in the case for Ethanol an excellent opportunity exists for the 
consideration of the relative effectiveness of these methods to determine the 
learning investment required to reach the price level of an incumbent 
technology. Here an approximate price level of the non-renewable energy that it 
replaces, petrol has been used as the incumbent price level. The “learning 
investments” required for the technology to reach break-even has been 
calculated by integrating the extra costs that lie between the horizontal 
incumbent technology baseline and the actual data of the price paid to ethanol 
producers and forecasts thereof as shown in Figure 6Figure 6. To calculate the 
entire forecasted learning investment required, historical values are used to 
calculate the investments to date and then the difference between the learning 
curve forecast and the baseline has been integrated to determine future 
learning investments required to reach break-even. 
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Figure 7 Predicted learning investments at each period. Please note that 
the reference line represents observed total learning investments. 

In the case of Ethanol, as shown in Figure 7Figure 7, about 70% of the total 
investment was required before the experience curve forecast was able to 
provide a response that was out by less than a factor of 10. The figure shows 
that, in at least some cases, the use of a WLS can help track technologies 
undergoing a gradual shift in learning rates. Unfortunately, as shown in the final 
part of the results, it was found that on average the use of WLS increased the 
distribution of errors though reduced their bias when aggregated over all 
technologies and individual forecasts. This suggests that under certain 
circumstances WLS may in fact be preferable over the standard OLS method 
however not in all cases.  

Finally, by comparing the projections at each period for 1 (light) to 6 (dark) 
doublings of cumulative capacity, a visual aid has been developed showing 
whether or not forecasts for individual technologies improved as experience 
was gained. As shown in Figure 8Figure 8, for Brazilian Ethanol the error 
increased as forecasts were made for a greater number of doublings. This is not 
surprising since it is generally easier to make projections in the shorter term 
than in the longer term. What was surprising however was that the general 
trend in the absolute (log2) value of the error for each level of forecast also 
increased as experience was gained. It is also important to note that errors 
calculated in logarithmic terms leads to a very particular understanding. For 
example if you take an error of +1 in log2 format, it would demonstrate that the 
actual price was out by a factor of 2¹, in other words double (or 100% above) 
the forecasted value. An error of -1 on the other hand represents being out by a 
factor of 2-¹, which is only half (or 50% below) the forecasted value. 
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Furthermore as prices come down forecast errors need to come down 
proportionally in order to maintain constant logarithmic error. 

Figure 8 Forecast error (log2) as a function of (log2) cumulative production. 
Note that the robust least squares method requires 3 data points to make 
the first line of best fit reducing the number of forecasts possible 

 

Big plants case study – CCGT  

The data set for CCGT originally came from a reduced list of over 200 published 
contract costs in trade journals for new CCGT plants (Colpier & Cornland 2002). 
The data was then converted from cost per MW of installed capacity to cost per 
kWh of produced electricity holding gas costs constant. The main reason for this 
conversion was that CCGT cost reductions were often traded off against more 
expensive quality and efficiency improvements. CCGT operators are generally 
interested in the reduction of the cost of producing electricity and not simply the 
reduction of installation costs making the former a more relevant dependant 
variable.  
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Figure 9 Technology price (solid) and Annual Production Growth (dashed) 
for CCGT energy production. 

 

Figure 10 Experience curves for CCGT using cost of energy production 
with constant gas costs versus cumulative energy produced. 

 

From Figure 10Figure 10 we see a case where the use of WLS has generated a 
wider range of learning curve results which in the end seemed to have proved 
less effective than the standard OLS method. Furthermore, as shown in Figure 
11Figure 11 where we have assumed a target price of the 1997 value of 3.37 
USc(1990)/kWh, it was found that the forecasted cumulative learning 
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investment cost is very uncertain when using learning curve analysis and here 
too was off by a factor of 10 or more during some periods with the worst 
forecasts being made with WLS.  

Figure 11 Predicted learning investments at each period. The reference 
line represent the total learning investments to reach 1997 price levels. 
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Figure 12 Forecast error (log2) as a function of (log2) cumulative 
production. 

 

Looking at the forecast error in Figure 12Figure 12 and Figure 13Figure 13 it 
can be seen that the 6 forecasts that were able to be made for 2 doublings of 
cumulative production (in the case of CCGT, about 8 or 9 years into the future) 
indicated errors in the range of 18% under to 10% over the actual values 
recorded while the total cost reductions for almost 4 doublings of cumulative 
energy production went from 4.3 to 3.37 c/kWh or about 25% of the final price 
over 16 years. 
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Figure 13 Forecast error ratio calculated as a part of recorded value as a 
function of (log2) cumulative production 

 

Modules case study – Solar 

Solar PV provides a good example of the use and dangers of using experience 
curves to forecast future costs of an energy technology. It is a good example 
since solar PV modules are generally accessed by an international market 
allowing for worldwide appraisal of the technology. Prices have also been well 
documented and 2 groups in particular have developed long time scale data 
sets (Maycock‟s World PV Market Report and the Strategies Unlimited Data 
sets).  
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Figure 14 Technology price (solid) and Annual Production Growth 
(dashed) for Solar Module production. 

 

 

It also shows the typical random jumps and shifts in learning rate that could be 
expected from any technology having undergone such an increase in 
cumulative learning. Nevertheless, this technology shows a reasonably smooth 
experience curve where price reductions have occurred somewhat linearly to 
increases in cumulative production when mapped on a log-log scale.  
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Figure 15 Log-log representation of learning curve fit to solar PV module 
price data using various methods. Note that solar has not yet reached 
large scale competitivity, the price level used as a baseline of 1$/Wp has 
been arbitrarily chosen. Such a price level would greatly increase the 
number of competitive applications if not allow PV to become completely 
cost effective. 

 

Figure 16Figure 16 and Figure 15Figure 15 together present an interesting 
result of the use of exponentially increasing weights. Since the experience 
curve slope reduces over the period of the data set, the WLS method was able 
to track the change in learning rate making the forecasts for total learning 
investments more accurately than the standard OLS method. Unfortunately it 
remained difficult or impossible to know from the limited data available whether 
the shift to a lower learning rate was indeed a permanent shift or merely a 
period of stagnation. Using the simple experience curve based model described 
in this research, it has been possible to make a statistical evaluation of how 
effective different methods have been in the past over a range of technologies 
to help advise which method tends to work best on average. These results are 
presented in the following sub-section on aggregated results. 
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Figure 16 Predicted learning investments at each period. Please note that 
the reference line represents total investments by 2003. 

 

 

Figure 17 Forecast error (log2) as a function of (log2) cumulative 
production. 
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Aggregated results for experience curve forecasts 

In this section the various experience curve formulation and their ability to 
forecast into the future are compared by consolidating the forecast errors for 
each number of doublings into the future all onto a single graphic as shown in 
Figure 18Figure 18. 

Figure 18 Histogram of the log of the errors over all technologies and for 
the forecast at every period of each technology where available historical 
data exists for 1 doubling of cumulative experience 

 

This first example offers the most reliable information with the largest number of 
data points available allowing for what turns out to be a reasonably smooth 
distribution. Unfortunately, a single doubling of experience referred typically to 
somewhere in the region of 2 to 6 years depending on the growth rate of the 
technology in question. It also depended on the stage that the technology was 
in since the time taken to generate a doubling of experience increases as the 
stock of cumulative experience also increases, even when the growth rate of a 
technology remains constant. What the graphical representation of the data 
does show is that the forecast error in log format is a very good first order 
approximation with the distribution being both symmetrical and unbiased with a 
mean value that is statistically not different from zero for both the OLS and WLS 
methods. It is also interesting to note that the OLS method offered the best 
results in terms of mean deviation of forecast error and as such is the least 
biased estimator of future costs in the short term while the overall error in terms 
of standard deviation was slightly reduced when using the WLS method. 
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Making forecasts further into the future, Figure 19Figure 19 shows that the 
experience curve continues to provide reasonably symmetric and unbiased 
results even after 3 doublings of cumulative experience, which generally took 
between 6 and 12 years. Here the OLS method proves to be the most accurate 
in terms of variance but worse than the others in terms of bias. 

Figure 19 Histogram of the log of the errors for 3 doubling of cumulative 
experience 

 

Now looking further ahead to Figure 20Figure 20 where there are 6 doublings of 
cumulative experience it can be seen that the reduced data points available and 
the reduced number of technologies that contribute to the data set reduces the 
quality and reliability of the results. As shown in Table 2Table 2, only 4 
technologies remain that contributed data for 6 doublings of experience, SCGT, 
Solar, DRAMs and Laser Diodes. The results are nevertheless quite promising, 
since with a progress ratio of, say, 20% the reduction (log2) in costs would be 
log2(0.86) or approximately -1.93. Hence a mean error of prediction (also log2) of 
about 0.07 is very low compared to the total reductions that have occurred 
supporting strongly the use of experience curve to attain at worst an unbiased 
and symmetric estimator of future costs. Again we found that OLS gives the 
most accurate forecasts in terms of standard deviation of the error, but a higher 
mean deviation than WLS with 10% and 20% weighting factors. This would 
suggest that WLS may in fact be a suitable method for long-term unbiased 
estimator calculations of future costs along with the standard OLS method.  



 29 

Figure 20 Histogram of the log of the errors for 6 doubling of cumulative 
experience 

 

Although it has been shown that experience curves generally give unbiased and 
reasonably symmetric forecast of future costs in „log‟ terms, the same can not 
be said for the actual cost forecasted. Since the results are symmetric and 
unbiased in log format and due to the convexity of the logarithmic function, it 
can be expected that results returned to monetary values will be asymmetric 
and biased. Here the distributions become more biased towards positive values 
and asymmetric as the forecasts goes further into the future indicating that 
mean forecasts using the SFLC were lower than actual mean observed cost 
levels. 
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Figure 21 Histogram of error ratios over all technologies for 1 doubling of 
cumulative experience 

 

Figure 22 Histogram of error ratios over all technologies for 3 doubling of 
cumulative experience 
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Figure 23 Histogram of error ratios over all technologies for 6 doubling of 
cumulative experience 

 

To test the second hypothesis, the error distributions of the forecasts have been 
compared using the earlier data only against a larger and more complete set of 
data. The mean error from observed values was then compared to the variance 
of the error and to determine any bias. The results showed that having more 
information produced better results in terms of bias with almost all forecasts 
(aggregated over all technologies). On the other hand, the standard deviation of 
the error increased by about 50% as can be seen when comparing the results in 
Figure 24Figure 24. These results suggest that the experience curve does 
become more effective in terms of being an unbiased estimator for forecasting a 
technology‟s cost however has difficulty in standing up to the smaller margin for 
uncertainty (in absolute terms) that comes with the error measure as calculated 
in this research (in terms of log differences). Unfortunately these findings are 
particularly sensitive to the data sets used and so the results for this hypothesis 
remain somewhat inconclusive.  
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Figure 24 Comparing forecasts made with less and more information 

  

 

 

6.  Discussion and Conclusion 

Grubler, Nakicenovic and Nordhaus (2002) raise the question of whether “we 
have sufficient scientific knowledge about the sources and management of 
innovation to properly inform the policymaking process that affects technology-
dependant domains such as energy” to which they believe the answer is “Not 
yet”. Perhaps due to this insufficiency and the lack of a clearly superior heuristic 
or innovation theory for forecasting technology costs, and despite the many 
shortcomings of the learning curve theory, experience curves continue to be 
used widely. This current research does not try and improve the underlying 
theory of experience curves, but instead tests empirically using historical data 
the validity of learning curves for forecasting and provide a first order 
approximation of the uncertainties that exist for potential growth technologies 
such as renewable energies. As a result of this current piece of research, 
evidence supporting the following conclusions has been found: 

Hypothesis 1, that experience curves can be used as an unbiased estimator of 
future technology prices was found to be TRUE with respect to the available 
data using logarithmic costs. This suggests that a simple experience curve 
using price data alone can be an effective estimator of future prices for 
technologies during their growth phases in a competitive international market. 
There remains the caveat that due to the convexity of the logarithmic function 
and the unbiased results found when using the log-log format, experience 
curves viewed in linear terms tend on average to underestimate future costs.  

Hypothesis 2, that the ability to forecast technology costs “improves” as more 
data points are added was in one sense found to be TRUE in that the forecasts 
with more data tended to be less biased, though in terms of variance it was 
found to be FALSE as the variance actually increased with accumulating 
experience. Perhaps this result occurs simply because although the actual error 
of a forecast in monetary units may decrease drastically, the error in terms of 
log2 differences as well as required injections of funds to further push the 
technology down the learning curve may in fact be increasing (for instance in 
the case of forward selling at the firm level or the provision of subsidies at the 
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government level). Finally, as can be seen for most technologies, the distance 
between data values on the quantity axis gets closer and closer together as a 
technology matures since every doubling of experience requires more and more 
time. Along with this added time requirement one would also expect the 
possibility of increased uncertainty. Access to a larger representative database 
would certainly help to bring more concrete results in particular with respect to 
this hypothesis. 

Hypothesis 3, that the use of exponentially increasing weights when using 
weighted least squares allows for improved accuracy of predictions turned out 
to be in one sense TRUE and in one sense FALSE. It was found that over all 
the technologies tested, the use of WLS generally increased the variance of the 
forecasts as compared to the OLS method but decreased the mean deviation or 
„bias‟ of the forecast. This would suggest that although the standard OLS 
method is a highly effective predictor of future costs/costs, there may be 
opportunities for WLS to be a superior method for producing these experience 
curves. 

One of the principal difficulties with informing policy makers on how best to 
bring about cost reductions of renewable energy technologies is to decide how 
to divide a limited budget so that it is concentrated enough to bring about 
desired cost reductions of a chosen technology while being broad enough to 
offer a range of possible technical solutions in the case that the technologies 
first picked as winners turn out to be undesirable or unsuccessful (one only 
needs to think of the public resistance to on shore wind farms in the UK and 
elsewhere).  As remarked by Wene in his IEA publications. “learning 
opportunities in the market and learning investments are both scarce resources” 
suggesting that the concentration of resources is key to generating solutions, 
whilst on the other hand, the “availability of renewable resources, reliability of 
the energy system and the risk of technology failure require a portfolio of 
carbon-free technologies” (IEA 2000, IIASA approach, see, e.g. Gritsevski & 
Nakicenovic 2000). In this paper the distributions of forecasted technology price 
errors haves been calculated based on historical data, allowing future portfolio 
research to take this information into account when designing energy 
technology portfolios.  

A great deal more work needs to follow in this area in order to increase our 
understanding of the evolution of technology costs. For example, improving 
data quality and increasing the number and scope of technologies tested using 
a similar analysis would help provide more accurate results. It may also be 
important to consider the importance of autocorrelation to allow for better 
forecasts and simulations of future technology costs. Data permitting it would be 
very interesting to test other formulations such as the 2FLC or methods that 
account for technology clusters for their ability to improve forecast quality. 
Finally, investigating the circumstances and criterion where the use of WLS 
would be preferred over the standard OLS would also constitute an interesting 
area for further research. 
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