
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O

R
G

A
N

&
C

L
A

Y
P

O
O

L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis

Digital Library of Engineering and Computer Science. Synthesis Lectures

provide concise, original presentations of important research and development

topics, published quickly, in digital and print formats. For more information

visit www.morganclaypool.com

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-564-5

9 781608 455645

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

A
 P

R
IM

E
R

 O
N

 M
E

M
O

R
Y

 C
O

N
S

IS
T

E
N

C
Y

 A
N

D
 C

A
C

H
E

 C
O

H
E

R
E

N
C

E
S

O
R

IN
 • H

IL
L

 • W
O

O
D

A Primer on Memory Consistency
and Cache Coherence
Daniel J. Sorin, Duke University

Mark D. Hill and David A. Wood, University of Wisconsin, Madison

Many modern computer systems and most multicore chips (chip multiprocessors) support shared

memory in hardware. In a shared memory system, each of the processor cores may read and write to

a single shared address space. For a shared memory machine, the memory consistency model defines

the architecturally visible behavior of its memory system. Consistency definitions provide rules about

loads and stores (or memory reads and writes) and how they act upon memory. As part of supporting

a memory consistency model, many machines also provide cache coherence proto-cols that ensure that

multiple cached copies of data are kept up-to-date. The goal of this primer is to provide readers with

a basic understanding of consistency and coherence. This understanding includes both the issues that

must be solved as well as a variety of solutions. We present both high-level concepts as well as specific,

concrete examples from real-world systems.

A Primer on Memory
Consistency and
Cache Coherence

Daniel J. Sorin
Mark D. Hill
David A. Wood

A Primer on Memory Consistency
and Cache Coherence

ii

One liner Chapter TitleSynthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin
Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts, John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2011

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Models
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

iii

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
www.morganclaypool.com

ISBN: 9781608455645 paperback

ISBN: 9781608455652 ebook

DOI: 10.2200/S00346ED1V01Y201104CAC016

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #16

Lecture #16

Series Editor: Mark D. Hill, University of Wisconsin

Series ISSN

ISSN 1935-3235 print

ISSN 1935-3243 electronic

A Primer on Memory Consistency
and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #16

ABSTRACT
Many modern computer systems and most multicore chips (chip multiprocessors) support shared
memory in hardware. In a shared memory system, each of the processor cores may read and write
to a single shared address space. For a shared memory machine, the memory consistency model
defines the architecturally visible behavior of its memory system. Consistency definitions provide
rules about loads and stores (or memory reads and writes) and how they act upon memory. As part
of supporting a memory consistency model, many machines also provide cache coherence proto-
cols that ensure that multiple cached copies of data are kept up-to-date. The goal of this primer
is to provide readers with a basic understanding of consistency and coherence. This understanding
includes both the issues that must be solved as well as a variety of solutions. We present both high-
level concepts as well as specific, concrete examples from real-world systems.

vi

KEYWORDS
computer architecture, memory consistency, cache coherence, shared memory, memory systems,
multicore processor, multiprocessor

vii

This primer is intended for readers who have encountered memory consistency and cache coher-
ence informally, but now want to understand what they entail in more detail. This audience includes
computing industry professionals as well as junior graduate students.

We expect our readers to be familiar with the basics of computer architecture. Remembering
the details of Tomasulo’s algorithm or similar details is unnecessary, but we do expect readers to
understand issues like architectural state, dynamic instruction scheduling (out-of-order execution),
and how caches are used to reduce average latencies to access storage structures.

The primary goal of this primer is to provide readers with a basic understanding of consis-
tency and coherence. This understanding includes both the issues that must be solved as well as a
variety of solutions. We present both high-level concepts as well as specific, concrete examples from
real-world systems. A secondary goal of this primer is to make readers aware of just how complicated
consistency and coherence are. If readers simply discover what it is that they do not know—without
actually learning it—that discovery is still a substantial benefit. Furthermore, because these topics
are so vast and so complicated, it is beyond the scope of this primer to cover them exhaustively. It
is not a goal of this primer to cover all topics in depth, but rather to cover the basics and apprise the
readers of what topics they may wish to pursue in more depth.

We owe many thanks for the help and support we have received during the development of
this primer. We thank Blake Hechtman for implementing and testing (and debugging!) all of the
coherence protocols in this primer. As the reader will soon discover, coherence protocols are com-
plicated, and we would not have trusted any protocol that we had not tested, so Blake’s work was
tremendously valuable. Blake implemented and tested all of these protocols using the Wisconsin
GEMS simulation infrastructure [http://www.cs.wisc.edu/gems/].

For reviewing early drafts of this primer and for helpful discussions regarding various topics
within the primer, we gratefully thank Trey Cain and Milo Martin. For providing additional feed-
back on the primer, we thank Newsha Ardalani, Arkaprava Basu, Brad Beckmann, Bob Cypher, Joe
Devietti, Sandip Govind Dhoot, Alex Edelsburg, Jayneel Gandhi, Dan Gibson, Marisabel Gue-
vara, Gagan Gupta, Blake Hechtman, Derek Hower, Zachary Marzec, Hiran Mayukh, Ralph Na-
than, Marc Orr, Vijay Sathish, Abhirami Senthilkumaran, Simha Sethumadhavan, Venkatanathan

Preface

viii A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Varadarajan, Derek Williams, and Meng Zhang. While our reviewers provided great feedback, they
may or may not agree with all of the final contents of this primer.

This work is supported in part by the National Science Foundation (CNS-0551401, CNS-
0720565, CCF-0916725, CCF-0444516, and CCF-0811290), Sandia/DOE (#MSN123960/
DOE890426), Semiconductor Research Corporation (contract 2009-HJ-1881), and the University
of Wisconsin (Kellett Award to Hill). The views expressed herein are not necessarily those of the
NSF, Sandia, DOE, or SRC.

Dan thanks Deborah, Jason, and Julie for their love and for putting up with him taking the
time to work on another synthesis lecture. Dan thanks his Uncle Sol for helping inspire him to be
an engineer in the first place. Lastly, Dan dedicates this book to the memory of Rusty Sneiderman,
a treasured friend of thirty years who will be dearly missed by everyone who was lucky enough to
have known him.

Mark wishes to thank Sue, Nicole, and Gregory for their love and support.
David thanks his coauthors for putting up with his deadline-challenged work style, his par-

ents Roger and Ann Wood for inspiring him to be a second-generation Computer Sciences profes-
sor, and Jane, Alex, and Zach for helping him remember what life is all about.

ix

Preface ... ix

1. Introduction to Consistency and Coherence ...1
1.1 Consistency (a.k.a., Memory Consistency, Memory Consistency Model,

or Memory Model) .. 2
1.2 Coherence (a.k.a., Cache Coherence) .. 4
1.3 A Consistency and Coherence Quiz .. 6
1.4 What this Primer Does Not Do .. 6

2. Coherence Basics ..9
2.1 Baseline System Model ... 9
2.2 The Problem: How Incoherence Could Possibly Occur 10
2.3 Defining Coherence .. 11

2.3.1 Maintaining the Coherence Invariants .. 13
2.3.2 The Granularity of Coherence .. 13
2.3.3 The Scope of Coherence ... 15

2.4 References .. 15

3. Memory Consistency Motivation and Sequential Consistency 17
3.1 Problems with Shared Memory Behavior .. 17
3.2 What Is a Memory Consistency Model? ... 20
3.3 Consistency vs. Coherence .. 21
3.4 Basic Idea of Sequential Consistency (SC) .. 22
3.5 A Little SC Formalism .. 24
3.6 Naive SC Implementations ... 26
3.7 A Basic SC Implementation with Cache Coherence... 27
3.8 Optimized SC Implementations with Cache Coherence 29
3.9 Atomic Operations with SC .. 32
3.10 Putting it All Together: MIPS R10000 ... 33

Contents

x A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

3.11 Further Reading Regarding SC ... 34
3.12 References .. 35

4. Total Store Order and the x86 Memory Model .. 37
4.1 Motivation for TSO/x86 ... 37
4.2 Basic Idea of TSO/x86 .. 38
4.3 A Little TSO Formalism and an x86 Conjecture .. 42
4.4 Implementing TSO/x86 .. 45
4.5 Atomic Instructions and Fences with TSO ... 46

4.5.1 Atomic Instructions ... 46
4.5.2 Fences .. 47

4.6 Further Reading Regarding TSO .. 47
4.7 Comparing SC and TSO ... 48
4.8 References .. 49

5. Relaxed Memory Consistency .. 51
5.1 Motivation ... 51

5.1.1 Opportunities to Reorder Memory Operations 52
5.1.2 Opportunities to Exploit Reordering .. 53

5.2 An Example Relaxed Consistency Model (XC) .. 55
5.2.1 The Basic Idea of the XC Model... 55
5.2.2 Examples Using Fences under XC... 56
5.2.3 Formalizing XC ... 57
5.2.4 Examples Showing XC Operating Correctly... 59

5.3 Implementing XC ... 61
5.3.1 Atomic Instructions with XC .. 62
5.3.2 Fences with XC ... 64
5.3.3 A Caveat .. 64

5.4 Sequential Consistency for Data-Race-Free Programs 64
5.5 Some Relaxed Model Concepts ... 68

5.5.1 Release Consistency ... 68
5.5.2 Causality and Write Atomicity .. 69

5.6 A Relaxed Memory Model Case Study: IBM Power .. 70
5.7 Further Reading and Commercial Relaxed Memory Models 74

5.7.1 Academic Literature .. 74
5.7.2 Commercial Models .. 74

5.8 Comparing Memory Models ... 75
5.8.1 How Do Relaxed Memory Models Relate to Each Other and

TSO and SC? 75
5.8.2 How Good Are Relaxed Models? .. 76

5.9 High-Level Language Models .. 76
5.10 References .. 79

6. Coherence Protocols ... 83
6.1 The Big Picture ... 83
6.2 Specifying Coherence Protocols .. 85
6.3 Example of a Simple Coherence Protocol ... 86
6.4 Overview of Coherence Protocol Design Space .. 88

6.4.1 States ... 88
6.4.2 Transactions ... 92
6.4.3 Major Protocol Design Options .. 95

6.5 References .. 97

7. Snooping Coherence Protocols .. 99
7.1 Introduction to Snooping .. 99
7.2 Baseline Snooping Protocol ... 103

7.2.1 High-Level Protocol Specification .. 104
7.2.2 Simple Snooping System Model: Atomic Requests,

Atomic Transactions 104
7.2.3 Baseline Snooping System Model: Non-Atomic Requests,

Atomic Transactions 109
7.2.4 Running Example .. 113
7.2.5 Protocol Simplifications... 114

7.3 Adding the Exclusive State.. 115
7.3.1 Motivation ... 115
7.3.2 Getting to the Exclusive State ... 115
7.3.3 High-Level Specification of Protocol .. 116
7.3.4 Detailed Specification .. 118
7.3.5 Running Example .. 119

7.4 Adding the Owned State ... 119
7.4.1 Motivation ... 119
7.4.2 High-Level Protocol Specification .. 121

CONTENTS xi

xii A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

7.4.3 Detailed Protocol Specification ... 121
7.4.4 Running Example .. 122

7.5 Non-Atomic Bus ... 123
7.5.1 Motivation ... 124
7.5.2 In-Order vs. Out-of-Order Responses .. 124
7.5.3 Non-Atomic System Model .. 124
7.5.4 An MSI Protocol with a Split-Transaction Bus 126
7.5.5 An Optimized, Non-Stalling MSI Protocol with a

Split-Transaction Bus 130
7.6 Optimizations to the Bus Interconnection Network 132

7.6.1 Separate Non-Bus Network for Data Responses 132
7.6.2 Logical Bus for Coherence Requests ... 133

7.7 Case Studies .. 133
7.7.1 Sun Starfire E10000 .. 133
7.7.2 IBM Power5 .. 135

7.8 Discussion and the Future of Snooping ... 137
7.9 References .. 138

8. Directory Coherence Protocols .. 139
8.1 Introduction to Directory Protocols .. 139
8.2 Baseline Directory System ... 141

8.2.1 Directory System Model ... 141
8.2.2 High-level Protocol Specification .. 142
8.2.3 Avoiding Deadlock .. 144
8.2.4 Detailed Protocol Specification ... 146
8.2.5 Protocol Operation .. 147
8.2.6 Protocol Simplifications... 149

8.3 Adding the Exclusive State.. 150
8.3.1 High-Level Protocol Specification .. 150
8.3.2 Detailed Protocol Specification ... 152

8.4 Adding the Owned State ... 153
8.4.1 High-Level Protocol Specification ... 153
8.4.2 Detailed Protocol Specification ... 155

8.5 Representing Directory State .. 156
8.5.1 Coarse Directory .. 157
8.5.2 Limited Pointer Directory .. 157

8.6 Directory Organization ... 158
8.6.1 Directory Cache Backed by DRAM ... 159
8.6.2 Inclusive Directory Caches .. 160
8.6.3 Null Directory Cache (with no backing store)..................................... 163

8.7 Performance and Scalability Optimizations... 163
8.7.1 Distributed Directories .. 163
8.7.2 Non-Stalling Directory Protocols .. 164
8.7.3 Interconnection Networks without Point-to-Point Ordering 166
8.7.4 Silent vs. Non-Silent Evictions of Blocks in State S 168

8.8 Case Studies .. 169
8.8.1 SGI Origin 2000 ... 169
8.8.2 Coherent HyperTransport ... 171
8.8.3 HyperTransport Assist... 172
8.8.4 Intel QPI ... 173

8.9 Discussion and the Future of Directory Protocols ... 175
8.10 References .. 175

9. Advanced Topics in Coherence .. 177
9.1 System Models .. 177

9.1.1 Instruction Caches ... 177
9.1.2 Translation Lookaside Buffers (TLBs) .. 178
9.1.3 Virtual Caches ... 179
9.1.4 Write-Through Caches ... 180
9.1.5 Coherent Direct Memory Access (DMA)... 180
9.1.6 Multi-Level Caches and Hierarchical Coherence Protocols 181

9.2 Performance Optimizations ... 184
9.2.1 Migratory Sharing Optimization .. 184
9.2.2 False Sharing Optimizations ... 185

9.3 Maintaining Liveness .. 186
9.3.1 Deadlock ... 186
9.3.2 Livelock ... 189
9.3.3 Starvation .. 192

9.4 Token Coherence ... 193
9.5 The Future of Coherence .. 193
9.6 References .. 193

Author Biographies .. 197

CONTENTS xiii

1

C H A P T E R 1

Many modern computer systems and most multicore chips (chip multiprocessors) support shared
memory in hardware. In a shared memory system, each of the processor cores may read and write to
a single shared address space. These designs seek various goodness properties, such as high perfor-
mance, low power, and low cost. Of course, it is not valuable to provide these goodness properties
without first providing correctness. Correct shared memory seems intuitive at a hand-wave level,
but, as this lecture will help show, there are subtle issues in even defining what it means for a shared
memory system to be correct, as well as many subtle corner cases in designing a correct shared
memory implementation. Moreover, these subtleties must be mastered in hardware implementa-
tions where bug fixes are expensive. Even academics should master these subtleties to make it more
likely that their proposed designs will work.

We and many others find it useful to separate shared memory correctness into two sub-issues:
consistency and coherence. Computer systems are not required to make this separation, but we find
it helps to divide and conquer complex problems, and this separation prevails in many real shared
memory implementations.

It is the job of consistency (memory consistency, memory consistency model, or memory
model) to define shared memory correctness. Consistency definitions provide rules about loads and
stores (or memory reads and writes) and how they act upon memory. Ideally, consistency definitions
would be simple and easy to understand. However, defining what it means for shared memory to
behave correctly is more subtle than defining the correct behavior of, for example, a single-threaded
processor core. The correctness criterion for a single processor core partitions behavior between one
correct result and many incorrect alternatives. This is because the processor’s architecture mandates
that the execution of a thread transforms a given input state into a single well-defined output state,
even on an out-of-order core. Shared memory consistency models, however, concern the loads and
stores of multiple threads and usually allow many correct executions while disallowing many (more)
incorrect ones. The possibility of multiple correct executions is due to the ISA allowing multiple
threads to execute concurrently, often with many possible legal interleavings of instructions from

Introduction to Consistency
and Coherence

2 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

different threads. The multitude of correct executions complicates the erstwhile simple challenge of
determining whether an execution is correct. Nevertheless, consistency must be mastered to imple-
ment shared memory and, in some cases, to write correct programs that use it.

Unlike consistency, coherence (or cache coherence) is neither visible to software nor required.
However, as part of supporting a consistency model, the vast majority of shared memory systems
implement a coherence protocol that provides coherence. Coherence seeks to make the caches of
a shared-memory system as functionally invisible as the caches in a single-core system. Correct
coherence ensures that a programmer cannot determine whether and where a system has caches by
analyzing the results of loads and stores. This is because correct coherence ensures that the caches
never enable new or different functional behavior (programmers may still be able to infer likely cache
structure using timing information).

In most systems, coherence protocols play an important role in providing consistency. Thus,
even though consistency is the first major topic of this primer, we begin in Chapter 2 with a brief
introduction to coherence. The goal of this chapter is to explain enough about coherence to under-
stand how consistency models interact with coherent caches, but not to explore specific coherence
protocols or implementations, which are topics we defer until the second portion of this primer in
Chapters 6–9. In Chapter 2, we define coherence using the single-writer–multiple-reader (SWMR)
invariant. SWMR requires that, at any given time, a memory location is either cached for writing
(and reading) at one cache or cached only for reading at zero to many caches.

1.1 CONSISTENCY (A.K.A., MEMORY CONSISTENCY, MEMORY
CONSISTENCY MODEL, OR MEMORY MODEL)

Consistency models define correct shared memory behavior in terms of loads and stores (memory
reads and writes), without reference to caches or coherence. To gain some real-world intuition on
why we need consistency models, consider a university that posts its course schedule online. As-
sume that the Computer Architecture course is originally scheduled to be in Room 152. The day
before classes begin, the university registrar decides to move the class to Room 252. The registrar
sends an e-mail message asking the web site administrator to update the online schedule, and a few
minutes later, the registrar sends a text message to all registered students to check the newly updated
schedule. It is not hard to imagine a scenario—if, say, the web site administrator is too busy to post
the update immediately—in which a diligent student receives the text message, immediately checks
the online schedule, and still observes the (old) class location Room 152. Even though the online
schedule is eventually updated to Room 252 and the registrar performed the “writes” in the correct
order, this diligent student observed them in a different order and thus went to the wrong room. A
consistency model defines whether this behavior is correct (and thus whether a user must take other

INTRODuCTION TO CONSISTENCY AND COHERENCE 3

action to achieve the desired outcome) or incorrect (in which case the system must preclude these
reorderings).

Although this contrived example used multiple media, similar behavior can happen in shared
memory hardware with out-of-order processor cores, write buffers, prefetching, and multiple cache
banks. Thus, we need to define shared memory correctness—that is, which shared memory behav-
iors are allowed—so that programmers know what to expect and implementors know the limits to
what they can provide.

Shared memory correctness is specified by a memory consistency model or, more simply,
a memory model. The memory model specifies the allowed behavior of multithreaded programs
executing with shared memory. For a multithreaded program executing with specific input data,
the memory model specifies what values dynamic loads may return and what possible final states of
the memory are. Unlike single-threaded execution, multiple correct behaviors are usually allowed,
making understanding memory consistency models subtle.

Chapter 3 introduces the concept of memory consistency models and presents sequential
consistency (SC), the strongest and most intuitive consistency model. The chapter begins by mo-
tivating the need to specify shared memory behavior and precisely defines what a memory con-
sistency model is. It next delves into the intuitive SC model, which states that a multithreaded
execution should look like an interleaving of the sequential executions of each constituent thread, as
if the threads were time-multiplexed on a single-core processor. Beyond this intuition, the chapter
formalizes SC and explores implementing SC with coherence in both simple and aggressive ways,
culminating with a MIPS R10000 case study.

In Chapter 4, we move beyond SC and focus on the memory consistency model implemented
by x86 and SPARC systems. This consistency model, called total store order (TSO), is motivated
by the desire to use first-in–first-out write buffers to hold the results of committed stores before
writing the results to the caches. This optimization violates SC, yet promises enough performance
benefit to inspire architectures to define TSO, which permits this optimization. In this chapter, we
show how to formalize TSO from our SC formalization, how TSO affects implementations, and
how SC and TSO compare.

Finally, Chapter 5 introduces “relaxed” or “weak” memory consistency models. It motivates
these models by showing that most memory orderings in strong models are unnecessary. If a thread
updates ten data items and then a synchronization flag, programmers usually do not care if the data
items are updated in order with respect to each other but only that all data items are updated before
the flag is updated. Relaxed models seek to capture this increased ordering flexibility to get higher
performance or a simpler implementation. After providing this motivation, the chapter develops
an example relaxed consistency model, called XC, wherein programmers get order only when they

4 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

ask for it with a FENCE instruction (e.g., a FENCE after the last data update but before the flag
write). The chapter then extends the formalism of the previous two chapters to handle XC and
discusses how to implement XC (with considerable reordering between the cores and the coher-
ence protocol). The chapter then discusses a way in which many programmers can avoid thinking
about relaxed models directly: if they add enough FENCEs to ensure their program is data-race
free (DRF), then most relaxed models will appear SC. With “SC for DRF,” programmers can get
both the (relatively) simple correctness model of SC with the (relatively) higher performance of
XC. For those who want to reason more deeply, the chapter concludes by distinguishing acquires
from releases, discussing write atomicity and causality, pointing to commercial examples (including
an IBM Power case study), and touching upon high-level language models (Java and C++).

Returning to the real-world consistency example of the class schedule, we can observe that
the combination of an email system, a human web administrator, and a text-messaging system rep-
resents an extremely weak consistency model. To prevent the problem of a diligent student going to
the wrong room, the university registrar needed to perform a FENCE operation after her email to
ensure that the online schedule was updated before sending the text message.

1.2 COHERENCE (A.K.A., CACHE COHERENCE)
Unless care is taken, a coherence problem can arise if multiple actors (e.g., multiple cores) have access
to multiple copies of a datum (e.g., in multiple caches) and at least one access is a write. Consider
an example that is similar to the memory consistency example. A student checks the online sched-
ule of courses, observes that the Computer Architecture course is being held in Room 152 (reads
the datum), and copies this information into her notebook (caches the datum). Subsequently, the
university registrar decides to move the class to Room 252 and updates the online schedule (writes
to the datum). The student’s copy of the datum is now stale, and we have an incoherent situation.
If she goes to Room 152, she will fail to find her class. Examples of incoherence from the world
of computing, but not including computer architecture, include stale web caches and programmers
using un-updated code repositories.

Access to stale data (incoherence) is prevented using a coherence protocol, which is a set of
rules implemented by the distributed set of actors within a system. Coherence protocols come in
many variants but follow a few themes, as developed in Chapters 6–9.

Chapter 6 presents the big picture of cache coherence protocols and sets the stage for the
subsequent chapters on specific coherence protocols. This chapter covers issues shared by most co-
herence protocols, including the distributed operations of cache controllers and memory controllers
and the common MOESI coherence states: modified (M), owned (O), exclusive (E), shared (S), and
invalid (I). Importantly, this chapter also presents our table-driven methodology for presenting pro-
tocols with both stable (e.g., MOESI) and transient coherence states. Transient states are required

INTRODuCTION TO CONSISTENCY AND COHERENCE 5

in real implementations because modern systems rarely permit atomic transitions from one stable
state to another (e.g., a read miss in state Invalid will spend some time waiting for a data response
before it can enter state Shared). Much of the real complexity in coherence protocols hides in the
transient states, similar to how much of processor core complexity hides in micro-architectural
states.

Chapter 7 covers snooping cache coherence protocols, which dominated the commercial mar-
ket until fairly recently. At the hand-wave level, snooping protocols are simple. When a cache miss
occurs, a core’s cache controller arbitrates for a shared bus and broadcasts its request. The shared bus
ensures that all controllers observe all requests in the same order and thus all controllers can coor-
dinate their individual, distributed actions to ensure that they maintain a globally consistent state.
Snooping gets complicated, however, because systems may use multiple buses and modern buses do
not atomically handle requests. Modern buses have queues for arbitration and can send responses
that are unicast, delayed by pipelining, or out-of-order. All of these features lead to more transient
coherence states. Chapter 7 concludes with case studies of the Sun UltraEnterprise E10000 and the
IBM Power5.

Chapter 8 delves into directory cache coherence protocols that offer the promise of scaling to
more processor cores and other actors than snooping protocols that rely on broadcast. There is a joke
that all problems in computer science can be solved with a level of indirection. Directory protocols
support this joke: A cache miss requests a memory location from the next level cache (or memory)
controller, which maintains a directory that tracks which caches hold which locations. Based on
the directory entry for the requested memory location, the controller sends a response message to
the requestor or forwards the request message to one or more actors currently caching the memory
location. Each message typically has one destination (i.e., no broadcast or multicast), but transient
coherence states abound as transitions from one stable coherence state to another stable one can
generate a number of messages proportional to the number of actors in the system. This chapter
starts with a basic directory protocol and then refines it to handle the MOESI states E and O, dis-
tributed directories, less stalling of requests, approximate directory entry representations, and more.
The chapter also explores the design of the directory itself, including directory caching techniques.
The chapter concludes with case studies of the old SGI Origin 2000 and the newer AMD Hyper-
Transport, HyperTransport Assist, and Intel QuickPath Interconnect (QPI).

Chapter 9 deals with some, but not all, of the advanced topics in coherence. For ease of ex-
planation, the prior chapters on coherence intentionally restrict themselves to the simplest system
models needed to explain the fundamental issues. Chapter 9 delves into more complicated system
models and optimizations, with a focus on issues that are common to both snooping and directory
protocols. Initial topics include dealing with instruction caches, multilevel caches, write-through
caches, translation lookaside buffers (TLBs), coherent direct memory access (DMA), virtual caches,

6 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

and hierarchical coherence protocols. Finally, the chapter delves into performance optimizations
(e.g., targeting migratory sharing and false sharing) and directly maintaining the SWMR invariant
with token coherence.

1.3 A CONSISTENCY AND COHERENCE QuIZ
It can be easy to convince oneself that one’s knowledge of consistency and coherence is sufficient and
that reading this primer is not necessary. To test whether this is the case, we offer this pop quiz.

Question 1: In a system that maintains sequential consistency, a core must issue coherence
requests in program order. True or false? (Answer is in Section 3.8)

Question 2: The memory consistency model specifies the legal orderings of coherence trans-
actions. True or false? (Section 3.8)

Question 3: To perform an atomic read–modify–write instruction (e.g., test-and-set), a core
must always communicate with the other cores. True or false? (Section 3.9)

Question 4: In a TSO system with multithreaded cores, threads may bypass values out of
the write buffer, regardless of which thread wrote the value. True or false? (Sec-
tion 4.4)

Question 5: A programmer who writes properly synchronized code relative to the high-level
language’s consistency model (e.g., Java) does not need to consider the architec-
ture’s memory consistency model. True or false? (Section 5.9)

Question 6: In an MSI snooping protocol, a cache block may only be in one of three coher-
ence states. True or false? (Section 7.2)

Question 7: A snooping cache coherence protocol requires the cores to communicate on a
bus. True or false? (Section 7.6)

Even though the answers are provided later in this primer, we encourage readers to try to
answer the questions before looking ahead at the answers.

1.4 WHAT THIS PRIMER DOES NOT DO
This lecture is intended to be a primer on coherence and consistency. We expect this material could
be covered in a graduate class in about nine 75-minute classes, e.g., one lecture per Chapter 2 to
Chapter 9 plus one lecture for advanced material).

For this purpose, there are many things the primer does not cover. Some of these include:

Synchronization. Coherence makes caches invisible. Consistency can make shared memory
look like a single memory module. Nevertheless, programmers will probably need locks,
barriers, and other synchronization techniques to make their programs useful.

•

INTRODuCTION TO CONSISTENCY AND COHERENCE 7

Commercial Relaxed Consistency Models. This primer does not cover all the subtleties
of the ARM and PowerPC memory models, but does describe which mechanisms they
provide to enforce order.
Parallel programming. This primer does not discuss parallel programming models, meth-
odologies, or tools.

• • • •

•

•

9

In this chapter, we introduce enough about cache coherence to understand how consistency mod-
els interact with caches. We start in Section 2.1 by presenting the system model that we consider
throughout this primer. To simplify the exposition in this chapter and the following chapters, we
select the simplest possible system model that is sufficient for illustrating the important issues; we
defer until Chapter 9 issues related to more complicated system models. Section 2.2 explains the
cache coherence problem that must be solved and how the possibility of incoherence arises. Section
2.3 precisely defines cache coherence.

2.1 BASELINE SYSTEM MODEL
In this primer, we consider systems with multiple processor cores that share memory. That is, all
cores can perform loads and stores to all (physical) addresses. The baseline system model includes a
single multicore processor chip and off-chip main memory, as illustrated in Figure 2.1. The multi-
core processor chip consists of multiple single-threaded cores, each of which has its own private data
cache, and a last-level cache (LLC) that is shared by all cores. Throughout this primer, when we use
the term “cache,” we are referring to a core’s private data cache and not the LLC. Each core’s data
cache is accessed with physical addresses and is write-back. The cores and the LLC communicate
with each other over an interconnection network. The LLC, despite being on the processor chip, is
logically a “memory-side cache” and thus does not introduce another level of coherence issues. The
LLC is logically just in front of the memory and serves to reduce the average latency of memory ac-
cesses and increase the memory’s effective bandwidth. The LLC also serves as an on-chip memory
controller.

This baseline system model omits many features that are common but that are not required
for purposes of most of this primer. These features include instruction caches, multiple-level caches,
caches shared among multiple cores, virtually addressed caches, TLBs, and coherent direct memory
access (DMA). The baseline system model also omits the possibility of multiple multicore chips.
We will discuss all of these features later, but for now, they would add unnecessary complexity.

C H A P T E R 2

Coherence Basics

10 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

2.2 THE PROBLEM: HOW INCOHERENCE COuLD
POSSIBLY OCCuR

The possibility of incoherence arises only because of one fundamental issue: there exist multiple
actors with access to caches and memory. In modern systems, these actors are processor cores, DMA
engines, and external devices that can read and/or write to caches and memory. In the rest of this
primer, we generally focus on actors that are cores, but it is worth keeping in mind that other actors
may exist.

Figure 2.2 illustrates a simple example of incoherence. Initially, memory location A has the
value 42 in memory, and then both Core 1 and Core 2 load this value from memory into their re-
spective caches. At time 3, Core 1 increments the value at memory location A from 42 to 43 in its
cache, making Core 2’s value of A in its cache stale or incoherent. To prevent incoherence, the sys-
tem must implement a cache coherence protocol to regulate the actions of the cores such that Core 2
cannot observe the old value of 42 at the same time that Core 1 observes the value 43. The design
and implementation of these cache coherence protocols are the main topics of Chapter 7 through
Chapter 9.

core core

interconnection network

MULTICORE PROCESSOR CHIP

MAIN MEMORY

cache
controller

cache
controller

LLC/memory
controller

last-level
cache

(LLC)

private
data
cache

private
data
cache

FIguRE 2.1: Baseline system model used throughout this primer.

COHERENCE BASICS 11

2.3 DEFININg COHERENCE
The example of an incoherent situation described in Section 2.2 is intuitively “incorrect” in that
actors observe different values of a given datum at the same time. In this section, we transition from
an intuitive sense of what is incoherent to a precise definition of coherence. There are several defi-
nitions of coherence that have appeared in textbooks and in published papers, and we do not wish
to present all of them. Instead, we present the definition we prefer for its insight into the design
of coherence protocols. In the sidebar, we discuss alternative definitions and how they relate to our
preferred definition.

core 1add r1, r1, #1
store r1, mem[A]

A 43

core 1 core 2
load r1, mem[A]

A 42 A 42

core 2

A 42

core 1
load r1, mem[A]

core 2

A 42
Time 1

Time 3

Time 2

cache cache

FIguRE 2.2: Example of incoherence. Assume the value of memory at memory location A is ini-
tially 2.

12 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The basis of our preferred definition of coherence is the single-writer–multiple-reader (SWMR)
invariant. For any given memory location, at any given moment in time,1 there is either a single
core that may write it (and that may also read it) or some number of cores that may read it. Thus,
there is never a time when a given memory location may be written by one core and simultaneously
either read or written by any other cores. Another way to view this definition is to consider, for each
memory location, that the memory location’s lifetime is divided up into epochs. In each epoch,
either a single core has read–write access or some number of cores (possibly zero) have read-only
access. Figure 2.3 illustrates the lifetime of an example memory location, divided into four epochs
that maintain the SWMR invariant.

In addition to the SWMR invariant, coherence requires that the value of a given memory
location is propagated correctly. To explain why values matter, let us reconsider the example in Fig-
ure 2.3. Even though the SWMR invariant holds, if during the first read-only epoch Cores 2 and
5 can read different values, then the system is not coherent. Similarly, the system is incoherent if
Core 1 fails to read the last value written by Core 3 during its read–write epoch or any of Cores 1,
2, or 3 fail to read the last write performed by Core 1 during its read–write epoch.

Thus, the definition of coherence must augment the SWMR invariant with a data value in-
variant that pertains to how values are propagated from one epoch to the next. This invariant states
that the value of a memory location at the start of an epoch is the same as the value of the memory
location at the end of its last read–write epoch.

There are other interpretations of these invariants that are equivalent. One notable example
[5] interpreted the SMWR invariants in terms of tokens. The invariants are as follows. For each
memory location, there exists a fixed number of tokens that is at least as large as the number of
cores. If a core has all of the tokens, it may write the memory location. If a core has one or more
tokens, it may read the memory location. At any given time, it is thus impossible for one core to be
writing the memory location while any other core is reading or writing it.

1 The SWMR invariant need only be maintained in logical time, not physical time. This subtle issue enables many
optimizations that appear to—but do not—violate this invariant. We defer discussion of these optimizations until
later chapters, and readers unfamiliar with logical time should not be concerned.

FIguRE 2.3: Dividing a given memory location’s lifetime into epochs

COHERENCE BASICS 13

2.3.1 Maintaining the Coherence Invariants
The coherence invariants presented in the previous section provide some intuition into how coher-
ence protocols work. The vast majority of coherence protocols, called “invalidate protocols,” are
designed explicitly to maintain these invariants. If a core wants to read a memory location, it sends
messages to the other cores to obtain the current value of the memory location and to ensure that
no other cores have cached copies of the memory location in a read–write state. These messages
end any active read–write epoch and begin a read-only epoch. If a core wants to write to a memory
location, it sends messages to the other cores to obtain the current value of the memory location, if
it does not already have a valid read-only cached copy, and to ensure that no other cores have cached
copies of the memory location in either read-only or read–write states. These messages end any
active read–write or read-only epoch and begin a new read–write epoch. This primer’s chapters on
cache coherence (Chapters 6–9) expand greatly upon this abstract description of invalidate proto-
cols, but the basic intuition remains the same.

2.3.2 The granularity of Coherence
A core can perform loads and stores at various granularities, often ranging from 1 to 64 bytes. In
theory, coherence could be performed at the finest load/store granularity. However, in practice, co-
herence is usually maintained at the granularity of cache blocks. That is, the hardware enforces co-
herence on a cache block by cache block basis. In practice, the SWMR invariant is likely to be that,
for any block of memory, there is either a single writer or some number of readers. In typical systems,
it is not possible for one core to be writing to the first byte of a block while another core is writing
to another byte within that block. Although cache-block granularity is common, and it is what we
assume throughout the rest of this primer, one should be aware that there have been protocols that
have maintained coherence at finer and coarser granularities.

Coherence invariants
1. Single-Writer, Multiple-Read (SWMR) Invariant. For any memory location A, at any

given (logical) time, there exists only a single core that may write to A (and can also read it)
or some number of cores that may only read A.

2. Data-Value Invariant. The value of the memory location at the start of an epoch is the same
as the value of the memory location at the end of its last read–write epoch.

14 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Sidebar: Consistency-Like Definitions of Coherence
Our preferred definition of coherence specifies invariants regarding the access permis-

sions of different cores to a memory location and the data values passed between cores that have
particular permissions. There exists another class of definitions that focuses on loads and stores,
similar to how memory consistency models specify architecturally visible orderings of loads and
stores.

One consistency-like approach to specifying coherence is related to the definition of se-
quential consistency. Sequential consistency (SC), a memory consistency model that we discuss
in great depth in Chapter 3, specifies that the system must appear to execute all threads’ loads
and stores to all memory locations in a total order that respects the program order of each thread.
Each load gets the value of the most recent store in that total order. A definition of coherence
that is analogous to the definition of SC is that a coherent system must appear to execute all
threads’ loads and stores to a single memory location in a total order that respects the program
order of each thread. This definition highlights an important distinction between coherence and
consistency: coherence is specified on a per-memory location basis, whereas consistency is speci-
fied with respect to all memory locations.

Another definition [1,2] of coherence defines coherence with two invariants: (1) every
store is eventually made visible to all cores, and (2) writes to the same memory location are
serialized (i.e., observed in the same order by all cores). IBM takes a similar view in the Power
architecture [4], in part to facilitate implementations in which a sequence of stores by one core
may have reached some cores (their values visible to loads by those cores) but not other cores.

Another definition of coherence, as specified by Hennessy and Patterson [3], consists of
three invariants: (1) a load to memory location A by a core obtains the value of the previous store
to A by that core, unless another core has stored to A in between, (2) a load to A obtains the
value of a store S to A by another core if S and the load “are sufficiently separated in time” and if
no other store occurred between S and the load, and (3) stores to the same memory location are
serialized (same as invariant #2 in the previous definition). This set of invariants is intuitive but
somewhat problematic in that “sufficiently separated in time” is imprecise.

These consistency-like definitions are just as valid as the definition we presented in Sec-
tion 2.3 and they can easily be used as specifications against which to verify whether a given
protocol enforces coherence. A correct coherence protocol will satisfy any of these definitions.
However, the consistency-like definitions tend not to offer much intuition to the architect of a
coherence protocol. An architect designs a protocol to regulate how and when cores may access
memory locations, and thus we believe the definition in Section 2.3 is more insightful to the
architect.

COHERENCE BASICS 15

2.3.3 The Scope of Coherence
The definition of coherence—regardless of which definition we choose—has a specific scope, and
architects must be aware of when it pertains and when it does not. We now discuss two important
scope issues:

Coherence pertains to all storage structures that hold blocks from the shared address space.
These structures include the L1 data cache, L2 cache, shared last-level cache (LLC), and
main memory. These structures also include the L1 instruction cache and translation
lookaside buffers (TLBs).2

Coherence does not pertain to the architecture (i.e., coherence is not architecturally vis-
ible). Strictly speaking, a system could be incoherent and still be correct if it adhered to
the specified memory consistency model. Although this issue may seem like an intellectual
curiosity (i.e., it is difficult to imagine a practical system that is consistent but not coher-
ent), it has a highly important corollary: the memory consistency model places no explicit
constraints on coherence or the protocol used to enforce it. Nonetheless, as discussed in
Chapters 3 through 5, many consistency model implementations rely on certain common
coherence properties for correctness, which is why we have introduced coherence in this
chapter before moving on to discuss consistency models.

2.4 REFERENCES
[1] K. Gharachorloo. Memory Consistency Models for Shared-Memory Multiprocessors. PhD the-

sis, Computer System Laboratory, Stanford University, Dec. 1995.
[2] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory

Consistency and Event Ordering in Scalable Shared-Memory. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 15–26, May 1990.

[3] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, fourth edition, 2007.

[4] IBM. Power ISA Version 2.06 Revision B. http://www.power.org/resources/downloads/
PowerISA_V2.06B_V2_PUBLIC.pdf, July 2010.

[5] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Perfor-
mance and Correctness. In Proceedings of the 30th Annual International Symposium on Com-
puter Architecture, June 2003. doi:10.1109/ISCA.2003.1206999

2 In some architectures, the TLB can hold mappings that are not strictly copies of blocks in shared memory.

•

•

• • • •

http://dx.doi.org/10.1109/ISCA.2003.1206999

17

This chapter delves into memory consistency models (a.k.a. memory models) that define the be-
havior of shared memory systems for programmers and implementors. These models define correct-
ness so that programmers know what to expect and implementors know what to provide. We first
motivate the need to define memory behavior (Section 3.1), say what a memory consistency model
should do (Section 3.2), and compare and contrast consistency and coherence (Section 3.3).

We then explore the (relatively) intuitive model of sequential consistency (SC). SC is im-
portant because it is what many programmers expect of shared memory and provides a foundation
for understanding the more relaxed (weak) memory consistency models presented in the next two
chapters. We first present the basic idea of SC (Section 3.4) and present a formalism of it that we
will also use in subsequent chapters (Section 3.5). We then discuss implementations of SC, starting
with naive implementations that serve as operational models (Section 3.6), a basic implementa-
tion of SC with cache coherence (Section 3.7), more optimized implementations of SC with cache
coherence (Section 3.8), and the implementation of atomic operations (Section 3.9). We conclude
our discussion of SC by providing a MIPS R10000 case study (Section 3.10) and pointing to some
further reading (Section 3.11).

3.1 PROBLEMS WITH SHARED MEMORY BEHAVIOR
To see why shared memory behavior must be defined, consider the example execution of two cores1
depicted in Table 3.1 (this example, as is the case for all examples in this chapter, assumes that the
initial values of all variables are zero). Most programmers would expect that core C2’s register r2
should get the value NEW. Nevertheless, r2 can be 0 in some of today’s computer systems.

Hardware can make r2 get the value 0 by reordering core C1’s stores S1 and S2. Locally (i.e.,
if we look only at C1’s execution and do not consider interactions with other threads), this reordering
seems correct because S1 and S2 access different addresses. The sidebar on page 18 describes a

1 Let “core” refer to software’s view of a core, which may be an actual core or a thread context of a multithreaded
core.

C H A P T E R 3

Memory Consistency Motivation and
Sequential Consistency

18 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

few of the ways in which hardware might reorder memory accesses, including these stores. Non-
hardware experts may wish to trust that such reordering can happen (e.g., with a write buffer that
is not first-in–first-out).

With the reordering of S1 and S2, the execution order may be S2, L1, L2, S1, as illustrated
in Table 3.2.

Sidebar: How a Core Might Reorder Memory Accesses
This sidebar describes a few of the ways in which modern cores may reorder memory accesses
to different addresses. Those unfamiliar with these hardware concepts may wish to skip this on
first reading. Modern cores may reorder many memory accesses, but it suffices to reason about
reordering two memory operations. In most cases, we need to reason only about a core reorder-
ing two memory operations to two different addresses, as the sequential execution (i.e., von
Neumann) model generally requires that operations to the same address execute in the original
program order. We break the possible reorderings down into three cases based on whether the
reordered memory operations are loads or stores.

Store-store reordering. Two stores may be reordered if a core has a non-FIFO write buffer
that lets stores depart in a different order than the order in which they entered. This might oc-
cur if the first store misses in the cache while the second hits or if the second store can coalesce
with an earlier store (i.e., before the first store). Note that these reorderings are possible even if
the core executes all instructions in program order. Reordering stores to different memory ad-
dresses has no effect on a single-threaded execution. However, in the multithreaded example
of Table 3.1, reordering Core C1’s stores allows Core C2 to see flag as SET before it sees the
store to data. Note that the problem is not fixed even if the write buffer drains into a perfectly

TABLE 3.1: Should r2 Always be Set to NEW?

27

3.1 Problems with Shared Memory Behavior

To see why shared memory behavior must be defined, consider the example execution of two cores
1

depicted in Table 3-1. (This example, as is the case for all examples in this chapter, assumes that the initial

values of all variables are zero.) Most programmers would expect that register r2 should get the value

NEW. Nevertheless, r2 can be 0 in some of today’s computer systems.

Hardware can make r2 get the value 0 by re-ordering Core C1’s stores S1 and S2. Locally (i.e., if we

look only at C1’s execution and do not consider interactions with other threads), this reordering seems cor-

rect, because S1 and S2 access different addresses. The sidebar on page 28 describes a few of the ways in

which hardware might reorder memory accesses, including these stores. Non-hardware experts may wish

to trust that such reordering can happen (e.g., with a write buffer that is not first-in-first-out). With reorder-

ing of S1 and S2, the execution order may be S2, L1, L2, S1, as illustrated in Table 3-2. This execution sat-

isfies coherence, because the SWMR property is not violated, so incoherence is not the underlying cause of

this seemingly erroneous execution result.

Let us consider another important example inspired by Dekker’s Algorithm for ensuring mutual exclu-

sion, as depicted in Table 3-3. After execution, what values are allowed in r1 and r2? Intuitively, one might

expect that there are three possibilities:

1. Let “core” refer to software’s view of a core, which may be an actual core or a thread context of a multithreaded core.

TABLE 3-1. Should r2 always be set to NEW?

Core C1 Core C2 Comments

S1: Store data = NEW; /* Initially, data = 0 & flag SET */

S2: Store flag = SET; L1: Load r1 = flag; /* L1 & B1 may repeat many times */

B1: if (r1 SET) goto L1;

L2: Load r2 = data;

TABLE 3-2. One possible execution of program in Table 3-1

cycle Core C1 Core C2 Coherence state of data Coherence state of flag

1 S2: Store flag=SET read-only for C2 read-write for C1

2 L1: Load r1=flag read-only for C2 read-only for C2

3 L2: Load r2=data read-only for C2 read-only for C2

4 S1: Store data=NEW read-write for C1 read-only for C2

≠

≠

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 19

coherent memory hierarchy. Coherence will make all caches invisible, but the stores are already
reordered.

Load-load reordering. Modern dynamically-scheduled cores may execute instructions out
of program order. In the example of Table 3.1, Core C2 could execute loads L1 and L2 out of
order. Considering only a single-threaded execution, this reordering seems safe because L1 and
L2 are to different addresses. However, reordering Core C2’s loads behaves the same as reorder-
ing Core C1’s stores; if the memory references execute in the order L2, S1, S2 and L1, then r2
is assigned 0. This scenario is even more plausible if the branch statement B1 is elided, so no
control dependence separates L1 and L2.

Load-store and store-load reordering. Out-of-order cores may also reorder loads and stores
(to different addresses) from the same thread. Reordering an earlier load with a later store (a load-
store reordering) can cause many incorrect behaviors, such as loading a value after releasing the
lock that protects it (if the store is the unlock operation). The example in Table 3-3 illustrates the
effect of reordering an earlier store with a later load (a store-load reordering). Reordering Core
C1’s accesses S1 and L1 and Core C2’s accesses S2 and L2 allows the counterintuitive result that
both r1 and r2 are 0. Note that store-load reorderings may also arise due to local bypassing in
the commonly implemented FIFO write buffer, even with a core that executes all intructions in
program order.

A reader might assume that hardware should not permit some or all of these behaviors,
but without a better understanding of what behaviors are allowed, it is hard to determine a list of
what hardware can and cannot do.

TABLE 3.2: One Possible Execution of Program in Table 3.1.

27

3.1 Problems with Shared Memory Behavior

To see why shared memory behavior must be defined, consider the example execution of two cores
1

depicted in Table 3-1. (This example, as is the case for all examples in this chapter, assumes that the initial

values of all variables are zero.) Most programmers would expect that register r2 should get the value

NEW. Nevertheless, r2 can be 0 in some of today’s computer systems.

Hardware can make r2 get the value 0 by re-ordering Core C1’s stores S1 and S2. Locally (i.e., if we

look only at C1’s execution and do not consider interactions with other threads), this reordering seems cor-

rect, because S1 and S2 access different addresses. The sidebar on page 28 describes a few of the ways in

which hardware might reorder memory accesses, including these stores. Non-hardware experts may wish

to trust that such reordering can happen (e.g., with a write buffer that is not first-in-first-out). With reorder-

ing of S1 and S2, the execution order may be S2, L1, L2, S1, as illustrated in Table 3-2. This execution sat-

isfies coherence, because the SWMR property is not violated, so incoherence is not the underlying cause of

this seemingly erroneous execution result.

Let us consider another important example inspired by Dekker’s Algorithm for ensuring mutual exclu-

sion, as depicted in Table 3-3. After execution, what values are allowed in r1 and r2? Intuitively, one might

expect that there are three possibilities:

1. Let “core” refer to software’s view of a core, which may be an actual core or a thread context of a multithreaded core.

TABLE 3-1. Should r2 always be set to NEW?

Core C1 Core C2 Comments

S1: Store data = NEW; /* Initially, data = 0 & flag != SET */

S2: Store flag = SET; L1: Load r1 = flag; /* L1 & B1 may repeat many times */

B1: if (r1 != SET) goto L1;

L2: Load r2 = data;

TABLE 3-2. One possible execution of program in Table 3-1

cycle Core C1 Core C2 Coherence state of data Coherence state of flag

1 S2: Store flag=SET read-only for C2 read-write for C1

2 L1: Load r1=flag read-only for C2 read-only for C2

3 L2: Load r2=data read-only for C2 read-only for C2

4 S1: Store data=NEW read-write for C1 read-only for C2

20 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

This execution satisfies coherence because the SWMR property is not violated, so incoher-
ence is not the underlying cause of this seemingly erroneous execution result.

Let us consider another important example inspired by Dekker’s Algorithm for ensuring
mutual exclusion, as depicted in Table 3.3. After execution, what values are allowed in r1 and r2?
Intuitively, one might expect that there are three possibilities:

(r1, r2) = (0, NEW) for execution S1, L1, S2, then L2
(r1, r2) = (NEW, 0) for S2, L2, S1, and L1
(r1, r2) = (NEW, NEW), e.g., for S1, S2, L1, and L2

Surprisingly, most real hardware, e.g., x86 systems from Intel and AMD, also allows (r1, r2) =
(0, 0) because it uses first-in–first-out (FIFO) write buffers to enhance performance. As with the
example in Table 3.1, all of these executions satisfy cache coherence, even (r1, r2) = (0, 0).

Some readers might object to this example because it is non-deterministic (multiple out-
comes are allowed) and may be a confusing programming idiom. However, in the first place, all cur-
rent multiprocessors are non-deterministic by default; all architectures of which we are aware permit
multiple possible interleavings of the executions of concurrent threads. The illusion of determinism
is sometimes, but not always, created by software with appropriate synchronization idioms. Thus,
we must consider non-determinism when defining shared memory behavior.

Furthermore, memory behavior is usually defined for all executions of all programs, even
those that are incorrect or intentionally subtle (e.g., for non-blocking synchronization algorithms).
In Chapter 5, however, we will see some high-level language models that allow some executions to
have undefined behavior, e.g., executions of programs with data races.

3.2 WHAT IS A MEMORY CONSISTENCY MODEL?
The examples in the last sub-section illustrate that shared memory behavior is subtle, giving value
to precisely defining (a) what behaviors programmers can expect and (b) what optimizations system
implementors may use. A memory consistency model disambiguates these issues.

•
•
•

TABLE 3.3: Can Both r1 and r2 be Set to 0?

29

Surprisingly, most real hardware, e.g., x86 systems from Intel and AMD, also allow (r1, r2) = (0, 0),

because they use first-in-first-out (FIFO) write buffers to enhance performance. As with the example in

Table 3-1, all of these executions satisfy cache coherence, even (r1, r2) = (0, 0).

Some readers might object to this example because it is non-deterministic (multiple outcomes are

allowed) and may be a confusing programming idiom. However, in the first place, all current multiproces-

sors are non-deterministic by default; all architectures of which we are aware permit multiple possible

interleavings of the executions of concurrent threads. The illusion of determinism is sometimes, but not

always, created by software with appropriate synchronization idioms. Thus, we must consider non-deter-

minism when defining shared memory behavior.

Furthermore, memory behavior is usually defined for all executions of all programs, even those that

are incorrect or intentionally subtle (e.g., for non-blocking synchronization algorithms). In Chapter 5, how-

ever, we will see some high-level language models that allow some executions to have undefined behavior,

e.g., executions of programs with data races.

3.2 What is a Memory Consistency Model?

The examples in the last sub-section illustrate that shared memory behavior is subtle, giving value to

precisely defining (a) what behaviors programmers can expect and (b) what optimizations system imple-

mentors may use. A memory consistency model disambiguates these issues.

A memory consistency model or, more simply, a memory model, is a specification of the allowed

behavior of multithreaded programs executing with shared memory. For a multithreaded program execut-

ing with specific input data, it specifies what values dynamic loads may return and what is the final state of

memory. Unlike a single-threaded execution, multiple correct behaviors are usually allowed, as we will see

for sequential consistency (Section 3.4 and beyond).

In general, a memory consistency model MC gives rules that partition executions into those obeying

MC (MC executions) and those disobeying MC (non-MC executions). This partitioning of executions in

TABLE 3-3. Can both r1 and r2 be set to 0?

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

L1: r1 = y; L2: r2 = x;

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 21

A memory consistency model, or, more simply, a memory model, is a specification of the allowed
behavior of multithreaded programs executing with shared memory. For a multithreaded program
executing with specific input data, it specifies what values dynamic loads may return and what the
final state of memory is. Unlike a single-threaded execution, multiple correct behaviors are usually
allowed, as we will see for sequential consistency (Section 3.4 and beyond).

In general, a memory consistency model MC gives rules that partition executions into those
obeying MC (MC executions) and those disobeying MC (non-MC executions). This partitioning of
executions, in turn, partitions implementations. An MC implementation is a system that permits
only MC executions, while a non-MC implementation sometimes permits non-MC executions.

Finally, we have been vague regarding the level of programming. We begin by assuming that
programs are executables in a hardware instruction set architecture, and we assume that memory ac-
cesses are to memory locations identified by physical addresses (i.e., we are not considering the im-
pact of virtual memory and address translation). In Chapter 5, we will discuss issues with high-level
languages (HLLs). We will see then, for example, that a compiler allocating a variable to a register
can affect an HLL memory model in a manner similar to hardware reordering memory references.

3.3 CONSISTENCY VS. COHERENCE
Chapter 2 defined cache coherence with two invariants that we informally repeat here. The Single-
Writer–Multiple-Reader (SWMR) invariant ensures that at any (logical) time for a memory location
with a given address, either (a) one core may write (and read) the address or (b) one or more cores
may only read it. The Data-Value Invariant ensures that updates to the memory location are passed
correctly so that cached copies of the memory location always contain the most recent version.

It would seem that cache coherence defines shared memory behavior. It does not for three
reasons:

The goal of cache coherence is to make caches in multicore systems as invisible as caches in
single-core systems. However, once caches are invisible, what behavior remains?
Coherence typically deals with one cache block at a time and is silent on the interaction of
accesses to multiple cache blocks. Real programs access variables across numerous cache
blocks.
It is possible to implement a memory system without coherence and even without caches.

Although coherence is not required, most shared memory systems do implement their mem-
ory consistency model with coherent caches. Even so, it is possible—and we think extremely valu-
able—to decouple the consistency implementation from the coherence implementation. To this
end, the memory consistency implementations we present in this and the next two chapters will

•

•

•

22 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

use coherence like a subroutine call. For example, they will exploit the SWMR invariant without
concern for how it is implemented.

In summary:

Cache coherence does not equal memory consistency.
A memory consistency implementation can use cache coherence as a useful “black box.”

3.4 BASIC IDEA OF SEQuENTIAL CONSISTENCY (SC)
Arguably the most intuitive memory consistency model is sequential consistency (SC). Sequential
consistency was first formalized by Lamport [8]. Lamport first called a single processor (core) se-
quential if “the result of an execution is the same as if the operations had been executed in the order
specified by the program.” He then called a multiprocessor sequentially consistent if “the result of any
execution is the same as if the operations of all processors (cores) were executed in some sequential
order, and the operations of each individual processor (core) appear in this sequence in the order
specified by its program.” This total order of operations is called memory order. In SC, memory order
respects each core’s program order, but other consistency models may permit memory orders that do
not always respect the program orders.

Figure 3.1 depicts an execution of the example program from Table 3.1. The middle vertical
downward arrow represents the memory order (<m) while each core’s downward arrow represents
its program order (<p). We denote memory order using the operator <m, so op1 <m op2 implies
that op1 precedes op2 in memory order. Similarly, we use the operator <p to denote program order

•
•

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: data = NEW; /* NEW */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* 0 */

S2: flag = SET; /* SET */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* SET */

L2: r2 = data; /* NEW */

FIguRE 3.1: A Sequentially Consistent Execution of Table 3.1’s Program.

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 23

for a given core, so op1 <p op2 implies that op1 precedes op2 in that core’s program order. Under
SC, memory order respects each core’s program order. “Respects” means that op1 <p op2 implies op1
<m op2. The values in comments (/* ... */) give the value loaded or stored. This execution termi-
nates with r2 being NEW. More generally, all executions of Table 3.1’s program terminate with r2
as NEW. The only non-determinism—how many times L1 loads flag as 0 before it loads the value
SET once—is unimportant.

This example illustrates the value of SC. In Section 3.1, if you expected that r2 must be
NEW, you were perhaps independently inventing SC, albeit less precisely than Lamport.

The value of SC is further revealed in Figure 3.2, which illustrates four executions of the
program from Table 3.3. Figure 3.2(a–c) depict SC executions that correspond to the three intui-
tive outputs: (r1, r2) = (0, NEW), (NEW, 0), or (NEW, NEW). Note that Figure 3.2(c) depicts
only one of the four possible SC executions that leads to (r1, r2) = (NEW, NEW); this execution is
{S1, S2, L1, L2}, and the others are {S1, S2, L2, L1}, {S2, S1, L1, L2}, and {S2, S1, L2, L1}. Thus,
across Figure 3.2(a–c), there are six legal SC executions.

Figure 3.2(d) shows a non-SC execution corresponding to the output (r1, r2) = (0, 0). For
this output, there is no way to create a memory order that respects program orders. Program order
dictates that:

S1 <p L1
S2 <p L2

But memory order dictates that:

L1 <m S2 (so r1 is 0)
L2 <m S1 (so r2 is 0)

Honoring all these constraints results in a cycle, which is inconsistent with a total order. The extra
arcs in Figure 3.2(d) illustrate the cycle.

We have just seen six SC executions and one non-SC execution. This can help us understand
SC implementations: an SC implementation must allow one or more of the first six executions, but
cannot allow the seventh execution.

We have also just observed a key distinction between consistency and coherence. Coherence ap-
plies on a per-block basis, whereas consistency is defined across all blocks. (Forecasting ahead to Chap-
ter 7, we will see that snooping systems ensure a total order of coherence requests across all blocks,
even though coherence requires only a total order of coherence requests to each individual block. This
seeming overkill is required for snooping protocols to support consistency models such as SC.)

•
•

•
•

24 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

3.5 A LITTLE SC FORMALISM
In this section, we define SC more precisely, especially to allow us to compare SC with the weaker
consistency models in the next two chapters. We adopt the formalism of Weaver and Germond
[17 (Appendix D)] with the following notation: L(a) and S(a) represent a load and a store, respectively,
to address a. Orders <p and <m define program and global memory order, respectively. Program
order <p is a per-core total order that captures the order in which each core logically (sequentially)

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: x = NEW; /* NEW */

S2: y = NEW; /* NEW */

L2: r2 = x; /* NEW */

L1: r1 = y; /* 0 */

(a) SC Execution 1

Outcome: (r1, r2) = (0, NEW)

S1: x = NEW; /* NEW */

S2: y = NEW; /* NEW */

L2: r2 = x; /* 0 */

L1: r1 = y; /* NEW */

(b) SC Execution 2

Outcome: (r1, f2) = (NEW, 0)

S1: x = NEW; /* NEW */

S2: y = NEW; /* NEW */

L2: r2 = x; /* 0 */

L1: r1 = y; /* 0 */

(d) NOT an SC Execution

Outcome: (r1, r2) = (0, 0)

S1: x = NEW; /* NEW */
S2: y = NEW; /* NEW */

L2: r2 = x; /* NEW */
L1: r1 = y; /* NEW */

(c) SC Execution 3

Outcome: (r1, r2) = (NEW, NEW)

FIguRE 3.2: Four Alternative Executions of Table 3.3’s Program.

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 25

executes memory operations. Global memory order <m is a total order on the memory operations
of all cores.

An SC execution requires:
(1) All cores insert their loads and stores into the order <m respecting their program order,

regardless of whether they are to the same or different addresses (i.e., a=b or a≠b). There are four
cases:

If L(a) <p L(b) ⇒ L(a) <m L(b) /* Load→Load */
If L(a) <p S(b) ⇒ L(a) <m S(b) /* Load→Store */
If S(a) <p S(b) ⇒ S(a) <m S(b) /* Store→Store */
If S(a) <p L(b) ⇒ S(a) <m L(b) /* Store→Load */

(2) Every load gets its value from the last store before it (in global memory order) to the same
address:

Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a)}, where MAX <m denotes “latest in
memory order.”

Atomic read–modify–write (RMW) instructions, which we discuss in more depth in Sec-
tion 3.9, further constrain allowed executions. Each execution of a test-and-set instruction, for
example, requires that the load for the test and the store for the set logically appear consecutively in
the memory order (i.e., no other memory operations for the same or different addresses interpose
between them).

We summarize SC’s ordering requirements in Table 3.4. The table specifies which program
orderings are enforced by the consistency model. For example, if a given thread has a load before a
store in program order (i.e., the load is “Operation 1” and the store is “Operation 2” in the table),

•
•
•
•

TABLE 3.4: SC Ordering Rules. An “X” Denotes
an Enforced Ordering.

35

some good). At minimum, an SC implementation should permit at least one SC execution for every pro-

gram. More generally, starvation-avoidance and some fairness are also valuable, but these issues are

beyond the scope of this discussion.

3.6 Naive SC Implementations

SC permits two naive implementations that make it easier to understand which executions SC permits.

The Multitasking Uniprocessor. First, one can implement SC for multi-threaded user-level software by

executing all threads on a single sequential core (a uniprocessor). Thread T1’s instructions execute on core

C1 until a context switch to thread T2, etc. On a context switch, any pending memory operations must

complete before switching to the new thread. An inspection reveals that all SC rules are obeyed.

The Switch. Second, one can implement SC with a set of cores Ci, a single switch, and memory, as

depicted in Figure 3-3. Assume that each core presents memory operations to the switch one at a time in its

program order. Each core can use any optimizations that do not affect the order in which it presents mem-

ory operations to the switch. For example, a simple 5-stage in-order pipeline with branch prediction can be

used. Assume next that the switch picks one core, allows memory to fully satisfy the load or store, and

repeats this process as long as requests exist. The switch may pick cores by any method (e.g., random) that

does not starve a core with a ready request. This implementation operationally implements SC by construc-

tion.

Assessment. The good news from these implementations is that they provide operational models defining

(1) allowed SC executions and (2) SC implementation “gold standards.” The switch implementation also

serves as an existence proof that SC can be implemented without caches or coherence.

TABLE 3-4. SC ordering rules. An “X” denotes

an enforced ordering.

Operation 2

Load Store RMW

O
p

e
r
a

t
i
o

n
 1

Load X X X

Store X X X

RMW X X X

26 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

then the table entry at this intersection is an “X” which denotes that these operations must be per-
formed in program order. For SC, all memory operations must appear to perform in program order;
under other consistency models, which we study in the next two chapters, some of these ordering
constraints are relaxed (i.e., some entries in their ordering tables do not contain an “X”).

An SC implementation permits only SC executions. Strictly speaking, this is the safety prop-
erty for SC implementations (do no harm). SC implementations should also have some liveness
properties (do some good). At minimum, an SC implementation should permit at least one SC
execution for every program. More generally, starvation avoidance and some fairness are also valu-
able, but these issues are beyond the scope of this discussion.

3.6 NAIVE SC IMPLEMENTATIONS
SC permits two naive implementations that make it easier to understand which executions SC
permits.

The Multitasking uniprocessor
First, one can implement SC for multi-threaded user-level software by executing all threads on a
single sequential core (a uniprocessor). Thread T1’s instructions execute on core C1 until a context
switch to thread T2, etc. On a context switch, any pending memory operations must be completed
before switching to the new thread. An inspection reveals that all SC rules are obeyed.

The Switch
Second, one can implement SC with a set of cores Ci, a single switch, and memory, as depicted in
Figure 3.3. Assume that each core presents memory operations to the switch one at a time in its
program order. Each core can use any optimizations that do not affect the order in which it pre-
sents memory operations to the switch. For example, a simple 5-stage in-order pipeline with branch
prediction can be used.

C1 C2 Cn

MEMORY

SWITCH

Each core Ci seeks to do its next
memory access in its program order
<p.

The switch selects one core, allows
it to complete one memory access,
and repeats; this defines memory
order <m.

FIguRE 3.3: A Simple SC Implementation Using a Memory Switch.

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 27

Assume next that the switch picks one core, allows memory to fully satisfy the load or store,
and repeats this process as long as requests exist. The switch may pick cores by any method (e.g.,
random) that does not starve a core with a ready request. This implementation operationally imple-
ments SC by construction.

Assessment
The good news from these implementations is that they provide operational models defining (1) al-
lowed SC executions and (2) SC implementation “gold standards.” The switch implementation also
serves as an existence proof that SC can be implemented without caches or coherence.

The bad news, of course, is that the performance of these implementations does not scale up
with increasing core count, due to the sequential bottleneck of using a single core in the first case
and the single switch/memory in the second case. These bottlenecks have led some people to incor-
rectly conclude that SC precludes true parallel execution. It does not, as we will see next.

3.7 A BASIC SC IMPLEMENTATION WITH CACHE
COHERENCE

Cache coherence facilitates SC implementations that can execute non-conflicting loads and stores—
two operations conflict if they are to the same address and at least one of them is a store—completely
in parallel. Moreover, creating such a system is conceptually simple.

Here, we treat coherence as mostly a black box that implements the Single-Writer–Multiple
Reader (SWMR) invariant of Chapter 2. We provide some implementation intuition by opening
the coherence block box slightly to reveal simple level-one (L1) caches that:

use state modified (M) to denote an L1 block that one core can write and read,
use state shared (S) to denote an L1 block that one or more cores can only read, and
have GetM and GetS denote coherence requests to obtain a block in M and S, respectively.

We do not require a deep understanding of how coherence is implemented, as discussed in
Chapter 6 and beyond.

Figure 3.4(a) depicts the model of Figure 3.3 with the switch and memory replaced by a
cache-coherent memory system represented as a black box. Each core presents memory operations
to the cache-coherent memory system one at a time in its program order. The memory system fully
satisfies each request before beginning the next request for the same core.

Figure 3.4(b) “opens” the memory system black box a little to reveal that each core connects
to its own L1 cache (we will talk about multithreading later). The memory system can respond
to a load or store to block B if it has B with appropriate coherence permissions (state M or S

•
•
•

28 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

for loads and M for stores). Moreover, the memory system can respond to requests from differ-
ent cores in parallel, provided that the corresponding L1 caches have the appropriate permissions.
For example, Figure 3.5(a) depicts the cache states before four cores each seek to do a memory
operation. The four operations do not conflict, can be satisfied by their respective L1 caches, and
therefore can be done concurrently. As depicted in Figure 3.5(b), we can arbitrarily order these op-
erations to obtain a legal SC execution model. More generally, operations that can be satisfied by L1
caches always can be done concurrently because coherence’s single-writer–multiple-reader invariant
ensures they are non-conflicting.

Assessment
We have created an implementation of SC that:

fully exploits the latency and bandwidth benefits of caches,
is as scalable as the cache coherence protocol it uses, and
decouples the complexities of implementing cores from implementing coherence.

•
•
•

C1 C2 Cn

CACHE-COHERENT
MEMORY SYSTEM

Each core Ci seeks to do its next
memory access in its program order
<p.

The memory system logically
selects one core, allows it to com-
plete one memory access, and
repeats; this defines memory order
<m.

(a) Black-Box Memory System

C1 C2 Cn Same as above

Same as above, but cores can concur-
rently complete accesses to blocks with
sufficient (L1) cache coherence permis-
sion, because such accesses must be
non-conflicting (to different blocks or
all loads) and may be placed into mem-
ory order in any logical order.

(b) Memory System with L1 Caches Exposed

L1$ L1$ L1$

OTHER COMPONENTS
OF CACHE-COHERENT
MEMORY SYSTEM

FIguRE 3.4: Implementing SC with Cache Coherence.

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 29

3.8 OPTIMIZED SC IMPLEMENTATIONS WITH CACHE
COHERENCE

Most real core implementations are more complicated than our basic SC implementation with
cache coherence. Cores employ features like prefetching, speculative execution, and multithreading
in order to improve performance and tolerate memory access latencies. These features interact with
the memory interface, and we now discuss how these features impact the implementation of SC.

Non-Binding Prefetching
A non-binding prefetch for block B is a request to the coherent memory system to change B’s
coherence state in one or more caches. Most commonly, prefetches are requested by software, core
hardware, or the cache hardware to change B’s state in the level-one cache to permit loads (e.g.,
B’s state is M or S) or loads and stores (B’s state is M) by issuing coherence requests such as GetS
and GetM. Importantly, in no case does a non-binding prefetch change the state of a register or
data in block B. The effect of the non-binding prefetch is limited to within the “cache-coherent
memory system” block of Figure 3.4, making the effect of non-binding prefetches on the memory

(a) Four Accesses Executed Concurrently

C1 All four accesses can be executed
concurrently & be logically ordered.

Core C1’s cache has block A in state
M (read-write) with value 0, C2 has
B in M with value 1, and both C3 and
C4 have C in S (read-only) with value 6.
(Of course real caches usually have
multi-word blocks.)

(b) Four Accesses Logically Ordered in an SC Execution (one possible ordering)

OTHER COMPONENTS
OF CACHE-COHERENT
MEMORY SYSTEM

AM0

store A, 7

C2

BM1

store B, 9

C3

CS6

load C

C4

CS6

load C

C1’s store A, 7 /* 7 */

C3’s load C /* 6 */

C4’s load C /* 6 */
C2’s store B, 9 /* 9 */

memory order (<m)

FIguRE 3.5: A Concurrent SC Execution with Cache Coherence.

30 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

consistency model to be the functional equivalent of a no-op. So long as the loads and stores are
performed in program order, it does not matter in what order coherence permissions are obtained.

Implementations may do non-binding prefetches without affecting the memory consistency
model. This is useful for both internal cache prefetching (e.g., stream buffers) and more aggressive
cores.

Speculative Cores
Consider a core that executes instructions in program order, but also does branch prediction wherein
subsequent instructions, including loads and stores, begin execution, but may be squashed (i.e., have
their effects nullified) on a branch misprediction. These squashed loads and stores can be made to
look like non-binding prefetches, enabling this speculation to be correct because it has no effect
on SC. A load after a branch prediction can be presented to the L1 cache, wherein it either misses
(causing a non-binding GetS prefetch) or hits and then returns a value to a register. If the load is
squashed, the core discards the register update, erasing any functional effect from the load—as if it
never happened. The cache does not undo non-binding prefetches, as doing so is not necessary and
prefetching the block can help performance if the load gets re-executed. For stores, the core may
issue a non-binding GetM prefetch early, but it does not present the store to the cache until the
store is guaranteed to commit.

Flashback to Quiz Question 1: In a system that maintains sequential consistency, a core must
issue coherence requests in program order. True or false?
Answer: False! A core may issue coherence requests in any order.

Dynamically Scheduled Cores
Many modern cores dynamically schedule instruction execution out of program order to achieve
greater performance than statically scheduled cores that must execute instructions in strict program
order. A single-core processor that uses dynamic or out-of-(program-)order scheduling must simply
enforce true data dependences within the program. However, in the context of a multicore proces-
sor, dynamic scheduling introduces a new issue: memory consistency speculation. Consider a core
that wishes to dynamically reorder the execution of two loads, L1 and L2 (e.g., because L2’s address
is computed before L1’s address). Many cores will speculatively execute L2 before L1, and they are
predicting that this reordering is not visible to other cores, which would violate SC.

Speculating on SC requires that the core verify that the prediction is correct. Gharachorloo
et al. [4] presented two techniques for performing this check. First, after the core speculatively
executes L2, but before it commits L2, the core could check that the speculatively accessed block
has not left the cache. So long as the block remains in the cache, its value could not have changed

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 31

between the load’s execution and its commit. To perform this check, the core tracks the address
loaded by L2 and compares it to blocks evicted and to incoming coherence requests. An incoming
GetM indicates that another core could observe L2 out of order, and this GetM would imply a mis-
speculation and squash the speculative execution.

The second checking technique is to replay each speculative load when the core is ready to
commit the load2 [2, 14]. If the value loaded at commit does not equal the value that was previously
loaded speculatively, then the prediction was incorrect. In the example, if the replayed load value of
L2 is not the same as the originally loaded value of L2, then the load–load reordering has resulted
in an observably different execution and the speculative execution must be squashed.

Non-Binding Prefetching in Dynamically Scheduled Cores
A dynamically scheduled core is likely to encounter load and store misses out of program order.
For example, assume that program order is Load A, Store B, then Store C. The core may initiate
non-binding prefetches “out of order,” e.g., GetM C first and then GetS A and GetM B in paral-
lel. SC is not affected by the order of non-binding prefetches. SC requires only that a core’s loads
and stores (appear to) access its level-one cache in program order. Coherence requires the level-one
cache blocks to be in the appropriate states to receive loads and stores.

Importantly, SC (or any other memory consistency model):

dictates the order in which loads and stores (appear to) get applied to coherent memory but
does NOT dictate the order of coherence activity.

Flashback to Quiz Question 2: The memory consistency model specifies the legal orderings of
coherence transactions. True or false?
Answer: False!

Multithreading
Multithreading—at coarse grain, fine grain, or simultaneous—can be accommodated by SC imple-
mentations. Each multithreaded core should be made logically equivalent to multiple (virtual) cores
sharing each level-one cache via a switch where the cache chooses which virtual core to service next.
Moreover, each cache can actually serve multiple non-conflicting requests concurrently because
it can pretend that they were serviced in some order. One challenge is ensuring that a thread T1
cannot read a value written by another thread T2 on the same core before the store has been made
“visible” to threads on other cores. Thus, while thread T1 may read the value as soon as thread T2

2 Roth [14] demonstrated a scheme for avoiding many load replays by determining when they are not necessary.

•
•

32 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

inserts the store in the memory order (e.g., by writing it to a cache block in state M), it cannot read
the value from a shared load-store queue in the processor core.

3.9 ATOMIC OPERATIONS WITH SC
To write multithreaded code, a programmer needs to be able to synchronize the threads, and such
synchronization often involves atomically performing pairs of operations. This functionality is pro-
vided by instructions that atomically perform a “read–modify–write” (RMW), such as the well-
known “test-and-set,” “fetch-and-increment,” and “compare-and-swap.” These atomic instructions
are critical for proper synchronization and are used to implement spin-locks and other synchroniza-
tion primitives. For a spin-lock, a programmer might use an RMW to atomically read whether the
lock’s value is unlocked (e.g., equal to 0) and write the locked value (e.g., equal to 1). For the RMW
to be atomic, the read (load) and write (store) operations of the RMW must appear consecutively in
the total order of operations required by SC.

Implementing atomic instructions in the microarchitecture is conceptually straightforward,
but naive designs can lead to poor performance for atomic instructions. A correct but simplistic
approach to implementing atomic instructions would be for the core to effectively lock the mem-
ory system (i.e., prevent other cores from issuing memory accesses) and perform its read, modify,
and write operations to memory. This implementation, although correct and intuitive, sacrifices
performance.

More aggressive implementations of RMWs leverage the insight that SC requires only the
appearance of a total order of all requests. Thus, an atomic RMW can be implemented by first hav-
ing a core obtain the block in state M in its cache, if the block is not already there in that state. The
core then needs to only load and store the block in its cache—without any coherence messages or
bus locking—as long as it waits to service any incoming coherence request for the block until after
the store. This waiting does not risk deadlock because the store is guaranteed to complete.

Flashback to Quiz Question 3: To perform an atomic read-modify-write instruction (e.g., test-
and-set), a core must always communicate with the other cores. True or false?
Answer: False!

An even more optimized implementation of RMWs could allow more time between when
the load part and store part perform, without violating atomicity. Consider the case where the block
is in a read-only state in the cache. The load part of the RMW can speculatively perform immedi-
ately, while the cache controller issues a coherence request to upgrade the block’s state to read–write.
When the block is then obtained in read–write state, the write part of the RMW performs. As long
as the core can maintain the illusion of atomicity, this implementation is correct. To check whether

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 33

the illusion of atomicity is maintained, the core must check whether the loaded block is evicted
from the cache between the load part and the store part; this speculation support is the same as that
needed for detecting mis-speculation in SC (Section 3.8).

3.10 PuTTINg IT ALL TOgETHER: MIPS R10000
The MIPS R10000 [18] provides a venerable, but clean, commercial example for a speculative mi-
croprocessor that implements SC in cooperation with a cache-coherent memory hierarchy. Herein,
we concentrate on aspects of the R10000 that pertain to implementing memory consistency.

The R10000 is a four-way superscalar RISC processor core with branch prediction and out-
of-order execution. The chip supports writeback caches for L1 instructions and L1 data, as well as
a private interface to an (off-chip) unified L2 cache.

The chip’s main system interface bus supports cache coherence for up to four processors, as
depicted in Figure 3.6 (adapted from Figure 1 in Yeager [18]). To construct an R10000-based
system with more processors, such as the SGI Origin 2000 (discussed at length in Section 8.8.1),
architects implemented a directory coherence protocol that connects R10000 processors via the
system interface bus and a specialized Hub chip. In both cases, the R10000 processor core sees a
coherent memory system that happens to be partially on-chip and partially off-chip.

During execution, an R10000 core issues (speculative) loads and stores in program order into
an address queue. A load obtains a (speculative) value from the last store before it to the same address
or, if none, the data cache. Loads and stores commit in program order and then remove their address
queue entries. To commit a store, the L1 cache must hold the block in state M and the store’s value
must be written atomically with the commit.

Importantly, the eviction of a cache block—due to a coherence invalidation or to make room
for another block—that contains a load’s address in the address queue squashes the load and all
subsequent instructions, which then re-execute. Thus, when a load finally commits, the loaded
block was continuously in the cache between when it executed and when it commits, so it must get
the same value as if it executed at commit. Because stores actually write to the cache at commit,

MIPS
R10000

MIPS
R10000

MIPS
R10000

MIPS
R10000

coherent MESI bus

FIguRE 3.6: Coherent MESI bus connects up to four MIPS R10000 processors.

34 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

the R10000 logically presents loads and stores in program order to the coherent memory system,
thereby implementing SC, as discussed above.

3.11 FuRTHER READINg REgARDINg SC
Below we highlight a few of the papers from the vast literature surrounding SC.

Lamport [8] defined SC. As far as we know, Meixner and Sorin [11, 12] were the first to
prove that a system in which cores present loads and stores in program order to a cache coherent
memory system was sufficient to implement SC, even as this result was intuitively believed for some
time.

SC can be compared with database serializability [6]. The two concepts are similar in that
they both insist that the operations from all entities appear to affect shared state in a serial order.
The concepts differ due to the nature of and expectation for operations and shared state. With SC,
each operation is a single memory access to volatile state (memory) that is assumed not to fail. With
serializability, each operation is a transaction on a database that can read and write multiple data-
base entities and is expected to obey ACID properties: Atomic—all or nothing even with failures,
Consistent—leave the database consistent, Isolated—no effect from concurrent transactions, and
Durable—effects survive crashes and power loss.

We followed Lamport and SPARC to define a total order of all memory accesses. While this
can ease intuition for some, it is not necessary. Let two accesses conflict if they are from different
threads, access the same location, and at least one is a store (or read–modify–write). Instead of a
total order, one can just define the constraints on conflicting accesses and leave non-conflicting ac-
cesses unordered, as pioneered by Shasha and Snir [15]. This view can be especially valuable for the
relaxed models of Chapter 5.

There have been many papers on aggressive implementations of SC. Gharachorloo et al. [4]
show that non-binding prefetches and speculative execution are permitted when implementing SC
and other memory models. Ranganathan et al. [13] and Gniady et al. [5] seek to speculatively retire
(commit) instructions (freeing resources) and handle SC violations with secondary mechanisms.
Recent work has implemented SC by building on implicit transactions and related mechanisms
[1, 3, 7, 16].

Finally, a cautionary tale. We stated earlier (Section 3.7) that one way to check whether a
speculatively executed load could have been observed out of order is to remember the value A that
is speculatively read by a load and to commit the load if, at commit, the memory location has the
same value A. Martin et al. [10] show that this is not the case for cores that perform value predic-
tion [9]. With value prediction, when a load executes, the core can speculate on its value. Consider
a core that speculates that a load of block X will produce the value A, although the value is actu-
ally B. Between when the core speculates on the load of X and when it replays the load at commit,

MEMORY CONSISTENCY MOTIVATION AND SEQuENTIAL CONSISTENCY 35

another core changes block X’s value to A. The core then replays the load at commit, compares the
two values, which are equal, and mistakenly determines that the speculation was correct. The system
can violate SC if it speculates in this way. This situation is analogous to the so-called ABA prob-
lem [http://en.wikipedia.org/wiki/ABA_problem], and Martin et al. showed that there are ways
of checking speculation in the presence of value prediction that avoid the possibility of consistency
violations (e.g., by also replaying all loads dependent on the initially speculated load). The point of
this discussion is not to delve into the details of this particular corner case or its solutions, but rather
to convince you to prove that your implementation is correct rather than rely on intuition.

3.12 REFERENCES
[1] C. Blundell, M. M. K. Martin, and T. F. Wenisch. InvisiFence: Performance-Transparent

Memory Ordering in Conventional Multiprocessors. In Proceedings of the 36th Annual In-
ternational Symposium on Computer Architecture, June 2009.

[2] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-Based Approach. In Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture, June 2004.
doi:10.1109/ISCA.2004.1310766

[3] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of Sequential
Consistency. In Proceedings of the 34th Annual International Symposium on Computer Archi-
tecture, June 2007.

[4] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance the Performance
of Memory Consistency Models. In Proceedings of the International Conference on Parallel
Processing, volume I, pp. 355–64, Aug. 1991.

[5] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proceedings of the 26th An-
nual International Symposium on Computer Architecture, pp. 162–71, May 1999.

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[7] L. Hammond et al. Transactional Memory Coherence and Consistency. In Proceedings of the
31st Annual International Symposium on Computer Architecture, June 2004.

[8] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multipro-
cess Programs. IEEE Transactions on Computers, C-28(9):690–91, Sept. 1979. doi:10.1109/
TC.1979.1675439

[9] M. H. Lipasti and J. P. Shen. Exceeding the Dataflow Limit via Value Prediction. In
Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 226–37, Dec 1996. doi:10.1109/MICRO.1996.566464

[10] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H. Lipasti. Correctly
Implementing Value Prediction in Microprocessors that Support Multithreading or

http://dx.doi.org/10.1109/ISCA.2004.1310766
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/MICRO.1996.566464

36 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Multiprocessing. In Proceedings of the 34th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 328–37, Dec. 2001. doi:10.1109/MICRO.2001.991130

[11] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency in Cache-
Coherent Multithreaded Computer Architectures. In Proceedings of the International Confer-
ence on Dependable Systems and Networks, pp. 73–82, June 2006. doi:10.1109/DSN.2006.29

[12] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency in Cache-
Coherent Multithreaded Computer Architectures. IEEE Transactions on Dependable and
Secure Computing, 6(1):282–312, 2009.

[13] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement and Larger In-
struction Windows to Narrow the Performance Gap between Memory Consistency Mod-
els. In Proceedings of the Ninth ACM Symposium on Parallel Algorithms and Architectures,
pp. 199–210, June 1997. doi:10.1145/258492.258512

[14] A. Roth. Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced Load
Optimization. In Proceedings of the 32nd Annual International Symposium on Computer Ar-
chitecture, June 2005. doi:10.1109/ISCA.2005.48

[15] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that Share
Memory. ACM Transactions on Programming Languages and Systems, 10(2):282–312, Apr.
1988. doi:10.1145/42190.42277

[16] . F. Wenisch, A. Ailamaki, A. Moshovos . Mechanisms for Store-wait-
free Multiprocessors. In Proceedings of the 34th Annual International Symposium on Computer
Architecture, June 2007.

[17] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual (Version 9). PTR Pren-
tice Hall, 1994.

[18] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40,
Apr. 1996. doi:10.1109/40.491460

• • • •

T , and B. Falsafi

http://dx.doi.org/10.1109/MICRO.2001.991130
http://dx.doi.org/10.1109/DSN.2006.29
http://dx.doi.org/10.1145/258492.258512
http://dx.doi.org/10.1109/ISCA.2005.48
http://dx.doi.org/10.1145/42190.42277
http://dx.doi.org/10.1109/40.491460

37

A widely implemented memory consistency model is total store order (TSO). TSO is used in SPARC
implementations and, more importantly, appears to match the memory consistency model of the
widely used x86 architecture. This chapter presents this important consistency model using a pat-
tern similar to that in the previous chapter on sequential consistency. We first motivate TSO/x86
(Section 4.1) in part by pointing out limitations of SC. We then present TSO/x86 at an intui-
tive level (Section 4.1) before describing it more formally (Section 4.3), explaining how systems
implement TSO/x86 (Section 4.4), and discussing how systems with TSO/x86 implement atomic
instructions and instructions used to enforce ordering between instructions (Section 4.5). We con-
clude by discussing other resources for learning more about TSO/x86 (Section 4.6) and comparing
TSO/x86 and SC (Section 4.7).

4.1 MOTIVATION FOR TSO/x86
Processor cores have long used write (store) buffers to hold committed (retired) stores until the rest of
the memory system could process the stores. A store enters the write buffer when the store commits,
and a store exits the write buffer when the block to be written is in the cache in a read–write coher-
ence state. Significantly, a store can enter the write buffer before the cache has obtained read–write
coherence permissions for the block to be written; the write buffer thus hides the latency of servic-
ing a store miss. Because stores are common, being able to avoid stalling on most of them is an
important benefit. Moreover, it seems sensible to not stall the core because the core does not need
anything, as the store seeks to update memory but not core state.

For a single-core processor, a write buffer can be made architecturally invisible by ensuring
that a load to address A returns the value of the most recent store to A even if one or more stores to
A are in the write buffer. This is typically done by either bypassing the value of the most recent store
to A to the load from A, where “most recent” is determined by program order, or by stalling a load
of A if a store to A is in the write buffer.

C H A P T E R 4

Total Store Order and the x86
Memory Model

38 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

When building a multicore processor, it seems natural to use multiple cores, each with its own
bypassing write buffer, and assume that the write buffers continue to be architecturally invisible.

This assumption is wrong. Consider the example code in Table 4.1 (which is the same as
Table 3.3 in the previous chapter). Assume a multicore processor with in-order cores, where each
core has a single-entry write buffer and executes the code in the following sequence:

Core C1 executes store S1, but buffers the newly stored NEW value in its write buffer.
Likewise, core C2 executes store S2 and holds the newly stored NEW value in its write
buffer.
Next, both cores perform their respective loads, L1 and L2, and obtain the old values of 0.
Finally, both cores’ write buffers update memory with the newly stored values NEW.

The net result is that (r1, r2) = (0, 0). As we saw in the previous chapter, this is an execution
result forbidden by SC. Without write buffers, the hardware is SC, but with write buffers, it is not,
making write buffers architecturally visible in a multicore processor.

One response to write buffers being visible would be to turn them off, but vendors have been
loath to do this because of the potential performance impact. Another option is to use aggressive,
speculative SC implementations that make write buffers invisible again, but doing so adds complex-
ity and can waste power to both detect violations and handle mis-speculations.

The option chosen by SPARC and later x86 was to abandon SC in favor of a memory consis-
tency model that allows straightforward use of a first-in–first-out (FIFO) write buffer at each core.
The new model, TSO, allows the outcome “(r1, r2) = (0, 0).” This model astonishes some people
but, it turns out, behaves like SC for most programming idioms and is well defined in all cases.

4.2 BASIC IDEA OF TSO/x86
As execution proceeds, SC requires that each core preserves the program order of its loads and stores
for all four combinations of consecutive operations:

•
•

•
•

TABLE 4.1: Can Both r1 and r2 be Set to 0?

47

This assumption is wrong. Consider the example code in Table 4-1 (which is the same as Table 3-3 in

the previous chapter). Assume a multicore processor with in-order cores, where each core has a single-

entry write buffer and executes the code in the following sequence:

• Core C1 executes store S1, but buffers the newly-stored NEW value in its write buffer.

• Likewise, core C2 executes store S2 and holds the newly-stored NEW value in its write buffer.

• Next both cores perform their respective loads, L1 and L2, and obtain the old values of 0.

• Finally, both cores’ write buffers update memory with the newly stored values NEW.

The net result is that (r1, r2) = (0, 0). As we saw in the previous chapter, this is an execution result for-

bidden by SC. Without write buffers, the hardware is SC, but with write buffers it is not, making write buf-

fers architecturally visible in a multicore processor.

One response to write buffers being visible would be to turn them off, but vendors have been loathe to

do this because of the potential performance impact. Another option is to use aggressive, speculative SC

implementations that make write buffers invisible again, but doing so adds complexity and can waste

power to both detect violations and handle misspeculations.

The option chosen by SPARC and later x86 was to abandon SC in favor of a memory consistency

model that allowed straightforward use of a first-in-first-out (FIFO) write buffer at each core. The new

model, TSO, allows the outcome “(r1, r2) = (0, 0).” This model astonishes some people but, it turns out,

behaves like SC for most programming idioms and is well-defined in all cases.

4.2 Basic Idea of TSO/x86

As execution proceeds, SC requires that each core preserves the program order of its loads and stores

for all four combinations of consecutive operations:

• Load --> Load

• Load --> Store

• Store --> Store

• Store --> Load /* Included for SC but omitted for TSO */

TABLE 4-1. Can both r1 and r2 be set to 0?

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

L1: r1 = y; L2: r2 = x;

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 39

Load → Load
Load → Store
Store → Store
Store → Load /* Included for SC but omitted for TSO */

TSO includes the first three constraints but not the fourth. This omission does not matter
for most programs. Table 4.2 repeats the example program of Table 3.1 in the previous chapter. In
this case, TSO allows the same executions as SC because TSO preserves the order of core C1’s two
stores and core C2’s two (or more) loads. Figure 4.1 (the same as Figure 3.1 in the previous chapter)
illustrates the execution of this program.

•
•
•
•

TABLE 4.2: Should r2 Always be Set to NEW?

48

TSO includes the first three constraints, but not the fourth. This omission does not matter for most pro-

grams. Table 4-2 repeats the example program of Table 3-1 in the previous chapter. In this case, TSO

allows the same executions as SC, because TSO preserves the order of core C1’s two stores and core C2’s

two (or more) loads. Figure 4-1 (the same as Figure 3-1 in the previous chapter) illustrates the execution of

this program.

More generally, TSO behaves the same as SC for common programming idioms that follow:

 P1 loads and stores to memory locations D1, ..., Dn (often data),

 P1 stores to F (often a synchronization flag) to indicate that the above work is complete,

 P2 loads from F to observe the above work is complete (sometimes spinning first and often using a

read-modify-write instruction), and

TABLE 4-2. Should r2 always be set to NEW?

Core C1 Core C2 Comments

S1: Store data = NEW; /* Initially, data = 0 & flag ≠ SET */

S2: Store flag = SET; L1: Load r1 = flag; /* L1 & B1 may repeat many times */

B1: if (r1 ≠ SET) goto L1;

L2: Load r2 = data;

FIGURE 4-1. A TSO Execution of Table 4-2’s Program

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: data = NEW; /* NEW */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* 0 */

S2: flag = SET; /* SET */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* SET */

L2: r2 = data; /* NEW */memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: data = NEW; /* NEW */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* 0 */

S2: flag = SET; /* SET */

L1: r1 = flag; /* 0 */

L1: r1 = flag; /* SET */

L2: r2 = data; /* NEW */

FIguRE 4.1: A TSO Execution of Table 4.2’s Program.

40 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: x = NEW; /* NEW */
S2: y = NEW; /* NEW */

L2: r2 = x; /* NEW */
L1: r1 = y; /* NEW */

(a) TSO & SC Execution 1

Outcome: (r1, r2) = (NEW, NEW)

S1: x = NEW; /* NEW */

S2: y = NEW; /* NEW */

L2: r2 = x; /* NEW */

L1: r1 = y; /* 0 */

(b) TSO & SC Execution 2

Outcome: (r1, r2) = (0, NEW)

S1: x = NEW; /* NEW */

S2: y = NEW; /* NEW */

L2: r2 = x; /* 0 */

L1: r1 = y; /* NEW */

(c) TSO & SC Execution 3

Outcome: (r1, r2) = (NEW, 0)

S1: x = NEW; /* NEW */ S2: y = NEW; /* NEW */

L2: r2 = x; /* 0 */L1: r1 = y; /* 0 */

(d) TSO Execution, but NOT an SC Execution

Outcome: (r1, r2) = (0, 0)

FIguRE 4.2: Four Alternative TSO Executions of Table 4.1’s Program.

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 41

More generally, TSO behaves the same as SC for common programming idioms that follow:

C1 loads and stores to memory locations D1, . . ., Dn (often data),
C1 stores to F (often a synchronization flag) to indicate that the above work is complete,
C2 loads from F to observe the above work is complete (sometimes spinning first and often
using a read–modify–write instruction), and
C2 loads and stores to some or all of the memory locations D1, . . ., Dn.

TSO, however, allows some non-SC executions. Under TSO, the program from Table 4.2
(repeat of Table 3.1 from the last chapter) allows all four outcomes depicted in Figure 4.2. Under
SC, only the first three are legal outcomes (as depicted in Figure 3.2 of the last chapter). The execu-
tion in Figure 4.2(d) illustrates an execution that conforms to TSO but violates SC by not honoring
the fourth (i.e., Store → Load) constraint. Omitting the fourth constraint allows each core to use a
write buffer. Note that the third constraint means that the write buffer must be FIFO (and not, for
example, coalescing) to preserve store–store order.

Programmers (or compilers) can prevent the execution in Figure 4.2(d) by inserting a
FENCE instruction between S1 and L1 on core C1 and between S2 and L2 on core C2. Executing
a FENCE on core Ci ensures that Ci’s memory operations before the FENCE (in program order)
get placed in memory order before Ci’s memory operations after the FENCE. FENCEs (a.k.a.
memory barriers) are rarely used by programmers using TSO because TSO “does the right thing”
for most programs. Nevertheless, FENCEs play an important role for the relaxed models discussed
in the next chapter.

TSO does allow some non-intuitive execution results. Table 4.3 illustrates a modified version
of the program in Table 4.1 in which cores C1 and C2 make local copies of x and y, respectively.
Many programmers might assume that if both r2 and r4 equal 0, then r1 and r3 should also be 0 be-
cause the stores S1 and S2 must be inserted into memory order after the loads L2 and L4. However,

•
•
•

•

TABLE 4.3: Can r1 or r3 be Set to 0?

49

• P2 loads and stores to some or all of the memory locations D1, ..., Dn.

TSO, however, allows some non-SC executions. Under TSO, the program from Table 4-2 (repeat of

Table 3-1 from the last chapter) allows all four outcomes depicted in Figure 4-2. Under SC, only the first

three are legal outcomes (as depicted in Figure 3-2 of the last chapter). The execution in Figure 4-2(d)

illustrates an execution that conforms to TSO, but violates SC by not honoring the fourth (i.e., Store -->

Load) constraint. Omitting the fourth constraint allows each core to use a write buffer. Note that the third

constraint means that the write buffer must be FIFO (and not, for example, coalescing) to preserve store-

store order.

Programmers (or compilers) can prevent the execution in Figure 4-2(d) by inserting a FENCE instruc-

tion between S1 and L1 on core C1 and between S2 and L2 on core C2. Executing a FENCE on core Ci

ensures that Ci’s memory operations before the FENCE (in program order) get placed in memory order

before Ci’s memory operations after the FENCE. FENCEs (a.k.a. memory barriers) are rarely used by pro-

grammers using TSO, because TSO “does the right thing” for most programs. Nevertheless, FENCEs play

an important role for the relaxed models discussed in the next chapter.

TSO does allow some non-intuitive execution results. Table 4-3 illustrates a modified version of the

program in Table 4-1, in which cores C1 and C2 make local copies of x and y, respectively. Many program-

mers might assume that if both r2 and r4 equal 0, then r1 and r3 should also be 0, because the stores S1 and

S2 must be inserted into memory order after the loads L2 and L4. However, Figure 4-3 illustrates an execu-

tion that shows r1 and r3 bypassing the value NEW from the per-core write buffers. In fact, to preserve sin-

gle-thread sequential semantics, each core must see the effect of its own store in program order, even

though the store is not yet observed by other cores. Thus under all TSO executions, the local copies r1 and

r3 will always be set to the NEW value.

TABLE 4-3. Can r1 or r3 be set to 0?

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

L1: r1 = x; L3: r3 = y;

L2: r2 = y; L4: r4 = x; /* Assume r2 = 0 & r4 = 0 */

42 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Figure 4.3 illustrates an execution that shows r1 and r3 bypassing the value NEW from the per-core
write buffers. In fact, to preserve single-thread sequential semantics, each core must see the effect of
its own store in program order, even though the store is not yet observed by other cores. Thus, under
all TSO executions, the local copies r1 and r3 will always be set to the NEW value.

4.3 A LITTLE TSO FORMALISM AND AN x86 CONJECTuRE
In this section we define TSO more precisely with a definition that makes only three changes to the
SC definition of Section 3.5.

A TSO execution requires:
(1) All cores insert their loads and stores into the memory order <m respecting their program

order, regardless of whether they are to the same or different addresses (i.e., a==b or a!=b). There
are four cases:

If L(a) <p L(b) ⇒ L(a) <m L(b) /* Load → Load */
If L(a) <p S(b) ⇒ L(a) <m S(b) /* Load → Store */
If S(a) <p S(b) ⇒ S(a) <m S(b) /* Store → Store */
If S(a) <p L(b) ==> S(a) <m L(b) /* Store-->Load */ /* Change 1: Enable FIFO Write
 Buffer */

(2) Every load gets its value from the last store before it to the same address:

Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a)} /* Change 2: Need Bypassing */
Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a) or S(a) <p L(a)}

This last mind-bending equation says that the value of a load is the value of the last store to
the same address that is either (a) before it in memory order or (b) before it in program order (but

•
•
•
•

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: x = NEW; /* NEW */ S2: y = NEW; /* NEW */

L4: r4 = x; /* 0 */L2: r2 = y; /* 0 */

Outcome: (r2, r4) = (0, 0)
and (r1, r3) = (NEW, NEW)

L3: r3 = y; /* NEW */L1: r1 = x; /* NEW */ bypass
bypass

FIguRE 4.3: A TSO Execution of Table 4-3’s Program (with “bypassing”).

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 43

possibly after it in memory order), with option (b) taking precedence (i.e., write buffer bypassing
overrides the rest of the memory system).

(3) Part (1) must be augmented to define FENCEs: /* Change 4: FENCEs Order Every-
thing */

If L(a) <p FENCE ⇒ L(a) <m FENCE /* Load → FENCE */
If S(a) <p FENCE ⇒ S(a) <m FENCE /* Store → FENCE */
If FENCE <p FENCE ⇒ FENCE <m FENCE /* FENCE → FENCE */
If FENCE <p L(a) ⇒ FENCE <m L(a) /* FENCE → Load */
If FENCE <p S(a) ⇒ FENCE <m S(a) /* FENCE → Store */

Because TSO already requires all but the Store → Load order, one can alternatively define
TSO FENCEs as only ordering:

If S(a) <p FENCE ⇒ S(a) <m FENCE /* Store → FENCE */
If FENCE <p L(a) ⇒ FENCE <m L(a) /* FENCE → Load */

We choose to have TSO FENCEs redundantly order everything because doing so does not
hurt and makes them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4.4. This table has two important differences
from the analogous table for SC (Table 3.4). First, if Operation #1 is a store and Operation #2 is

•
•
•
•
•

•
•

TABLE 4.4: TSO Ordering Rules. An “X” Denotes an
Enforced Ordering. A “B” Denotes that Bypassing is

Required if the Operations are to the Same Address. Entries
that are Different from the SC Ordering Rules are Shaded

and Shown in Bold.

52

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p FENCE ==> FENCE <m FENCE /* FENCE-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

• If FENCE <p S(a) ==> FENCE <m S(a) /* FENCE-->Store */

Because TSO already requires all but the Store --> Load order, one can alternatively define TSO

FENCEs as only ordering:

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

We choose to have TSO FENCEs redundantly order everything, since doing so doesn’t hurt and makes

them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4-4. This table has two important differences from the

analogous table for SC (Table 3-4). First, if Operation #1 is a store and Operation #2 is a load, the entry at

that intersection is a “B” instead of an “X”; if these operations are to the same address, the load must obtain

the value just stored even if the operations enter memory order out of program order. Second, the table

includes FENCEs, which were not necessary in SC; an SC system behaves as if there is already a FENCE

before and after every operation.

We conjecture that the x86 memory model is equivalent to TSO (for normal cacheable memory and

normal instructions). AMD and Intel publicly define the x86 memory model with examples and prose in a

process that is well summarized in Section 2 of Sewell et al. [7]. All examples conform to TSO and all

prose seems consistent with TSO. This equivalence can be proven only if a public, formal description of

TABLE 4-4. TSO ordering rules. An “X” denotes an

enforced ordering. A “B” denotes that bypassing is

required if the operations are to the same address. Entries

that are different from the SC ordering rules are shaded

and shown in bold.

Operation 2

Load Store RMW FENCE

O
p

e
r
a

t
i
o
n

 1

Load X X X X

Store B X X X

RMW X X X X

FENCE X X X X

44 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

a load, the entry at that intersection is a “B” instead of an “X”; if these operations are to the same
address, the load must obtain the value just stored even if the operations enter memory order out of
program order. Second, the table includes FENCEs, which were not necessary in SC; an SC system
behaves as if there is already a FENCE before and after every operation.

We conjecture that the x86 memory model is equivalent to TSO (for normal cacheable mem-
ory and normal instructions). AMD and Intel publicly define the x86 memory model with examples
and prose in a process that is well summarized in Section 2 of Sewell et al. [7]. All examples con-
form to TSO, and all prose seems consistent with TSO. This equivalence can be proven only if a
public, formal description of the x86 memory model were made available. This equivalence could
be disproved if counter-example(s) showed an x86 execution not allowed by TSO, a TSO execution
not allowed by x86, or both.

Our conjecture is supported by a recent work by Sewell et al. [7], summarized in CACM with
more details elsewhere [6, 5]. In particular, the authors propose the x86-TSO model. The model
has two forms that the authors prove equivalent. The first form provides an abstract machine that
resembles Figure 4.4(a) of the next section with the addition of a single global lock for modeling

C1 C2 Cn

MEMORY

SWITCH

This implementation is the same
as for Figure3-3, except that
each core Ci has a FIFO write
buffer that buffers stores until
they go to memory.

loads loads
storesstores stores

C1 C2 Cn

CACHE-COHERENT
MEMORY SYSTEM

(b) A TSO Implementation Using Cache Coherence

loads loads
storesstores stores

This TSO implementation
replaces the switch above with a
cache-coherent memory system
in a manner analogous to what
was done for SC.

(a) A TSO Implementation Using a Switch

FIguRE 4.4: Two TSO Implementations

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 45

x86 LOCK’d instructions. The second form is a labeled transition system. The first form makes the
model accessible to practitioners while the latter eases formal proofs. On one hand, x86-TSO ap-
pears consistent with the informal rules and litmus tests in x86 specifications. On the other hand,
empirical tests on several AMD and Intel platforms did not reveal any violations of the x86-TSO
model (but this is no proof that they cannot). In summary, like Sewell et al., we urge creators of x86
hardware and software to adopt the unambiguous and accessible x86-TSO model.

4.4 IMPLEMENTINg TSO/x86
The implementation story for TSO/x86 is similar to SC with the addition of per-core FIFO write
buffers. Figure 4.4(a) updates the switch of Figure 3.3 to accommodate TSO and operates as
follows:

Loads and stores leave each core in that core’s program order <p.
A load either bypasses a value from the write buffer or awaits the switch as before.
A store enters the tail of the FIFO write buffer or stalls the core if the buffer is full.
When the switch selects core Ci, it performs either the next load or the store at the head
of the write buffer.

In Section 3.7, we showed that, for SC, the switch can be replaced by a cache coherent
memory system and then argued that cores could be speculative and/or multithreaded and that non-
binding prefetches could be initiated by cores, caches, or software.

As illustrated in Figure 4.4(b), the same argument holds for TSO with a FIFO writer buffer
interposed between each core and the cache-coherent memory system. Thus, aside from the write
buffer, all the previous SC implementation discussion holds for TSO and provides a way to build
TSO implementations. Moreover, most current TSO implementations seem to use only the above
approach: take an SC implementation and insert write buffers. For this reason, this TSO imple-
mentation section is short.

Regarding the write buffer, the literature and product space for how exactly speculative cores
implement them is beyond the scope of this chapter. For example, microarchitectures can physically
combine the store queue (uncommitted stores) and write buffer (committed stores), and/or physi-
cally separate load and store queues.

Finally, multithreading introduces a subtle write buffer issue for TSO. TSO write buffers are
logically private to each thread context (virtual core). Thus, on a multithreaded core, one thread
context should never bypass from the write buffer of another thread context. This logical separation
can be implemented with per-thread-context write buffers or, more commonly, by using a shared

•
•
•
•

46 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

write buffer with entries tagged by thread-context identifiers that permit bypassing only when tags
match.

Flashback to Quiz Question 4: In a TSO system with multithreaded cores, threads may bypass
values out of the write buffer, regardless of which thread wrote the value. True or false?
Answer: False! A thread may bypass values that it has written, but other threads may not see the
value until the store is inserted into the memory order.

4.5 ATOMIC INSTRuCTIONS AND FENCES WITH TSO
Systems that implement TSO must provide atomic instructions, like systems that implement SC, as
well as FENCE instructions. In this section, we discuss how to implement atomic instructions and
FENCEs for systems that support TSO.

4.5.1 Atomic Instructions
The implementation issues for atomic RMW instructions in TSO are similar to those for atomic
instructions for SC. The key difference is that TSO allows loads to pass (i.e., be ordered before)
earlier stores that have been written to a write buffer. The impact on RMWs is that the “write” (i.e.,
store) may be written to the write buffer.

To understand the implementation of atomic RMWs in TSO, we consider the RMW as a
load immediately followed by a store. The load part of the RMW cannot pass earlier loads due to
TSO’s ordering rules. It might at first appear that the load part of the RMW could pass earlier
stores in the write buffer, but this is not legal. If the load part of the RMW passes an earlier store,
then the store part of the RMW would also have to pass the earlier store because the RMW is
an atomic pair. But because stores are not allowed to pass each other in TSO, the load part of the
RMW cannot pass an earlier store either.

These ordering constraints on RMWs impact the implementation. Because the load part of
the RMW cannot be performed until earlier stores have been ordered (i.e., exited the write buffer),
the atomic RMW effectively drains the write buffer before it can perform the load part of the
RMW. Furthermore, to ensure that the store part can be ordered immediately after the load part,
the load part requires read–write coherence permissions, not just the read permissions that suffice
for normal loads. Lastly, to guarantee atomicity for the RMW, the cache controller may not relin-
quish coherence permission to the block between the load and the store.

More optimized implementations of RMWs are possible. For example, the write buffer does
not need to be drained as long as (a) every entry already in the write buffer has read–write permis-
sion in the cache and maintains the read–write permission in the cache until the RMW commits,

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 47

and (b) the core performs MIPS R10000-style checking of load speculation (Section 3.8). Logi-
cally, all of the earlier stores and loads would then commit as a unit (sometimes called a “chunk”)
immediately before the RMW.

4.5.2 FENCEs
Systems that support TSO do not provide ordering between a store and a subsequent (in program
order) load, although they do require the load to get the value of the earlier store. In situations in
which the programmer wants those instructions to be ordered, the programmer must explicitly
specify that ordering by putting a FENCE instruction between the store and the subsequent load.
The semantics of the FENCE specify that all instructions before the FENCE in program order
must be ordered before any instructions after the FENCE in program order. For systems that sup-
port TSO, the FENCE thus prohibits a load from bypassing an earlier store. In Table 4.5, we revisit
the example from Table 4.1, but we have added two FENCE instructions that were not present
earlier. Without these FENCEs, the two loads (L1 and L2) can bypass the two stores (S1 and S2),
leading to an execution in which r1 and r2 both get set to zero. The added FENCEs prohibit that
reordering and thus prohibit that execution.

Because TSO permits only one type of reordering, FENCEs are fairly infrequent and the im-
plementation of FENCE instructions is not too critical. A simple implementation—such as draining
the write buffer when a FENCE is executed and not permitting subsequent loads to execute until
an earlier FENCE has committed—may provide acceptable performance. However, for consistency
models that permit far more reordering (discussed in the next chapter), FENCE instructions are
more frequent and their implementations can have a significant impact on performance.

4.6 FuRTHER READINg REgARDINg TSO
Collier [2] characterized alternative memory consistency models, including that of the IBM
System/370, via a model in which each core has a full copy of memory, its loads read from the local

TABLE 4.5: Can Both r1 and r2 be Set to 0?

56

for the RMW, the cache controller may not relinquish coherence permission to the block between the load

and the store.

More optimized implementations of RMWs are possible. For example, the write buffer does not need

to be drained as long as (a) every entry already in the write buffer has read-write permission in the cache

and maintains read-write permission in the cache until the RMW commits, and (b) the core performs MIPS

R10000-style checking of load speculation (Section 3.8). Logically, all of the earlier stores and loads

would then commit as a unit (sometimes called a “chunk”) immediately before the RMW.

4.5.2 FENCEs

Systems that support TSO do not provide ordering between a store and a subsequent (in program

order) load, although they do require the load to get the value of the earlier store. In situations in which the

programmer wants those instructions to be ordered, the programmer must explicitly specify that ordering

by putting a FENCE instruction between the store and the subsequent load. The semantics of the FENCE

specify that all instructions before the FENCE in program order must be ordered before any instructions

after the FENCE in program order. For systems that support TSO, the FENCE thus prohibits a load from

bypassing an earlier store. In Table 4-5, we re-visit the example from Table 4-1, but we have added two

FENCE instructions that were not present earlier. Without these FENCEs, the two loads (L1 and L2) can

bypass the two stores (S1 and S2), leading to an execution in which r1 and r2 both get set to zero. The

added FENCEs prohibit that reordering and thus prohibit that execution.

Because TSO permits only one type of reordering, FENCEs are fairly infrequent and the implementa-

tion of FENCE instructions is not too critical. A simple implementation—such as draining the write buffer

when a FENCE is executed and not permitting subsequent loads to execute until an earlier FENCE has

committed—may provide acceptable performance. However, for consistency models that permit far more

reordering (discussed in the next chapter), FENCE instructions are more frequent and their implementa-

tions can have a significant impact on performance.

TABLE 4-5. Can both r1 and r2 be set to 0?

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

FENCE FENCE

L1: r1 = y; L2: r2 = x;

48 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

copy, and its writes update all copies according to some restrictions that define a model. Were TSO
defined with this model, each store would write its own core’s memory copy immediately and then
possibly later update all other memories together.

Goodman [4] publicly discussed the idea of processor consistency (PC), wherein a core’s stores
reach other cores in order but do not necessarily reach other cores at the same “time.” Gharachorloo
et al. [3] more precisely define PC. TSO and x86 are a special case of PC in which each core sees its
own store immediately, and when any other cores see a store, all other cores see it. This property is
called write atomicity in the next chapter (Section 5.5).

To the best of our knowledge, TSO was first formally defined by Sindhu et al. [8]. As dis-
cussed, in Section 4.3, Sewell et al. [6, 5, 7] propose and formalize the x86-TSO model that appears
consistent with AMD and Intel x86 documentation and current implementations.

4.7 COMPARINg SC AND TSO
Now that we have seen two memory consistency models, we can compare them. How do SC, TSO,
etc., relate?

Executions: SC executions are a proper subset of TSO executions; all SC executions are
TSO executions, while some TSO executions are SC executions and some are not. See the
Venn diagram in Figure 4.5(a).
Implementations: Implementations follow the same rules: SC implementations are a proper
subset of TSO implementations. See Figure 4.5(b), which is the same as Figure 4.5(a).

More generally, a memory consistency model Y is strictly more relaxed (weaker) than a mem-
ory consistency model X if all X executions are also Y executions, but not vice versa. If Y is more
relaxed than X, then it follows that all X implementations are also Y implementations. It is also
possible that two memory consistency models are incomparable because both allow executions pre-
cluded by the other.

•

•

(a) Executions

SC

TSO MC2MC1

ALL

(b) Implementations (same as (a))

SC

TSO MC2MC1

ALL

FIguRE 4.5: Comparing Memory Consistency Models

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 49

As Figure 4.5 depicts, TSO is more relaxed than SC but less relaxed than incomparable mod-
els MC1 and MC2. In the next chapter, we will see candidates for MC1 and MC2, including a case
study for the IBM Power memory consistency model.

What Is a good Memory Consistency Model?
A good memory consistency model should possess Sarita Adve’s 3Ps [1] plus our fourth P:

Programmability: A good model should make it (relatively) easy to write multithreaded
programs. The model should be intuitive to most users, even those who have not read the
details. It should be precise, so that experts can push the envelope of what is allowed.
Performance: A good model should facilitate high-performance implementations at reason-
able power, cost, etc. It should give implementors broad latitude in options.
Portability: A good model would be adopted widely or at least provide backward compat-
ibility or the ability to translate among models.
Precision: A good model should be precisely defined, usually with mathematics. Natural
languages are too ambiguous to enable experts to push the envelope of what is allowed.

How good Are SC and TSO?
Using these 4Ps:

Programmability: SC is the most intuitive. TSO is close because it acts like SC for common
programming idioms. Nevertheless, subtle non-SC executions can bite programmers and
tool authors.
Performance: For simple cores, TSO can offer better performance than SC, but the differ-
ence can be made small with speculation.
Portability: SC is widely understood, while TSO is widely adopted.
Precise: SC, TSO, and x86-TSO are formally defined.

The bottom line is that SC and TSO are pretty close, especially compared with the more
complex and more relaxed memory consistency models discussed in the next chapter.

4.8 REFERENCES
[1] S. V. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors. PhD

thesis, Computer Sciences Department, University of Wisconsin–Madison, Nov. 1993.
[2] W. W. Collier. Reasoning about Parallel Architectures. Prentice-Hall, Inc., 1990.

•

•

•

•

•

•

•
•

50 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

[3] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory
Consistency and Event Ordering in Scalable Shared-Memory. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 15–26, May 1990.

[4] J. R. Goodman. Cache Consistency and Sequential Consistency. Technical Report 1006,
Computer Sciences Department, University of Wisconsin–Madison, Feb. 1991.

[5] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO. In Proceedings
of the Conference on Theorem Proving in Higher Order Logics, 2009.

[6] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, and
J. Alglave. The Semantics of x86-CC Multiprocessor Machine Code. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 379–391, 2009. doi:10.1145/1480881.1480929

[7] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-TSO: A Rigorous
and Usable Programmer’s Model for x86 Multiprocessors. Communications of the ACM, July
2010.

[8] P. Sindhu, J.-M. Frailong, and M. Ceklov. Formal Specification of Memory Models. Tech-
nical Report CSL-91-11, Xerox Palo Alto Research Center, Dec. 1991.

• • • •

http://dx.doi.org/10.1145/1480881.1480929

51

The previous two chapters explored the memory consistency models sequential consistency (SC) and
total store order (TSO). These chapters presented SC as intuitive and TSO as widely implemented
(e.g., in x86). Both models are sometimes called strong because the global memory order of each
model usually respects (preserves) per-thread program order. Recall that SC preserves order for two
memory operations from the same thread for all four combinations of loads and stores (Load →
Load, Load → Store, Store → Store, and Store → Load), whereas TSO preserves the first three
orders but not Store → Load order.

This chapter examines more relaxed (weak) memory consistency models that seek to preserve
only the orders that programmers “require.” The principal benefit of this approach is that mandat-
ing fewer ordering constraints can facilitate higher performance by allowing more hardware and
software (compiler and runtime system) optimizations. The principal drawbacks are that relaxed
models must formalize when ordering is “required” and provide mechanisms for programmers or
low-level software to communicate such ordering to implementations, and vendors have failed to
agree on a single relaxed model, compromising portability.

A full exploration of relaxed consistency models is beyond the scope of this chapter. This
chapter is instead a primer that seeks to provide the basic intuition and help make the reader aware
of the limits of a simple understanding of these models. In particular, we provide motivation for
relaxed models (Section 5.1), present and formalize an example relaxed consistency model XC (Sec-
tion 5.2), discuss the implementation of XC, including atomic instructions and instructions used to
enforce ordering (Section 5.3), introduce sequential consistency for data-race-free programs (Sec-
tion 5.4), present additional relaxed model concepts (Section 5.5), present an IBM Power memory
model case study (Section 5.6), point to further reading and other commercial models (Section 5.7),
compare models (Section 5.8), and touch upon high-level-language memory models (Section 5.9).

5.1 MOTIVATION
As we will soon see, mastering relaxed consistency models can be more challenging than under-
standing SC and TSO. These drawbacks beg the question: why bother with relaxed models at all?

Relaxed Memory Consistency

C H A P T E R 5

52 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

In this section, we motivate relaxed models, first by showing some common situations in which pro-
grammers do not care about instruction ordering (Section 5.1.1) and then by discussing a few of the
optimizations that can be exploited when unnecessary orderings are not enforced (Section 5.1.2).

5.1.1 Opportunities to Reorder Memory Operations
Consider the example depicted in Table 5.1. Most programmers would expect that r2 will always
get the value NEW because S1 is before S3 and S3 is before the dynamic instance of L1 that loads
the value SET, which is before L2. We can denote this:

S1 → S3 → L1 loads SET → L2.

Similarly, most programmers would expect that r3 will always get the value NEW because:

S2 → S3 → L1 loads SET → L3.

In addition to these two expected orders above, SC and TSO also require the orders S1 → S2
and L2 → L3. Preserving these additional orders may limit implementation optimizations to aid
performance, yet these additional orders are not needed by the program for correct operation.

Table 5.2 depicts a more general case of the handoff between two critical sections using the
same lock. Assume that hardware supports lock acquire (e.g., with test-and-set doing a read–modify–
write and looping until it succeeds) and lock release (e.g., store the value 0). Let core C1 acquire
the lock, do critical section 1 with an arbitrary interleaving of loads (L1i) and stores (S1j), and then
release the lock. Similarly, let core C2 do critical section 2, including an arbitrary interleaving of
loads (L2i) and stores (S2j).

•

•

TABLE 5.1: What Order Ensures r2 & r3 Always Get NEW?

61

we motivate relaxed models, first by showing some common situations in which programmers do not care

about instruction ordering (Section 5.1.1) and then by discussing a few of the optimizations that can be

exploited when unnecessary orderings are not enforced (Section 5.1.2).

5.1.1 Opportunities to Reorder Memory Operations

Consider the example depicted in Table 5-1. Most programmers would expect that r2 will always get

the value NEW, because S1 is before S3 and S3 is before the dynamic instance of L1 that loads the value

SET, which is before L2. We can denote this:

• S1 --> S3 --> L1 loads SET --> L2.

Similarly, most programmers would expect that r3 will always get the value NEW, because:

• S2 --> S3 --> L1 loads SET --> L3.

In addition to these two expected orders above, SC and TSO also require the orders S1 --> S2 and L2 -

-> L3. Preserving these additional orders may limit implementation optimizations to aid performance, yet

these additional orders are not needed by the program for correct operation.

Table 5-2 depicts a more general case of the handoff between two critical sections using the same lock.

Assume that hardware supports lock acquire (e.g., with test-and-set doing a read-modify-write and looping

until it succeeds) and lock release (e.g., store the value 0). Let core C1 acquire the lock, do critical section

1 with an arbitrary interleaving of loads (L1i) and stores (S1j), and then release the lock. Similarly, let core

C2 do critical section 2, including an arbitrary interleaving of loads (L2i) and stores (S2j).

Proper operation of the handoff from critical section 1 to 2 depends on the order of these operations:

• All L1i, All S1j --> R1 --> A2 --> All L2i, All L2j,

where commas (“,”) separate operations whose order is not specified.

TABLE 5-1. What order ensures r2 & r3 always get NEW?

Core C1 Core C2 Comments

f & 0 = 2atad & 1atad ,yllaitinI */;WEN = 1atad :1S lag ≠ SET */

S2: data2 = NEW;

S3: flag = SET; L1: r1 = flag; /* spin loop: L1 & B1 may repeat many times */

B1: if (r1 ≠ SET) goto L1;

L2: r2 = data1;

L3: r3 = data2;

RELAXED MEMORY CONSISTENCY 53

Proper operation of the handoff from critical section 1 to critical section 2 depends on the
order of these operations:

All L1i, All S1j → R1 → A2 → All L2i, All S2j,

where commas (“,”) separate operations whose order is not specified.
Proper operation does not depend on any ordering of the loads and stores within each critical

section—unless the operations are to the same address (in which case ordering is required to main-
tain sequential processor ordering). That is:

All L1i and S1j can be in any order with respect to each other, and
All L2i and S2j can be in any order with respect to each other.

If proper operation does not depend on ordering among many loads and stores, perhaps one
could obtain higher performance by relaxing the order among them, since loads and stores are typi-
cally much more frequent than lock acquires and releases. This is what relaxed or weak models do.

5.1.2 Opportunities to Exploit Reordering
Assume for now a relaxed memory consistency model that allows us to reorder any memory opera-
tions unless there is a FENCE between them. This relaxed model forces the programmer to reason

•

•
•

TABLE 5.2: What Order Ensures Correct Handoff from Critical Section 1 to 2?

62

Proper operation does not depend on any ordering of the loads and stores within each critical sec-

tion—unless the operations are to the same address (in which case ordering is required to maintain sequen-

tial processor ordering). That is:

• All L1i and S1j can be in any order respect to each other, and

• All L2i and S2j can be in any order respect to each other.

If proper operation does not depend on ordering among many loads and stores, perhaps one could

obtain higher performance by relaxing the order among them, since loads and stores are typically much

more frequent than lock acquires and releases. This is what relaxed or weak models do.

5.1.2 Opportunities to Exploit Reordering

Assume for now a relaxed memory consistency model that allows us to reorder any memory opera-

tions unless there is a FENCE between them. This relaxed model forces the programmer to reason about

which operations need to be ordered, which is a drawback, but it also enables many optimizations that can

improve performance. We discuss a few common and important optimizations, but a deep treatment of this

topic is beyond the scope of this primer.

Non-FIFO, Coalescing Write Buffer. Recall that TSO enables the use of a FIFO write buffer, which

improves performance by hiding some or all of the latency of committed stores. Although a FIFO write

buffer improves performance, an even more optimized design would use a non-FIFO write buffer that per-

mits coalescing of writes (i.e., two stores that are not consecutive in program order can write to the same

TABLE 5-2. What order ensures correct handoff from critical section 1 to 2?

Core C1 Core C2 Comments

A1: acquire(lock)

/* Begin Critical Section 1 */

Some loads L1i interleaved

with some stores S1j

/* Arbitrary interleaving of L1i’s & S1j’s */

/* End Critical Section 1 */

R1: release(lock) /* Handoff from critical section 1*/

A2: acquire(lock) /* To critical section 2*/

/* Begin Critical Section 2 */

Some loads L2i interleaved

with some stores S2j

/* Arbitrary interleaving of L2i’s & S2j’s */

/* End Critical Section 2 */

R2: release(lock)

54 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

about which operations need to be ordered, which is a drawback, but it also enables many optimiza-
tions that can improve performance. We discuss a few common and important optimizations, but a
deep treatment of this topic is beyond the scope of this primer.

5.1.2.1 Non-FIFO, Coalescing Write Buffer
Recall that TSO enables the use of a FIFO write buffer, which improves performance by hiding
some or all of the latency of committed stores. Although a FIFO write buffer improves perfor-
mance, an even more optimized design would use a non-FIFO write buffer that permits coalescing
of writes (i.e., two stores that are not consecutive in program order can write to the same entry in
the write buffer). However, a non-FIFO coalescing write buffer violates TSO because TSO requires
stores to appear in program order. Our example relaxed model allows stores to coalesce in a non-
FIFO write buffer, so long as the stores have not been separated by a FENCE.

5.1.2.2 Simpler Support for Core Speculation
In systems with strong consistency models, a core may speculatively execute loads out of program
order before they are ready to be committed. Recall how the MIPS R10000 core, which supports
SC, used such speculation to gain better performance than a naive implementation that did not
speculate. The catch, however, is that speculative cores that support SC have to include mechanisms
to check whether the speculation is correct, even if mis-speculations are rare [15, 11]. The R10000
checks speculation by comparing the addresses of evicted cache blocks against a list of the addresses
that the core has speculatively loaded but not yet committed (i.e., the contents of the core’s load
queue). This mechanism adds to the cost and complexity of the hardware, it consumes additional
power, and it represents another finite resource that may constrain instruction level parallelism. In
a system with a relaxed memory consistency model, a core can execute loads out of program order
without having to compare the addresses of these loads to the addresses of incoming coherence
requests. These loads are not speculative with respect to the relaxed consistency model (although
they may be speculative with respect to, say, a branch prediction or earlier stores by the same thread
to the same address).

5.1.2.3 Coupling Consistency and Coherence
We previously advocated decoupling consistency and coherence to manage intellectual complexity.
Alternatively, relaxed models can provide better performance than strong models by “opening the
coherence box.” For example, an implementation might allow a subset of cores to load the new value
from a store even as the rest of the cores can still load the old value, temporarily breaking coherence’s
single-writer–multiple-reader invariant. This situation can occur, for example, when two thread

RELAXED MEMORY CONSISTENCY 55

contexts logically share a per-core write buffer or when two cores share an L1 data cache. However,
“opening the coherence box” incurs considerable intellectual and verification complexity, bringing
to mind the Greek myth about Pandora’s box. As we will discuss in Section 5.6, IBM Power permits
the above optimizations, but first we explore relaxed models with the coherence box sealed tightly.

5.2 AN EXAMPLE RELAXED CONSISTENCY MODEL (XC)
For teaching purposes, this section introduces an eXample relaxed Consistency model (XC) that cap-
tures the basic idea and some implementation potential of relaxed memory consistency models.
XC assumes that a global memory order exists, as is true for the strong models of SC and TSO,
as well as the largely defunct relaxed models for Alpha [26] and SPARC Relaxed Memory Order
(RMO) [27].

5.2.1 The Basic Idea of the XC Model
XC provides a FENCE instruction so that programmers can indicate when order is needed; other-
wise, by default, loads and stores are unordered. Other relaxed consistency models call a FENCE
a barrier, a memory barrier, a membar, or a sync. Let core Ci execute some loads and/or stores, Xi,
then a FENCE instruction, and then some more loads and/or stores, Yi. The FENCE ensures that
memory order will order all Xi operations before the FENCE, which in turn is before all Yi opera-
tions. A FENCE instruction does not specify an address. Two FENCEs by the same core also stay
ordered. However, a FENCE does not affect the order of memory operations at other cores (which is
why “fence” may be a better name than “barrier”). Some architectures include multiple FENCE in-
structions with different ordering properties; for example, an architecture could include a FENCE
instruction that enforces all orders except from a store to a subsequent load. In this chapter, however,
we consider only FENCEs that order all types of operations.

XC’s memory order is guaranteed to respect (preserve) program order for:

Load → FENCE
Store → FENCE
FENCE → FENCE
FENCE → Load
FENCE → Store

XC maintains TSO rules for ordering two accesses to the same address only:

Load → Load to same address
Load → Store to the same address
Store → Store to the same address

•
•
•
•
•

•
•
•

56 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

These rules enforce the sequential processor model (i.e., sequential core semantics) and pro-
hibit behaviors that might astonish programmers. For example, the Store → Store rule prevents a
critical section that performs “A = 1” then “A = 2” from completing strangely with A set to 1. Like-
wise, the Load → Load rule ensures that if B was initially 0 and another thread performs “B = 1,”
then the present thread cannot perform “r1 = B” then “r2 = B” with r1 getting 1 and r2 getting 0, as
if B's value went from new to old.

XC ensures that loads immediately see updates due to their own stores (like TSO's write
buffer bypassing). This rule preserves the sequentiality of single threads, also to avoid programmer
astonishment.

5.2.2 Examples using FENCEs under XC
Table 5.3 shows how programmers or low-level software should insert FENCEs in the program of
Table 5.1 so that it operates correctly under XC. These FENCEs ensure:

S1, S2 → F1 → S3 → L1 loads SET → F2 → L2, L3.

The F1 FENCE, which orders stores, makes sense to most readers, but some are surprised by
the need for the F2 FENCE ordering loads. However, if one allows the loads to execute out of order,
they can make it look like in-order stores executed out of order. For example, if execution can pro-
ceed as L2, S1, S2, S3, L1, and L3, then L2 can obtain the value 0. This result is especially possible
for a program that does not include the B1 control dependence, so that L1 and L2 are consecutive
loads to different addresses, wherein reordering seems reasonable, but is not.

•

TABLE 5.3: Adding FENCEs for XC to Table 5.1’s Program.

65

5.2.2 Examples Using FENCEs Under XC

Table 5-3 shows how programmers or low-level software should insert FENCEs in the program of

Table 5-1 so that it operates correctly under XC. These FENCEs ensure:

• S1, S2 --> F1 --> S3 --> L1 loads SET --> F2 --> L2, L3.

The F1 FENCE, which orders stores, makes sense to most readers, but some are surprised by the need

for the F2 FENCE ordering loads. However, if one allows the loads to execute out of order, they can make

it look like in-order stores executed out of order. For example, if execution can proceed as L2, S1, S2, S3,

L1, and L3, then L2 can obtain the value 0. This result is especially possible for a program that does not

include the B1 control dependence, so that L1 and L2 are consecutive loads to different addresses, wherein

re-ordering seems reasonable, but is not.

Table 5-4 shows how programmers or low-level software could insert FENCEs in the critical section

program of Table 5-2 so that it operates correctly under XC. (This FENCE insertion policy, in which

FENCEs surround each lock acquire and lock release, is conservative for illustration purposes; we will

later show that some of these FENCEs can be removed.) In particular, FENCEs F13 and F22 ensure a cor-

rect handoff between critical sections, because:

• All L1i, All S1j --> F13 --> R11 --> A21 --> F22 --> All L2i, All S2j

Next we formalize XC and then show why the above two examples work.

TABLE 5-3. Adding FENCEs for XC to Table 5-1’s Program

Core C1 Core C2 Comments

S1: data1 = NEW; /* Initially, data1 & data2 = 0 & flag SET */

S2: data2 = NEW;

F1: FENCE

S3: flag = SET; L1: r1 = flag; /* L1 & B1 may repeat many times */

B1: if (r1 SET) goto L1;

F2: FENCE

L2: r2 = data1;

L3: r3 = data2;

≠

≠

RELAXED MEMORY CONSISTENCY 57

Table 5.4 shows how programmers or low-level software could insert FENCEs in the critical
section program of Table 5.2 so that it operates correctly under XC. This FENCE insertion policy,
in which FENCEs surround each lock acquire and lock release, is conservative for illustration pur-
poses; we will later show that some of these FENCEs can be removed. In particular, FENCEs F13
and F22 ensure a correct handoff between critical sections because:

All L1i, All S1j → F13 → R11 → A21 → F22 → All L2i, All S2j

Next, we formalize XC and then show why the above two examples work.

5.2.3 Formalizing XC
Here, we formalize XC in a manner consistent with the previous two chapters’ notation and ap-
proach. Once again, let L(a) and S(a) represent a load and a store, respectively, to address a. Orders
<p and <m define per-processor program order and global memory order, respectively. Program
order <p is a per-processor total order that captures the order in which each core logically (se-
quentially) executes memory operations. Global memory order <m is a total order on the memory
operations of all cores.

•

TABLE 5.4: Adding FENCEs for XC to Table 5.2’s Critical Section Program.

66

5.2.3 Formalizing XC

Here we formalize XC in a manner consistent with the previous two chapters’ notation and approach.

Once again, let L(a) and S(a) represent a load and a store, respectively, to address a. Orders <p and <m

define per-processor program order and global memory order, respectively. Program order <p is a per-pro-

cessor total order that captures the order in which each core logically (sequentially) executes memory oper-

ations. Global memory order <m is a total order on the memory operations of all cores.

More formally, an XC execution requires:

(1) All cores insert their loads, stores, and FENCEs into the order <m respecting:

• If L(a) <p FENCE ==> L(a) <m FENCE /* Load-->FENCE */

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p FENCE ==> FENCE <m FENCE /* FENCE-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

• If FENCE <p S(a) ==> FENCE <m S(a) /* FENCE-->Store */

(2) All cores insert their loads and stores to the same address into the order <m respecting:

• If L(a) <p L’(a) ==> L(a) <m L’(a) /* Load-->Load to same address */

• If L(a) <p S(a) ==> L(a) <m S(a) /* Load-->Store to same address */

TABLE 5-4. Adding FENCEs for XC to Table 5-2’s Critical Section Program

Core C1 Core C2 Comments

F11: FENCE

A11: acquire(lock)

F12: FENCE

Some loads L1i interleaved

with some stores S1j

/* Arbitrary interleaving of L1i’s & S1j’s */

F13: FENCE

R11: release(lock) F21: FENCE /* Handoff from critical section 1*/

F14: FENCE A21: acquire(lock) /* To critical section 2*/

F22: FENCE

Some loads L2i interleaved

with some stores S2j

/* Arbitrary interleaving of L2i’s & S2j’s */

F23: FENCE

R22: release(lock)

F24: FENCE

58 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

More formally, an XC execution requires the following:

All cores insert their loads, stores, and FENCEs into the order <m respecting:
If L(a) <p FENCE ⇒ L(a) <m FENCE /* Load → FENCE */
If S(a) <p FENCE ⇒ S(a) <m FENCE /* Store → FENCE */
If FENCE <p FENCE ⇒ FENCE <m FENCE /* FENCE → FENCE */
If FENCE <p L(a) ⇒ FENCE <m L(a) /* FENCE → Load */
If FENCE <p S(a) ⇒ FENCE <m S(a) /* FENCE → Store */

All cores insert their loads and stores to the same address into the order <m respecting:
If L(a) <p L'(a) ⇒ L(a) <m L' (a) /* Load → Load to same address */
If L(a) <p S(a) ⇒ L(a) <m S(a) /* Load → Store to same address */
If S(a) <p S'(a) ⇒ S(a) <m S' (a) /* Store → Store to same address */

Every load gets its value from the last store before it to the same address:
Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a) or S(a) <p L(a)} /* Like TSO */

We summarize these ordering rules in Table 5.5. This table differs considerably from the
analogous tables for SC and TSO. Visually, the table shows that ordering is enforced only for
operations to the same address or if FENCEs are used. Like TSO, if operation 1 is “store C” and
operation 2 is “load C,” the store can enter the global order after the load, but the load must already
see the newly stored value.

An implementation that allows only XC executions is an XC implementation.

1.
•
•
•
•
•

2.
•
•
•

3.

TABLE 5.5: XC Ordering Rules. An “X” Denotes an
Enforced Ordering. An “A” Denotes an Ordering that is

Enforced Only if the Operations are to the Same Address. A
“B” Denotes that Bypassing is Required if the Operations are
to the Same Address. Entries Different from TSO are Shaded

and Indicated in Bold Font.

67

• If S(a) <p S’(a) ==> S(a) <m S’(a) /* Store-->Store to same address */

(3) Every load get its value from the last store before it to the same address:

Value of L(a) = Value of MAX
<m

 {S(a) | S(a) <m L(a) or S(a) <p L(a)} /* Like TSO */

We summarize these ordering rules in Table 5-5. This table differs considerably from the analogous

tables for SC and TSO. Visually, the table shows that ordering is enforced only for operations to the same

address or if FENCEs are used. Like TSO, if operation 1 is “store C” and operation 2 is “load C,” the store

can enter the global order after the load, but the load must already see the newly stored value.

An implementation that allows only XC executions is an XC implementation.

5.2.4 Examples Showing XC Operating Correctly

With the formalisms of the last section, we can now reveal why Section 5.2.2’s two examples work

correctly. Figure 5-1(a) shows an XC execution of the example from Table 5-3 in which core C1’s stores

S1 and S2 are reordered, as are core C2’s loads L2 and L3. Neither re-ordering, however, affects the results

of the program. Thus, as far as the programmer can tell, this XC execution is equivalent to the SC execu-

tion depicted in Figure 5-1(b), in which the two pairs of operations are not reordered.

Similarly, Figure 5-2(a) depicts an execution of the critical section example from Table 5-4 in which

core C1’s loads L1i and stores S1j are reordered with respect to each other, as are core C2’s L2i and stores

S2j. Once again, these re-orderings do not affect the results of the program. Thus, as far as the programmer

TABLE 5-5. XC ordering rules. An “X” denotes an

enforced ordering. An “A” denotes an ordering that is

enforced only if the operations are to the same address. A

“B” denotes that bypassing is required if the operations are

to the same address. Entries different from TSO are shaded

and indicated in bold font.

Operation 2

Load Store RMW FENCE

O
p

e
r
a
t
i
o

n
 1

Load A A A X

Store B A A X

RMW A A A X

FENCE X X X X

RELAXED MEMORY CONSISTENCY 59

5.2.4 Examples Showing XC Operating Correctly
With the formalisms of the last section, we can now reveal why Section 5.2.2’s two examples work
correctly. Figure 5.1(a) shows an XC execution of the example from Table 5.3 in which core C1’s
stores S1 and S2 are reordered, as are core C2’s loads L2 and L3. Neither reordering, however,
affects the results of the program. Thus, as far as the programmer can tell, this XC execution is
equivalent to the SC execution depicted in Figure 5.1(b), in which the two pairs of operations are
not reordered.

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: data1 = NEW; /* NEW */
L1: r1 = flag; /* 0 */

L1: r1 = flag; /* 0 */

S3: flag = SET; /* SET */

L1: r1 = flag; /* 0 */

F1: FENCE

L2: r2 = data1; /* NEW */

S2: data2 = NEW; /* NEW */

F1: FENCE

L1: r1 = flag; /* SET */

L3: r3 = data2; /* NEW */

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

S1: data1 = NEW; /* NEW */
L1: r1 = flag; /* 0 */

L1: r1 = flag; /* 0 */

S3: flag = SET; /* SET */

L1: r1 = flag; /* 0 */

F1: FENCE

L2: r2 = data1; /* NEW */

S2: data2 = NEW; /* NEW */

F1: FENCE

L1: r1 = flag; /* SET */

L2: r3 = data2; /* NEW */

(a) An XC Execution

(b) An SC Execution

FIguRE 5.1: Two Equivalent Executions of Table 5.3’s Program.

60 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Similarly, Figure 5.2(a) depicts an execution of the critical section example from Table 5.4 in
which core C1’s loads L1i and stores S1j are reordered with respect to each other, as are core C2’s
L2i and stores S2j. Once again, these reorderings do not affect the results of the program. Thus,
as far as the programmer can tell, this XC execution is equivalent to the SC execution depicted in
Figure 5.2(b), in which no loads or stores are reordered.

memory order (<m)program order (<p) of Core C1 program order (<p) of Core C2

A11: acquire(lock)

Some loads L1i & stores S1j

F12: FENCE

F13: FENCE

R11: release(lock)
A21: acquire(lock)

Some loads L2i & stores S2j

F22: FENCE

F23: FENCE

R22: release(lock)

F14: FENCE

F21: FENCE

F11: FENCE

F24: FENCE

(a) An XC Execution

(b) An SC Execution

memory order (<m)

A11: acquire(lock)

Some loads L1i & stores S1j

F12: FENCE

F13: FENCE

R11: release(lock)
A21: acquire(lock)

Some loads L2i & stores S2j

F22: FENCE

F23: FENCE

R22: release(lock)

F14: FENCE

F21: FENCE

F11: FENCE

F24: FENCE

program order (<p) of Core C1 program order (<p) of Core C2

FIguRE 5.2: Two Equivalent Executions of Table 5.4’s Critical Section Program.

RELAXED MEMORY CONSISTENCY 61

These examples demonstrate that, with sufficient FENCEs, a relaxed model like XC can
appear to programmers as SC. Section 5.4 discusses generalizing from these examples, but first let
us implement XC.

5.3 IMPLEMENTINg XC
This section discusses implementing XC. We follow an approach similar to that used for imple-
menting SC and TSO in the previous two chapters, in which we separate the reordering of core
operations from cache coherence. Recall that each core in a TSO system was separated from shared
memory by a FIFO write buffer. For XC, each core will be separated from memory by a more gen-
eral reorder unit that can reorder both loads and stores.

As depicted by Figure 5.3(a), XC operates as follows:

Loads, stores, and FENCEs leave each core Ci in Ci’s program order <p and enter the tail
of Ci’s reorder unit.
Ci’s reorder unit queues operations and passes them from its tail to its head, either in pro-
gram order or reordered within by rules specified below. A FENCE gets discarded when it
reaches the reorder unit’s head.

•

•

C1 C2 Cn

MEMORY

SWITCH

This XC implementation is
modeled after the SC and TSO
switch implementations of the
previous chapter, except that a
more-general reorder unit sepa-
rates cores and the memory
switch.

reorder

C1 C2 Cn

CACHE-COHERENT
MEMORY SYSTEM

(b) An XC Implementation Using Cache Coherence

This XC implementation
replaces the switch above with a
cache-coherent memory system
in a manner analogous to what
was done for SC and TSO in the
previous chapters.

(a) An XC Implementation Using a Switch

reorder reorder

reorderreorder reorder

FIguRE 5.3: Two XC Implementations.

62 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

When the switch selects core Ci, it performs the load or store at the head of Ci’s reorder
unit.

The reorder units obey rules for (1) FENCEs, (2) operations to the same address, and
(3) bypassing.

FENCEs can be implemented in several different ways (see Section 5.3.2), but they must
enforce order. Specifically, regardless of address, the reorder unit may not reorder:

 Load → FENCE, Store → FENCE, FENCE → FENCE, FENCE → Load, or FENCE → Store

For the same address, the reorder unit may not reorder:

 Load → Load, Load → Store, Store → Store (to the same address)

The reorder unit must ensure that loads immediately see updates due to their own stores.

Not surprisingly, all of these rules mirror those of Section 5.2.3.
In the previous two chapters, we argued that the switch and memory in SC and TSO imple-

mentations could be replaced by a cache-coherent memory system. The same argument holds for
XC, as illustrated by Figure 5.3(b). Thus, as for SC and TSO, an XC implementation can separate
core (re)ordering rules from the implementation of cache coherence. As before, cache coherence
implements the global memory order. What is new is that memory order can more often disrespect
program order due to reorder unit reorderings.

So how much performance does moving from TSO to a relaxed model like XC afford? Un-
fortunately, the correct answer depends on the factors discussed in Section 5.1.2, such as FIFO vs.
coalescing write buffers and speculation support.

In the late 1990s, one of us saw the trend toward speculative cores as diminishing the raison
d’être for relaxed models (better performance) and argued for a return to the simpler interfaces of
SC or TSO [16]. Although we still believe that simple interfaces are good, the move did not hap-
pen. One reason is corporate momentum. Another reason is that not all future cores will be highly
speculative due to power-limited deployments in embedded chips and/or chips with many (asym-
metric) cores.

5.3.1 Atomic Instructions with XC
There are several viable ways of implementing an atomic RMW instruction in a system that sup-
ports XC. The implementation of RMWs also depends on how the system implements XC; in this

•

1.

2.

3.

RELAXED MEMORY CONSISTENCY 63

section, we assume that the XC system consists of dynamically scheduled cores, each of which is
connected to the memory system by a non-FIFO coalescing write buffer.

In this XC system model, a simple and viable solution would be to borrow the implemen-
tation we used for TSO. Before executing an atomic instruction, the core drains the write buffer,
obtains the block with read–write coherence permissions, and then performs the load part and the
store part. Because the block is in a read–write state, the store part performs directly to the cache,
bypassing the write buffer. Between when the load part performs and the store part performs, if
such a window exists, the cache controller must not evict the block; if an incoming coherence re-
quest arrives, it must be deferred until the store part of the RMW performs.

Borrowing the TSO solution for implementing RMWs is simple, but it is overly conserva-
tive and sacrifices some performance. Notably, draining the write buffer is not required because XC
allows both the load part and the store part of the RMW to pass earlier stores. Thus, it is sufficient
to simply obtain read–write coherence permissions to the block and then perform the load part and
the store part without relinquishing the block between those two operations.

Other implementations of atomic RMWs are possible, but they are beyond the scope of this
primer. One important difference between XC and TSO is how atomic RMWs are used to achieve
synchronization. In Table 5.6, we depict a typical critical section, including lock acquire and lock
release, for both TSO and XC. With TSO, the atomic RMW is used to attempt to acquire the lock,
and a store is used to release the lock. With XC, the situation is more complicated. For the acquire,
XC does not, by default, constrain the RMW from being reordered with respect to the opera-
tions in the critical section. To avoid this situation, a lock acquire must be followed by a FENCE.
Similarly, the lock release is not, by default, constrained from being reordered with respect to the
operations before it in the critical section. To avoid this situation, a lock release must be preceded
by a FENCE.

TABLE 5.6: Synchronization in TSO vs Synchronization in XC.

73

One important difference between XC and TSO is how atomic RMWs are used to achieve synchroni-

zation. In Table 5-6, we depict a typical critical section, including lock acquire and lock release, for both

TSO and XC. With TSO, the atomic RMW is used to attempt to acquire the lock, and a store is used to

release the lock. With XC, the situation is more complicated. For the acquire, XC does not, by default, con-

strain the RMW from being reordered with respect to the operations in the critical section. To avoid this

situation, a lock acquire must be followed by a FENCE. Similarly, the lock release is not, by default, con-

strained from being reordered with respect to the operations before it in the critical section. To avoid this

situation, a lock release must be preceded by a FENCE.

5.3.2 FENCEs with XC

If a core C1 executes some memory operations Xi, then a FENCE, and then memory operations Yi, the

XC implementation must preserve order. Specifically, the XC implementation must order Xi <m FENCE

<m Yi. We see three basic approaches:

• An implementation can implement SC and treat all FENCEs as no-ops. This is not done (yet) in a

commercial product, but there have been academic proposals, e.g., via implicit transactional memory

[12].

• An implementation can wait for all memory operations Xi to perform, consider the FENCE done, and

then begin memory operations Yi. This “FENCE as drain” method is common, but it makes FENCEs

costly.

• An implementation can aggressively push toward what is necessary, enforcing Xi <m FENCE <m Yi,

without draining. Exactly how one would do this is beyond the scope of this primer. While this

approach may be more complex to design and verify, it can lead to better performance than draining.

TABLE 5-6. Synchronization in TSO vs Synchronization in XC

Code TSO XC

acquire lock RMW: test-and-set L read L, write L=1 RMW: test-and-set L read L, write L=1

if L==1, goto RMW if lock held, try again if L==1, goto RMW if lock held, try again

FENCE

critical sec-

tion

serots dna sdaolserots dna sdaol

release lock store L=0 FENCE

store L=0

*/

*/

*/

*/

64 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

5.3.2 FENCEs with XC
If a core C1 executes some memory operations Xi, then a FENCE, and then memory operations
Yi, the XC implementation must preserve order. Specifically, the XC implementation must order
Xi <m FENCE <m Yi. We see three basic approaches:

An implementation can implement SC and treat all FENCEs as no-ops. This is not done
(yet) in a commercial product, but there have been academic proposals, e.g., via implicit
transactional memory [12].
An implementation can wait for all memory operations Xi to perform, consider the FENCE
done, and then begin memory operations Yi. This “FENCE as drain” method is common,
but it makes FENCEs costly.
An implementation can aggressively push toward what is necessary, enforcing Xi <m
FENCE <m Yi, without draining. Exactly how one would do this is beyond the scope of
this primer. While this approach may be more complex to design and verify, it can lead to
better performance than draining.

In all cases, a FENCE implementation must know when each operation Xi is done (or at
least ordered). Knowing when an operation is done can be especially tricky for a store that bypasses
the usual cache coherence (e.g., a store to an I/O device or one using some fancy write update
optimization).

5.3.3 A Caveat
Finally, an XC implementor might say, “I’m implementing a relaxed model, so anything goes.” This
is not true. One must obey the many XC rules, e.g., Load → Load order to the same address (this
particular ordering is actually non-trivial to enforce in an out-of-order core). Moreover, all XC imple-
mentations must be strong enough to provide SC for programs that have FENCEs between each pair
of instructions because these FENCEs require memory order to respect all of the program order.

5.4 SEQuENTIAL CONSISTENCY FOR DATA-RACE-FREE
PROgRAMS

Children and computer architects would like “to have their cake and eat it too.” For memory consis-
tency models, this can mean enabling programmers to reason with the (relatively) intuitive model of
SC while still achieving the performance benefits of executing on a relaxed model like XC.

Fortunately, simultaneously achieving both goals is possible for the important class of data-
race-free (DRF) programs [3]. Informally, a data race occurs when two threads access the same
memory location, at least one of the accesses is a write, and there are no intervening synchronization

•

•

•

RELAXED MEMORY CONSISTENCY 65

operations. Data races are often, but not always, the result of programming errors and many pro-
grammers seek to write DRF programs. SC for DRF programs asks programmers to ensure programs
are DRF under SC and asks implementors to ensure that all executions of DRF programs on the
relaxed model are also SC executions. XC and, as far as we know, all commercial relaxed memory
models support SC for DRF programs. Moreover, this approach also serves as a foundation for Java
and C++ high-level language (HLL) memory models (Section 5.9).

Let us motivate “SC for DRF” with two examples. Both Table 5.7 and Table 5.8 depict ex-
amples in which Core C1 stores two locations (S1 and S2) and Core C2 loads the two locations in
the opposite order (L1 and L2). The examples differ because Core C2 does no synchronization in
Table 5.7 but acquires the same lock as Core C1 in Table 5.8.

Since Core C2 does no synchronization in Table 5.7, its loads can execute concurrently with
Core C1’s stores. Since XC allows Core C1 to reorder stores S1 and S2 (or not) and Core C2 to
reorder loads L1 and L2 (or not), four outcomes are possible wherein (r1, r2) = (0, 0), (0, NEW),
(NEW, 0), or (NEW, NEW). Output (0, NEW) occurs, for example, if loads and stores execute
in the sequence S2, L1, L2, and then S1 or the sequence L2, S1, S2, and then L1. However, this
example includes two data races (S1 with L2 and S2 with L1) because Core C2 does not acquire
the lock used by Core C1.

Table 5.8 depicts the case in which Core C2 acquires the same lock as acquired by Core C1.
In this case, Core C1’s critical section will execute completely before Core C2’s or vice versa. This
allows two outcomes: (r1, r2) = (0, 0) or (NEW, NEW). Importantly, these outcomes are not af-
fected by whether, within their respective critical sections, Core C1 reorders stores S1 and S2 and/or
Core C2 reorders loads L1 and L2. “A tree falls in the woods (reordered stores), but no one hears

TABLE 5.7: Example with Four Outcomes for XC with a Data Race.

75

or the sequence L2, S1, S2, and then L1. However, this example includes two data races (S1 with L2 and

S2 with L1), because Core C2 does not acquire the lock used by Core C1.

Table 5-8 depicts the case in which Core C2 acquires the same lock as acquired by Core C1. In this

case, Core C1’s critical section will execute completely before Core C2’s or vice versa. This allows two

outcomes: (r1, r2) = (0, 0) or (NEW, NEW). Importantly, these outcomes are not affected by whether,

within their respective critical sections, Core C1 reorders stores S1 and S2 and/or Core C2 reorders loads

L1 and L2. “A tree falls in the woods (reordered stores), but no one hears it (no concurrent loads).” More-

over, the XC outcomes are the same as would be allowed under SC.

“SC for DRF” generalizes from these two examples to claim:

• Either an execution has data races that expose XC’s reordering of loads or stores, or

• The XC execution is data-race-free and indistinguishable from an SC execution.

A more concrete understanding of “SC for DRF” requires some definitions:

• Some memory operations are tagged as synchronization (“synchronization operations”), while the rest

are tagged data by default (“data operations”). Synchronization operations include lock acquires and

releases.

• Two data operations Di and Dj conflict if they are from different cores (threads) (i.e., not ordered by

program order), access the same memory location, and at least one is a store.

• Two synchronization operations Si and Sj conflict if they are from different cores (threads), access the

same memory location (e.g., the same lock), and the two synchronization operations are not compati-

ble (e.g., acquire and release of a spinlock are not compatible, whereas two read_locks on a reader-

writer lock are compatible).

TABLE 5-7. Example with Four Outcomes for XC with a Data Race

Core C1 Core C2 Comments

F11: FENCE /* Initially, data1 & data2 = 0 */

A11: acquire(lock)

F12: FENCE

S1: data1 = NEW; L1: r2 = data2;

S2: data2 = NEW; L2: r1 = data1; /* Four Possible Outcomes under XC:

F13: FENCE (r1, r2) =

R11: release(lock) (0, 0), (0, NEW), (NEW, 0), or (NEW, NEW)

F14: FENCE But has a Data Race */

66 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

it (no concurrent loads).” Moreover, the XC outcomes are the same as would be allowed under SC.
“SC for DRF” generalizes from these two examples to claim:

Either an execution has data races that expose XC’s reordering of loads or stores, or
the XC execution is data-race-free and indistinguishable from an SC execution.

A more concrete understanding of “SC for DRF” requires some definitions:

Some memory operations are tagged as synchronization (“synchronization operations”),
while the rest are tagged data by default (“data operations”). Synchronization operations
include lock acquires and releases.
Two data operations Di and Dj conflict if they are from different cores (threads) (i.e., not
ordered by program order), access the same memory location, and at least one is a store.
Two synchronization operations Si and Sj conflict if they are from different cores (threads),
access the same memory location (e.g., the same lock), and the two synchronization opera-
tions are not compatible (e.g., acquire and release of a spinlock are not compatible, whereas
two read_locks on a reader–writer lock are compatible).

•
•

•

•

•

TABLE 5.8: Example with Two Outcomes for XC Without a Data Race, Just Like SC.

76

• Two synchronization operations Si and Sj transitively conflict if either Si and Sj conflict or if Si con-

flicts with some synchronization operation Sk, Sk <p Sk' (i.e., Sk is earlier than Sk’ in a core K’s pro-

gram order), and Sk' transitively conflicts with Sj.

• Two data operations Di and Dj race if they conflict and they appear in the global memory order with-

out an intervening pair of transitively conflicting synchronization operations by the same cores

(threads) i and j. In other words, a pair of conflicting data operations Di <m Dj are not a data race if

and only if there exists a pair of transitively conflicting synchronization operations Si and Sj such that

Di <m Si <m Sj <m Dj.

• An SC execution is data-race-free (DRF) if no data operations race.

• A program is DRF if all its SC executions are DRF.

• A memory consistency model supports “SC for DRF programs” if all executions of all DRF programs

are SC executions. This support usually requires some special actions for synchronization operations.

Consider the memory model XC. Require that the programmer or low-level software ensures that all

synchronization operations are preceded and succeeded by FENCEs, as they are in Table 5-8.

With FENCEs around synchronization operations, XC supports SC for DRF programs. While a proof

is beyond the scope of this work, the intuition behind this result follows from the examples in Table 5-7

and Table 5-8 discussed above.

TABLE 5-8. Example with Two Outcomes for XC without a Data Race, just like SC

Core C1 Core C2 Comments

F11: FENCE /* Initially, data1 & data2 = 0 */

A11: acquire(lock)

F12: FENCE

S1: data1 = NEW;

S2: data2 = NEW;

F13: FENCE

R11: release(lock) F21: FENCE

F14: FENCE A21: acquire(lock)

F22: FENCE

L1: r2 = data2;

L2: r1 = data1; /* Two Possible Outcomes under XC:

F23: FENCE (r1, r2) =

R22: release(lock) (0, 0) or (NEW, NEW)

F24: FENCE Same as with SC */

RELAXED MEMORY CONSISTENCY 67

Two synchronization operations Si and Sj transitively conflict if either Si and Sj conflict or
if Si conflicts with some synchronization operation Sk, Sk <p Sk' (i.e., Sk is earlier than Sk'
in a core K’s program order), and Sk' transitively conflicts with Sj.
Two data operations Di and Dj race if they conflict and they appear in the global memory
order without an intervening pair of transitively conflicting synchronization operations by
the same cores (threads) i and j. In other words, a pair of conflicting data operations Di <m
Dj are not a data race if and only if there exists a pair of transitively conflicting synchroniza-
tion operations Si and Sj such that Di <m Si <m Sj <m Dj.
An SC execution is data-race-free (DRF) if no data operations race.
A program is DRF if all its SC executions are DRF.
A memory consistency model supports “SC for DRF programs” if all executions of all
DRF programs are SC executions. This support usually requires some special actions for
synchronization operations.

Consider the memory model XC. Require that the programmer or low-level software en-
sures that all synchronization operations are preceded and succeeded by FENCEs, as they are in
Table 5.8.

With FENCEs around synchronization operations, XC supports SC for DRF programs.
While a proof is beyond the scope of this work, the intuition behind this result follows from the
examples in Table 5.7 and Table 5.8 discussed above.

Supporting SC for DRF programs allows many programmers to reason about their programs
with SC and not the more complex rules of XC and, at the same time, benefit from any hardware
performance improvements or simplifications XC enables over SC. The catch—and isn’t there al-
ways a catch?—is that correctly placing FENCEs can be challenging:

It is undecidable to determine exactly which memory operations can race and therefore
must be tagged as synchronization. Figure 5.4 depicts an execution in which core C2’s
store should be tagged as synchronization—which determines whether FENCEs are ac-
tually necessary—only if one can determine whether C1’s initial block of code does not
halt, which is, of course, undecidable. Undecidability can be avoided by adding FENCEs
whenever one is unsure whether a FENCE is needed. This is always correct, but may hurt
performance. In the limit, one can surround all memory operations by FENCEs to ensure
SC behavior for any program.
Finally, programs may have data races that violate DRF due to bugs, non-blocking data
structures, etc. The bad news is that, after data races, the execution may no longer obey SC,
forcing programmers to reason about the underlying relaxed memory model (e.g., XC).

•

•

•
•
•

•

•

68 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The good news is that all executions will obey SC at least until the first data race, allowing
some debugging with SC reasoning only [5].

5.5 SOME RELAXED MODEL CONCEPTS
The academic literature offers many alternative relaxed memory models and concepts. Here we
review some relaxed memory concepts from the vast literature to provide a basic understanding, but
a full and formal exploration is beyond the scope of this primer. Fortunately, users of SC for DRF,
which may be most programmers, do not have to master the concepts in this difficult section. On a
first pass, readers may wish to skim or skip this section.

5.5.1 Release Consistency
In the same ISCA 1990 session in which Adve and Hill proposed “SC for DRF,” Gharachorloo et
al. [14] proposed release consistency (RC). Using the terminology of this chapter, the key observation
of RC is that surrounding all synchronization operations with FENCEs is overkill. With a deeper
understanding of synchronization, a synchronization acquire needs only a succeeding FENCE,
while a synchronization release needs only a preceding FENCE.

For the critical section example of Table 5.4, FENCEs F11, F14, F21, and F24 may be omit-
ted. Let us focus on “R11: release(lock).” FENCE F13 is important because it orders the critical
section’s loads (L1i) and stores (S1j) before the lock release. FENCE F14 may be omitted because
there is no problem if core C1’s subsequent memory operations (none shown in the table) were
performed early before release R11.

RC actually allows these subsequent operations to be performed as early as the beginning of
the critical section, in contrast to XC’s FENCE, which disallows such an ordering. RC provides
ACQUIRE and RELEASE operations that are similar to FENCEs, but order memory accesses in
only one direction instead of in both directions like FENCEs. More generally, RC only requires:

C1

Core C2’s FENCEs F3 and F4
are necessary only if core C1
executes “X = 1.” Determining
whether “X = 1” executes is
undecidable, because it requires
solving the undecidable halting
problem.

Does this
code halt?

C2

F1: FENCE
X = 1

F2: FENCE

F3: FENCE?
X = 2

F4: FENCE?
race?

FIguRE 5.4: Optimal Placement of FENCEs is Undecidable.

RELAXED MEMORY CONSISTENCY 69

 ACQUIRE → Load, Store (but not Load, Store → ACQUIRE)
 Load, Store → RELEASE (but not RELEASE → Load, Store)
 and SC ordering of ACQUIREs and RELEASEs:
 ACQUIRE → ACQUIRE
 ACQUIRE → RELEASE
 RELEASE → ACQUIRE, and
 RELEASE → RELEASE

5.5.2 Causality and Write Atomicity
Here we illustrate two subtle properties of relaxed models. The first property, causality, requires that,
“If I see it and tell you about it, then you will see it too.” For example, consider Table 5.9 where core
C1 does a store S1 to update data1. Let core C2 spin until it sees the results of S1 (r1==NEW),
perform FENCE F1, and then do S2 to update data2. Similarly, core C3 spins on load L2 until it
sees the result of S2 (r2==NEW), performs FENCE F2, and then does L3 to observe store S1. If
core C3 is guaranteed to observe S1 done (r3==NEW), then causality holds. On the other hand, if
r3 is 0, causality is violated.

The second property, write atomicity (also called store atomicity), requires that a core’s store
is logically seen by all other cores at once. XC is write atomic by definition since its memory order
(<m) specifies a logically atomic point at which a store takes effect at memory. Before this point, no
other cores may see the newly stored value. After this point, all other cores must see the new value or
the value from a later store, but not a value that was clobbered by the store. Write atomicity allows
a core to see the value of its own store before it is seen by other cores, as required by XC, causing
some to consider “write atomicity” to be a poor name.

TABLE 5.9: Causality: If I See a Store and Tell You About It, Must You See It Too?

79

The second property, write atomicity (also called store atomicity), requires that a core’s store is logi-

cally seen by all other cores at once. XC is write atomic by definition since its memory order (<m) speci-

fies a logically atomic point where a store takes effect at memory. Before this point, no other cores may see

the newly stored value. After this point, all other cores must see the new value or the value from a later

store, but not a value that was clobbered by the store. Write atomicity allows a core to see the value of its

own store before it is seen by other cores, as required by XC, causing some to consider “write atomicity” to

be a poor name.

A necessary, but not sufficient, condition for write atomicity is proper handling of the Independent

Read Independent Write (IRIW) example. IRIW is depicted in Table 5-10 where cores C1 and C2 do stores

S1 and S2, respectively. Assume that core C3’s load L1 observes S1 (r1==NEW) and core C4’s L3

observes S2 (r3==NEW). What if C3’s L2 loads 0 (r2==0) and C4’s L4 loads 0 (r4==0)? The former

implies that core C3 sees store S1 before it sees S2, while the latter implies that C4 sees S2 before S1. In

this case, stores S1 and S2 are not just “reordered,” but no order of stores even exists and write atomicity is

violated. The converse is not necessarily true: Proper handling of IRIW does not automatically imply store

atomicity.

Some more facts (that can make your head hurt and long for SC, TSO, or SC for DRF):

• Write atomicity implies causality. In Table 5-9, for example, core C2 observes store S1, performs a

FENCE, and then does store S2. With write atomicity, this ensures C3 sees store S1 as done.

• Causality does not imply write atomicity. For Table 5-10, assume that cores C1 and C3 are two thread

contexts of a multithreaded core that share a write buffer. Assume the same for cores C2 and C4. Let

TABLE 5-9. Causality: If I see a store and tell you about it, must you see it too?

Core C1 Core C2 Core C3

S1: data1 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1;

B1: if (r1 NEW) goto L1;

F1: FENCE

S2: data2 = NEW;

L2: r2 = data2;

B2: if (r2 NEW) goto L2;

F2: FENCE

L3: r3 = data1; /* r3==NEW? */

≠

≠

70 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

A necessary, but not sufficient, condition for write atomicity is proper handling of the Inde-
pendent Read Independent Write (IRIW) example. IRIW is depicted in Table 5.10 where cores C1
and C2 do stores S1 and S2, respectively. Assume that core C3’s load L1 observes S1 (r1==NEW)
and core C4’s L3 observes S2 (r3==NEW). What if C3’s L2 loads 0 (r2==0) and C4’s L4 loads 0
(r4==0)? The former implies that core C3 sees store S1 before it sees S2, while the latter implies
that C4 sees S2 before S1. In this case, stores S1 and S2 are not just “reordered,” but no order of stores
even exists, and write atomicity is violated. The converse is not necessarily true: proper handling of
IRIW does not automatically imply store atomicity. Some more facts (that can make your head hurt
and long for SC, TSO, or SC for DRF):

Write atomicity implies causality. In Table 5.9, for example, core C2 observes store S1,
performs a FENCE, and then does store S2. With write atomicity, this ensures C3 sees
store S1 as done.
Causality does not imply write atomicity. For Table 5.10, assume that cores C1 and C3 are
two thread contexts of a multithreaded core that share a write buffer. Assume the same for
cores C2 and C4. Let C1 put S1 in the C1–C3 write buffer, so it is observed by C3’s L1
only. Similarly, C2 puts S2 into the C2–C4 write buffer, so S2 is observed by C4’s L3 only.
Let both C3 do L2 and C4 do L4 before either store leaves the write buffers. This execu-
tion violates write atomicity. Using the example in Table 5.9, however, one can see that this
design provides causality.

Finally, the XC memory model is both store atomic and maintains causality. We previously
argued that XC was store atomic. XC maintains causality because store atomicity implies causality.

5.6 A RELAXED MEMORY MODEL CASE STuDY: IBM POWER
IBM Power implements the Power memory model [17] (see especially Book II’s Chapter 1, Sec-
tion 4.4, and Appendix B). We attempt to give the gist of the Power memory model here, but we
refer the reader to the Power manual for the definitive presentation, especially for programming

•

•

TABLE 5.10: IRIW Example: Must Stores Be in Some Order?

80

C1 put S1 in the C1-C3 write buffer, so it is observed by C3’s L1 only. Similarly, C2 puts S2 into the

C2-C4 write buffer, so S2 is observed by C4’s L3 only. Let both C3 do L2 and C4 do L4 before either

store leaves the write buffers. This execution violates write atomicity. Using the example in Table 5-9,

however, one can see that this design provides causality.

Finally, the XC memory model is both store atomic and maintains causality. We previously argued that

XC was store atomic. XC maintains causality, because store atomicity implies causality.

5.6 A Relaxed Memory Model Case Study: IBM Power

IBM Power implements the Power memory model [17] (see especially Book II's Chapter 1, Section

4.4, and Appendix B). We attempt to give the gist of the Power memory model here, but we refer the

reader to the Power manual for the definitive presentation, especially for programming Power. We do not

provide an ordering table like Table 5-5 for SC, because we are not confident we could specify all entries

correctly. We discuss normal cacheable memory only (“Memory Coherence” enabled, “Write Through

Required” disabled, and “Caching Inhibited” disabled) and not I/O space, etc. PowerPC [18] represents

earlier versions of the current Power model. On a first pass of this primer, readers may wish to skim or skip

this section; this memory model is significantly more complicated than the models presented thus far in

this primer.

Power provides a relaxed model that is superficially similar to XC, but with important differences that

include the following.

First, stores in Power are performed with respect to (w.r.t.) other cores, not w.r.t memory. A store by

core C1 is “performed w.r.t” core C2 when any loads by core C2 to the same address will see the newly

stored value or a value from a later store, but not the previous value that was clobbered by the store. Power

ensures that if core C1 uses FENCES to order store S1 before S2 before S3 then the three stores will be

performed w.r.t every other core Ci in the same order. In the absence of FENCEs, however, core C1’s store

S1 may be performed w.r.t. core C2 but not yet performed w.r.t. to C3. Thus, Power is not guaranteed to

create a total memory order (<m) as did XC.

TABLE 5-10. IRIW Example: Must Stores Be in Some Order?

Core C1 Core C2 Core C3 Core C4

S1: data1 = NEW; S2: data2 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1; /* NEW */ L3: r3 = data2; /* NEW */

F1: FENCE F2: FENCE

L2: r2 = data2; /* NEW? */ L4: r4 = data1; /* NEW? */

RELAXED MEMORY CONSISTENCY 71

Power. We do not provide an ordering table like Table 5.5 for SC because we are not confident we
could specify all entries correctly. We discuss normal cacheable memory only (“Memory Coher-
ence” enabled, “Write Through Required” disabled, and “Caching Inhibited” disabled) and not I/O
space, etc. PowerPC [18] represents earlier versions of the current Power model. On a first pass of
this primer, readers may wish to skim or skip this section; this memory model is significantly more
complicated than the models presented thus far in this primer.

Power provides a relaxed model that is superficially similar to XC but with important differ-
ences that include the following.

First, stores in Power are performed with respect to (w.r.t.) other cores, not w.r.t. memory. A
store by core C1 is “performed w.r.t.” core C2 when any loads by core C2 to the same address will
see the newly stored value or a value from a later store, but not the previous value that was clobbered
by the store. Power ensures that if core C1 uses FENCEs to order store S1 before S2 and before S3,
then the three stores will be performed w.r.t. every other core Ci in the same order. In the absence of
FENCEs, however, core C1’s store S1 may be performed w.r.t. core C2 but not yet performed w.r.t.
to C3. Thus, Power is not guaranteed to create a total memory order (<m) as did XC.

Second, some FENCEs in Power are defined to be cumulative. Let a core C2 execute some
memory accesses X1, X2, . . . , a FENCE, and then some memory accesses Y1, Y2,. . . . Let set
X = {Xi} and set Y = {Yi}. (The Power manual calls these sets A and B, respectively.) Define cu-
mulative to mean three things: (a) add to set X the memory accesses by other cores that are ordered
before the FENCE (e.g., add core C1’s store S1 to X if S1 is performed w.r.t. core C2 before C2’s
FENCE); (b) add to set Y the memory accesses by other cores that are ordered after the FENCE by
data dependence, control dependence, or another FENCE; and (c) apply (a) recursively backward
(e.g., for cores that have accesses previously ordered with core C1) and apply (b) recursively forward.
(FENCEs in XC are also cumulative, but their cumulative behavior is automatically provided by
XC’s total memory order, not by the FENCEs specifically.)

Third, Power has three kinds of FENCEs (and more for I/O memory), whereas XC has only
one FENCE.

SYNC or HWSYNC (“HW” means “heavy weight” and “SYNC” stands for “synchroniza-
tion”) orders all accesses X before all accesses Y and is cumulative.
LWSYNC (“LW” means “light weight”) orders loads in X before loads in Y, orders loads
in X before stores in Y, and orders stores in X before stores in Y. LWSYNC is cumulative.
Note that LWSYNC does not order stores in X before loads in Y.
ISYNC (“I” means “instruction”) is sometimes used to order two loads from the same core,
but it is not cumulative and, despite its name, it is not a FENCE like HWSYNC and
LWSYNC, because it orders instructions and not memory accesses. For these reasons, we
do not use ISYNC in our examples.

•

•

•

72 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Fourth, Power orders accesses in some cases even without FENCEs. For example, if load L1
obtains a value used to calculate an effective address of a subsequent load L2, then Power orders
load L1 before load L2. Also, if load L1 obtains a value used to calculate an effective address or data
value of a subsequent store S2, then Power orders load L1 before store S2.

Table 5.11 illustrates Power’s LWSYNC in action. Core C1 executes a LWSYNC to order
data stores S1 and S2 before S3. Note that the LWSYNC does not order stores S1 and S2 with
respect to each other, but this is not needed. A LWSYNC provides sufficient order here because it
orders stores in X (S1 and S2) before stores in Y (S3). Similarly, core C2 executes a LWSYNC after
its conditional branch B1 to ensure that load L1 completes with r1 assigned to SET before loads
L2 and L3 execute. HWSYNC is not required because neither core needs to order stores before
loads.

Table 5.12 illustrates Power’s HWSYNC in action on a key part of Dekker’s algorithm. The
HWSYNCs ensure core C1’s store S1 is before load L1 and core C2’s store S2 is before load S2.
This prevents the execution from terminating with r1=0 and r2=0. Using LWSYNC would not
prevent this execution because an LWSYNC does not order earlier stores before later loads.

As depicted in Table 5.13, Power’s LWSYNCs can be used to make the causality example
from Table 5.9 behave sensibly (i.e., r3 is always set to NEW). LWSYNC F1 is executed only after
load L1 sees the new value of data1, which means that store S1 has been performed w.r.t. core C2.
LWSYNC F1 orders S1 before S2 with respect to core C2 by the cumulative property. LWSYNC
F2 is executed only after load L2 sees the new value of data2, which means that store S2 has been
performed w.r.t. core C3. The cumulative property also ensures that store S1 has been performed

TABLE 5.11: Power LWSYNCs to Ensure r2 & r3 Always Get NEW.

82

Table 5-12 illustrates Power’s HWSYNC in action on a key part of Dekker’s algorithm. The

HWSYNCs ensure core C1’s store S1 is before load L1 and core C2’s store S2 is before load S2. This pre-

vents the execution from terminating with r1=0 and r2=0. Using LWSYNC would not prevent this execu-

tion, because an LWSYNC does not order earlier stores before later loads.

As depicted in Table 5-13, Power’s LWSYNCs can be used to make the causality example from

Table 5-9 behave sensibly (i.e., r3 is always set to NEW). LWSYNC F1 is executed only after load L1 sees

the new value of data1 which means that store S1 has been performed w.r.t, core C2. LWSYNC F1 orders

S1 before S2 with respect to core C2 by the cumulative property. LWSYNC F2 is executed only after load

L2 sees the new value of data2 which means that store S2 has been performed w.r.t. core C3. The cumula-

tive property also ensures that store S1 has been performed w.r.t. core C3 before S2 (because of LWSYNC

F1). Finally, LWSYNC F2 orders load L2 before L3, ensuring r3 obtains the value NEW.

As depicted in Table 5-14, Power’s HWSYNCs can be used the make the Independent Read Indepen-

dent Write Example (IRIW) of Table 5-10 behave sensibly (i.e., disallowing the result r1==NEW, r2==0,

r3==NEW and r4==0). Using LWSYNCs is not sufficient. For example, core C3’s F1 HWSYNC must

cumulatively order core C1’s store S1 before core C3’s load L2. In any case, this does not show that Power

has write atomicity as defined in Section 5.5.2.

TABLE 5-11. Power LWSYNCs to ensure r2 & r3 always get NEW

Core C1 Core C2 Comments

S1: data1 = NEW; /* Initially, data1 & data2 = 0 & flag SET */

S2: data2 = NEW;

F1: LWSYNC /* Ensures S1 and S2 before S3 */

S3: flag = SET; L1: r1 = flag; /* spin loop: L1 & B1 may repeat many times */

B1: if (r1 SET) goto L1;

F2: LWSYNC /* Ensure B1 before L2 and L3 */

L2: r2 = data1;

L3: r3 = data2;

TABLE 5-12. Power HWSYNCS to ensure both r1 and r2 are not set to 0

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

F1: HWSYNC F2: HWSYNC /* Ensures Si before Li for i = 1,2 */

L1: r1 = y; L2: r2 = x;

≠

≠

RELAXED MEMORY CONSISTENCY 73

w.r.t. core C3 before S2 (because of LWSYNC F1). Finally, LWSYNC F2 orders load L2 before
L3, ensuring r3 obtains the value NEW.

As depicted in Table 5.14, Power’s HWSYNCs can be used to make the Independent Read
Independent Write Example (IRIW) of Table 5.10 behave sensibly (i.e., disallowing the result
r1==NEW, r2==0, r3==NEW and r4==0). Using LWSYNCs is not sufficient. For example, core
C3’s F1 HWSYNC must cumulatively order core C1’s store S1 before core C3’s load L2. In any
case, this does not show that Power has write atomicity as defined in Section 5.5.2.

An alternative way to look at the Power memory model is to specify the FENCEs needed to
make Power behave like stronger memory models. To this end:

Power can be restricted to SC executions by inserting an HWSYNC between each pair of
memory-accessing instructions.
Power can be restricted to TSO executions by inserting an LWSYNC between each pair of
memory-accessing instructions and replacing each FENCE with an HWSYNC.

•

•

TABLE 5.12: Power HWSYNCS to Ensure Both r1 and r2 are Not Set to 0.

82

Table 5-12 illustrates Power’s HWSYNC in action on a key part of Dekker’s algorithm. The

HWSYNCs ensure core C1’s store S1 is before load L1 and core C2’s store S2 is before load S2. This pre-

vents the execution from terminating with r1=0 and r2=0. Using LWSYNC would not prevent this execu-

tion, because an LWSYNC does not order earlier stores before later loads.

As depicted in Table 5-13, Power’s LWSYNCs can be used to make the causality example from

Table 5-9 behave sensibly (i.e., r3 is always set to NEW). LWSYNC F1 is executed only after load L1 sees

the new value of data1 which means that store S1 has been performed w.r.t, core C2. LWSYNC F1 orders

S1 before S2 with respect to core C2 by the cumulative property. LWSYNC F2 is executed only after load

L2 sees the new value of data2 which means that store S2 has been performed w.r.t. core C3. The cumula-

tive property also ensures that store S1 has been performed w.r.t. core C3 before S2 (because of LWSYNC

F1). Finally, LWSYNC F2 orders load L2 before L3, ensuring r3 obtains the value NEW.

As depicted in Table 5-14, Power’s HWSYNCs can be used the make the Independent Read Indepen-

dent Write Example (IRIW) of Table 5-10 behave sensibly (i.e., disallowing the result r1==NEW, r2==0,

r3==NEW and r4==0). Using LWSYNCs is not sufficient. For example, core C3’s F1 HWSYNC must

cumulatively order core C1’s store S1 before core C3’s load L2. In any case, this does not show that Power

has write atomicity as defined in Section 5.5.2.

TABLE 5-11. Power LWSYNCs to ensure r2 & r3 always get NEW

Core C1 Core C2 Comments

S1: data1 = NEW; /* Initially, data1 & data2 = 0 & flag != SET */

S2: data2 = NEW;

F1: LWSYNC /* Ensures S1 and S2 before S3 */

S3: flag = SET; L1: r1 = flag; /* spin loop: L1 & B1 may repeat many times */

B1: if (r1 != SET) goto L1;

F2: LWSYNC /* Ensure B1 before L2 and L3 */

L2: r2 = data1;

L3: r3 = data2;

TABLE 5-12. Power HWSYNCS to ensure both r1 and r2 are not set to 0

Core C1 Core C2 Comments

S1: x = NEW; S2: y = NEW; /* Initially, x = 0 & y = 0*/

F1: HWSYNC F2: HWSYNC /* Ensures Si before Li for i = 1,2 */

L1: r1 = y; L2: r2 = x;

TABLE 5.13: Power LWSYNCs to Ensure Causality (r3 == NEW).

83

An alternative way to look at the Power memory model is to specify the FENCEs needed to make

Power behave like stronger memory models. To this end:

• Power can be restricted to SC executions by inserting a HWSYNC between each pair of memory-

accessing instructions.

• Power can be restricted to TSO executions by inserting a LWSYNC between each pair of memory-

accessing instructions and replacing each FENCE with a HWSYNC.

The above is a thought experiment, and it is definitely not a recommended way to achieve good perfor-

mance on Power.

5.7 Further Reading and Commercial Relaxed Memory Models

Academic Literature. Below are a few highlights from the vast relaxed memory consistency literature.

Among the first developed relaxed models was Dubois et al. [13] with weak ordering. Adve and Hill gen-

eralized weak ordering to the order strictly necessary for programmers with “SC for DRF” [3, 4]. Gharac-

horloo et al. [14] developed release consistency, as well as “proper labeling” (that can be viewed as a

generalization of “SC for DRF”) and a model that allows synchronization operations to follow TSO

TABLE 5-13. Power LWSYNCs to Ensure Causality (r3 == NEW)

Core C1 Core C2 Core C3

S1: data1 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1;

B1: if (r1 NEW) goto L1;

F1: LWSYNC

S2: data2 = NEW;

L2: r2 = data2;

B2: if (r2 NEW) goto L2;

F2: LWSYNC

L3: r3 = data1; /* r3==NEW? */

TABLE 5-14. Power LWSYNCs with the IRIW Example

Core C1 Core C2 Core C3 Core C4

S1: data1 = NEW; S2: data2 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1; /* NEW */ L3: r3 = data2; /* NEW */

F1: HWSYNC F2: HWSYNC

L2: r2 = data2; /* NEW? */ L4: r4 = data1; /* NEW? */

≠

≠

74 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The above is a thought experiment, and it is definitely not a recommended way to achieve
good performance on Power.

5.7 FuRTHER READINg AND COMMERCIAL RELAXED
MEMORY MODELS

5.7.1 Academic Literature
Below are a few highlights from the vast relaxed memory consistency literature. Among the first de-
veloped relaxed models was that of Dubois et al. [13] with weak ordering. Adve and Hill generalized
weak ordering to the order strictly necessary for programmers with “SC for DRF” [3, 4]. Ghara-
chorloo et al. [14] developed release consistency, as well as “proper labeling” (that can be viewed as
a generalization of “SC for DRF”) and a model that allows synchronization operations to follow
TSO (“RCPC”). Adve and Gharachorloo [2] wrote a seminal memory model tutorial summarizing
the state of the art in the mid-1990s.

As far as we know, Meixner and Sorin [23, 24] were the first to prove correctness of a relaxed
memory model realized by separating the cores and the cache-coherent memory system with a re-
order unit governed by certain rules.

It is notoriously difficult to specify and verify both strong and relaxed memory models. To
this end, Alglave et al. [6, 7] have developed formal specifications and, importantly, the download-
able diy tool [1] that generates discerning litmus tests to randomly run on x86 and Power. As with
all testing, diy can find bugs, but not prove hardware correct.

5.7.2 Commercial Models
In addition to Power [17], commercial relaxed memory models include Alpha [26], SPARC RMO
[27], and ARM [9, 8].

Alpha [26] is largely defunct, but, like XC, assumes a total memory order. Alpha retains
some importance because it had a large influence on Linux synchronization since Linux ran on
Alpha [22] (see especially Chapter 12 and Appendix C). McKenney [22] points out that Alpha did

TABLE 5.14: Power LWSYNCs with the IRIW Example.

83

An alternative way to look at the Power memory model is to specify the FENCEs needed to make

Power behave like stronger memory models. To this end:

• Power can be restricted to SC executions by inserting a HWSYNC between each pair of memory-

accessing instructions.

• Power can be restricted to TSO executions by inserting a LWSYNC between each pair of memory-

accessing instructions and replacing each FENCE with a HWSYNC.

The above is a thought experiment, and it is definitely not a recommended way to achieve good perfor-

mance on Power.

5.7 Further Reading and Commercial Relaxed Memory Models

Academic Literature. Below are a few highlights from the vast relaxed memory consistency literature.

Among the first developed relaxed models was Dubois et al. [13] with weak ordering. Adve and Hill gen-

eralized weak ordering to the order strictly necessary for programmers with “SC for DRF” [3, 4]. Gharac-

horloo et al. [14] developed release consistency, as well as “proper labeling” (that can be viewed as a

generalization of “SC for DRF”) and a model that allows synchronization operations to follow TSO

TABLE 5-13. Power LWSYNCs to Ensure Causality (r3 == NEW)

Core C1 Core C2 Core C3

S1: data1 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1;

B1: if (r1 NEW) goto L1;

F1: LWSYNC

S2: data2 = NEW;

L2: r2 = data2;

B2: if (r2 NEW) goto L2;

F2: LWSYNC

L3: r3 = data1; /* r3==NEW? */

TABLE 5-14. Power LWSYNCs with the IRIW Example

Core C1 Core C2 Core C3 Core C4

S1: data1 = NEW; S2: data2 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1; /* NEW */ L3: r3 = data2; /* NEW */

F1: HWSYNC F2: HWSYNC

L2: r2 = data2; /* NEW? */ L4: r4 = data1; /* NEW? */

≠

≠

RELAXED MEMORY CONSISTENCY 75

not order two loads even if the first provided the effective address for the second. More generally,
McKenney’s online book is a good source of information on Linux synchronization and its interac-
tion with memory consistency models.

SPARC Relaxed Memory Order (RMO) [27] also provides a total memory order like XC.
Although SPARC allows the operating system to select a memory model among TSO, PSO, and
RMO, all current SPARC implementations operate with TSO in all cases. TSO is a valid imple-
mentation of PSO and RMO since it is strictly stronger.

ARM [9, 8] provides a memory model similar in spirit to IBM Power. Like Power, it ap-
pears to not guarantee a total memory order. Like Power, ARM has multiple flavors of FENCEs,
including a data memory barrier that can order all memory access or just stores and an instruction
synchronization barrier like Power’s ISYNC, as well as other FENCEs for I/O operations.

5.8 COMPARINg MEMORY MODELS
5.8.1 How Do Relaxed Memory Models Relate to Each Other and TSO and SC?
Recall that a memory consistency model Y is strictly more relaxed (weaker) than a memory consis-
tency model X if all X executions (implementations) are also Y executions (implementations), but
not vice versa. It is also possible that two memory consistency models are incomparable because
both allow executions (implementations) precluded by the other.

Figure 5.5 repeats a figure from the previous chapter where Power replaces the previously
unspecified MC1, while MC2 could be Alpha, ARM, RMO, or XC. How do they compare?

Power is more relaxed than TSO which is more relaxed than SC.
Alpha, ARM, RMO, and XC are more relaxed than TSO which is more relaxed than SC.
Power is assumed to be incomparable with respect to Alpha, ARM, RMO, and XC until
someone proves that one is more relaxed than the other or that the two are equivalent.

•
•
•

(a) Executions

SC

TSO MC2Power

ALL

(b) Implementations (same as (a))

SC

TSO MC2Power

ALL

FIguRE 5.5: Comparing Memory Consistency Models.

76 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Mador-Haim et al. [20] have developed an automated technique for comparing memory
consistency models—including SC, TSO, and RMO—but they did not consider ARM or Power.
ARM and Power may be equivalent, but we await a proof.

5.8.2 How good Are Relaxed Models?
As discussed in the previous chapter, a good memory consistency model should possess Sarita Adve’s
3Ps plus our fourth P:

Programmability: Relaxed model programmability is acceptable for those who use “SC for
DRF.” Deeply understanding a relaxed model (e.g., to write compilers and runtime sys-
tems) is difficult.
Performance: Relaxed memory models can offer better performance than TSO, but the dif-
ference is smaller for many core micro-architectures.
Portability: Porting while staying within “SC for DRF” is manageable. Pushing the limits
of relaxed models, especially those that are incomparable, is hard.
Precise: Many relaxed models are only informally defined. Moreover, formal definitions of
relaxed models tend to be obtuse.

 The bottom line is that … there is no simple bottom line.

5.9 HIgH-LEVEL LANguAgE MODELS
The previous two chapters and this chapter so far address memory consistency models at the inter-
face between hardware and low-level software, discussing (a) what software authors should expect
and (b) what hardware implementors may do.

It is also important to define memory models for high-level languages (HLLs), specifying
(a) what HLL software authors should expect and (b) what implementors of compilers, runtime

•

•

•

•

C++ Compiler

(b)

Low-Level Program Java Runtime

Java Compiler

C++ Program Java Program

(a)

Hardware

FIguRE 5.6: (a) High-Level Language (HLL) and (b) Hardware Memory Models.

RELAXED MEMORY CONSISTENCY 77

systems, and hardware may do. Figure 5.6 illustrates the difference between (a) high-level and
(b) low-level memory models.

Because many HLLs emerged in a largely single-threaded world, their specifications omitted
a memory model. (Do you remember one in Kernighan and Ritchie [19]?) Java was perhaps the first
mainstream language to have a memory model, but the first version had some issues [25].

Recently, however, memory models have been re-specified for Java [21] and specified for C++
[10]. Fortunately, the cornerstone of both models is a familiar one—SC for DRF [3]—provided
in part by Sarita Adve’s coauthorship of all three papers. To allow synchronization races but not
data races, programmers must tag variables as synchronization when it is possible they can race,
using keywords such as volatile and atomic, or create synchronization locks implicitly with Java’s
monitor-like synchronized methods. In all cases, implementations are free to reorder references as
long as data-race-free programs obey SC.

In particular, implementations can reorder or eliminate memory accesses between synchroni-
zation accesses. Table 5.15 illustrates an example. Table 5.15(a) presents the HLL code, and Table
5.15(b) and (c) show executions on core C1 both without register allocation and with variable A
allocated in register r1 so that load L3 is reordered and merged with load L1. This reordering is cor-
rect because, with “SC for DRF,” no other thread “can be looking.” In addition to register allocation,
many, if not most, compiler and runtime optimizations—such as constant propagation, common
subexpression elimination, loop fission/fusion, loop invariant code motion, software pipelining, and
instruction scheduling—can reorder memory accesses. Because “SC for DRF” allows these optimi-
zations, compilers and runtime systems can produce code with performance that is comparable to
single-threaded code.

What if an HLL program has data races by accident or on purpose? In this case, another
thread could observe a non-SC execution. For Table 5.15, core C2 (not shown) could update A
and C and have core C1 observe the update to C but not A, which has been register allocated. This
execution violates SC at the HLL level.

More generally, what are the limits on what threads can observe with data races? Java, in
particular, requires security guarantees for all programs. For this reason, Java specifies behavior in all
cases with the following goals:

allow almost all optimizations for high-performance DRF programs,
unambiguously, specify the allowed behavior of all programs, and
make this unambiguous specification simple.

In our judgment, the 2005 Java memory model made substantial progress, arguably suc-
ceeding on (1) and (2), but not (3). Fortunately, most programmers can use “SC for DRF” and not

1.
2.
3.

78 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

suffer the consequences of the “dark corners” of the Java memory model. Authors of compilers and
runtime software, however, must confront them at some level. Consider this “dark corner” that must
be understood: regardless of optimizations, a load to address A must always return a value stored to
address A at some time (perhaps at initialization) and not a value “out of thin air.” Unfortunately,
this is not the only example of complexity that must be confronted.

TABLE 5.15: Register Allocation Affects Memory Order.

87

DRF,” no other thread “can be looking.” In addition to register allocation, many, if not most, compiler and

runtime optimizations—such as constant propagation, common subexpression elimination, loop fis-

sion/fusion, loop invariant code motion, software pipelining, and instruction scheduling—can reorder

memory accesses. Because “SC for DRF” allows these optimizations, compilers and runtime systems can

produce code with performance that is comparable to single-threaded code.

What if an HLL program has data races by accident or on purpose? In this case, another thread could

observe a non-SC execution. For Table 5-15, core C2 (not shown) could update A and C and have core C1

observe the update to C but not A, which has been register allocated. This execution violates SC at the

HLL level.

TABLE 5-15. Register

Allocations Affects

Memory Order

Alternates for Core C1

(a) High-Level Language

B = 2*A;

D = C - A;

(b) Naive

L1: r1 = A;

X1: r2 = 2*rl;

S1: B = r2;

L2: r3 = C;

L3: r1 = A;

X2: r2 = r3 - r1;

S2: D = r2;

(c) Register Allocation

L1, L3: r1 = A;

X1: r2 = 2* ;

S1: B = r2;

L2: r3 = C;

/* L3: r1 = A; moved */

X2: r2 = r3 - r1;

S2: D = r2;

memory order (<m)

S1: B = r2

L2: r3 = C;

L3: r1 = A;

S2: D = r2;

L1: r1 = A

program order (<p)

S1: B = r2

L2: r3 = C;

L3: r1 = A;

S2: D = r2;

L1: r1 = A
rl

RELAXED MEMORY CONSISTENCY 79

Flashback to Quiz Question 5: A programmer who writes properly synchronized code relative
to the high-level language consistency model (e.g,. Java) does not need to consider the architec-
ture’s memory consistency model. True or false?
Answer: It depends. For typical application programmers, the answer is True, because their pro-
grams behave as expected (SC is expected). For the programmers of compilers and runtime
systems, the answer is False.

Thus, HLLs, such as Java and C++, adopt the relaxed memory model approach of “SC for DRF.”
When these HLLs run on hardware, should the hardware’s memory model also be relaxed? On one
hand, (a) relaxed hardware can give the most performance, and (b) compilers and runtime software
need only translate the HLL’s synchronizations operations into the particular hardware’s low-level
synchronization operations and FENCEs to provide the necessary ordering. On the other hand,
(a) SC and TSO can give good performance, and (b) compilers and runtime software can generate
more portable code without FENCEs from incomparable memory models. Although the debate is
not settled, it is clear that relaxed HLL models do not require relaxed hardware.

5.10 REFERENCES
[1] (Don’t) Do It Yourself: Weak Memory Models. http://diy.inria.fr/.
[2] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial. IEEE

Computer, 29(12):66–76, Dec. 1996. doi:10.1109/2.546611
[3] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proceedings of the 17th

Annual International Symposium on Computer Architecture, pp. 2–14, May 1990. doi:10.1109/
ISCA.1990.134502

[4] S. V. Adve and M. D. Hill. A Unified Formalization of Four Shared-Memory Models.
IEEE Transactions on Parallel and Distributed Systems, June 1993. doi:10.1109/71.242161

[5] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting Data Races on Weak
Memory Systems. In Proceedings of the 18th Annual International Symposium on Computer
Architecture, pp. 234–43, May 1991. doi:10.1145/115952.115976

[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models. In
Proceedings of the International Conference on Computer Aided Verification, July 2010. doi:
10.1007/978-3-642-14295-6_25

[7] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running Tests Against Hardware.
In Proceedings of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Mar. 2011. doi:10.1007/978-3-642-19835-9_5

http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1109/ISCA.1990.134502
http://dx.doi.org/10.1109/ISCA.1990.134502
http://dx.doi.org/10.1109/71.242161
http://dx.doi.org/10.1145/115952.115976
http://dx.doi.org/10.1007/978-3-642-14295-6_25
http://dx.doi.org/10.1007/978-3-642-14295-6_25
http://dx.doi.org/10.1007/978-3-642-19835-9_5

80 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

[8] ARM. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R Edition Errata
Markup. Downloaded January 13, 2011.

[9] ARM. ARM v7A+R Architectural Reference Manual. Available from ARM Ltd.
[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory Model. In

Proceedings of the Conference on Programming Language Design and Implementation, June
2008. doi:10.1145/1375581.1375591

[11] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-Based Approach. In Proceed-
ings of the 31st Annual International Symposium on Computer Architecture, June 2004. doi:
10.1109/ISCA.2004.1310766

[12] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of Sequential
Consistency. In Proceedings of the 34th Annual International Symposium on Computer Archi-
tecture, June 2007.

[13] M. Dubois, C. Scheurich, and F. A. Briggs. Memory Access Buffering in Multiproces-
sors. In Proceedings of the 13th Annual International Symposium on Computer Architecture,
pp. 434–42, June 1986.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory
Consistency and Event Ordering in Scalable Shared-Memory. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 15–26, May 1990.

[15] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proceedings of the 26th An-
nual International Symposium on Computer Architecture, pp. 162–71, May 1999.

[16] M. D. Hill. Multiprocessors Should Support Simple Memory Consistency Models. IEEE
Computer, 31(8):28–34, Aug. 1998. doi:10.1109/2.707614

[17] IBM. Power ISA Version 2.06 Revision B. http://www.power.org/resources/downloads/
PowerISA_V2.06B_V2_PUBLIC.pdf, July 2010.

[18] IBM Corporation. Book E: Enhanced PowerPC Architecture, version 0.91, July 21, 2001.
[19] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, second

edition, 1988.
[20] S. Mador-Haim, R. Alur, and M. M. K. Martin. Generating Litmus Tests for Contrasting

Memory Consistency Models. In Proceedings of the 22nd International Conference on Com-
puter Aided Verification, July 2010. doi:10.1007/978-3-642-14295-6_26

[21] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Proceedings of the
32nd Symposium on Principles of Programming Languages, Jan. 2005. doi:10.1145/1040305
.1040336

[22] P. E. McKenney. Is Parallel Programming Hard, And, If So, What Can You Do About It?. http://
kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.01.% 05a.pd, 2011.

[23] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency in Cache-

http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1109/ISCA.2004.1310766
http://dx.doi.org/10.1109/ISCA.2004.1310766
http://dx.doi.org/10.1109/2.707614
http://dx.doi.org/10.1007/978-3-642-14295-6_26
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/1040305.1040336

RELAXED MEMORY CONSISTENCY 81

Coherent Multithreaded Computer Architectures. In Proceedings of the International Confer-
ence on Dependable Systems and Networks, pp. 73–82, June 2006. doi:10.1109/DSN.2006.29

[24] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency in Cache-
Coherent Multithreaded Computer Architectures. IEEE Transactions on Dependable and
Secure Computing, 2009.

[25] W. Pugh. The Java Memory Model is Fatally Flawed. Concurrency: Practice and Experience,
12(1):1–11, 2000.

[26] R. L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, 1992.
[27] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual (Version 9). PTR Pren-

tice Hall, 1994.

• • • •

http://dx.doi.org/10.1109/DSN.2006.29

83

In this chapter, we return to the topic of cache coherence that we introduced in Chapter 2. We
defined coherence in Chapter 2, in order to understand coherence’s role in supporting consistency,
but we did not delve into how specific coherence protocols work or how they are implemented. This
chapter discusses coherence protocols in general, before we move on to specific classes of protocols
in the next two chapters. We start in Section 6.1 by presenting the big picture of how coherence
protocols work, and then show how to specify protocols in Section 6.2. We present one simple,
concrete example of a coherence protocol in Section 6.3 and explore the protocol design space in
Section 6.4.

6.1 THE BIg PICTuRE
The goal of a coherence protocol is to maintain coherence by enforcing the invariants introduced in
Section 2.3 and restated here:

Single-Writer, Multiple-Read (SWMR) Invariant. For any memory location A, at any given
(logical) time, there exists only a single core that may write to A (and can also read it) or
some number of cores that may only read A.
Data-Value Invariant. The value of the memory location at the start of an epoch is the same
as the value of the memory location at the end of its last read-write epoch.

To implement these invariants, we associate with each storage structure—each cache and the
LLC/memory—a finite state machine called a coherence controller. The collection of these coherence
controllers constitutes a distributed system in which the controllers exchange messages with each
other to ensure that, for each block, the SWMR and data value invariants are maintained at all times.
The interactions between these finite state machines are specified by the coherence protocol.

Coherence controllers have several responsibilities. The coherence controller at a cache,
which we refer to as a cache controller, is illustrated in Figure 6.1. The cache controller must service
requests from two sources. On the “core side,” the cache controller interfaces to the processor core.

1.

2.

C H A P T E R 6

Coherence Protocols

84 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The controller accepts loads and stores from the core and returns load values to the core. A cache
miss causes the controller to initiate a coherence transaction by issuing a coherence request (e.g.,
request for read-only permission) for the block containing the location accessed by the core. This
coherence request is sent across the interconnection network to one or more coherence controllers.
A transaction consists of a request and the other message(s) that are exchanged in order to satisfy
the request (e.g., a data response message sent from another coherence controller to the requestor).
The types of transactions and the messages that are sent as part of each transaction depend on the
specific coherence protocol.

On the cache controller’s “network side,” the cache controller interfaces to the rest of the
system via the interconnection network. The controller receives coherence requests and coherence
responses that it must process. As with the core side, the processing of incoming coherence mes-
sages depends on the specific coherence protocol.

The coherence controller at the LLC/memory, which we refer to as a memory controller, is
illustrated in Figure 6.2. A memory controller is similar to a cache controller, except that it usually
has only a network side. As such, it does not issue coherence requests (on behalf of loads or stores)
or receive coherence responses. Other agents, such as I/O devices, may behave like cache controllers,
memory controllers, or both depending upon their specific requirements.

Each coherence controller implements a set of finite state machines—logically one indepen-
dent, but identical finite state machine per block—and receives and processes events (e.g., incoming
coherence messages) depending upon the block’s state. For an event of type E (e.g., a store request

LLC/memory
controller

memory

issued
coherence
responses

received
coherence
requests

Network
Side

interconnection network

FIguRE 6.2: Memory controller.

cache
controller

cache

loads &
stores

loaded
values

issued
coherence
requests &
responses

received
coherence
requests &
responses

Core
Side

Network
Side

core

interconnection network

FIguRE 6.1: Cache controller.

COHERENCE PROTOCOLS 85

from the core to the cache controller) to block B, the coherence controller takes actions (e.g., issues
a coherence request for read-write permission) that are a function of E and of B’s state (e.g., read-
only). After taking these actions, the controller may change the state of B.

6.2 SPECIFYINg COHERENCE PROTOCOLS
We specify a coherence protocol by specifying the coherence controllers. We could specify coher-
ence controllers in any number of ways, but the particular behavior of a coherence controller lends
itself to a tabular specification [9]. As shown in Table 6.1, we can specify a controller as a table in
which rows correspond to block states and columns correspond to events. We refer to a state/event
entry in the table as a transition, and a transition for event E pertaining to block B consists of (a) the
actions taken when E occurs and (b) the next state of block B. We express transitions in the format
“action/next state” and we may omit the “next state” portion if the next state is the current state. As
an example of a transition in Table 6.1, if a store request for block B is received from the core and
block B is in a read-only state (RO), then the table shows that the controller’s transition will be to
perform the action “issue coherence request for read-write permission [to block B]” and change the
state of block B to RW.

The example in Table 6.1 is intentionally incomplete, for simplicity, but it illustrates the
capability of a tabular specification methodology to capture the behavior of a coherence controller.
To specify a coherence protocol, we simply need to completely specify the tables for the cache
controllers and the memory controllers.

TABLE 6.1: Tabular Specification Methodology. This is an Incomplete Specification of
a Cache Coherence Controller. Each Entry in the Table Specifies the Actions Taken and the

Next State of the Block.

94

read-write permission) that are a function of E and of B’s state (e.g., read-only). After taking these actions,

the controller may change the state of B.

6.2 Specifying Coherence Protocols

We specify a coherence protocol by specifying the coherence controllers. We could specify coherence

controllers in any number of ways, but the particular behavior of a coherence controller lends itself to a

tabular specification [9]. As shown in Table 6-1, we can specify a controller as a table in which rows corre-

spond to block states and columns correspond to events. We refer to a state/event entry in the table as a

transition, and a transition for event E pertaining to block B consists of (a) the actions taken when E occurs

and (b) the next state of block B. We express transitions in the format “action/next state” and we may omit

the “next state” portion if the next state is the current state. As an example of a transition in Table 6-1, if a

store request for block B is received from the core and block B is in a read-only state (RO), then the table

shows that the controller’s transition will be to perform the action “issue coherence request for read-write

permission [to block B]” and change the state of block B to RW.

The example in Table 6-1 is intentionally incomplete, for simplicity, but it illustrates the capability of a

tabular specification methodology to capture the behavior of a coherence controller. To specify a coherence

protocol, we simply need to completely specify the tables for the coherence controllers and the memory

controllers.

The differences between coherence protocols lie in the differences in the controller specifications.

These differences include different sets of block states, transactions, events, and transitions. In Section 6.4,

we describe the coherence protocol design space by exploring the options for each of these aspects, but we

first specify one simple, concrete protocol.

TABLE 6-1. Tabular specification methodology. This is an incomplete specification of

a cache coherence controller. Each entry in the table specifies the actions taken and the

next state of the block.

Events

load request from core store request from core

incoming coherence request to

obtain block in read-write state

 S
t
a
t
e
s

not readable or

writeable (N)

issue coherence request for

read-only permission/RO

issue coherence request for

read-write permission/RW

<no action>

read-only (RO) give data from cache to

core

issue coherence request for

read-write permission/RW

<no action>/N

read-write

(RW)

give data from cache to

core/RO

write data to cache send block to requestor/N

86 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The differences between coherence protocols lie in the differences in the controller specifica-
tions. These differences include different sets of block states, transactions, events, and transitions.
In Section 6.4, we describe the coherence protocol design space by exploring the options for each of
these aspects, but we first specify one simple, concrete protocol.

6.3 EXAMPLE OF A SIMPLE COHERENCE PROTOCOL
To help understand coherence protocols, we now present a simple protocol. Our system model is the
baseline system model from Section 2.1, but with the interconnection network restricted to being
a shared bus: a shared set of wires on which a core can issue a message and have it observed by all
cores and the LLC/memory.

Each cache block can be in one of two stable coherence states: I(nvalid) and V(alid). Each
block at the LLC/memory can also be in one of two coherence states: I and V. At the LLC/memory,
the state I denotes that all caches hold the block in state I, and the state V denotes that one cache
holds the block in state V. There is also a single transient state for cache blocks, IVD, discussed be-
low. At system startup, all cache blocks and LLC/memory blocks are in state I. Each core can issue
load and store requests to its cache controller; the cache controller will implicitly generate an Evict
Block event when it needs to make room for another block. Loads and stores that miss in the cache
initiate coherence transactions, as described below, to obtain a valid copy of the cache block. Like
all the protocols in this primer, we assume a writeback cache; that is, when a store hits, it writes the
store value only to the (local) cache and waits to write the entire block back to the LLC/memory in
response to an Evict Block event.

There are two types of coherence transactions implemented using three types of bus mes-
sages: Get requests a block, DataResp transfers the block’s data, and Put writes the block back to
the memory controller. On a load or store miss, the cache controller initiates a Get transaction by
sending a Get message and waiting for the corresponding DataResp message. The Get transaction
is atomic in that no other transaction (either Get or Put) may use the bus between when the cache
sends the Get and when the DataResp for that Get appears on the bus. On an Evict Block event,
the cache controller sends a Put message, with the entire cache block, to the memory controller.

We illustrate the transitions between the stable coherence states in Figure 6.3. We use the
prefaces “Own” and “Other” to distinguish messages for transactions initiated by the given cache con-
troller versus those initiated by other cache controllers. Note that if the given cache controller has the
block in state V and another cache requests it with a Get message (denoted Other-Get), the owning
cache must respond with a block (using a DataResp message, not shown) and transition to state I.

Table 6.2 and Table 6.3 specify the protocol in more detail. Shaded entries in the table denote
impossible transitions. For example, a cache controller should never see its own Put request on the
bus for a block that is in state V in its cache (as it should have already transitioned to state I).

COHERENCE PROTOCOLS 87

V

I

Own-Get+DataRespOwn-Put or Other-Get

FIguRE 6.3: Transitions between stable states of blocks at cache controller.

TABLE 6.2: Cache Controller Specification. Shaded Entries are Impossible and Blank
Entries Denote Events That are Ignored.

97

6.4.1 States

In a system with only one actor (e.g., a single core processor without coherent DMA), the state of a

cache block is either valid or invalid. There might be two possible valid states for a cache block if there is

a need to distinguish blocks that are dirty. A dirty block has a value that has been written more recently

than other copies of this block. For example, in a two-level cache hierarchy with a write-back L1 cache, the

block in the L1 may be dirty with respect to the stale copy in the L2 cache.

A system with multiple actors can also use just these two or three states, as in Section 6.3, but we often

want to distinguish between different kinds of valid states. There are four characteristics of a cache block

that we wish to encode in its state: validity, dirtiness, exclusivity, and ownership [10]. The latter two char-

acteristics are unique to systems with multiple actors.

TABLE 6-2. Cache controller specification. Shaded entries are impossible and blank

entries denote events that are ignored.

S
t
a
t
e
s

Core Events

Bus Events

Messages for Own Transactions

Messages for Other Cores’

Transactions

 Load or

Store Evict Block

Own-

Get

DataResp for

Own-Get

Own-

Put

Other-

Get

DataResp for

Other-Get

Other-

Put

I issue Get

/IV
D

IV
D stall Load or

Store

stall Evict copy data into

cache,

perform Load

or Store

/V

V perform Load

or Store

Issue Put

(with data)

/I

Send

DataResp

/I

TABLE 6-3. Memory controller specification

Bus Events

State Get Put

I send data block in DataResp

message to requestor/V

V Update data block in memory/I

The transient state IVD corresponds to a block in state I that is waiting for data (via a
DataResp message) before transitioning to state V. Transient states arise when transitions between
stable states are not atomic. In this simple protocol, individual message sends and receives are
atomic, but fetching a block from the memory controller requires sending a Get message and receiv-
ing a DataResp message, with an indeterminate gap in between. The IVD state indicates that the
protocol is waiting for a DataResp. We discuss transient states in more depth in Section 6.4.1.

This coherence protocol is simplistic and inefficient in many ways, but the goal in presenting
this protocol is to gain an understanding of how protocols are specified. We use this specification
methodology throughout this book when presenting different types of coherence protocols.

88 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

6.4 OVERVIEW OF COHERENCE PROTOCOL DESIgN SPACE
As mentioned in Section 6.1, a designer of a coherence protocol must choose the states, transac-
tions, events, and transitions for each type of coherence controller in the system. The choice of
stable states is largely independent of the rest of the coherence protocol. For example, there are two
different classes of coherence protocols called snooping and directory, and an architect can design
a snooping protocol or a directory protocol with the same set of stable states. We discuss stable
states, independent of protocols, in Section 6.4.1. Similarly, the choice of transactions is also largely
independent of the specific protocol, and we discuss transactions in Section 6.4.2. However, unlike
the choices of stable states and transactions, the events, transitions and specific transient states are
highly dependent on the coherence protocol and cannot be discussed in isolation. Thus, in Sec-
tion 6.4.3, we discuss a few of the major design decisions in coherence protocols.

6.4.1 States
In a system with only one actor (e.g., a single core processor without coherent DMA), the state of
a cache block is either valid or invalid. There might be two possible valid states for a cache block
if there is a need to distinguish blocks that are dirty. A dirty block has a value that has been writ-
ten more recently than other copies of this block. For example, in a two-level cache hierarchy with
a write-back L1 cache, the block in the L1 may be dirty with respect to the stale copy in the L2
cache.

A system with multiple actors can also use just these two or three states, as in Section 6.3, but
we often want to distinguish between different kinds of valid states. There are four characteristics of
a cache block that we wish to encode in its state: validity, dirtiness, exclusivity, and ownership [10].
The latter two characteristics are unique to systems with multiple actors.

Validity: A valid block has the most up-to-date value for this block. The block may be read,
but it may only be written if it is also exclusive.

•

TABLE 6.3: Memory Controller Specification

97

6.4.1 States

In a system with only one actor (e.g., a single core processor without coherent DMA), the state of a

cache block is either valid or invalid. There might be two possible valid states for a cache block if there is

a need to distinguish blocks that are dirty. A dirty block has a value that has been written more recently

than other copies of this block. For example, in a two-level cache hierarchy with a write-back L1 cache, the

block in the L1 may be dirty with respect to the stale copy in the L2 cache.

A system with multiple actors can also use just these two or three states, as in Section 6.3, but we often

want to distinguish between different kinds of valid states. There are four characteristics of a cache block

that we wish to encode in its state: validity, dirtiness, exclusivity, and ownership [10]. The latter two char-

acteristics are unique to systems with multiple actors.

TABLE 6-2. Cache controller specification. Shaded entries are impossible and blank

entries denote events that are ignored.

S
t
a
t
e
s

Core Events

Bus Events

Messages for Own Transactions

Messages for Other Cores’

Transactions

 Load or

Store Evict Block

Own-

Get

DataResp for

Own-Get

Own-

Put

Other-

Get

DataResp for

Other-Get

Other-

Put

I issue Get

/IV
D

IV
D stall Load or

Store

stall Evict copy data into

cache,

perform Load

or Store

/V

V perform Load

or Store

Issue Put

(with data)

/I

Send

DataResp

/I

TABLE 6-3. Memory controller specification

Bus Events

State Get Put

I send data block in DataResp

message to requestor/V

V Update data block in memory/I

COHERENCE PROTOCOLS 89

Dirtiness: As in a single core processor, a cache block is dirty if its value is the most up-to-
date value, this value differs from the value in the LLC/memory, and the cache controller is
responsible for eventually updating the LLC/memory with this new value. The term clean
is often used as the opposite of dirty.
Exclusivity: A cache block is exclusive1 if it is the only privately cached copy of that block in
the system (i.e., the block is not cached anywhere else except perhaps in the shared LLC).
Ownership: A cache controller (or memory controller) is the owner of a block if it is re-
sponsible for responding to coherence requests for that block. In most protocols, there is
exactly one owner of a given block at all times. A block that is owned may not be evicted
from a cache to make room for another block—due to a capacity or conflict miss—without
giving the ownership of the block to another coherence controller. Non-owned blocks may
be evicted silently (i.e., without sending any messages) in some protocols.

In this section, we first discuss some commonly used stable states—states of blocks that are
not currently in the midst of a coherence transaction—and then discuss the use of transient states for
describing blocks that are currently in the midst of transactions.

6.4.1.1 Stable States
Many coherence protocols use a subset of the classic five state MOESI model first introduced by
Sweazey and Smith [10]. These MOESI (often pronounced either “MO-sey” or “mo-EE-see”)
states refer to the states of blocks in a cache, and the most fundamental three states are MSI; the O
and E states may be used, but they are not as basic. Each of these states has a different combination
of the characteristics described above.

M(odified): The block is valid, exclusive, owned, and potentially dirty. The block may be
read or written. The cache has the only valid copy of the block, the cache must respond to
requests for the block, and the copy of the block at the LLC/memory is potentially stale.
S(hared): The block is valid but not exclusive, not dirty, and not owned. The cache has a
read-only copy of the block. Other caches may have valid, read-only copies of the block.
I(nvalid): The block is invalid. The cache either does not contain the block or it contains
a potentially stale copy that it may not read or write. In this primer, we do not distinguish
between these two situations, although sometimes the former situation may be denoted as
the “Not Present” state.

1 The terminology here can be confusing, because there is a cache coherence state that is called “Exclusive,” but there
are other cache coherence states that are exclusive in the sense defined here.

•

•

•

•

•

•

90 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The most basic protocols use only the MSI states, but there are reasons to add the O and E
states to optimize certain situations. We will discuss these optimizations in later chapters when we
discuss snooping and directory protocols with and without these states. For now, here is the com-
plete list of MOESI states:

M(odified)
O(wned): The block is valid, owned, and potentially dirty, but not exclusive. The cache has
a read-only copy of the block and must respond to requests for the block. Other caches may
have a read-only copy of the block, but they are not owners. The copy of the block in the
LLC/memory is potentially stale.
E(xclusive): The block is valid, exclusive, and clean. The cache has a read-only copy of the
block. No other caches have a valid copy of the block, and the copy of the block in the
LLC/memory is up-to-date. In this primer, we consider the block to be owned when it is in
the Exclusive state, although there are protocols in which the Exclusive state is not treated
as an ownership state. When we present MESI snooping and directory protocols in later
chapters, we discuss the issues involved with making Exclusive blocks owners or not.
S(hared)
I(nvalid)

We illustrate a Venn diagram of the MOESI states in Figure 6.4. The Venn diagram shows
which states share which characteristics. All states besides I are valid. M, O, and E are ownership
states. Both M and E denote exclusivity, in that no other caches have a valid copy of the block. Both

•
•

•

•
•

InvalidShared

validity

ownership (note: the
Exclusive state is not
always considered an
ownership state)

exclusivity

Owned

Modified

Exclusive dirtiness

FIguRE 6.4: MOESI states.

COHERENCE PROTOCOLS 91

M and O indicate that the block is potentially dirty. Returning to the simplistic example in Sec-
tion 6.3, we observe that the protocol effectively condensed the MOES states into the V state.

The MOESI states, although quite common, are not an exhaustive set of stable states. For
example, the F(orward) state is similar to the O state except that it is clean (i.e., the copy in the
LLC/memory is up-to-date). There are many possible coherence states, but we focus our attention
in this primer on the well-known MOESI states.

6.4.1.2 Transient States
Thus far we have discussed only the stable states that occur when there is no current coherence
activity for the block, and it is only these stable states that are used when referring to a protocol (e.g.,
“a system with a MESI protocol”). However, as we saw even in the example in Section 6.3, there
may exist transient states that occur during the transition from one stable state to another stable
state. In Section 6.3, we had the transient state IVD (in I, going to V, waiting for DataResp). In
more sophisticated protocols, we are likely to encounter dozens of transient states. We encode these
states using a notation XYZ, which denotes that the block is transitioning from stable state X to
stable state Y, and the transition will not complete until an event of type Z occurs. For example, in
a protocol in a later chapter, we use IMD to denote that a block was previously in I and will become
M once a D(ata) message arrives for that block.

6.4.1.3 States of Blocks in the LLC/Memory
The states that we have discussed thus far—both stable and transient—pertain to blocks residing
in caches. Blocks in the LLC and memory also have states associated with them, and there are two
general approaches to naming states of blocks in the LLC and memory. The choice of naming
convention does not affect functionality or performance; it is simply a specification issue that can
confuse an architect unfamiliar with the convention.

Cache-centric: In this approach, which we believe to be the most common, the state of a
block in the LLC and memory is an aggregation of the states of this block in the caches.
For example, if a block is in all caches in I, then the LLC/memory state for this block is I.
If a block is in one or more caches in S, then the LLC/memory state is S. If a block is in a
single cache in M, then the LLC/memory state is M.
Memory-centric: In this approach, the state of a block in the LLC/memory corresponds to
the memory controller’s permissions to this block (rather than the permissions of the caches).
For example, if a block is in all caches in I, then the LLC/memory state for this block is O
(not I, as in the cache-centric approach), because the LLC/memory behaves like an owner

•

•

92 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

of the block. If a block is in one or more caches in S, then the LLC/memory state is also O,
for the same reason. However, if the block is in a single cache in M or O, then the LLC/
memory state is I, because the LLC/memory has an invalid copy of the block.

All protocols in this primer use cache-centric names for the states of blocks in the LLC and
memory.

6.4.1.4 Maintaining Block State
The system implementation must maintain the states associated with blocks in caches, the LLC,
and memory. For caches and the LLC, this generally requires extending the per-block cache
state by at most a few bits, since the number of stable states is generally small (e.g., 5 states for a
MOESI protocol requires 3 bits per block). Coherence protocols may have many more transient
states, but need maintain these states only for those blocks that have pending coherence transac-
tions. Implementations typically maintain these transient states by adding additional bits to the
miss status handling registers (MSHRs) or similar structures that are used to track these pending
transactions [4].

For memory, it might appear that the much greater aggregate capacity would pose a signifi-
cant challenge. However, many current multicore systems maintain an inclusive LLC, which means
that the LLC maintains a copy of every block that is cached anywhere in the system (even “exclu-
sive” blocks). With an inclusive LLC, memory does not need to explicitly represent the coherence
state. If a block resides in the LLC, its state in memory is the same as its state in the LLC. If the
block is not in the LLC, its state in memory is implicitly Invalid, because absence from an inclusive
LLC implies that the block is not in any cache. The sidebar discusses how memory state was main-
tained in the days before multicores with inclusive LLCs. The above discussion of memory assumes
a system with a single multicore chip, as does most of this primer. Systems with multiple multicore
chips may benefit from explicit coherence state logically at memory.

6.4.2 Transactions
Most protocols have a similar set of transactions, because the basic goals of the coherence controllers
are similar. For example, virtually all protocols have a transaction for obtaining Shared (read-only)
access to a block. In Table 6.4 we list a set of common transactions and, for each transaction, we
describe the goal of the requestor that initiates the transaction. These transactions are all initiated
by cache controllers that are responding to requests from their associated cores. In Table 6.5, we list
the requests that a core can make to its cache controller and how these core requests can lead the
cache controller into initiating coherence transactions.

COHERENCE PROTOCOLS 93

Sidebar: Before Multicores: Maintaining Coherence State at Memory
Traditional, pre-multicore snooping protocols needed to maintain coherence state for each

block of memory, and they could not use the LLC as explained in Section 6.4.1.4. We briefly
discuss several ways of maintaining this state and the associated engineering tradeoffs.

Augment Each Block of Memory with State Bits. The most general implementation is
to add extra bits to each block of memory to maintain the coherence state. If there are N possible
states at memory, then each block needs log2N extra bits. Although, this design is fully general
and conceptually straightforward, it has several drawbacks. First, the extra bits may increase cost
in two ways. Adding two or three extra bits is difficult with modern block-oriented DRAM
chips, which are typically at least 4-bits wide and frequently much wider. Plus any change in the
memory precludes using commodity DRAM modules (e.g., DIMMs), which significantly in-
creases cost. Fortunately, for protocols that require only a few bits of state per block it is possible
to store these using a modified ECC code. By maintaining ECC on a larger granularity (e.g.,
512 bits rather than 64 bits), it is possible to free up enough code space to “hide” a handful of
extra bits while using commodity DRAM modules [5, 7, 1]. The second drawback is that storing
the state bits in DRAM means that obtaining the state incurs the full DRAM latency, even in
the case that the most recent version of the block is stored in some other cache. In some cases,
this may increase the latency of cache-to-cache coherence transfers. Finally, storing the state
in DRAM means that all state changes require a DRAM read-modify-write cycle, which may
impact both power and DRAM bandwidth.

Add Single State Bit per Block at Memory. A design option used by the Synapse [3] was
to distinguish the two stable states (I and V) using a single bit that is associated with every block
of memory. Few blocks are ever in transient states, and those states can be maintained with a
small dedicated structure. This design is a subset of the more complete first design, with minimal
storage cost.

Zero-bit logical OR. To avoid having to modify memory, we can have the caches recon-
struct the memory state on-demand. The memory state of a block is a function of the block’s
state in every cache, so, if all of the caches aggregate their state, they can determine the memory
state. The system can infer whether the memory is the owner of a block by having all of the cores
send an “IsOwned?1” signal to a logical OR gate (or tree of OR gates) with a number of inputs
equal to the number of caches. If the output of this OR is high, it denotes that a cache is owner;
if the output is low, then memory is the owner. This solution avoids the need for any state to be
maintained in memory. However, implementing a fast OR, either with logic gates or a wired-
OR, can be difficult.

1 This IsOwned signal is not to be confused with the Owned cache state. The IsOwned signal is asserted by a
cache in a state of ownership, which includes the Owned, Modified, and Exclusive cache states.

94 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Although most protocols use a similar set of transactions, they differ quite a bit in how the
coherence controllers interact to perform the transactions. As we will see in the next section, in
some protocols (e.g., snooping protocols) a cache controller initiates a GetS transaction by broad-
casting a GetS request to all coherence controllers in the system, and whichever controller is cur-
rently the owner of the block responds to the requestor with a message that contains the desired
data. Conversely, in other protocols (e.g., directory protocols) a cache controller initiates a GetS
transaction by sending a unicast GetS message to a specific, pre-defined coherence controller that
may either respond directly or may forward the request to another coherence controller that will
respond to the requestor.

TABLE 6.4: Common Transactions.

103

are responding to requests from their associated cores. In Table 6-5, we list the requests that a core can

make to its cache controller and how these core requests can lead the cache controller into initiating coher-

ence transactions.

Although most protocols use a similar set of transactions, they differ quite a bit in how the coherence

controllers interact to perform the transactions. As we will see in the next section, in some protocols (e.g.,

snooping protocols) a cache controller initiates a GetS transaction by broadcasting a GetS request to all

coherence controllers in the system, and whichever controller is currently the owner of the block responds

to the requestor with a message that contains the desired data. Conversely, in other protocols (e.g., direc-

tory protocols) a cache controller initiates a GetS transaction by sending a unicast GetS message to a spe-

cific, pre-defined coherence controller that may either respond directly or may forward the request to

another coherence controller that will respond to the requestor.

6.4.3 Major Protocol Design Options

There are many different ways to design a coherence protocol. Even for the same set of states and

transactions, there are many different possible protocols. The design of the protocol determines what

events and transitions are possible at each coherence controller; unlike with states and transactions, there is

no way to present a list of possible events or transitions that is independent from the protocol.

Despite the enormous design space for coherence protocols, there are two primary design decisions

that have a major impact on the rest of the protocol, and we discuss them next.

TABLE 6-4. Common Transactions

Transaction Goal of Requestor

GetShared (GetS) obtain block in Shared (read-only) state

GetModified (GetM) obtain block in Modified (read-write) state

Upgrade (Upg) upgrade block state from read-only (Shared or Owned) to read-write (Modified);

Upg (unlike GetM) does not require data to be sent to requestor

PutShared (PutS) evict block in Shared state
a

a. Some protocols do not require a coherence transaction to evict a Shared block and/or an Exclusive block (i.e., the

PutS and/or PutE are “silent”).

PutExclusive (PutE) evict block in Exclusive state
a

PutOwned (PutO) evict block in Owned state

PutModified (PutM) evict block in Modified state

TABLE 6.5: Common Core Requests to Cache Controller.

104

6.4.3.5 Snooping vs. Directory

There are two main classes of coherence protocols, snooping and directory. We present a brief over-

view of these protocols now and defer in-depth coverage of them until Chapter 7 and Chapter 8, respec-

tively.

• Snooping protocol: A cache controller initiates a request for a block by broadcasting a request mes-

sage to all other coherence controllers. The coherence controllers collectively “do the right thing,” e.g.,

sending data in response to another core’s request if they are the owner. Snooping protocols rely on the

interconnection network to deliver the broadcast messages in a consistent order to all cores. Most

snooping protocols assume that requests arrive in a total order, e.g., via a shared-wire bus, but more

advanced interconnection networks and relaxed orders are possible.

• Directory protocol: A cache controller initiates a request for a block by unicasting it to the memory

controller that is the home for that block. Each memory controller maintains a directory that holds state

about each block in the LLC/memory, such as the identity of the current owner or the identities of cur-

rent sharers. When a request for a block reaches the home, the memory controller looks up this block’s

directory state. For example, if the request is a GetS, the memory controller looks up the directory state

to determine the owner. If the LLC/memory is the owner, the memory controller completes the transac-

tion by sending a data response to the requestor. If a cache controller is the owner, the memory control-

ler forwards the request to the owner cache; when the owner cache receives the forwarded request, it

completes the transaction by sending a data response to the requestor.

The choice of snooping versus directory involves making tradeoffs. Snooping protocols are logically

simple, but they do not scale to large numbers of cores because broadcasting does not scale. Directory pro-

tocols are scalable because they unicast, but many transactions take more time because they require an

TABLE 6-5. Common Core Requests to Cache Controller

Event Response of (Typical) Cache Controller

load if cache hit, respond with data from cache; else initiate GetS transaction

store if cache hit in state E or M, write data into cache; else initiate GetM or Upg transaction

atomic read-modify-

write

if cache hit in state E or M, atomically execute read-modify-write semantics; else initiate GetM

or Upg transaction

instruction fetch if cache hit (in I-cache), respond with instruction from cache; else initiate GetS transaction

read-only prefetch if cache hit, ignore; else may optionally initiate GetS transaction
a

a. A cache controller may choose to ignore a prefetch request from the core.

read-write prefetch if cache hit in state M, ignore; else may optionally initiate GetM or Upg transaction

replacement depending on state of block, initiate PutS, PutE, PutO, or PutM transaction

COHERENCE PROTOCOLS 95

6.4.3 Major Protocol Design Options
There are many different ways to design a coherence protocol. Even for the same set of states and
transactions, there are many different possible protocols. The design of the protocol determines
what events and transitions are possible at each coherence controller; unlike with states and transac-
tions, there is no way to present a list of possible events or transitions that is independent from the
protocol.

Despite the enormous design space for coherence protocols, there are two primary design
decisions that have a major impact on the rest of the protocol, and we discuss them next.

6.4.3.1 Snooping vs. Directory
There are two main classes of coherence protocols: snooping and directory. We present a brief over-
view of these protocols now and defer in-depth coverage of them until Chapter 7 and Chapter 8,
respectively.

Snooping protocol: A cache controller initiates a request for a block by broadcasting a
request message to all other coherence controllers. The coherence controllers collectively
“do the right thing,” e.g., sending data in response to another core’s request if they are the
owner. Snooping protocols rely on the interconnection network to deliver the broadcast
messages in a consistent order to all cores. Most snooping protocols assume that requests
arrive in a total order, e.g., via a shared-wire bus, but more advanced interconnection net-
works and relaxed orders are possible.
Directory protocol: A cache controller initiates a request for a block by unicasting it to
the memory controller that is the home for that block. Each memory controller maintains
a directory that holds state about each block in the LLC/memory, such as the identity of
the current owner or the identities of current sharers. When a request for a block reaches
the home, the memory controller looks up this block’s directory state. For example, if the
request is a GetS, the memory controller looks up the directory state to determine the
owner. If the LLC/memory is the owner, the memory controller completes the transac-
tion by sending a data response to the requestor. If a cache controller is the owner, the
memory controller forwards the request to the owner cache; when the owner cache re-
ceives the forwarded request, it completes the transaction by sending a data response to the
requestor.

The choice of snooping versus directory involves making tradeoffs. Snooping protocols are
logically simple, but they do not scale to large numbers of cores because broadcasting does not scale.

•

•

96 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Directory protocols are scalable because they unicast, but many transactions take more time because
they require an extra message to be sent when the home is not the owner. In addition, the choice of
protocol affects the interconnection network (e.g., classical snooping protocols require a total order
for request messages).

6.4.3.2 Invalidate vs. update
The other major design decision in a coherence protocol is to decide what to do when a core writes
to a block. This decision is independent of whether the protocol is snooping or directory. There are
two options:

Invalidate protocol: When a core wishes to write to a block, it initiates a coherence trans-
action to invalidate the copies in all other caches. Once the copies are invalidated, the
requestor can write to the block without the possibility of another core reading the block’s
old value. If another core wishes to read the block after its copy has been invalidated, it has
to initiate a new coherence transaction to obtain the block, and it will obtain a copy from
the core that wrote it, thus preserving coherence.
Update protocol: When a core wishes to write a block, it initiates a coherence transaction to
update the copies in all other caches to reflect the new value it wrote to the block.

Once again, there are tradeoffs involved in making this decision. Update protocols reduce the
latency for a core to read a newly written block because the core does not need to initiate and wait
for a GetS transaction to complete. However, update protocols typically consume substantially more
bandwidth than invalidate protocols because update messages are larger than invalidate messages
(an address and a new value, rather than just an address). Furthermore, update protocols greatly
complicate the implementation of many memory consistency models. For example, preserving write
atomicity (Section 5.5) becomes much more difficult when multiple caches must apply multiple
updates to multiple copies of a block. Because of the complexity of update protocols, they are rarely
implemented; in this primer, we focus on the far more common invalidate protocols.

6.4.3.3 Hybrid Designs
For both major design decisions, one option is to develop a hybrid. There are protocols that combine
aspects of snooping and directory protocols [6, 2], and there are protocols that combine aspects of
invalidate and update protocols [8]. The design space is rich and architects are not constrained to
following any particular style of design.

•

•

COHERENCE PROTOCOLS 97

6.5 REFERENCES
[1] A. Charlesworth. The Sun Fireplane SMP Interconnect in the Sun 6800. In Proceedings of

9th Hot Interconnects Symposium, Aug. 2001. doi:10.1109/HIS.2001.946691
[2] P. Conway and B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro,

27(2):10–21, March/April 2007. doi:10.1109/MM.2007.43
[3] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-access Times. Elec-

tronics, 57(1):164–169, Jan. 1984.
[4] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In Proceedings of the

8th Annual Symposium on Computer Architecture, May 1981.
[5] H. Q. Le et al. IBM POWER6 Microarchitecture. IBM Journal of Research and Develop-

ment, 51(6), 2007. doi:10.1147/rd.516.0639
[6] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth Adaptive Snoop-

ing. In Proceedings of the Eighth IEEE Symposium on High-Performance Computer Architec-
ture, pp. 251–262, Jan. 2002. doi:10.1109/HPCA.2002.995715

[7] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, and M. Parkin. The S3.mp Scalable Shared
Memory Multiprocessor. In Proceedings of the International Conference on Parallel Processing,
volume I, pp. 1–10, Aug. 1995.

[8] A. Raynaud, Z. Zhang, and J. Torrellas. Distance-Adaptive Update Protocols for Scalable
Shared-Memory Multiprocesors. In Proceedings of the Second IEEE Symposium on High-
Performance Computer Architecture, Feb. 1996. doi:10.1109/HPCA.1996.501197

[9] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. Martin, and D. A. Wood. Spec-
ifying and Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol.
IEEE Transactions on Parallel and Distributed Systems, 13(6):556–578, June 2002. doi:
10.1109/TPDS.2002.1011412

[10] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and their
Support by the IEEE Futurebus. In Proceedings of the 13th Annual International Symposium
on Computer Architecture, pp. 414–423, June 1986.

• • • •

http://dx.doi.org/10.1109/HIS.2001.946691
http://dx.doi.org/10.1109/MM.2007.43
http://dx.doi.org/10.1147/rd.516.0639
http://dx.doi.org/10.1109/HPCA.2002.995715
http://dx.doi.org/10.1109/HPCA.1996.501197
http://dx.doi.org/10.1109/TPDS.2002.1011412
http://dx.doi.org/10.1109/TPDS.2002.1011412

99

In this chapter, we present snooping coherence protocols. Snooping protocols were the first widely-
deployed class of protocols and they continue to be used in a variety of systems. Snooping protocols
offer many attractive features, including low-latency coherence transactions and a conceptually sim-
pler design than the alternative, directory protocols (Chapter 8).

We first introduce snooping protocols at a high level (Section 7.1). We then present a simple
system with a complete but unsophisticated three-state (MSI) snooping protocol (Section 7.2).
This system and protocol serve as a baseline upon which we later add system features and protocol
optimizations. The protocol optimizations that we discuss include the additions of the Exclusive
state (Section 7.3) and the Owned state (Section 7.4), as well as higher performance interconnec-
tion networks (Sections 7.5 and 7.6). We then discuss commercial systems with snooping protocols
(Section 7.7) before concluding the chapter with a discussion of snooping and its future (Sec-
tion 7.8).

Given that some readers may not wish to delve too deeply into snooping, we have organized
the chapter such that readers may skim or skip Sections 7.3 through 7.6, if they so choose.

7.1 INTRODuCTION TO SNOOPINg
Snooping protocols are based on one idea: all coherence controllers observe (snoop) coherence re-
quests in the same order and collectively “do the right thing” to maintain coherence. By requiring
that all requests to a given block arrive in order, a snooping system enables the distributed coherence
controllers to correctly update the finite state machines that collectively represent a cache block’s
state.

Traditional snooping protocols broadcast requests to all coherence controllers, including the
controller that initiated the request. The coherence requests typically travel on an ordered broadcast
network, such as a bus. The ordered broadcast ensures that every coherence controller observes the
same series of coherence requests in the same order, i.e., that there is a total order of coherence
requests. Since a total order subsumes all per-block orders, this total order guarantees that all coher-
ence controllers can correctly update a cache block’s state.

C H A P T E R 7

Snooping Coherence Protocols

100 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

To illustrate the importance of processing coherence requests in the same per-block order,
consider the examples in Tables 7.1 and 7.2 where both core C1 and core C2 want to get the same
block A in state M. In Table 7.1, all three coherence controllers observe the same per-block order of
coherence requests and collectively maintain the single-writer–multiple-reader (SWMR) invariant.
Ownership of the block progresses from the LLC/memory to core C1 to core C2. Every coherence
controller independently arrives at the correct conclusion about the block’s state as a result of each
observed request. Conversely, Table 7.2 illustrates how incoherence might arise if core C2 observes
a different per-block order of requests than core C1 and the LLC/memory. First, we have a situa-
tion in which both core C1 and core C2 are simultaneously in state M, which violates the SWMR
invariant. Next, we have a situation in which no coherence controller believes it is the owner and
thus a coherence request at this time would not receive a response (perhaps resulting in deadlock).

Traditional snooping protocols create a total order of coherence requests across all blocks, even
though coherence requires only a per-block order of requests. Having a total order makes it easier

TABLE 7.1: Snooping Coherence Example. All Activity Involves Block A (Denoted “A:”)

109

To illustrate the importance of processing coherence requests in the same per-block order, consider the

examples in Table 7-1 and Table 7-2 where both Core C1 and Core C2 want to get the same block A in

state M. In Table 7-1, all three coherence controllers observe the same per-block order of coherence

requests, and collectively maintain the single-writer, multiple-reader (SWMR) invariant. Ownership of the

block progresses from the LLC/memory to Core C1 to Core C2. Every coherence controller independently

arrives at the correct conclusion about the block’s state as a result of each observed request. Conversely,

Table 7-2 illustrates how incoherence might arise if Core C2 observes a different per-block order of

requests than Core C1 and the LLC/memory. First, we have a situation in which both Core C1 and Core C2

are simultaneously in state M, which violates the SWMR invariant. Next, we have a situation in which no

coherence controller believes it is the owner and thus a coherence request at this time would not receive a

response (perhaps resulting in deadlock).

Traditional snooping protocols create a total order of coherence requests across all blocks, even though

coherence requires only a per-block order of requests. Having a total order makes it easier to implement

memory consistency models that require a total order of memory references, such as SC and TSO. Con-

sider the example in Table 7-3 which involves two blocks A and B; each block is requested exactly once

and so the system trivially observes per-block request orders. Yet because cores C1 and C2 observe the

GetM and GetS requests out-of-order, this execution violates both the SC and TSO memory consistency

models. We discuss some of the subtler issues regarding the need for a total order in the sidebar.

TABLE 7-1. Snooping Coherence Example. All activity involves block A (denoted “A:”)

time Core C1 Core C2 LLC/Memory

0 A:I A:I A:I

(LLC/memory is owner)

1 A:GetM from Core C1 / M A:GetM from Core C1 / I A:GetM from Core C1 / M

(LLC/memory is not owner)

2 A:GetM from Core C2 / I A:GetM from Core C2 / M A: GetM from Core C2 / M

TABLE 7-2. Snooping (In)Coherence Example. All activity involves block A (denoted

“A:”)

time Core C1 Core C2 LLC/Memory

0 A:I A:I A:I (LLC/memory is owner)

1 A: GetM from Core C1 / M A: GetM from Core C2 / M A: GetM from Core C1 / M

(LLC/memory is not owner)

2 A: GetM from Core C2 / I A: GetM from Core C1 / I A: GetM from Core C2 / M

TABLE 7.2: Snooping (In)Coherence Example. All Activity Involves Block A (Denoted “A:”)

109

To illustrate the importance of processing coherence requests in the same per-block order, consider the

examples in Table 7-1 and Table 7-2 where both Core C1 and Core C2 want to get the same block A in

state M. In Table 7-1, all three coherence controllers observe the same per-block order of coherence

requests, and collectively maintain the single-writer, multiple-reader (SWMR) invariant. Ownership of the

block progresses from the LLC/memory to Core C1 to Core C2. Every coherence controller independently

arrives at the correct conclusion about the block’s state as a result of each observed request. Conversely,

Table 7-2 illustrates how incoherence might arise if Core C2 observes a different per-block order of

requests than Core C1 and the LLC/memory. First, we have a situation in which both Core C1 and Core C2

are simultaneously in state M, which violates the SWMR invariant. Next, we have a situation in which no

coherence controller believes it is the owner and thus a coherence request at this time would not receive a

response (perhaps resulting in deadlock).

Traditional snooping protocols create a total order of coherence requests across all blocks, even though

coherence requires only a per-block order of requests. Having a total order makes it easier to implement

memory consistency models that require a total order of memory references, such as SC and TSO. Con-

sider the example in Table 7-3 which involves two blocks A and B; each block is requested exactly once

and so the system trivially observes per-block request orders. Yet because cores C1 and C2 observe the

GetM and GetS requests out-of-order, this execution violates both the SC and TSO memory consistency

models. We discuss some of the subtler issues regarding the need for a total order in the sidebar.

TABLE 7-1. Snooping Coherence Example. All activity involves block A (denoted “A:”)

time Core C1 Core C2 LLC/Memory

0 A:I A:I A:I

(LLC/memory is owner)

1 A:GetM from Core C1 / M A:GetM from Core C1 / I A:GetM from Core C1 / M

(LLC/memory is not owner)

2 A:GetM from Core C2 / I A:GetM from Core C2 / M A: GetM from Core C2 / M

TABLE 7-2. Snooping (In)Coherence Example. All activity involves block A (denoted

“A:”)

time Core C1 Core C2 LLC/Memory

0 A:I A:I A:I (LLC/memory is owner)

1 A: GetM from Core C1 / M A: GetM from Core C2 / M A: GetM from Core C1 / M

(LLC/memory is not owner)

2 A: GetM from Core C2 / I A: GetM from Core C1 / I A: GetM from Core C2 / M

SNOOPINg COHERENCE PROTOCOLS 101

to implement memory consistency models that require a total order of memory references, such as
SC and TSO. Consider the example in Table 7.3 which involves two blocks A and B; each block
is requested exactly once and so the system trivially observes per-block request orders. Yet because
cores C1 and C2 observe the GetM and GetS requests out-of-order, this execution violates both the
SC and TSO memory consistency models.

TABLE 7.3: Per-block Order, Coherence, and Consistency. States and Operations that
Pertain to Address A are Preceeded by the Prefix “A:”, and we Denote a Block A in State X

with Value V as “A:X[V]”. If the Value is Stale, We Omit It (e.g., “A:I”).

110

Requiring that broadcast coherence requests be observed in a total order has important implications for

the interconnection network used to implement traditional snooping protocols. Because many coherence

controllers may simultaneously attempt to issue coherence requests, the interconnection network must seri-

alize these requests into some total order. However the network determines this order, this mechanism

becomes known as the protocol’s serialization (ordering) point. In the general case, a coherence controller

issues a coherence request, the network orders that request at the serialization point and broadcasts it to all

controllers, and the issuing controller learns where its request has been ordered by snooping the stream of

requests it receives from the controller. As a concrete and simple example, consider a system which uses a

bus to broadcast coherence requests. Coherence controllers must use arbitration logic to ensure that only a

single request is issued on the bus at once. This arbitration logic acts as the serialization point, because it

effectively determines the order in which requests appear on the bus. A subtle but important point is that a

coherence request is ordered the instant the arbitration logic serializes it, but a controller may only be able

to determine this order by snooping the bus to observe which other requests appear before and after its own

request. Thus coherence controllers may observe the total request order several cycles after the serializa-

tion point determines it.

TABLE 7-3. Per-block order, coherence, and consistency. States and operations that

pertain to address A are preceeded by the prefix “A:”, and we denote a block A in state X

with value V as “A:X[V]”. If the value is stale, we omit it (e.g., “A:I”).

time Core C1 Core C2 LLC/Memory

0 A:I

B:M[0]

A:S[0]

B:I

A:S[0]

B:M

1 A: GetM from Core C1 / M[0]

store A = 1

B:M[0]

A:S[0]

B:I

A:S[0]

B:M

2 A:M[1]

store B = 1

B:M[1]

A:S[0]

B:I

A:GetM from Core C1 / M

B:M

3 A:M[1]

B:GetS from Core C2 / S[1]

A:S[0]

B:I

A:M

B:GetS from Core C2 / S[1]

4 A:M[1]

B:S[1]

A:S[0]

B:GetS from Core C2/S[1]

r1 = B[1]

A:M

B:S[1]

5 A:M[1]

B:S[1]

A:S[0]

r2 = A[0]

B:S[1]

A:M

B:S[1]

6 A:M[1]

B:S[1]

A: GetM from Core1 / I

B:S[1]

A:M

B:S[1]

r1 = 1, r2 = 0 violates SC and TSO

102 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Sidebar: How Snooping Depends on a Total Order of Coherence Requests
At first glance, the reader may assume that the problem in Table 7.3 arises because the SWMR invariant
is violated for block A in cycle 1, since C1 has an M copy and C2 still has an S copy. However, Table 7.4
illustrates the same example, but enforces a total order of coherence requests. This example is identical until
cycle 4, and thus has the same apparent SWMR violation. However, like the proverbial “tree in the forest,”
this violation does not cause a problem because it is not observed (i.e., there is “no one there to hear it”).
Specifically, because the cores see both requests in the same order, C2 invalidates block A before it can see
the new value for block B. Thus when C2 reads block A, it must get the new value and therefore yields a
correct SC and TSO execution.

Traditional snooping protocols use the total order of coherence requests to determine when, in a
logical time based on snoop order, a particular request has been observed. In the example of Table 7.4, be-
cause of the total order, core C1 can infer that C2 will see the GetM for A before the GetS for B, and thus
C2 does not need to send a specific acknowledgement message when it receives the coherence message.
This implicit acknowledgment of request reception distinguishes snooping protocols from the directory
protocols we study in the next chapter.

TABLE 7.4. Total Order, Coherence, and Consistency. States and Operations that
Pertain to Address A are Preceded by the Prefix “A:”, and we Denote a Block A in
State X with Value V as “A:X[V]”. If the Value is Stale, We Omit It (e.g., “A:I”).

111

How Snooping Depends on a Total Order of Coherence Requests

At first glance, the reader may assume that the problem in Table 7-3 arises because the SWMR

invariant is violated for block A in cycle 1, since C1 has an M copy and C2 still has an S copy. How-

ever, Table 7-4 illustrates the same example, but enforces a total order of coherence requests. This

example is identical until cycle 4, and thus has the same apparent SWMR violation. However, like

the proverbial “tree in the forest”, this violation does not cause a problem because it is not observed

(i.e., there is “no one there to hear it”). Specifically, because the cores see both requests in the same

order, C2 invalidates block A before it can see the new value for block B. Thus when C2 reads block

A, it must get the new value and therefore yields a correct SC and TSO execution.

Traditional snooping protocols use the total order of coherence requests to determine when, in a

logical time based on snoop order, a particular request has been observed. In the example of Table 7-

4, because of the total order, Core C1 can infer that C2 will see the GetM for A before the GetS for

B, and thus C2 does not need to send a specific acknowledgement message when it receives the

coherence message. This implicit acknowledgment of request reception distinguishes snooping pro-

tocols from the directory protocols we study in the next chapter.

TABLE 7-4. Total order, coherence, and consistency. States and operations that

pertain to address A are preceeded by the prefix “A:”, and we denote a block A in

state X with value V as “A:X[V]”. If the value is stale, we omit it (e.g., “A:I”).

time Core C1 Core C2 LLC/Memory

0 A:I

B:M[0]

A:S[0]

B:I

A:S[0]

B:M

1 A: GetM from Core C1 / M[0]

store A = 1

B:M[0]

A:S[0]

B:I

A:S[0]

B:M

2 A:M[1]

store B = 1

B:M[1]

A:S[0]

B:I

A: GetM from Core C1 / M

B:M

3 A:M[1]

B: GetS from Core C2 / S[1]

A:S[0]

B:I

A:M

B:GetS from Core C2 / S[1]

4 A:M[1]

B:S[1]

A: GetM from Core1 / I

B:I

A:M

B:S[1]

5 A:M[1]

B:S[1]

A:I

B: GetS from Core C2/S[1]

r1 = B[1]

A:M

B:S[1]

6 A: GetS from Core C2/S[1]

B:S[1]

A: GetS from Core C2/S[1]

r2 = A[1]

B:S[1]

A:GetS from Core C2 / S[1]

B:S[1]

r1 = 1, r2 = 1 satisfies SC and TSO

SNOOPINg COHERENCE PROTOCOLS 103

We discuss some of the subtler issues regarding the need for a total order in the sidebar.
Requiring that broadcast coherence requests be observed in a total order has important impli-

cations for the interconnection network used to implement traditional snooping protocols. Because
many coherence controllers may simultaneously attempt to issue coherence requests, the intercon-
nection network must serialize these requests into some total order. However the network deter-
mines this order, this mechanism becomes known as the protocol’s serialization (ordering) point. In
the general case, a coherence controller issues a coherence request, the network orders that request
at the serialization point and broadcasts it to all controllers, and the issuing controller learns where
its request has been ordered by snooping the stream of requests it receives from the controller. As a
concrete and simple example, consider a system which uses a bus to broadcast coherence requests.
Coherence controllers must use arbitration logic to ensure that only a single request is issued on the
bus at once. This arbitration logic acts as the serialization point because it effectively determines
the order in which requests appear on the bus. A subtle but important point is that a coherence
request is ordered the instant the arbitration logic serializes it, but a controller may only be able to
determine this order by snooping the bus to observe which other requests appear before and after
its own request. Thus, coherence controllers may observe the total request order several cycles after
the serialization point determines it.

Thus far, we have discussed only coherence requests, but not the responses to these requests.
The reason for this seeming oversight is that the key aspects of snooping protocols revolve around
the requests. There are few constraints on response messages. They can travel on a separate inter-
connection network that does not need to support broadcast nor have any ordering requirements.
Because response messages carry data and are thus much longer than requests, there are significant
benefits to being able to send them on a simpler, lower-cost network. Notably, response messages
do not affect the serialization of coherence transactions. Logically, a coherence transaction—which
consists of a broadcast request and a unicast response—occurs when the request is ordered, regard-
less of when the response arrives at the requestor. The time interval between when the request appears
on the bus and when the response arrives at the requestor does affect the implementation of the
protocol (e.g., during this gap, are other controllers allowed to request this block? If so, how does
the requestor respond?), but it does not affect the serialization of the transaction.1

7.2 BASELINE SNOOPINg PROTOCOL
In this section, we present a straightforward, unoptimized snooping protocol and describe its im-
plementation on two different system models. The first, simple system model illustrates the basic

1 This logical serialization of coherence transactions is analogous to the logical serialization of instruction execution
in processor cores. Even when a core performs out-of-order execution, it still commits (serializes) instructions in
program order.

104 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

approach for implementing snooping coherence protocols. The second, modestly more complex
baseline system model illustrates how even relatively simple performance improvements may impact
coherence protocol complexity. These examples provide insight into the key features of snooping
protocols while revealing inefficiencies that motivate the features and optimizations presented in
subsequent sections of this chapter. Sections 7.5 and 7.6 discuss how to adapt this baseline protocol
for more advanced system models.

7.2.1 High-Level Protocol Specification
The baseline protocol has only three stable states: M, S, and I. Such a protocol is typically referred
to as an MSI protocol. Like the protocol in Section 6.3, this protocol assumes a write-back cache.
A block is owned by the LLC/memory unless the block is in a cache in state M. Before presenting
the detailed specification, we first illustrate a higher level abstraction of the protocol in order to
understand its fundamental behaviors. In Figures 7.1 and 7.2, we show the transitions between the
stable states at the cache and memory controllers, respectively.

There are three notational issues to be aware of. First, in Figure 7.1, the arcs are labeled with
coherence requests that are observed on the bus. We intentionally omit other events, including loads,
stores, and coherence responses. Second, the coherence events at the cache controller are labeled with
either “Own” or “Other” to denote whether the cache controller observing the request is the requestor
or not. Third, in Figure 7.2, we specify the state of a block at memory using a cache-centric notation
(e.g., a memory state of M denotes that there exists a cache with the block in state M).

7.2.2 Simple Snooping System Model: Atomic Requests, Atomic Transactions
Figure 7.3 illustrates the simple system model, which is nearly identical to the baseline system
model introduced in Figure 2.1. The only difference is that the generic interconnection network
from Figure 2.1 has been specified as a bus. Each core can issue load and store requests to its cache
controller; the cache controller will choose a block to evict when it needs to make room for another
block. The bus facilitates a total order of coherence requests that are snooped by all coherence
controllers. Like the example in the previous chapter, this system model has atomicity properties
that simplify the coherence protocol. Specifically, this system implements two atomicity properties
which we define as Atomic Requests and Atomic Transactions. The Atomic Requests property states that
a coherence request is ordered in the same cycle that it is issued. This property eliminates the possi-
bility of a block’s state changing—due to another core’s coherence request—between when a request
is issued and when it is ordered. The Atomic Transactions property states that coherence transactions
are atomic in that a subsequent request for the same block may not appear on the bus until after the
first transaction completes (i.e., until after the response has appeared on the bus). Because coher-
ence involves operations on a single block, whether or not the system permits subsequent requests

SNOOPINg COHERENCE PROTOCOLS 105

I

M

S

Own-GetS

Own-GetM

Other-GetS

Other-GetM
or

Own-PutM

Own-GetM

silent

FIguRE 7.1: MSI: Transitions between stable
states at cache controller.

M

I or S

GetM
GetS
or
PutM

FIguRE 7.2: MSI: Transitions
between stable states at memory
controller.

cache
controller

core

cache
controller

core

BUS

LLC/memory
controller

last-level
cache

(LLC) MULTICORE PROCESSOR CHIP

MAIN MEMORY

private
data
cache

private
data
cache

FIguRE 7.3: Simple snooping system mode.

106 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

to different blocks does not impact the protocol. Although simpler than most current systems, this
system model resembles the SGI Challenge, a successful machine in the 1980s [5].

7.2.2.1 Detailed Protocol Specification
Tables 7.5 and 7.6 present the detailed coherence protocol for the simple system model. Compared
to the high-level description in Section 7.2.1, the most significant difference is the addition of two
transient states in the cache controller and one in the memory controller. This protocol has very
few transient states because the atomicity constraints of the simple system model greatly limit the
number of possible message interleavings.

Flashback to Quiz Question 6: In an MSI snooping protocol, a cache block may only be in one
of three coherence states. True or false?
Answer: False! Even for the simplest system model, there are more than three states, because of
transient states.

Shaded entries in the table denote impossible (or at least erroneous) transitions. For example,
a cache controller should never receive a Data message for a block that it has not requested (i.e.,
a block in state I in its cache). Similarly, the Atomic Transactions constraint prevents another core
from issuing a subsequent request before the current transaction completes; the table entries labeled
“(A)” cannot occur due to this constraint. Blank entries denote legal transitions that require no
action. These tables omit many implementation details that are not necessary for understanding
the protocol. Also, in this protocol and the rest of the protocols in this chapter, we omit the event
corresponding to Data for another core’s transaction; a core never takes any action in response to
observing Data on the bus for another core’s transaction.

As with all MSI protocols, loads may be performed (i.e., hit) in states S and M, while stores
hit only in state M. On load and store misses, the cache controller initiates coherence transactions
by sending GetS and GetM requests, respectively.2 The transient states ISD, IMD, and SMD indi-
cate that the request message has been sent, but the data response (Data) has not yet been received.
In these transient states, because the requests have already been ordered, the transactions have al-
ready been ordered and the block is logically in state S, M, or M, respectively. A load or store must

2 We do not include an Upgrade transaction in this protocol, which would optimize the S-to-M transition by not
needlessly sending data to the requestor. Adding an Upgrade would be fairly straightforward for this system model
with Atomic Requests, but it is significantly more complicated without Atomic Requests. We discuss this issue when we
present a protocol without Atomic Requests.

SNOOPINg COHERENCE PROTOCOLS 107

TABLE 7.5: Simple Snooping (Atomic Requests, Atomic Transactions): Cache Controller

115

TABLE 7-5. Simple Snooping (atomic requests, atomic transactions): Cache controller

S
t
a

t
e
s

Processor Core Events

Bus Events

Own Transaction Transactions For Other Cores

 Load Store

Replaceme

nt

Own-

GetS

Own-

GetM

Own-

PutM Data

Other-

GetS

Other-

GetM

Other-

PutM

I issue GetS

/IS
D

issue GetM

/IM
D

IS
D stall Load stall Store stall Evict copy data

into cache,

load hit

/S

(A) (A) (A)

IM
D stall Load stall Store stall Evict copy data

into cache,

store hit

/M

(A) (A) (A)

S load hit issue GetM

/SM
D

-/I -/I

SM
D load hit stall Store stall Evict copy data

into cache,

store hit

/M

(A) (A) (A)

M load hit store hit issue PutM,

send Data to

memory

/I

send Data

to req and

memory

/S

send

Data to

req

/I

TABLE 7-6. Simple Snooping (atomic requests, atomic transactions): Memory controller

Bus Events

State GetS GetM PutM Data from Owner

IorS send data block in Data

message to requestor/IorS

send data block in Data

message to requestor/M

IorS
D (A) (A) update data block in mem-

ory/IorS

M -/IorS
D

-/IorS
D

TABLE 7.6: Simple Snooping (Atomic Requests, Atomic Transactions): Memory Controller

115

TABLE 7-5. Simple Snooping (atomic requests, atomic transactions): Cache controller

S
t
a

t
e
s

Processor Core Events

Bus Events

Own Transaction Transactions For Other Cores

 Load Store

Replaceme

nt

Own-

GetS

Own-

GetM

Own-

PutM Data

Other-

GetS

Other-

GetM

Other-

PutM

I issue GetS

/IS
D

issue GetM

/IM
D

IS
D stall Load stall Store stall Evict copy data

into cache,

load hit

/S

(A) (A) (A)

IM
D stall Load stall Store stall Evict copy data

into cache,

store hit

/M

(A) (A) (A)

S load hit issue GetM

/SM
D

-/I -/I

SM
D load hit stall Store stall Evict copy data

into cache,

store hit

/M

(A) (A) (A)

M load hit store hit issue PutM,

send Data to

memory

/I

send Data

to req and

memory

/S

send

Data to

req

/I

TABLE 7-6. Simple Snooping (atomic requests, atomic transactions): Memory controller

Bus Events

State GetS GetM PutM Data from Owner

IorS send data block in Data

message to requestor/IorS

send data block in Data

message to requestor/M

IorS
D (A) (A) update data block in mem-

ory/IorS

M -/IorS
D

-/IorS
D

108 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

wait for the Data to arrive, though.3 Once the data response appears on the bus, the cache controller
can copy the data block into the cache, transition to stable state S or M, as appropriate, and perform
the pending load or store.

The system model’s atomicity properties simplify cache miss handling in two ways. First,
the Atomic Requests property ensures that when a cache controller seeks to upgrade permissions to a
block—to go from I to S, I to M, or S to M—it can issue a request without worrying that another
core’s request might be ordered ahead of its own. Thus, the cache controller can transition imme-
diately to state ISD, IMD, or SMD, as appropriate, to wait for a data response. Similarly, the Atomic
Transactions property ensures that no subsequent requests for a block will occur until after the cur-
rent transaction completes, eliminating the need to handle requests from other cores while in one
of these transient states.

A data response may come from either the memory controller or another cache that has the
block in state M. A cache that has a block in state S can ignore GetS requests because the memory
controller is required to respond, but must invalidate the block on GetM requests to enforce the
coherence invariant. A cache that has a block in state M must respond to both GetS and GetM
requests, sending a data response and transitioning to state S or state I, respectively.

The LLC/memory has two stable states, M and IorS, and one transient state IorSD. In state
IorS, the memory controller is the owner and responds to both GetS and GetM requests because
this state indicates that no cache has the block in state M. In state M, the memory controller does
not respond with data because the cache in state M is the owner and has the most recent copy of
the data. However, a GetS in state M means that the cache controller will transition to state S, so
the memory controller must also get the data, update memory, and begin responding to all future
requests. It does this by transitioning immediately to the transient state IorSD and waits until it
receives the data from the cache that owns it.

When the cache controller evicts a block due to a replacement decision, this leads to the
protocol’s two possible coherence downgrades: from S to I and from M to I. In this protocol, the
S-to-I downgrade is performed “silently” in that the block is evicted from the cache without any
communication with the other coherence controllers. In general, silent state transitions are possible
only when all other coherence controllers’ behavior remains unchanged; for example, a silent evic-
tion of an owned block is not allowable. The M-to-I downgrade requires communication because
the M copy of the block is the only valid copy in the system and cannot simply be discarded. Thus,
another coherence controller (i.e., the memory controller) must change its state. To replace a block
in state M, the cache controller issues a PutM request on the bus and then sends the data back to the
memory controller. At the LLC, the block enters state IorSD when the PutM request arrives, then

3 Technically, a store may be performed as soon as the request is ordered, so long as the newly stored value is not
overwritten when the Data arrives. Similarly, a subsequent load to a newly written value is permitted.

SNOOPINg COHERENCE PROTOCOLS 109

transitions to state IorS when the Data message arrives.4 The Atomic Requests property simplifies the
cache controller, by preventing an intervening request that might downgrade the state (e.g., another
core’s GetM request) before the PutM gets ordered on the bus. Similarly, the Atomic Transactions
property simplifies the memory controller by preventing other requests for the block until the PutM
transaction completes and the memory controller is ready to respond to them.

7.2.2.2 Running Example
In this section, we present an example execution of the system to show how the coherence protocol
behaves in a common scenario. We will use this example in subsequent sections both to understand
the protocols and also to highlight differences between them. The example includes activity for just
one block, and initially, the block is in state I in all caches and in state IorS at the LLC/memory.

In this example, illustrated in Table 7.7, cores C1 and C2 issue load and store instructions,
respectively, that miss on the same block. core C1 attempts to issue a GetS and core C2 attempts
to issue a GetM. We assume that core C1’s request happens to get serialized first and the Atomic
Transactions property prevents core C2’s request from reaching the bus until C1’s request completes.
The memory controller responds to C1 to complete the transaction on cycle 3. Then, core C2’s
GetM is serialized on the bus; C1 invalidates its copy and the memory controller responds to C2
to complete that transaction. Lastly, C1 issues another GetS. C2, the owner, responds with the
data and changes its state to S. C2 also sends a copy of the data to the memory controller because
the LLC/memory is now the owner and needs an up-to-date copy of the block. At the end of this
execution, C1 and C2 are in state S and the LLC/memory is in state IorS.

7.2.3 Baseline Snooping System Model: Non-Atomic Requests,
Atomic Transactions
The baseline snooping system model, which we use for most of the rest of this chapter, differs from
the simple snooping system model by permitting non-atomic requests. Non-atomic requests arise
from a number of implementation optimizations, but most commonly due to inserting a message
queue (or even a single buffer) between the cache controller and the bus. By separating when a re-
quest is issued from when it is ordered, the protocol must address a window of vulnerability that did
not exist in the simple snooping system. The baseline snooping system model preserves the Atomic
Transactions property, which we do not relax until Section 7.5.

We present the detailed protocol specification, including all transient states, in Tables 7.8
and 7.9. Compared to the protocol for the simple snooping system in Section 7.2.2, the most signif-
icant difference is the much larger number of transient states. Relaxing the Atomic Requests property

4 We make the simplifying assumption that these messages cannot arrive out of order at the memory controller.

110 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

introduces numerous situations in which a cache controller observes a request from another control-
ler on the bus in between issuing its coherence request and observing its own coherence request on
the bus.

Taking the I-to-S transition as an example, the cache controller issues a GetS request and
changes the block’s state from I to ISAD. Until the requesting cache controller’s own GetS is ob-
served on the bus and serialized, the block’s state is effectively I. That is, the requestor’s block is
treated as if it were in I; loads and stores cannot be performed and coherence requests from other
nodes must be ignored. Once the requestor observes its own GetS, the request is ordered and block
is logically S, but loads cannot be performed because the data has not yet arrived. The cache control-
ler changes the block’s state to ISD and waits for the data response from the previous owner. Because

TABLE 7.7: Simple Snooping: Example Execution. All Activity is for One Block.

118

7.2.2.2 Running Example

In this section, we present an example execution of the system to show how the coherence protocol

behaves in a common scenario. We will use this example in subsequent sections both to understand the

protocols and also to highlight differences between them. The example includes activity for just one block,

and initially the block is in state I in all caches and in state IorS at LLC/memory.

In this example, illustrated in Table 7-7, Core C1 and C2 issue load and store instructions, respectively,

that miss on the same block. Core C1 attempts to issue a GetS and Core C2 attempts to issue a GetM. We

assume that Core C1’s request happens to get serialized first and the Atomic Transactions property pre-

vents Core C2’s request from reaching the bus until C1’s request completes. The memory controller

responds to C1 to complete the transaction on cycle 3. Then Core C2’s GetM is serialized on the bus; C1

invalidates its copy and the memory controller responds to C2 to complete that transaction. Lastly, C1

issues another GetS. C2, the owner, responds with the data and changes its state to S. C2 also sends a copy

of the data to the memory controller because the LLC/memory is now the owner and needs an up-to-date

TABLE 7-7. Simple Snooping: Example execution. All activity is for one block.

cycle Core C1 Core C2 LLC/memory request on bus data on bus

Initial I I IorS

1 load miss;

issue GetS / IS
D

2 GetS (C1)

3 store miss;

stall due to Atomic

Transactions

send response to C1

4 data from

LLC/mem

5 copy data to cache;

perform load / S

issue GetM / IM
D

6 GetM (C2)

7 - / I send response to C2 / M

8 data from

LLC/mem

9 copy data to cache;

perform store / M

10 load miss;

issue GetS / IS
D

11 GetS (C1)

12 send data to C1 and to

LLC/mem / S

- / IorS
D

13 data from C2

14 copy data from C2;

perform load / S

copy data from C2 / IorS

SNOOPINg COHERENCE PROTOCOLS 111

TABLE 7.8: MSI Snooping Protocol with Atomic Transactions-Cache Controller. A Shaded Entry Labeled
“(A)” Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

120

nerability during the S-to-M transition complicates the addition of an Upgrade transaction, as we discuss in

the sidebar.

The window of vulnerability also affects the M-to-I coherence downgrade, in a much more significant

way. To replace a block in state M, the cache controller issues a PutM request and changes the block state

TABLE 7-8. MSI Snooping Protocol with Atomic Transactions- Cache Controller. A

shaded entry labeled “(A)” denotes that this transition is impossible because transactions

are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

IS
D stall stall stall (A) (A) -/S

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall

-/SM
D -

-/IM
AD -

SM
D hit stall stall (A) (A) -/M

M hit hit issue

PutM/MI
A

send data to

requestor and

to memory/S

send data to

requestor/I

-

MI
A hit hit stall send data to

memory/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

II
A stall stall stall send

NoData to

memory/I

- -

TABLE 7-9. MSI Snooping Protocol with Atomic Transactions - Memory Controller. A

shaded entry labeled “(A)” denotes that this transition is impossible because transactions

are atomic on bus.

GetS GetM PutM Data From Owner NoData

IorS send data to requestor send data to requestor/M -/IorS
D

IorS
D (A) (A) write data to

LLC/memory

/IorS

-/IorS

M -/IorS
D

-/M
D

M
D (A) (A) write data to

LLC/IorS

-/M

TABLE 7.9: MSI Snooping Protocol with Atomic Transactions - Memory Controller. A Shaded
Entry Labeled “(A)” Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

120

nerability during the S-to-M transition complicates the addition of an Upgrade transaction, as we discuss in

the sidebar.

The window of vulnerability also affects the M-to-I coherence downgrade, in a much more significant

way. To replace a block in state M, the cache controller issues a PutM request and changes the block state

TABLE 7-8. MSI Snooping Protocol with Atomic Transactions- Cache Controller. A

shaded entry labeled “(A)” denotes that this transition is impossible because transactions

are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

IS
D stall stall stall (A) (A) -/S

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall

-/SM
D -

-/IM
AD -

SM
D hit stall stall (A) (A) -/M

M hit hit issue

PutM/MI
A

send data to

requestor and

to memory/S

send data to

requestor/I

-

MI
A hit hit stall send data to

memory/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

II
A stall stall stall send

NoData to

memory/I

- -

TABLE 7-9. MSI Snooping Protocol with Atomic Transactions - Memory Controller. A

shaded entry labeled “(A)” denotes that this transition is impossible because transactions

are atomic on bus.

GetS GetM PutM Data From Owner NoData

IorS send data to requestor send data to requestor/M -/IorS
D

IorS
D (A) (A) write data to

LLC/memory

/IorS

-/IorS

M -/IorS
D

-/M
D

M
D (A) (A) write data to

LLC/IorS

-/M

112 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

of the Atomic Transactions property, the data message is the next coherence message (to the same
block). Once the data response arrives, the transaction is complete and the requestor changes the
block’s state to the stable S state and performs the load. The I-to-M transition proceeds similarly
to this I-to-S transition.

The transition from S to M illustrates the potential for state changes to occur during the
window of vulnerability. If a core attempts to store to a block in state S, the cache controller issues a
GetM request and transitions to state SMAD. The block remains effectively in state S, so loads may
continue to hit and the controller ignores GetS requests from other cores. However, if another core’s
GetM request gets ordered first, the cache controller must transition the state to IMAD to prevent
further load hits. The window of vulnerability during the S-to-M transition complicates the addi-
tion of an Upgrade transaction, as we discuss in the sidebar.

Sidebar: upgrade Transactions in Systems Without Atomic Requests
For the protocol with Atomic Requests, an Upgrade transaction is an efficient way for a cache to
transition from Shared to Modified. The Upgrade request invalidates all shared copies, and it is
much faster than issuing a GetM, because the requestor needs to wait only until the Upgrade
is serialized (i.e., the bus arbitration latency) rather than wait for data to arrive from the LLC /
memory.

However, without Atomic Requests, adding an Upgrade transaction becomes more difficult
because of the window of vulnerability between issuing a request and when the request is serial-
ized. The requestor may lose its shared copy due to an Other-GetM or Other-Upgrade that is
serialized during this window of vulnerability. The simplest solution to this problem is to change
the block’s state to a new state in which it waits for its own Upgrade to be serialized. When its
Upgrade is serialized, which will invalidate other S copies (if any) but will not return data, the
core must then issue a subsequent GetM request to transition to M.

Handling Upgrades more efficiently is difficult, because the LLC/memory needs to know
when to send data. Consider the case in which cores C0 and C2 have a block A shared and both
seek to upgrade it and, at the same time, core C1 seeks to read it. C0 and C2 issue Upgrade
requests and C1 issues a GetS request. Suppose they serialize on the bus as C0, C1, and C2.
C0’s Upgrade succeeds, so the LLC/memory (in state IorS) should change its state to M but not
send any data, and C2 should invalidate its S copy. C1’s GetS finds the block in state M at C0,
which responds with the new data value and updates the LLC/memory back to state IorS. C2’s
Upgrade finally appears, but because it has lost its shared copy, it needs the LLC/memory to re-
spond. Unfortunately, the LLC/memory is in state IorS and cannot tell that this Upgrade needs
data. Alternatives exist to solve this issue, but are outside the scope of this primer.

SNOOPINg COHERENCE PROTOCOLS 113

The window of vulnerability also affects the M-to-I coherence downgrade, in a much more
significant way. To replace a block in state M, the cache controller issues a PutM request and
changes the block state to MIA; unlike the protocol in Section 7.2.2, it does not immediately send
the data to the memory controller. Until the PutM is observed on the bus, the block’s state is effec-
tively M and the cache controller must respond to other cores’ coherence requests for the block. In
the case where no intervening coherence requests arrive, the cache controller responds to observing
its own PutM by sending the data to the memory controller and changing the block state to state
I. If an intervening GetS or GetM request arrives before the PutM is ordered, the cache controller
must respond as if it were in state M and then transition to state IIA to wait for its PutM to appear
on the bus. Intuitively, the cache controller should simply transition to state I once it sees its PutM
because it has already given up ownership of the block. Unfortunately, doing so will leave the mem-
ory controller stuck in a transient state because it also receives the PutM request. Nor can the cache
controller simply send the data anyway because doing so might overwrite valid data.5 The solution is
for the cache controller to send a special NoData message to the memory controller when it sees its
PutM while in state IIA. The memory controller is further complicated by needing to know which
stable state it should return to if it receives a NoData message. We solve this problem by adding a
second transient memory state MD. Note that these transient states represent an exception to our
usual transient state naming convention. In this case, state XD indicates that the memory controller
should revert to state X when it receives a NoData message (and move to state IorS if it receives a
data message).

7.2.4 Running Example
Returning to the running example, illustrated in Table 7.10, core C1 issues a GetS and core C2
issues a GetM. Unlike the previous example (in Table 7.7), eliminating the Atomic Requests prop-
erty means that both cores issue their requests and change their state. We assume that core C1’s
request happens to get serialized first, and the Atomic Transactions property ensures that C2’s request
does not appear on the bus until C1’s transaction completes. After the LLC/memory responds to
complete C1’s transaction, core C2’s GetM is serialized on the bus. C1 invalidates its copy and the
LLC/memory responds to C2 to complete that transaction. Lastly, C1 issues another GetS. When
this GetS reaches the bus, C2, the owner, responds with the data and changes its state to S. C2 also
sends a copy of the data to the memory controller because the LLC/memory is now the owner and

5 Consider the case in which core C1 has a block in M and issues a PutM, but core C2 does a GetM and core C3
does a GetS, both of which are ordered before C1’s PutM. C2 gets the block in M, modifies the block, and then
in response to C3’s GetS, updates the LLC/memory with the updated block. When C1’s PutM is finally ordered,
writing the data back would overwrite C2’s update.

114 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

needs an up-to-date copy of the block. At the end of this execution, C1 and C2 are in state S and
the LLC/memory is in state IorS.

7.2.5 Protocol Simplifications
This protocol is relatively straightforward and sacrifices performance to achieve this simplicity. The
most significant simplification is the use of atomic transactions on the bus. Having atomic transac-
tions eliminates many possible transitions, denoted by “(A)” in the tables. For example, when a core
has a cache block in state IMD, it is not possible for that core to observe a coherence request for that
block from another core. If transactions were not atomic, such events could occur and would force
us to redesign the protocol to handle them, as we show in Section 7.5.

Another notable simplification that sacrifices performance involves the event of a store re-
quest to a cache block in state S. In this protocol, the cache controller issues a GetM and changes
the block state to SMAD. A higher performance but more complex solution would use an upgrade
transaction, as discussed in the earlier sidebar.

TABLE 7.10: Baseline Snooping: Example Execution.

122

the cache controller simply send the data anyway, because doing so might overwrite valid data
5
. The solu-

tion is for the cache controller to send a special NoData message to the memory controller when it sees its

PutM while in state II
A

. The memory controller is further complicated by needing to know which stable

state it should return to if it receives a NoData message. We solve this problem by adding a second tran-

sient memory state M
D

. Note that these transient states represent an exception to our usual transient state

naming convention. In this case, state X
D

 indicates that the memory controller should revert to state X

when it receives a NoData message (and move to state IorS if it receives a data message).

7.2.4 Running Example

Returning to the running example, illustrated in Table 7-10, Core C1 issues a GetS and Core C2 issues

a GetM. Unlike the previous example (in Table 7-7), eliminating the Atomic Requests property means that

both cores issue their requests and change their state. We assume that Core C1’s request happens to get

5. Consider the case that core C1 has a block in M and issues a PutM, but core C2 does a GetM and core C3 does a GetS, both of

which are ordered before C1’s PutM. C2 gets the block in M, modifies the block, and then in response to C3’s GetS, updates

the LLC/memory with the updated block. When C1’s PutM is finally ordered, writing the data back would overwrite C2’s

update.

TABLE 7-10. Baseline Snooping: Example execution

cycle Core C1 Core C2 LLC/memory request on bus data on bus

1
issue GetS / IS

AD

2
issue GetM / IM

AD

3 GetS (C1)

4
- / IS

D send data to C1

/IorS

5 data from

LLC/mem

6 copy data from

LLC/mem / S

GetM (C2)

7 - / I
- / IM

D send data to C2 / M

8 data from

LLC/mem

9 copy data from

LLC/mem / M

10
issue GetS / IS

AD

11 GetS (C1)

12 - / IS
D send data to C1 and to

LLC/mem / S

- / IorS
D

13 data from C2

14 copy data from C2 /

S

copy data from C2 /

IorS

SNOOPINg COHERENCE PROTOCOLS 115

7.3 ADDINg THE EXCLuSIVE STATE
There are many important protocol optimizations, which we discuss in the next several sections.
More casual readers may want to skip or skim these sections on first reading. One very commonly
used optimization is to add the Exclusive (E) state, and in this section, we describe how to create a
MESI snooping protocol by augmenting the baseline protocol from Section 7.2.3 with the E state.
Recall from Chapter 2 that if a cache has a block in the Exclusive state, then the block is valid, read-
only, clean, exclusive (not cached elsewhere), and owned. A cache controller may silently change a
cache block’s state from E to M without issuing a coherence request.

7.3.1 Motivation
The Exclusive state is used in almost all commercial coherence protocols because it optimizes a
common case. Compared to an MSI protocol, a MESI protocol offers an important advantage in
the situation in which a core first reads a block and then subsequently writes it. This is a typical se-
quence of events in many important applications, including single-threaded applications. In an MSI
protocol, on a load miss, the cache controller will initiate a GetS transaction to obtain read permis-
sion; on the subsequent store, it will then initiate a GetM transaction to obtain write permission.
However, a MESI protocol enables the cache controller to obtain the block in state E, instead of S,
in the case that the GetS occurs when no other cache has access to the block. Thus, a subsequent
store does not require the GetM transaction; the cache controller can silently upgrade the block’s
state from E to M and allow the core to write to the block. The E state can thus eliminate half of
the coherence transactions in this common scenario.

7.3.2 getting to the Exclusive State
Before explaining how the protocol works, we must first figure out how the issuer of a GetS deter-
mines that there are no other sharers and thus that it is safe to go directly to state E instead of state
S. There are at least two possible solutions:

Adding a wired-OR “sharer” signal to bus: when the GetS is ordered on the bus, all cache
controllers that share the block assert the “sharer” signal. If the requestor of the GetS ob-
serves that the “sharer” signal is asserted, the requestor changes its block state to S; else, the
requestor changes its block state to E. The drawback to this solution is having to imple-
ment the wired-OR signal. This additional shared wire might not be problematic in this
baseline snooping system model that already has a shared wire bus, but it would greatly
complicate implementations that do not use shared wire buses (Section 7.6).
Maintaining extra state at the LLC: an alternative solution is for the LLC to distinguish
between states I (no sharers) and S (one or more sharers), which was not needed for the

•

•

116 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

MSI protocols. In state I, the memory controller responds with data that is specially labeled
as being Exclusive; in state S, the memory controller responds with data that is unlabeled.
However, maintaining the S state exactly is challenging, since the LLC must detect when
the last sharer relinquishes its copy. First, this requires that a cache controller issues a PutS
message when it evicts a block in state S. Second, the memory controller must maintain
a count of the sharers as part of the state for that block. This is much more complex
and bandwidth intensive than our previous protocols, which allowed for silent evictions of
blocks in S. A simpler, but less complete, alternative allows the LLC to conservatively track
sharers; that is, the memory controller’s state S means that there are zero-or-more caches
in state S. The cache controller silently replaces blocks in state S, and thus the LLC stays in
S even after the last sharer has been replaced. If a block in state M is written back (with a
PutM), the state of the LLC block becomes I. This “conservative S” solution forgoes some
opportunities to use the E state (i.e., when the last sharer replaces its copy before another
core issues a GetM), but it avoids the need for explicit PutS transactions and still captures
many important sharing patterns.

In the MESI protocol we present in this section, we choose the most implementable op-
tion—maintaining a conservative S state at the LLC—to both avoid the engineering problems
associated with implementing wired-OR signals in high-speed buses and avoid explicit PutS
transactions.

7.3.3 High-Level Specification of Protocol
In Figures 7.4 and 7.5, we show the transitions between stable states in the MESI protocol. The
MESI protocol differs from the baseline MSI protocol at both the cache and LLC/memory. At the
cache, a GetS request transitions to S or E, depending upon the state at the LLC/memory when
the GetS is ordered. Then, from state E, the block can be silently changed to M. In this protocol,
we use a PutM to evict a block in E, instead of using a separate PutE; this decision helps keep the
protocol specification concise, and it has no impact on the protocol functionality.

The LLC/memory has one more stable state than in the MSI protocol. The LLC/memory
must now distinguish between blocks that are shared by zero or more caches (the conservative S
state) and those that are not shared at all (I), instead of merging those into one single state as was
done in the MSI protocol.

In this primer, we consider the E state to be an ownership state, which has a significant effect
on the protocol. There are, however, protocols that do not consider the E state to be an ownership
state, and the sidebar discusses the issues involved in such protocols.

SNOOPINg COHERENCE PROTOCOLS 117

Sidebar: MESI Snooping if E is Non-ownership State
If the E state is not considered an ownership state (i.e., a block in E is owned by the LLC/mem-
ory), then the protocol must figure out which coherence controller should respond to a request
after the memory controller has given a block to a cache in state E. Because the transition from
state E to state M is silent, the memory controller cannot know whether the cache holds the
block in E, in which case the LLC/memory is the owner, or in M, in which case the cache is the
owner. If a GetS or GetM is serialized on the bus at this point, the cache can easily determine
whether it is the owner and should respond, but the memory controller cannot make this same
determination.

One solution to this problem is to have the LLC/memory wait for the cache to respond.
When a GetS or GetM is serialized on the bus, a cache with the block in state M responds with
data. The memory controller waits a fixed amount of time and, if no response appears in that
window of time, the memory controller deduces that it is the owner and that it must respond.
If a response from a cache does appear, the memory controller does not respond to the coher-
ence request. This solution has a couple drawbacks, including potentially increased latency for
responses from memory. Some implementations hide some or all of this latency by speculatively
prefetching the block from memory, at the expense of increased memory bandwidth, power, and
energy. A more significant drawback is having to design the system such that the caches’ response
latency is predictable and short.

S

I

PutM

E or M

GetS GetM

GetS
or GetM

FIguRE 7.5: MESI: Transitions
between stable states at memory
controller

I

E

S

Own-GetS
(mem not in I)

Own-GetM

silent

Other-GetM
or

Own-PutM

Own-GetM

M

silent

Other-GetM
or

Own-PutM

Own-GetS
(mem in I)

Other-GetS

Other-GetS

FIguRE 7.4: MESI: Transitions between
stable states at cache controller

118 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

7.3.4 Detailed Specification
In Tables 7.11 and 7.12, we present the detailed specification of the MESI protocol, including tran-
sient states. Differences with respect to the MSI protocol are highlighted with boldface font. The
protocol adds to the set of cache states just the stable E state and the transient state EIA, but there
are several more LLC/memory states, including an extra transient state.

This MESI protocol shares all of the same simplifications present in the baseline MSI pro-
tocol. Coherence transactions are still atomic, etc.

TABLE 7.11: MESI Snooping Protocol—Cache Controller. A Shaded Entry Labeled “(A)”
Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

128

TABLE 7-11. MESI Snooping protocol - Cache Controller. A shaded entry labeled “(A)”

denotes that this transition is impossible because transactions are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

O
w

n
 D

a
t
a

 r
e
s
p

o
n

s
e

(
e
x

c
l
u

s
i
v

e
)

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

IS
D stall stall stall (A) (A) (A) -/S -/E

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall

-/SM
D -

-/IM
AD -

SM
D hit stall stall (A) (A) (A) -/M

E hit hit/M issue

PutM/EI
A

send data to

requestor and

to memory/S

send data to

requestor/I

-

M hit hit issue

PutM/MI
A

send data to

requestor and to

memory/S

send data to

requestor/I

-

MI
A hit hit stall send data

to mem-

ory/I

send data to

requestor and to

memory/II
A

send data to

requestor/II
A

-

EI
A hit stall stall send

NoData-E

to mem-

ory/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

-

II
A stall stall stall send

NoData to

memory/I

- - -

TABLE 7-12. MESI Snooping Protocol - Memory Controller. A shaded entry labeled

“(A)” denotes that this transition is impossible because transactions are atomic on bus.

GetS GetM PutM Data NoData NoData-E

I send data to

requestor/EorM

send data to

requestor/EorM

-/I
D

S send data to requestor send data to

requestor/EorM

-/S
D

EorM
-/S

D -
-/EorM

D

I
D (A) (A) (A) write data to

memory/I

-/I -/I

S
D (A) (A) (A) write data to

memory/S

-/S -/S

EorM
D (A) (A) (A) write data to

memory/I

-/EorM -/I

SNOOPINg COHERENCE PROTOCOLS 119

7.3.5 Running Example
We now return to the running example, illustrated in Table 7.13. The execution differs from the
MSI protocol almost immediately. When C1’s GetS appears on the bus, the LLC/memory is in
state I and can thus send C1 Exclusive data. C1 observes the Exclusive data on the bus and changes
its state to E (instead of S, as in the MSI protocol). The rest of the execution proceeds similarly to
the MSI example, with minor transient state differences.

7.4 ADDINg THE OWNED STATE
A second important optimization is the Owned state, and in this section, we describe how to cre-
ate a MOSI snooping protocol by augmenting the baseline protocol from Section 7.2.3 with the O
state. Recall from Chapter 2 that if a cache has a block in the Owned state, then the block is valid,
read-only, dirty, and the cache is the owner, i.e., the cache must respond to coherence requests for
the block. We maintain the same system model as the baseline snooping MSI protocol; transactions
are atomic but requests are not atomic.

7.4.1 Motivation
Compared to an MSI or MESI protocol, adding the O state is advantageous in one specific and im-
portant situation: when a cache has a block in state M or E and receives a GetS from another core.
In the MSI protocol of Section 7.2.3 and the MESI protocol of Section 7.3, the cache must change
the block state from M or E to S and send the data to both the requestor and the memory controller.

TABLE 7.12: MESI Snooping Protocol—Memory Controller. A Shaded Entry Labeled “(A)”
Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

128

TABLE 7-11. MESI Snooping protocol - Cache Controller. A shaded entry labeled “(A)”

denotes that this transition is impossible because transactions are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

O
w

n
 D

a
t
a

 r
e
s
p

o
n

s
e

(
e
x

c
l
u

s
i
v

e
)

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

IS
D stall stall stall (A) (A) (A) -/S -/E

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall

-/SM
D -

-/IM
AD -

SM
D hit stall stall (A) (A) (A) -/M

E hit hit/M issue

PutM/EI
A

send data to

requestor and

to memory/S

send data to

requestor/I

-

M hit hit issue

PutM/MI
A

send data to

requestor and to

memory/S

send data to

requestor/I

-

MI
A hit hit stall send data

to mem-

ory/I

send data to

requestor and to

memory/II
A

send data to

requestor/II
A

-

EI
A hit stall stall send

NoData-E

to mem-

ory/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

-

II
A stall stall stall send

NoData to

memory/I

- - -

TABLE 7-12. MESI Snooping Protocol - Memory Controller. A shaded entry labeled

“(A)” denotes that this transition is impossible because transactions are atomic on bus.

GetS GetM PutM Data NoData NoData-E

I send data to

requestor/EorM

send data to

requestor/EorM

-/I
D

S send data to requestor send data to

requestor/EorM

-/S
D

EorM
-/S

D -
-/EorM

D

I
D (A) (A) (A) write data to

memory/I

-/I -/I

S
D (A) (A) (A) write data to

memory/S

-/S -/S

EorM
D (A) (A) (A) write data to

memory/I

-/EorM -/I

120 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The data must be sent to the memory controller because the responding cache relinquishes owner-
ship (by downgrading to state S) and the LLC/memory becomes the owner and thus must thus have
an up-to-date copy of the data with which to respond to subsequent requests.

Adding the O state achieves two benefits: (1) it eliminates the extra data message to update
the LLC/memory when a cache receives a GetS request in the M (and E) state, and (2) it eliminates
the potentially unnecessary write to the LLC (if the block is written again before being written
back to the LLC). Historically, for multi-chip multiprocessors, there was a third benefit, which was
that the O state allows subsequent requests to be satisfied by the cache instead of by the far-slower
memory. Today, in a multicore with an inclusive LLC, as in the system model in this primer, the
access latency of the LLC is not nearly as long as that of off-chip DRAM memory. Thus, having
a cache respond instead of the LLC is not as big of a benefit as having a cache respond instead of
memory.

We now present a MOSI protocol and show how it achieves these two benefits.

TABLE 7.13: MESI: Example Execution

129

7.4 Adding the Owned State

A second important optimization is the Owned state, and in this section we describe how to create a

MOSI snooping protocol by augmenting the baseline protocol from Section 7.2.3 with the O state. Recall

from Chapter 2 that, if a cache has a block in the Owned state, then the block is valid, read-only, dirty, and

the cache is the owner, i.e., the cache must respond to coherence requests for the block. We maintain the

same system model as the baseline snooping MSI protocol; transactions are atomic but requests are not

atomic.

7.4.1 Motivation

Compared to an MSI or MESI protocol, adding the O state is advantageous in one specific and impor-

tant situation: when a cache has a block in state M or E and receives a GetS from another core. In the MSI

protocol of Section 7.2.3 and the MESI protocol of Section 7.3, the cache must change the block state from

M or E to S and send the data to both the requestor and the memory controller. The data must be sent to the

memory controller, because the responding cache relinquishes ownership (by downgrading to state S) and

TABLE 7-13. MESI: Example execution

cycle Core C1 Core C2 LLC/memory request on bus data on bus

1
issue GetS / IS

AD

2
issue GetM / IM

AD

3 GetS (C1)

4
- / IS

D send exclusive data to

C1 / EorM

5 exclusive data

from LLC/mem

6 copy data from

LLC/mem / E

GetM (C2)

7 send data to C2/ I
- / IM

D -/EorM

8 data from C1

9 copy data from C1 / M

10
issue GetS / IS

AD

11 GetS (C1)

12
- / IS

D send data to C1 and to

LLC/mem / S

- / S
D

13 data from C2

14 copy data from C2

/ S

copy data from C2 / S

SNOOPINg COHERENCE PROTOCOLS 121

7.4.2 High-Level Protocol Specification
We specify a high-level view of the transitions between stable states in Figures 7.6 and 7.7. The key
difference is what happens when a cache with a block in state M receives a GetS from another core.
In a MOSI protocol, the cache changes the block state to O (instead of S) and retains ownership
of the block (instead of transferring ownership to the LLC/memory). Thus, the O state enables the
cache to avoid updating the LLC/memory.

7.4.3 Detailed Protocol Specification
In Tables 7.14 and 7.15, we present the detailed specification of the MOSI protocol, including tran-
sient states. Differences with respect to the MSI protocol are highlighted with boldface font. The
protocol adds two transient cache states in addition to the stable O state. The transient OIA state
helps handle replacements of blocks in state O and the transient OMA state handles upgrades back
to state M after a store. The memory controller has no additional transient states, but we rename
what had been the M state to MorO because the memory controller does not need to distinguish
between these two states.

To keep the specification as concise as possible, we consolidate the PutM and PutO transac-
tions into a single PutM transaction. That is, a cache evicts a block in state O with a PutM. This

MorO

I or S

GetM
PutM

FIguRE 7.7: MOSI: Transitions
between stable states at memory
controller

I

O

S

Own-GetS

Own-GetMOther-GetS

Other-GetM
or

Own-PutM
Own-GetM

M

Other-GetM
or

Own-PutM

Own-GetM

silent

FIguRE 7.6: MOSI: Transitions between stable
states at cache controller

122 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

decision has no impact on the protocol’s functionality, but does help to keep the tabular specification
readable.

This MOSI protocol shares all of the same simplifications present in the baseline MSI pro-
tocol. Coherence transactions are still atomic, etc.

7.4.4 Running Example
In Table 7.16, we return to the running example that we introduced for the MSI protocol. The
example proceeds identically to the MSI example until C1’s second GetS appears on the bus. In the
MOSI protocol, this second GetS causes C2 to respond to C1 and change its state to O (instead

TABLE 7.14: MOSI Snooping Protocol—Cache Controller. A Shaded Entry Labeled “(A)”
Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

132

analogous to having an unpipelined processor core; there is no way to overlap activities that could proceed

in parallel. Figure 7-8 illustrates the operation of an atomic bus. Since a coherence transaction occupies the

TABLE 7-14. MOSI Snooping protocol - Cache Controller. A shaded entry labeled “(A)”

denotes that this transition is impossible because transactions are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall -/IS

D - - -

IS
D stall stall stall (A) (A) (A) -/S

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall -/SM

D - -/IM
AD -

SM
D hit stall stall (A) (A) (A) -/M

O hit issue GetM

/OM
A

issue PutM/OI
A send data to

requestor

send data to

requestor/I

-

OM
A hit stall stall -/M send data to

requestor

send data to

requestor

/IM
AD

-

M hit hit
issue PutM/MI

A send data to

requestor/O

send data to

requestor/I

-

MI
A hit hit stall send data to

memory/I

send data to

requestor /OI
A

send data to

requestor/II
A

-

OI
A hit stall stall send data

to memory

/I

send data to

requestor

send data to

requestor/II
A

-

II
A stall stall stall send

NoData to

memory/I

- - -

TABLE 7-15. MOSI Snooping Protocol - Memory Controller. A shaded entry labeled

“(A)” denotes that this transition is impossible because transactions are atomic on bus.

GetS GetM PutM Data From Owner NoData

IorS send data to requestor send data to requestor/MorO -/IorS
D

IorS
D (A) (A) write data to memory

/IorS

-/IorS

MorO - - -/MorO
D

MorO
D (A) (A) write data to mem-

ory/IorS

-/MorO

SNOOPINg COHERENCE PROTOCOLS 123

of S). C2 retains ownership of the block and does not need to copy the data back to the LLC/
memory (unless and until it evicts the block, not shown).

7.5 NON-ATOMIC BuS
The baseline MSI protocol, as well as the MESI and MOSI variants, all rely on the Atomic Trans-
actions assumption. This atomicity greatly simplifies the design of the protocol, but it sacrifices
performance.

TABLE 7.15: MOSI Snooping Protocol—Memory Controller. A Shaded Entry Labeled
“(A)” Denotes that this Transition is Impossible Because Transactions are Atomic on Bus.

132

analogous to having an unpipelined processor core; there is no way to overlap activities that could proceed

in parallel. Figure 7-8 illustrates the operation of an atomic bus. Since a coherence transaction occupies the

TABLE 7-14. MOSI Snooping protocol - Cache Controller. A shaded entry labeled “(A)”

denotes that this transition is impossible because transactions are atomic on bus.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall -/IS

D - - -

IS
D stall stall stall (A) (A) (A) -/S

IM
AD stall stall stall

-/IM
D - - -

IM
D stall stall stall (A) (A) (A) -/M

S hit issue

GetM/SM
AD

-/I - -/I -

SM
AD hit stall stall -/SM

D - -/IM
AD -

SM
D hit stall stall (A) (A) (A) -/M

O hit issue GetM

/OM
A

issue PutM/OI
A send data to

requestor

send data to

requestor/I

-

OM
A hit stall stall -/M send data to

requestor

send data to

requestor

/IM
AD

-

M hit hit
issue PutM/MI

A send data to

requestor/O

send data to

requestor/I

-

MI
A hit hit stall send data to

memory/I

send data to

requestor /OI
A

send data to

requestor/II
A

-

OI
A hit stall stall send data

to memory

/I

send data to

requestor

send data to

requestor/II
A

-

II
A stall stall stall send

NoData to

memory/I

- - -

TABLE 7-15. MOSI Snooping Protocol - Memory Controller. A shaded entry labeled

“(A)” denotes that this transition is impossible because transactions are atomic on bus.

GetS GetM PutM Data From Owner NoData

IorS send data to requestor send data to requestor/MorO -/IorS
D

IorS
D (A) (A) write data to memory

/IorS

-/IorS

MorO - - -/MorO
D

MorO
D (A) (A) write data to mem-

ory/IorS

-/MorO

TABLE 7.16: MOSI: Example Execution.

133

bus until the response completes, an atomic bus trivially implements atomic transactions. However, the

throughput of the bus is limited by the sum of the latencies for a request and response (including any wait

cycles between request and response, not shown). Considering that a response could be provided by off-

chip memory, this latency bottlenecks bus performance.

Figure 7-9 illustrates the operation of a pipelined, non-atomic bus. The key advantage is not having to

wait for a response before a subsequent request can be serialized on the bus, and thus the bus can achieve

much higher bandwidth using the same set of shared wires. However, implementing atomic transactions

becomes much more difficult (but not impossible). The atomic transactions property restricts concurrent

transactions to the same block, but not different blocks. The SGI Challenge enforced atomic transactions

on a pipelined bus using a fast table lookup to check whether or not another transaction was already pend-

ing for the same block.

7.5.2 In-Order vs. Out-of-order Responses

One major design issue for a non-atomic bus is whether it is pipelined or split-transaction. A pipelined

bus, as illustrated in Figure 7-9, provides responses in the same order as the requests. A split-transaction

bus, illustrated in Figure 7-10, can provide responses in an order different from the request order.

TABLE 7-16. MOSI: Example execution

cycle Core C1 (C1) Core C2 (C2) LLC/memory request on bus data on bus

1
issue GetS / IS

AD

2
issue GetM / IM

AD

3 GetS (C1)

4
- / IS

D send data to C1

/IorS

5 data from LLC/mem

6 copy data from

LLC/mem / S

GetM (C2)

7 - / I - / IM
D send data to C2 /

MorO

8 data from LLC/mem

9 copy data from LLC/mem / M

10
issue GetS / IS

AD

11 GetS (C1)

12
- / IS

D send data to C1/ O - / MorO

13 data from C2

14 copy data from C2 / S

124 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

7.5.1 Motivation
The simplest way to implement atomic transactions is to use a shared-wire bus with an atomic bus
protocol; that is, all bus transactions consist of an indivisible request-response pair. Having an atomic
bus is analogous to having an unpipelined processor core; there is no way to overlap activities that
could proceed in parallel. Figure 7.8 illustrates the operation of an atomic bus. Because a coherence
transaction occupies the bus until the response completes, an atomic bus trivially implements atomic
transactions. However, the throughput of the bus is limited by the sum of the latencies for a request
and response (including any wait cycles between request and response, not shown). Considering that
a response could be provided by off-chip memory, this latency bottlenecks bus performance.

Figure 7.9 illustrates the operation of a pipelined, non-atomic bus. The key advantage is not
having to wait for a response before a subsequent request can be serialized on the bus, and thus the
bus can achieve much higher bandwidth using the same set of shared wires. However, implement-
ing atomic transactions becomes much more difficult (but not impossible). The atomic transac-
tions property restricts concurrent transactions to the same block, but not different blocks. The
SGI Challenge enforced atomic transactions on a pipelined bus using a fast table lookup to check
whether or not another transaction was already pending for the same block.

7.5.2 In-Order vs. Out-of-order Responses
One major design issue for a non-atomic bus is whether it is pipelined or split-transaction. A
pipelined bus, as illustrated in Figure 7.9, provides responses in the same order as the requests. A
split-transaction bus, illustrated in Figure 7.10, can provide responses in an order different from the
request order.

The advantage of a split-transaction bus, with respect to a pipelined bus, is that a low-latency
response does not have to wait for a long-latency response to a prior request. For example, if Request
1 is for a block owned by memory and not present in the LLC and Request 2 is for a block owned by
an on-chip cache, then forcing Response 2 to wait for Response 1, as a pipelined bus would require,
incurs a performance penalty.

One issue raised by a split-transaction bus is matching responses with requests. With an
atomic bus, it is obvious that a response corresponds to the most recent request. With a pipelined
bus, the requestor must keep track of the number of outstanding requests to determine which mes-
sage is the response to its request. With a split-transaction bus, the response must carry the identity
of the request or the requestor.

7.5.3 Non-Atomic System Model
We assume a system like the one illustrated in Figure 7.11. The request bus and the response bus
are split and operate independently. Each coherence controller has connections to and from both

SNOOPINg COHERENCE PROTOCOLS 125

request 1

response 1

request 2

response 2

request 3

response 3

address bus

data bus

FIguRE 7.8: Atomic bus

request 1 request 2 request 3

response 1 response 2 response 3

address bus

data bus

FIguRE 7.9: Pipelined (non-atomic) bus

request 1 request 2 request 3address bus

response 2 response 3 response 1data bus

FIguRE 7.10: Split transaction (non-atomic) bus

cache
controller

cache

core

memory
controller

LLC

Request Bus

Response Bus

cache
controller

cache

core

FIguRE 7.11: System model with split-transaction bus

126 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

buses, with the exception that the memory controller does not have a connection to make requests.
We draw the FIFO queues for buffering incoming and outgoing messages because it is important
to consider them in the coherence protocol. Notably, if a coherence controller stalls when process-
ing an incoming request from the request bus, then all requests behind it (serialized after the stalled
request) will not be processed by that coherence controller until it processes the currently stalled re-
quest. These queues are processed in a strict FIFO fashion, regardless of message type or address.

7.5.4 An MSI Protocol with a Split-Transaction Bus
In this section, we modify the baseline MSI protocol for use in a system with a split-transaction
bus. Having a split-transaction bus does not change the transitions between stable states, but it
has a large impact on the detailed implementation. In particular, there are many more possible
transitions.

In Tables 7.17 and 7.18, we specify the protocol. Several transitions are now possible that
were not possible with the atomic bus. For example, a cache can now receive an Other-GetS for
a block it has in state ISD. All of these newly possible transitions are for blocks in transient states
in which the cache is awaiting a data response; while waiting for the data, the cache first observes
another coherence request for the block. Recall from Section 7.1 that a transaction is ordered based
on when its request is ordered on the bus, not when the data arrives at the requestor. Thus, in each
of these newly possible transitions, the cache has already effectively completed its transaction but
just happens to not have the data yet. Returning to our example of ISD, the cache block is effectively
in S. Thus, the arrival of an Other-GetS in this state requires no action to be taken because a cache
with a block in S need not respond to an Other-GetS.

The newly possible transitions other than the above example, however, are more complicated.
Consider a block in a cache in state IMD when an Other-GetS is observed on the bus. The cache
block is effectively in state M and the cache is thus the owner of the block but does not yet have
the block’s data. Because the cache is the owner, the cache must respond to the Other-GetS, yet
the cache cannot respond until it receives the data. The simplest solution to this situation is for the
cache to stall processing of the Other-GetS until the data response arrives for its Own-GetM. At
that point, the cache block will change to state M and the cache will have valid data to send to the
requestor of the Other-GetS.

For the other newly possible transitions, at both the cache controller and the memory con-
troller, we also choose to stall until data arrives to satisfy the in-flight request. This is the simplest
approach, but it raises three issues. First, it sacrifices some performance, as we discuss in the next
section.

SNOOPINg COHERENCE PROTOCOLS 127

Second, stalling raises the potential of deadlock. If a controller can stall on a message while
awaiting another event (message arrival), the architect must ensure that the awaited event will
eventually occur. Circular chains of stalls can lead to deadlock and must be avoided. In our protocol
in this section, controllers that stall are guaranteed to receive the messages that un-stall them. This
guarantee is easy to see because the controller has already seen its own request, the stall only affects
the request network, and the controller is waiting for a Data message on the response network.

TABLE 7.17: MSI Snooping Protocol with Split-Transaction Bus—Cache Controller

136

the block. Recall from Section 7.1 that a transaction is ordered based on when its request is ordered on the

bus, not when the data arrives at the requestor. Thus, in each of these newly possible transitions, the cache

has already effectively completed its transaction but just happens to not have the data yet. Returning to our

TABLE 7-17. MSI Snooping Protocol with Split-Transaction Bus - Cache Controller

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

o
r
 O

w
n

G
e
t
M

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

 r
e
s
p

o
n

s
e

(
f
o

r
 o

w
n

 r
e
q

u
e
s
t
)

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

-/IS
A

IS
D stall stall stall - stall load

hit/S

IS
A stall stall stall load

hit/S

- -

IM
AD stall stall stall

-/IM
D - - -

-/IM
A

IM
D stall stall stall stall stall store

hit/M

IM
A stall stall stall store

hit/M

- -

S hit issue

GetM/SM
AD

-/I - -/I

SM
AD hit stall stall -/SM

D - -/IM
AD

-/SM
A

SM
D hit stall stall stall stall store

hit/M

SM
A hit stall stall store

hit/M

- -/IM
A

M hit hit issue

PutM/MI
A

send data to

requestor and

to memory/S

send data to

requestor/I

MI
A hit hit stall send data

to

requestor

/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

II
A stall stall stall -/I - - -

TABLE 7-18. MSI Snooping Protocol with Split-Transaction Bus - Memory Controller

GetS GetM

PutM

from Owner

PutM

from Non-Owner Data

IorS send data to requestor send data to requestor, set

Owner to requestor/M

-

M
clear Owner/IorS

D set Owner to requestor
clear Owner/IorS

D -
write data to memory/IorS

A

IorS
D stall stall stall - write data to memory/IorS

IorS
A clear Owner/IorS - clear Owner/IorS -

128 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The third issue raised by stalling coherence requests is that, perhaps surprisingly, it enables
a requestor to observe a response to its request before processing its own request. Consider the
example in Table 7.19. Core C1 issues a GetM for block X and changes the state of X to IMAD.
C1 observes its GetM on the bus and changes state to IMD. The LLC/memory is the owner of X
and takes a long time to retrieve the data from memory and put it on the bus. In the meanwhile,
core C2 issues a GetM for X that gets serialized on the bus but cannot be processed by C1 (i.e., C1
stalls). C1 issues a GetM for block Y that then gets serialized on the bus. This GetM for Y is queued
up behind the previously stalled coherence request at C1 (the GetM from C2) and thus C1 cannot
process its own GetM for Y. However, the owner, C2, can process this GetM for Y and responds
quickly to C1. Thus, C1 can observe the response to its GetM for Y before processing its request.
This possibility requires the addition of transient states. In this example, core C1 changes the state
of block Y from IMAD to IMA. Similarly, the protocol also needs to add transient states ISA and
SMA. In these transient states, in which the response is observed before the request, the block is ef-
fectively in the prior state. For example, a block in IMA is logically in state I because the GetM has
not been processed yet; the cache controller does not respond to an observed GetS or GetM if the
block is in IMA. We contrast IMA with IMD—in IMD, the block is logically in M and the cache
controller must respond to observed GetS or GetM requests once data arrives.

This protocol has one other difference with respect to the previous protocols in this chapter,
and the difference pertains to PutM transactions. The situation that is handled differently is when
a core, say, core C1, issues a PutM, and a GetS or GetM from another core for the same block gets
ordered before C1’s PutM. C1 transitions from state MIA to IIA before it observes its own PutM. In
the atomic protocols earlier in this chapter, C1 observes its own PutM and sends a NoData message
to the LLC/memory. The NoData message informs the LLC/memory that the PutM transaction
is complete (i.e., it does not have to wait for data). C1 cannot send a Data message to the LLC/
memory in this situation because C1’s data are stale and the protocol cannot send the LLC/memory
stale data that would then overwrite the up-to-date value of the data. In the non-atomic protocols

TABLE 7.18: MSI Snooping Protocol with Split-Transaction Bus—Memory Controller

136

the block. Recall from Section 7.1 that a transaction is ordered based on when its request is ordered on the

bus, not when the data arrives at the requestor. Thus, in each of these newly possible transitions, the cache

has already effectively completed its transaction but just happens to not have the data yet. Returning to our

TABLE 7-17. MSI Snooping Protocol with Split-Transaction Bus - Cache Controller

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

o
r
 O

w
n

G
e
t
M

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

 r
e
s
p

o
n

s
e

(
f
o

r
 o

w
n

 r
e
q

u
e
s
t
)

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall

-/IS
D - - -

-/IS
A

IS
D stall stall stall - stall load

hit/S

IS
A stall stall stall load

hit/S

- -

IM
AD stall stall stall

-/IM
D - - -

-/IM
A

IM
D stall stall stall stall stall store

hit/M

IM
A stall stall stall store

hit/M

- -

S hit issue

GetM/SM
AD

-/I - -/I

SM
AD hit stall stall -/SM

D - -/IM
AD

-/SM
A

SM
D hit stall stall stall stall store

hit/M

SM
A hit stall stall store

hit/M

- -/IM
A

M hit hit issue

PutM/MI
A

send data to

requestor and

to memory/S

send data to

requestor/I

MI
A hit hit stall send data

to

requestor

/I

send data to

requestor and

to memory/II
A

send data to

requestor/II
A

II
A stall stall stall -/I - - -

TABLE 7-18. MSI Snooping Protocol with Split-Transaction Bus - Memory Controller

GetS GetM

PutM

from Owner

PutM

from Non-Owner Data

IorS send data to requestor send data to requestor, set

Owner to requestor/M

-

M
clear Owner/IorS

D set Owner to requestor
clear Owner/IorS

D -
write data to memory/IorS

A

IorS
D stall stall stall - write data to memory/IorS

IorS
A clear Owner/IorS - clear Owner/IorS -

SNOOPINg COHERENCE PROTOCOLS 129

in this chapter, we augment the state of each block in the LLC with a field that holds the identity
of the current owner of the block. The LLC updates the owner field of a block on every transac-
tion that changes the block’s ownership. Using the owner field, the LLC can identify situations in
which a PutM from a non-owner is ordered on the bus; this is exactly the same situation in which
C1 is in state IIA when it observes its PutM. Thus, the LLC knows what happened and C1 does
not have to send a NoData message to the LLC. We chose to modify how PutM transactions are
handled in the non-atomic protocols, compared to the atomic protocols, for simplicity. Allowing the
LLC to directly identify this situation is simpler than requiring the use of NoData messages; with a
non-atomic protocol, there can be a large number of NoData messages in the system and NoData
messages can arrive before their associated PutM requests.

TABLE 7.19: Example: Response Before Request. Initially, Block X is in State I in Both
Caches and Block Y is in State M at Core C2.

138

IM
A

. We contrast IM
A

 with IM
D

—in IM
D

, the block is logically in M and the cache controller must

respond to observed GetS or GetM requests once data arrives.

This protocol has one other difference with respect to the previous protocols in this chapter, and the

difference pertains to PutM transactions. The situation that is handled differently is when a core, say Core

C1, issues a PutM and a GetS or GetM from another core for the same block gets ordered before C1’s

PutM. C1 transitions from state MI
A

 to II
A

 before it observes its own PutM. In the atomic protocols earlier

in this chapter, C1 observes its own PutM and sends a NoData message to the LLC/memory. The NoData

message informs the LLC/memory that the PutM transaction is complete (i.e., it does not have to wait for

data). C1 cannot send a Data message to the LLC/memory in this situation, because C1’s data is stale and

the protocol cannot send the LLC/memory stale data that would then overwrite the up-to-date value of the

data. In the non-atomic protocols in this chapter, we augment the state of each block in the LLC with a

field that holds the identity of the current owner of the block. The LLC updates the owner field of a block

on every transaction that changes the block’s ownership. Using the owner field, the LLC can identify situ-

TABLE 7-19. Example: response before request. Initially, block X is in state I in both

caches and block Y is in state M at Core C2.

cycle Core C1 Core C2 LLC/memory request on bus data on bus

initial X:I

Y:I

X:I

Y:M

X:I

Y:M

1 X: store miss; issue GetM/

IM
AD

2 X: GetM (C1)

3 X: process GetM (C1) / IM
D X: process GetM (C1) - ignore; X: process GetM (C1) - LLC

miss, start accessing X from

DRAM

4
X:store miss; issue GetM/ IM

AD

5 Y: store miss; issue GetM/

IM
AD

X: GetM (C2)

6 X: stall on GetM (C2) X: process GetM (C2) / IM
D X: process GetM (C2) - ignore Y: GetM (C1)

7 Y: process GetM/ IM
D Y: process GetM (C1) - send data

to C1 / I

Y: process GetM (C1) - ignore

8 Y: data from C2

9 Y: write data into cache

/IM
A

10 X: LLC miss completes, send

data to C1

11 X: data from LLC

12 X: write data into cache/ M

Perform store

13 X: (unstall) process GetM

(C2) - send data to C2 / I

14 Y: process (in-order) GetM

(C1) / M ; perform store

X: data from C1

15 X: write data into cache/M

perform store

130 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

7.5.5 An Optimized, Non-Stalling MSI Protocol with a Split-Transaction Bus
As mentioned in the previous section, we sacrificed some performance by stalling on the newly
possible transitions of the system with the split-transaction bus. For example, a cache with a block
in state ISD stalled instead of processing an Other-GetM for that block. However, it is possible
that there are one or more requests after the Other-GetM, to other blocks, that the cache could
process without stalling. By stalling a request, the protocol stalls all requests after the stalled request
and delays those transactions from completing. Ideally, we would like a coherence controller to
process requests behind a request that is stalled, but recall that—to support a total order of memory
requests—snooping requires coherence controllers to observe and process requests in the order re-
ceived. Reordering is not allowed.

The solution to this problem is to process all messages, in order, instead of stalling. Our ap-
proach is to add transient states that reflect messages that the coherence controller has received but
must remember to complete at a later event. Returning to the example of a cache block in ISD, if the
cache controller observes an Other-GetM on the bus, then it changes the block state to ISDI (which
denotes “in I, going to S, waiting for data, and when data arrives will go to I”). Similarly, a block in
IMD that receives an Other-GetS changes state to IMDS and must remember the requestor of the
Other-GetS. When the data arrive in response to the cache’s GetM, the cache controller sends the
data to the requestor of the Other-GetS and changes the block’s state to S.

In addition to the proliferation of transient states, a non-stalling protocol introduces a poten-
tial livelock problem. Consider a cache with a block in IMDS that receives the data in response to its
GetM. If the cache immediately changes the block state to S and sends the data to the requestor of
the Other-GetS, it does not get to perform the store for which it originally issued its GetM. If the
core then re-issues the GetM, the same situation could arise again and again, and the store might
never perform. To guarantee that this livelock cannot arise, we require that a cache in ISDI, IMDI,
IMDS, or IMDSI (or any comparable state in a protocol with additional stable coherence states)
perform one load or store to the block when it receives the data for its request.6 After performing
one load or store, it may then change state and forward the block to another cache. We defer a more
in-depth treatment of livelock to Section 9.3.2.

We present the detailed specification of the non-stalling MSI protocol in Tables 7.20 and
7.21. The most obvious difference is the number of transient states. There is nothing inherently
complicated about any of these states, but they do add to the overall complexity of the protocol.

We have not removed the stalls from the memory controller because it is not feasible. Con-
sider a block in IorSD. The memory controller observes a GetM from core C1 and currently stalls.

6 The load or store must be performed if and only if that load or store was the oldest load or store in program order
when the coherence request was first issued. We discuss this issue in more detail in Section 9.3.2.

SNOOPINg COHERENCE PROTOCOLS 131

TABLE 7.20: Optimized MSI Snooping with Split-Transaction Bus—Cache Controller

141

TABLE 7-20. Optimized MSI Snooping with Split-Transaction Bus - Cache Controller

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall -/IS

D - - - -/IS
A

IS
D stall stall stall - -/IS

D
I load hit/S

IS
A stall stall stall load hit/S - -

IS
D

I
stall stall stall - - load hit/I

IM
AD stall stall stall

-/IM
D - - -

-/IM
A

IM
D stall stall stall

-/IM
D

S -/IM
D

I
store hit//M

IM
A stall stall stall store

hit/M

- - -

IM
D

I
stall stall stall - - store hit, send data to

GetM requestor/I

IM
D

S
stall stall stall -

-/IM
D

SI
store hit, send data to

GetS requestor and

mem/S

IM
D

SI stall stall stall - store hit, send data to

GetS requestor and

mem/I

S hit issue

GetM/SM
AD

-/I - -/I

SM
AD hit stall stall -/SM

D - -/IM
AD

-/SM
A

SM
D hit stall stall -/SM

D
S -/SM

D
I store hit/M

SM
A hit stall stall store

hit/M

- -/IM
A

SM
D

I hit stall stall - - store hit, send data to

GetM requestor/I

SM
D

S hit stall stall - -/SM
D

SI store hit, send data to

GetS requestor and

mem/S

SM
D

SI
hit stall stall - - store hit, send data to

GetS requestor and

mem/I

M hit hit issue

PutM/MI
A

send data to

requestor and to

memory/S

send data to

requestor/I

MI
A hit hit stall send data

to

requestor/I

send data to

requestor and to

memory/II
A

send data to

requestor/II
A

II
A stall stall stall -/I - - -

TABLE 7-21. Optimized MSI Snooping with Split-Transaction Bus - Memory Controller

GetS GetM

PutM

from Owner

PutM

from Non-Owner Data

IorS send data to requestor send data to requestor, set

owner to requestor/M

-

M clear Owner/IorS
D set Owner to requestor clear Owner/IorS

D - write data to memory/IorS
A

IorS
D stall stall stall - write data to memory/IorS

IorS
A clear Owner/IorS - clear Owner/IorS -

132 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

However, it would appear that we could simply change the block’s state to IorSDM while waiting
for the data. Yet, while in IorSDM, the memory controller could observe a GetS from core C2. If
the memory controller does not stall on this GetS, it must change the block state to IorSDMIorSD.
In this state, the memory controller could observe a GetM from core C3. There is no elegant way to
bound the number of transient states needed at the LLC/memory to a small number (i.e., smaller
than the number of cores) and so, for simplicity, we have the memory controller stall.

7.6 OPTIMIZATIONS TO THE BuS INTERCONNECTION
NETWORK

So far in this chapter we have assumed system models in which there exists a single shared-wire bus
for coherence requests and responses or dedicated shared-wire buses for requests and responses. In
this section, we explore two other possible system models that enable improved performance.

7.6.1 Separate Non-Bus Network for Data Responses
We have emphasized the need of snooping systems to provide a total order of broadcast coherence
requests. The example in Table 7.2 showed how the lack of a total order of coherence requests can
lead to incoherence. However, there is no such need to order coherence responses, nor is there a need
to broadcast them. Thus, coherence responses could travel on a separate network that does not sup-
port broadcast or ordering. Such networks include crossbars, meshes, tori, butterflies, etc.

There are several advantages to using a separate, non-bus network for coherence responses.

Implementability: it is difficult to implement high-speed shared-wire buses, particularly for
systems with many controllers on the bus. Other topologies can use point-to-point links.
Throughput: a bus can provide only one response at a time. Other topologies can have
multiple responses in-flight at a time.
Latency: using a bus for coherence responses requires that each response incur the latency
to arbitrate for the bus. Other topologies can allow responses to be sent immediately with-
out arbitration.

•

•

•

TABLE 7.21: Optimized MSI Snooping with Split-Transaction Bus—Memory Controller

141

TABLE 7-20. Optimized MSI Snooping with Split-Transaction Bus - Cache Controller

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

O
w

n
G

e
t
S

O
w

n
G

e
t
M

O
w

n
P

u
t
M

O
t
h

e
r
G

e
t
S

O
t
h

e
r
G

e
t
M

O
t
h

e
r
P

u
t
M

O
w

n
 D

a
t
a

r
e
s
p

o
n

s
e

I issue

GetS/IS
AD

issue

GetM/IM
AD

- - -

IS
AD stall stall stall -/IS

D - - - -/IS
A

IS
D stall stall stall - -/IS

D
I load hit/S

IS
A stall stall stall load hit/S - -

IS
D

I
stall stall stall - - load hit/I

IM
AD stall stall stall

-/IM
D - - -

-/IM
A

IM
D stall stall stall

-/IM
D

S -/IM
D

I
store hit//M

IM
A stall stall stall store

hit/M

- - -

IM
D

I
stall stall stall - - store hit, send data to

GetM requestor/I

IM
D

S
stall stall stall -

-/IM
D

SI
store hit, send data to

GetS requestor and

mem/S

IM
D

SI stall stall stall - store hit, send data to

GetS requestor and

mem/I

S hit issue

GetM/SM
AD

-/I - -/I

SM
AD hit stall stall -/SM

D - -/IM
AD

-/SM
A

SM
D hit stall stall -/SM

D
S -/SM

D
I store hit/M

SM
A hit stall stall store

hit/M

- -/IM
A

SM
D

I hit stall stall - - store hit, send data to

GetM requestor/I

SM
D

S hit stall stall - -/SM
D

SI store hit, send data to

GetS requestor and

mem/S

SM
D

SI
hit stall stall - - store hit, send data to

GetS requestor and

mem/I

M hit hit issue

PutM/MI
A

send data to

requestor and to

memory/S

send data to

requestor/I

MI
A hit hit stall send data

to

requestor/I

send data to

requestor and to

memory/II
A

send data to

requestor/II
A

II
A stall stall stall -/I - - -

TABLE 7-21. Optimized MSI Snooping with Split-Transaction Bus - Memory Controller

GetS GetM

PutM

from Owner

PutM

from Non-Owner Data

IorS send data to requestor send data to requestor, set

owner to requestor/M

-

M clear Owner/IorS
D set Owner to requestor clear Owner/IorS

D - write data to memory/IorS
A

IorS
D stall stall stall - write data to memory/IorS

IorS
A clear Owner/IorS - clear Owner/IorS -

SNOOPINg COHERENCE PROTOCOLS 133

7.6.2 Logical Bus for Coherence Requests
Snooping systems require that there exist a total order of broadcast coherence requests. A shared-
wire bus for coherence requests is the most straightforward way to achieve this total order of broad-
casts, but it is not the only way to do so. There are two ways to achieve the same totally ordered
broadcast properties as a bus (i.e., a logical bus) without having a physical bus.

Other topologies with physical total order: a shared-wire bus is the most obvious topology
for achieving a total order of broadcasts, but other topologies exist. One notable example
is a tree with the coherence controllers at the leaves of the tree. If all coherence requests
are unicasted to the root of the tree and then broadcast down the tree, then each coherence
controller observes the same total order of coherence broadcasts. The serialization point in
this topology is the root of the tree. Sun Microsystems used a tree topology in its Starfire
multiprocessor [3], which we discuss in detail in Section 7.7.
Logical total order: a total order of broadcasts can be obtained even without a network
topology that naturally provides such an order. The key is to order the requests in logical
time. Martin et al. [6] designed a snooping protocol, called Timestamp Snooping, that can
function on any network topology. To issue a coherence request, a cache controller broad-
casts it to every coherence controller and labels the broadcast with the logical time at which
the broadcast message should be ordered. The protocol must ensure that (a) every broad-
cast has a distinct logical time, (b) coherence controllers process requests in logical time
order (even when they arrive out of this order in physical time), and (c) no request at logical
time T can arrive at a controller after that controller has passed logical time T. Agarwal
et al. recently proposed a similar scheme called In-Network Snoop Ordering (INSO) [1].

Flashback to Quiz Question 7: A snooping cache coherence protocol requires the cores to com-
municate on a bus. True or false?
Answer: False! Snooping requires a totally ordered broadcast network, but that functionality can
be implemented without a physical bus.

7.7 CASE STuDIES
We present two examples of real-world snooping systems: the Sun Starfire E10000 and the IBM
Power5.

7.7.1 Sun Starfire E10000
Sun Microsystems’s Starfire E10000 [3] is an interesting example of a commercial system with a
snooping protocol. The coherence protocol itself is not that remarkable; the protocol is a typical

•

•

134 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

MOESI snooping protocol with write-back caches. What distinguishes the E10000 is how it was
designed to scale up to 64 processors. The architects innovated based on three important observa-
tions, which we discuss in turn.

First, shared-wire snooping buses do not scale to large numbers of cores, largely due to elec-
trical engineering constraints. In response to this observation, the E10000 uses only point-to-point
links instead of buses. Instead of broadcasting coherence requests on physical (shared-wire) buses,
the E10000 broadcasts coherence requests on a logical bus. The key insight behind snooping pro-
tocols is that they require a total order of coherence requests, but this total order does not require a
physical bus. As illustrated in Figure 7.12, the E10000 implements a logical bus as a tree, in which
the processors are the leaves. All links in the tree are point-to-point, thus eliminating the need for
buses. A processor unicasts a request up to the top of the tree, where it is serialized and then broad-
cast down the tree. Because of the serialization at the root, the tree provides totally ordered broad-
cast. A given request may arrive at two processors at different times, which is fine; the important
constraint is that the processors observe the same total order of requests.

The second observation made by the E10000 architects is that greater coherence request
bandwidth can be achieved by using multiple (logical) buses, while still maintaining a total order
of coherence requests. The E10000 has four logical buses, and coherence requests are address-
interleaved across them. A total order is enforced by requiring processors to snoop the logical buses
in a fixed, pre-determined order.

Third, the architects observed that data response messages, which are much larger than re-
quest messages, do not require the totally ordered broadcast network required for coherence requests.

proc

switch

proc

switch

crossbar data network

proc

switch

procproc

switch

proc proc

switch

proc

switch

switch

root of logical bus

unicast
request
up to root

broadcast
request down

broadcast
request down

FIguRE 7.12: Starfire E10000 (drawn with only eight processors for clarity). A coherence request is
unicast up to the root, where it is serialized, before being broadcast down to all processors.

SNOOPINg COHERENCE PROTOCOLS 135

Many prior snooping systems implemented a data bus, which needlessly provides both broadcast-
ing and total ordering, while limiting bandwidth. To improve bandwidth, the E10000 implements
the data network as a crossbar. Once again, there are point-to-point links instead of buses, and the
bandwidth of the crossbar far exceeds what would be possible with a bus (physical or logical).

The architecture of the E10000 has been optimized for scalability, and this optimized design
requires the architects to reason about non-atomic requests and non-atomic transactions.

7.7.2 IBM Power5
The IBM Power5 [8] is a 2-core chip in which both cores share an L2 cache. Each Power5 chip has
a fabric bus controller (FBC) that enables multiple Power5 chips to be connected together to create
larger systems. Large systems contain up to eight nodes, where each node is a multi-chip module
(MCM) with four Power5 chips.

Viewed abstractly, the IBM Power5 appears to use a fairly typical MESI snooping proto-
col implemented atop a split-transaction bus. However, this simplistic description misses several
unique features that are worth discussing. In particular, we focus on two aspects: the ring topology
of the interconnection network and the addition of novel variants of the MESI coherence states.

7.7.2.1 Snooping Coherence on a Ring
The Power5 uses an interconnection network that is quite different from what we have discussed
thus far, and these differences have important impacts on the coherence protocol. Most signifi-
cantly, the Power5 connects nodes with three unidirectional rings, which are used for carrying three
types of messages: requests, snoop responses/decision messages, and data. Unidirectional rings do
not provide a total order, unless all messages are required to start from the same node on the ring,
which the Power5 does not. Rather, the requestor sends a request message around the ring and then
absorbs the request when it sees it arrive back after traveling the entire ring. Each node observes the
request on the ring and every processor in the node determines its snoop response. The first node to
observe the request provides a single snoop response that is the aggregated snoop response of all of
the processors on that node. A snoop response is not an actual data response, but rather a description
of the action the chip or node would take. Without a totally ordered network, the chips/nodes can-
not immediately act because they might not make consistent decisions about how to respond. The
snoop response travels on the snoop response ring to the next node. This node similarly produces a
single snoop response that aggregates the snoop response of the first node plus the snoop responses
of all processors on the second node. When the aggregated snoop response of all nodes reaches the
requestor chip, the requestor chip determines what every processor should do to respond to the
request. The requestor chip broadcasts this decision along the ring to every node. This decision

136 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

message is processed by every node/chip in the ring, and the node/chip that has been determined to
be the one to provide a data response sends that data response on the data ring to the requestor.

This protocol is far more complicated than typical snooping protocols because of the lack of
a totally ordered interconnection network. The protocol still has a total logical order of coherence
requests, but without a totally ordered network, a node cannot immediately respond to a request be-
cause the request’s position in the total order has not yet been determined by when it appears on the
network. Despite the complexity, the Power5 design offers the advantages of having only point-to-
point links and the simplicity of the ring topology (e.g., routing in a ring is so simple that switching
can be faster than for other topologies). There have been other protocols that have exploited ring
topologies and explored ordering issues for rings [2, 4, 7].

7.7.2.2 Extra Variants of Coherence States
The Power5 protocol is fundamentally a MESI protocol, but it has several “flavors” of some of these
states. We list all of the states in Table 7.22. There are two new states that we wish to highlight.
First, there is the SL variant of the Shared state. If an L2 cache holds a block in state SL, it may
respond with data to a GetS from a processor on the same node, thus reducing this transaction’s
latency and reducing off-chip bandwidth demand; this ability to provide data distinguishes SL
from S.

TABLE 7.22: Power5 L2 Cache Coherence States

146

O state, in that it has a value that is more recent than the value in memory, and there may or may not be

copies of the block in state S in other caches. Like the O state, the block may be read in the T state. Surpris-

ingly, the T state is sometimes described as being a read-write state, which violates the SWMR invariant.

Indeed, a store to state T may be performed immediately, and thus indeed violates the SWMR invariant in

real (physical) time. However, the protocol still enforces the SWMR invariant in a logical time based on

ring-order. Although the details of this ordering are beyond the scope of this primer, we think it helps to

think of the T state as a variation on the E state. Recall that the E state allows a silent transition to M; thus

a store to a block in state E may be immediately performed, so long as the state (atomically) transitions to

state M. The T state is similar; a store in state T immediately transitions to state M. However, because there

may also be copies in state S, a store in state T also causes the immediate issue of an invalidation message

on the ring. Other cores may be attempting to upgrade from I or S to M, but the T state acts as the coher-

ence ordering point and thus has priority and need not wait for an acknowledgement. It is not clear that this

protocol is sufficient to support strong memory consistency models such as SC and TSO; however, as we

discussed in Chapter 5, the Power memory model is one of the weakest memory consistency models. This

Tagged state optimizes the common scenario of producer-consumer sharing, in which one thread writes a

block and one or more other threads then read that block. The producer can re-obtain read-write access

without having to wait as long each time.

TABLE 7-22. Power5 L2 Cache Coherence States

State Pemissions Description

I none Invalid

S read-only Shared

SL read-only Shared local data source, but can respond with data to requests from processors in same

S (S) read-only Shared

Me (E) read-write Exclusive

M (M) read-write Modified

Mu read-write Modified unsolicited - received read-write data in response to read-only request

T read-only Tagged - was M, received GetS. T is sometime described as being a read-write state,

which violates the SWMR invariant since there are also blocks in state S. A better way

to think of T is that it is like E: it can immediately transition to M. However, unlike E,

this transition is not silent: a store to a block in T state immediately transitions to M but

(atomically) issues an invalidation message on the ring. Although other caches may race

with this request, the T state has priority, and thus is guaranteed to be ordered first and

thus does not need to wait for the invalidations to complete.

node (sometimes referred to as F state, as in Intel QuickPath protocol (Section 8.8.4)

SNOOPINg COHERENCE PROTOCOLS 137

The other interesting new state is the T(agged) state. A block enters the T state when it is in
Modified and receives a GetS request. Instead of downgrading to S, which it would do in a MESI
protocol, or O, which it would do in a MOSI protocol, the cache changes the state to T. A block in
state T is similar to the O state, in that it has a value that is more recent than the value in memory,
and there may or may not be copies of the block in state S in other caches. Like the O state, the
block may be read in the T state. Surprisingly, the T state is sometimes described as being a read-
write state, which violates the SWMR invariant. Indeed, a store to state T may be performed imme-
diately, and thus indeed violates the SWMR invariant in real (physical) time. However, the protocol
still enforces the SWMR invariant in a logical time based on ring-order. Although the details of this
ordering are beyond the scope of this primer, we think it helps to think of the T state as a variation
on the E state. Recall that the E state allows a silent transition to M; thus a store to a block in state E
may be immediately performed, so long as the state (atomically) transitions to state M. The T state
is similar; a store in state T immediately transitions to state M. However, because there may also be
copies in state S, a store in state T also causes the immediate issue of an invalidation message on the
ring. Other cores may be attempting to upgrade from I or S to M, but the T state acts as the coher-
ence ordering point and thus has priority and need not wait for an acknowledgment. It is not clear
that this protocol is sufficient to support strong memory consistency models such as SC and TSO;
however, as we discussed in Chapter 5, the Power memory model is one of the weakest memory
consistency models. This Tagged state optimizes the common scenario of producer-consumer shar-
ing, in which one thread writes a block and one or more other threads then read that block. The
producer can re-obtain read-write access without having to wait as long each time.

7.8 DISCuSSION AND THE FuTuRE OF SNOOPINg
Snooping systems were prevalent in early multiprocessors because of their reputed simplicity and
because their lack of scalability did not matter for the relatively small systems that dominated
the market. Snooping also offers performance advantages for non-scalable systems because every
snooping transaction can be completed with two messages, which we will contrast against the three-
message transactions of directory protocols.

Despite its advantages, snooping is no longer commonly used. Even for small-scale systems,
where snooping’s lack of scalability is not a concern, snooping is no longer common. Snooping’s
requirement of a totally ordered broadcast network is just too costly, compared to the low-cost
interconnection networks that suffice for directory protocols. Furthermore, for scalable systems,
snooping is clearly a poor fit. Systems with very large numbers of cores are likely to be bottlenecked
by both the interconnection network bandwidth needed to broadcast requests and the coherence
controller bandwidth required to snoop every request. For such systems, a more scalable coherence

138 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

protocol is required, and it is this need for scalability that originally motivated the directory proto-
cols we present in the next chapter.

7.9 REFERENCES
[1] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop Ordering (INSO): Snoopy Co-

herence on Unordered Interconnects. In Proceedings of the Fourteenth International Sympo-
sium on High-Performance Computer Architecture, pp. 67–78, Feb. 2009. doi:10.1109/HPCA
.2009.4798238

[2] L. A. Barroso and M. Dubois. Cache Coherence on a Slotted Ring. In Proceedings of the
20th International Conference on Parallel Processing, Aug. 1991.

[3] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro, 18(1):39–49, Jan/
Feb 1998. doi:10.1109/40.653032

[4] S. Frank, H. Burkhardt, III, and J. Rothnie. The KSR1: Bridging the Gap Between Shared
Memory and MPPs. In Proceedings of the 38th Annual IEEE Computer Society Computer
Conference (COMPCON), pp. 285–95, Feb. 1993.

[5] M. Galles and E. Williams. Performance Optimizations, Implementation, and Verification
of the SGI Challenge Multiprocessor. In Proceedings of the Hawaii International Conference
on System Sciences, 1994. doi:10.1109/HICSS.1994.323177

[6] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M. Dickson, C. J. Mauer,
K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood. Timestamp Snooping: An Approach
for Extending SMPs. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 25–36, Nov. 2000.

[7] M. R. Marty and M. D. Hill. Coherence Ordering for Ring-based Chip Multiprocessors.
In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
Dec. 2006. doi:10.1109/MICRO.2006.14

[8] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5 Sys-
tem Microarchitecture. IBM Journal of Research and Development, 49(4/5), July/September
2005. doi:10.1147/rd.494.0505

• • • •

http://dx.doi.org/10.1109/HPCA.2009.4798238
http://dx.doi.org/10.1109/HPCA.2009.4798238
http://dx.doi.org/10.1109/40.653032
http://dx.doi.org/10.1109/HICSS.1994.323177
http://dx.doi.org/10.1109/MICRO.2006.14
http://dx.doi.org/10.1147/rd.494.0505

139

In this chapter, we present directory coherence protocols. Directory protocols were originally devel-
oped to address the lack of scalability of snooping protocols. Traditional snooping systems broadcast
all requests on a totally ordered interconnection network and all requests are snooped by all coher-
ence controllers. By contrast, directory protocols use a level of indirection to avoid both the ordered
broadcast network and having each cache controller process every request.

We first introduce directory protocols at a high level (Section 8.1). We then present a system
with a complete but unsophisticated three-state (MSI) directory protocol (Section 8.2). This system
and protocol serve as a baseline upon which we later add system features and protocol optimizations.
We then explain how to add the Exclusive state (Section 8.3) and the Owned state (Section 8.4)
to the baseline MSI protocol. Next we discuss how to represent the directory state (Section 8.5)
and how to design and implement the directory itself (Section 8.6). We then describe techniques
for improving performance and reducing the implementation costs (Section 8.7). We then discuss
commercial systems with directory protocols (Section 8.8) before concluding the chapter with a
discussion of directory protocols and their future (Section 8.9).

Those readers who are content to learn just the basics of directory coherence protocols can
skim or skip Section 8.3 through Section 8.7, although some of the material in these sections will
help the reader to better understand the case studies in Section 8.8.

8.1 INTRODuCTION TO DIRECTORY PROTOCOLS
The key innovation of directory protocols is to establish a directory that maintains a global view of
the coherence state of each block. The directory tracks which caches hold each block and in what
states. A cache controller that wants to issue a coherence request (e.g., a GetS) sends it directly to
the directory (i.e., a unicast message), and the directory looks up the state of the block to determine
what actions to take next. For example, the directory state might indicate that the requested block
is owned by core C2’s cache and thus the request should be forwarded to C2 (e.g., using a new
Fwd-GetS request) to obtain a copy of the block. When C2’s cache controller receives this for-
warded request, it unicasts a response to the requesting cache controller.

Directory Coherence Protocols

C H A P T E R 8

140 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

It is instructive to compare the basic operation of directory protocols and snooping protocols.
In a directory protocol, the directory maintains the state of each block, and cache controllers send
all requests to the directory. The directory either responds to the request or forwards the request to
one or more other coherence controllers that then respond. Coherence transactions typically involve
either two steps (a unicast request, followed by a unicast response) or three steps (a unicast request,
K ≥ 1 forwarded requests, and K responses, where K is the number of sharers). Some protocols even
have a fourth step, either because responses indirect through the directory or because the requestor
notifies the directory on transaction completion. In contrast, snooping protocols distribute a block’s
state across potentially all of the coherence controllers. Because there is no central summary of
this distributed state, coherence requests must be broadcast to all coherence controllers. Snooping
coherence transactions thus always involve two steps (a broadcast request, followed by a unicast
response).

Like snooping protocols, a directory protocol needs to define when and how coherence trans-
actions become ordered with respect to other transactions. In most directory protocols, a coherence
transaction is ordered at the directory. Multiple coherence controllers may send coherence requests
to the directory at the same time, and the transaction order is determined by the order in which
the requests are serialized at the directory. If two requests race to the directory, the interconnection
network effectively chooses which request the directory will process first. The fate of the request
that arrives second is a function of the directory protocol and what types of requests are racing. The
second request might get (a) processed immediately after the first request, (b) held at the direc-
tory while awaiting the first request to complete, or (c) negatively acknowledged (NACKed). In
the latter case, the directory sends a negative acknowledgment message (NACK) to the requestor,
and the requestor must re-issue its request. In this chapter, we do not consider protocols that use
NACKs, but we do discuss the possible use of NACKs and how they can cause livelock problems in
Section 9.3.2.

Using the directory as the ordering point represents another key difference between directory
protocols and snooping protocols. Traditional snooping protocols create a total order by serializing
all transactions on the ordered broadcast network. Snooping’s total order not only ensures that each
block’s requests are processed in per-block order but also facilitates implementing a memory con-
sistency model. Recall that traditional snooping protocols use totally ordered broadcast to serialize
all requests; thus, when a requestor observes its own coherence request this serves as notification
that its coherence epoch may begin. In particular, when a snooping controller sees its own GetM
request, it can infer that other caches will invalidate their S blocks. We demonstrated in Table 7.4
that this serialization notification is sufficient to support the strong SC and TSO memory consis-
tency models.

DIRECTORY COHERENCE PROTOCOLS 141

In contrast, a directory protocol orders transactions at the directory to ensure that conflicting
requests are processed by all nodes in per-block order. However, the lack of a total order means that
a requestor in a directory protocol needs another strategy to determine when its request has been
serialized and thus when its coherence epoch may safely begin. Because (most) directory protocols
do not use totally ordered broadcast, there is no global notion of serialization. Rather, a request must
be individually serialized with respect to all the caches that (may) have a copy of the block. Explicit
messages are needed to notify the requestor that its request has been serialized by each relevant
cache. In particular, on a GetM request, each cache controller with a shared (S) copy must send an
explicit acknowledgment (Ack) message once it has serialized the invalidation message.

This comparison between directory and snooping protocols highlights the fundamental trade-
off between them. A directory protocol achieves greater scalability (i.e., because it requires less
bandwidth) at the cost of a level of indirection (i.e., having three steps, instead of two steps, for
some transactions). This additional level of indirection increases the latency of some coherence
transactions.

8.2 BASELINE DIRECTORY SYSTEM
In this section, we present a baseline system with a straightforward, modestly optimized directory
protocol. This system provides insight into the key features of directory protocols while revealing
inefficiencies that motivate the features and optimizations presented in subsequent sections of this
chapter.

8.2.1 Directory System Model
We illustrate our directory system model in Figure 8.1. Unlike for snooping protocols, the topol-
ogy of the interconnection network is intentionally vague. It could be a mesh, torus, or any other
topology that the architect wishes to use. One restriction on the interconnection network that we
assume in this chapter is that it enforces point-to-point ordering. That is, if controller A sends two
messages to controller B, then the messages arrive at controller B in the same order in which they
were sent.1 Having point-to-point ordering reduces the complexity of the protocol, and we defer a
discussion of networks without ordering until Section 8.7.3.

The only differences between this directory system model and the baseline system model in
Figure 2.1 is that we have added a directory and we have renamed the memory controller to be the

1 Strictly speaking, we require point-to-point order for only certain types of messages, but this is a detail that we
defer until Section 8.7.3.

142 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

directory controller. There are many ways of sizing and organizing the directory, and for now we as-
sume the simplest model: for each block in memory, there is a corresponding directory entry. In Sec-
tion 8.6, we examine and compare more practical directory organization options. We also assume
a monolithic LLC with a single directory controller; in Section 8.7.1, we explain how to distribute
this functionality across multiple banks of an LLC and multiple directory controllers.

8.2.2 High-Level Protocol Specification
The baseline directory protocol has only three stable states: MSI. A block is owned by the directory
controller unless the block is in a cache in state M. The directory state for each block includes the
stable coherence state, the identity of the owner (if the block is in state M), and the identities of the

cache
controller

core

cache
controller

core

interconnection network

LLC/directory
controller

last-level
cache
(LLC)

MULTICORE PROCESSOR CHIP

MAIN MEMORY

private
data (L1)
cache

private
data (L1)
cache

directory

FIguRE 8.1: Directory system model.

2-bit log2 N-bit

state owner sharer list (one-hot bit vector)

N-bit

FIguRE 8.2: Directory entry for a block in a system with N nodes.

DIRECTORY COHERENCE PROTOCOLS 143

sharers encoded as a one-hot bit vector (if the block is in state S). We illustrate a directory entry in
Figure 8.2. In Section 8.5, we will discuss other encodings of directory entries.

Before presenting the detailed specification, we first illustrate a higher level abstraction of the
protocol in order to understand its fundamental behaviors. In Figure 8.3, we show the transactions
in which a cache controller issues coherence requests to change permissions from I to S, I or S to

(1) GetS

(2) Data

(1) GetM

(2) Data[ack=0]

(1) GetS (2) Fwd-GetS

(3) Data

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

(1) PutM+data

(2) Put-Ack

(1) GetM

(2) Data[ack>0]

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I to S.

Transitions from I or S to M

Transition from M or S to I

(2) Inv

The only sharer might be the requestor,
in which case no Invalidation messages
are sent and the Data message from
the Dir to Req has an AckCount of zero.

(3) Data

(1) PutS

(2) Put-Ack

I S
Req

SI
S S

Dir Req
SI

Dir
SM

Owner
SM

I M
Req Dir

MI I M
Req Dir

MM
Owner

IM

MI
S M

Req
Dir

MS

Sharer
IS

Sharer
IS

M I
Req

M I
Dir

S I
Req IS

S S

Dir

FIguRE 8.3: High-Level Description of MSI Directory Protocol. In each transition, the cache con-
troller that requests the transaction is denoted “Req”.

144 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

M, M to I, and S to I. As with the snooping protocols in the last chapter, we specify the directory
state of a block using a cache-centric notation (e.g., a directory state of M denotes that there exists a
cache with the block in state M). Note that a cache controller may not silently evict a Shared block;
that is, there is an explicit PutS request. We defer a discussion of protocols with silent evictions of
shared blocks, as well as a comparison of silent versus explicit PutS requests, until Section 8.7.4.

Most of the transactions are fairly straightforward, but two transactions merit further dis-
cussion here. The first is the transaction that occurs when a cache is trying to upgrade permissions
from I or S to M and the directory state is S. The cache controller sends a GetM to the directory,
and the directory takes two actions. First, it responds to the requestor with a message that includes
the data and the “AckCount”; the AckCount is the number of current sharers of the block. The
directory sends the AckCount to the requestor to inform the requestor of how many sharers must
acknowledge having invalidated their block in response to the GetM. Second, the directory sends
an Invalidation (Inv) message to all of the current sharers. Each sharer, upon receiving the Invalida-
tion, sends an Invalidation-Ack (Inv-Ack) to the requestor. Once the requestor receives the message
from the directory and all of the Inv-Ack messages, it completes the transaction. The requestor,
having received all of the Inv-Ack messages, knows that there are no longer any readers of the block
and thus it may write to the block without violating coherence.

The second transaction that merits further discussion occurs when a cache is trying to evict a
block in state M. In this protocol, we have the cache controller send a PutM message that includes
the data to the directory. The directory responds with a Put-Ack. If the PutM did not carry the data
with it, then the protocol would require a third message—a data message from the cache controller
to the directory with the evicted block that had been in state M—to be sent in a PutM transaction.
The PutM transaction in this directory protocol differs from what occurred in the snooping proto-
col, in which a PutM did not carry data.

8.2.3 Avoiding Deadlock
In this protocol, the reception of a message can cause a coherence controller to send another mes-
sage. In general, if event A (e.g., message reception) can cause event B (e.g., message sending) and
both these events require resource allocation (e.g., network links and buffers), then we must be
careful to avoid deadlock that could occur if circular resource dependences arise. For example, a
GetS request can cause the directory controller to issue a Fwd-GetS message; if these messages use
the same resources (e.g., network links and buffers), then the system can potentially deadlock. In
Figure 8.4, we illustrate a deadlock in which two coherence controllers C1 and C2 are responding
to each other’s requests, but the incoming queues are already full of other coherence requests. If the
queues are FIFO, then the responses cannot pass the requests. Because the queues are full, each con-

DIRECTORY COHERENCE PROTOCOLS 145

troller stalls trying to send a response. Because the queues are FIFO, the controller cannot switch to
work on a subsequent request (or get to the response). Thus, the system deadlocks.

A well-known solution for avoiding deadlock in coherence protocols is to use separate net-
works for each class of message. The networks can be physically separate or logically separate (called
virtual networks), but the key is avoiding dependences between classes of messages. Figure 8.5
illustrates a system in which request and response messages travel on separate physical networks.
Because a response cannot be blocked by another request, it will eventually be consumed by its des-
tination node, breaking the cyclic dependence.

The directory protocol in this section uses three networks to avoid deadlock. Because a re-
quest can cause a forwarded request and a forwarded request can cause a response, there are three
message classes that each require their own network. Request messages are GetS, GetM, and PutM.
Forwarded request messages are Fwd-GetS, Fwd-GetM, Inv(alidation), and Put-Ack. Response
messages are Data and Inv-Ack. The protocols in this chapter require that the Forwarded Request
network provides point-to-point ordering; other networks have no ordering constraints nor are
there any ordering constraints between messages traveling on different networks.

C1

C2
Data response

Data response
full of requests

full of requests

FIguRE 8.4: Deadlock example.

 C1

 C2
Data response

Data response

full of requests

full of requests

FIguRE 8.5: Avoiding deadlock with separate networks.

146 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

We defer a more thorough discussion of deadlock avoidance, including more explanation of
virtual networks and the exact requirements for avoiding deadlock, until Section 9.3.

8.2.4 Detailed Protocol Specification
We present the detailed protocol specification, including all transient states, in Tables 8.1 and 8.2.
Compared to the high-level description in Section 8.2.2, the most significant difference is the tran-
sient states. The coherence controllers must manage the states of blocks that are in the midst of
coherence transactions, including situations in which a cache controller receives a forwarded request
from another controller in between sending its coherence request to the directory and receiving all
of its necessary response messages, including Data and possible Inv-Acks. The cache controllers can
maintain this state in the miss status handling registers (MSHRs) that cores use to keep track of
outstanding coherence requests. Notationally, we represent these transient states in the form XYAD,
where the superscript A denotes waiting for acknowledgments and the superscript D denotes wait-
ing for data. (This notation differs from the snooping protocols, in which the superscript A denoted
waiting for a request to appear on the bus.)

TABLE 8.1: MSI Directory Protocol—Cache Controller

158

8.2.5 Protocol Operation

The protocol enables caches to acquire blocks in states S and M and to replace blocks to the directory

in either of these states.

TABLE 8-1. MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS to

Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data to

Dir/MI
A

send data to Req

and Dir/S

send data

to Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-2. MSI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to Req,

add Req to Sharers/S

send data to Req,

set Owner to Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

S send data to Req,

add Req to Sharers

send data to Req,

send Inv to Sharers,

clear Sharers, set

Owner to Req/M

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req from

Sharers, send Put-

Ack to Req

M Send Fwd-GetS to

Owner, add Req and

Owner to Sharers,

clear Owner/S
D

Send Fwd-GetM to

Owner, set Owner

to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to mem-

ory, clear Owner,

send Put-Ack to

Req/I

send Put-Ack to

Req

S
D stall stall remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

DIRECTORY COHERENCE PROTOCOLS 147

Because these tables can be somewhat daunting at first glance, the next section walks through
some example scenarios.

8.2.5 Protocol Operation
The protocol enables caches to acquire blocks in states S and M and to replace blocks to the direc-
tory in either of these states.

I to S (common case #1)
The cache controller sends a GetS request to the directory and changes the block state from I to
ISD. The directory receives this request and, if the directory is the owner (i.e., no cache currently has
the block in M), the directory responds with a Data message, changes the block’s state to S (if it is
not S already), and adds the requestor to the sharer list. When the Data arrives at the requestor, the
cache controller changes the block’s state to S, completing the transaction.

I to S (common case #2)
The cache controller sends a GetS request to the directory and changes the block state from I to
ISD. If the directory is not the owner (i.e., there is a cache that currently has the block in M), the
directory forwards the request to the owner and changes the block’s state to the transient state SD.
The owner responds to this Fwd-GetS message by sending Data to the requestor and changing the
block’s state to S. The now-previous owner must also send Data to the directory since it is relin-
quishing ownership to the directory, which must have an up-to-date copy of the block. When the

TABLE 8.2: MSI Directory Protocol—Directory Controller

158

8.2.5 Protocol Operation

The protocol enables caches to acquire blocks in states S and M and to replace blocks to the directory

in either of these states.

TABLE 8-1. MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS to

Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data to

Dir/MI
A

send data to Req

and Dir/S

send data

to Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-2. MSI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to Req,

add Req to Sharers/S

send data to Req,

set Owner to Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

S send data to Req,

add Req to Sharers

send data to Req,

send Inv to Sharers,

clear Sharers, set

Owner to Req/M

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req from

Sharers, send Put-

Ack to Req

M Send Fwd-GetS to

Owner, add Req and

Owner to Sharers,

clear Owner/S
D

Send Fwd-GetM to

Owner, set Owner

to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to mem-

ory, clear Owner,

send Put-Ack to

Req/I

send Put-Ack to

Req

S
D stall stall remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

148 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Data arrives at the requestor, the cache controller changes the block state to S and considers the
transaction complete. When the Data arrives at the directory, the directory copies it to memory,
changes the block state to S, and considers the transaction complete.

I to S (race cases)
The above two I-to-S scenarios represent the common cases, in which there is only one transaction
for the block in progress. Most of the protocol’s complexity derives from having to deal with the
less-common cases of multiple in-progress transactions for a block. For example, a reader may find
it surprising that a cache controller can receive an Invalidation for a block in state ISD. Consider
core C1 that issues a GetS and goes to ISD and another core C2 that issues a GetM for the same
block that arrives at the directory after C1’s GetS. The directory first sends C1 Data in response
to its GetS and then an Invalidation in response to C2’s GetM. Because the Data and Invalidation
travel on separate networks, they can arrive out of order, and thus C1 can receive the Invalidation
before the Data.

I or S to M
The cache controller sends a GetM request to the directory and changes the block’s state from I to
IMAD. In this state, the cache waits for Data and (possibly) Inv-Acks that indicate that other caches
have invalidated their copies of the block in state S. The cache controller knows how many Inv-Acks
to expect, since the Data message contains the AckCount, which may be zero. Figure 8.3 illustrates
the three common-case scenarios of the directory responding to the GetM request. If the directory
is in state I, it simply sends Data with an AckCount of zero and goes to state M. If in state M, the
directory controller forwards the request to the owner and updates the block’s owner; the now-
previous owner responds to the Fwd-GetM request by sending Data with an AckCount of zero.
The last common case occurs when the directory is in state S. The directory responds with Data and
an AckCount equal to the number of sharers, plus it sends Invalidations to each core in the sharer
list. Cache controllers that receive Invalidation messages invalidate their shared copies and send
Inv-Acks to the requestor. When the requestor receives the last Inv-Ack, it transitions to state M.
Note the special Last-Inv-Ack event in Table 8.1, which simplifies the protocol specification.

These common cases neglect some possible races that highlight the concurrency of directory
protocols. For example, core C1 has the cache block in state IMA and receives a Fwd-GetS from
C2’s cache controller. This situation is possible because the directory has already sent Data to C1,
sent Invalidation messages to the sharers, and changed its state to M. When C2’s GetS arrives at the
directory, the directory simply forwards it to the owner, C1. This Fwd-GetS may arrive at C1 before
all of the Inv-Acks arrive at C1. In this situation, our protocol simply stalls and the cache controller

DIRECTORY COHERENCE PROTOCOLS 149

waits for the Inv-Acks. Because Inv-Acks travel on a separate network, they are guaranteed not to
block behind the unprocessed Fwd-GetS.

M to I
To evict a block in state M, the cache controller sends a PutM request that includes the data and
changes the block state to MIA. When the directory receives this PutM, it updates the LLC/mem-
ory, responds with a Put-Ack, and transitions to state I. Until the requestor receives the Put-Ack,
the block’s state remains effectively M and the cache controller must respond to forwarded coher-
ence requests for the block. In the case where the cache controller receives a forwarded coherence
request (Fwd-GetS or Fwd-GetM) between sending the PutM and receiving the Put-Ack, the
cache controller responds to the Fwd-GetS or Fwd-GetM and changes its block state to SIA or
IIA, respectively. These transient states are effectively S and I, respectively, but denote that the cache
controller must wait for a Put-Ack to complete the transition to I.

S to I
Unlike the snooping protocols in the previous chapter, our directory protocols do not silently evict
blocks in state S. Instead, to replace a block in state S, the cache controller sends a PutS request and
changes the block state to SIA. The directory receives this PutS and responds with a Put-Ack. Until
the requestor receives the Put-Ack, the block’s state is effectively S. If the cache controller receives
an Invalidation request after sending the PutS and before receiving the Put-Ack, it changes the
block’s state to IIA. This transient state is effectively I, but it denotes that the cache controller must
wait for a Put-Ack to complete the transaction from S to I.

8.2.6 Protocol Simplifications
This protocol is relatively straightforward and sacrifices some performance to achieve this simplic-
ity. We now discuss two simplifications:

The most significant simplification, other than having only three stable states, is that the
protocol stalls in certain situations. For example, a cache controller stalls when it receives
a forwarded request while in a transient state. A higher performance option, discussed in
Section 8.7.2, would be to process the messages and add more transient states.
A second simplification is that the directory sends Data (and the AckCount) in response to
a cache that is changing a block’s state from S to M. The cache already has valid data and
thus it would be sufficient for the directory to simply send a data-less AckCount. We defer
adding this new type of message until we present the MOSI protocol in Section 8.4.

•

•

150 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

8.3 ADDINg THE EXCLuSIVE STATE
As we previously discussed in the context of snooping protocols, adding the Exclusive (E) state is an
important optimization because it enables a core to read and then write a block with only a single
coherence transaction, instead of the two required by an MSI protocol. At the highest level, this
optimization is independent of whether the cache coherence uses snooping or directories. If a core
issues a GetS and the block is not currently shared by other cores, then the requestor may obtain the
block in state E. The core may then silently upgrade the block’s state from E to M without issuing
another coherence request.

In this section, we add the E state to our baseline MSI directory protocol. As with the MESI
snooping protocol in the previous chapter, the operation of the protocol depends on whether the
E state is considered an ownership state or not. And, as with the MESI snooping protocol, the
primary operational difference involves determining which coherence controller should respond to
a request for a block that the directory gave to a cache in state E. The block may have been silently
upgraded from E to M since the directory gave the block to the cache in state E.

In protocols in which an E block is owned, the solution is simple. The cache with the block in
E (or M) is the owner and thus must respond to requests. A coherence request sent to the directory
will be forwarded to the cache with the block in state E. Because the E state is an ownership state, the
eviction of an E block cannot be performed silently; the cache must issue a PutE request to the direc-
tory. Without an explicit PutE, the directory would not know that the directory was now the owner
and should respond to incoming coherence requests. Because we assume in this primer that blocks
in E are owned, this simple solution is what we implement in the MESI protocol in this section.

In protocols in which an E block is not owned, an E block can be silently evicted, but the
protocol complexity increases. Consider the case where core C1 obtains a block in state E and then
the directory receives a GetS or GetM from core C2. The directory knows that C1 is either i) still
in state E, ii) in state M (if C1 did a store with a silent upgrade from E to M), or iii) in state I (if the
protocol allows C1 to perform a silent PutE). If C1 is in M, the directory must forward the request
to C1 so that C1 can supply the latest version of the data. If C1 is in E, C1 or the directory may
respond since they both have the same data. If C1 is in I, the directory must respond. One solu-
tion, which we describe in more detail in our case study on the SGI Origin [10] in Section 8.8.1, is
to have both C1 and the directory respond. Another solution is to have the directory forward the
request to C1. If C1 is in I, C1 notifies the directory to respond to C2; else, C1 responds to C2 and
notifies the directory that it does not need to respond to C2.

8.3.1 High-Level Protocol Specification
We specify a high-level view of the transactions in Figure 8.6, with differences from the MSI pro-
tocol highlighted. There are only two significant differences. First, there is a transition from I to E

DIRECTORY COHERENCE PROTOCOLS 151

(1) GetS

(2) Data

(1) GetM

(2) Data[ack=0]

(1) GetS (2) Fwd-GetS

(3) Data

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

(1) PutM+data

(2) Put-Ack

(1) GetM

(2) Data[ack>0]

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I to S.

Transitions from I or S to M. Transition from E to M is silent.

Transition from M or E or S to I

(2) Inv

The only sharer might be the requestor,
in which case no Invalidation messages
are sent and the Data message from
the Dir to Req has an AckCount of zero.

(3) Data

(1) PutS

(2) Put-Ack

(1) GetS

(2) Data

Transition from I to E.

(1) PutE (no data)

(2) Put-Ack

I S
Req

S S
Dir

I S
Req

M S
Dir

M S
Owner

E S
I E
Req

I E
Dir

I M
Req

I M
Dir

I M
Req M M

Dir

E M
M I
Owner

E I

I M
Req

S M
S M
Dir

S I
Sharer

S I
Sharer

M I
Req

M I
Dir

E I
Req

E I
Dir

S I
Req

S I
Dir

S S

FIguRE 8.6: High-Level Description of MESI Directory Protocol. In each transition, the cache con-
troller that requests the transaction is denoted “Req”.

152 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

that can occur if the directory receives a GetS for a block in state I. Second, there is a PutE transac-
tion for evicting blocks in state E. Because E is an ownership state, an E block cannot be silently
evicted. Unlike a block in state M, the E block is clean, and thus the PutE does not need to carry
data; the directory already has the most up-to-date copy of the block.

8.3.2 Detailed Protocol Specification
In Tables 8.3 and 8.4, we present the detailed specification of the MESI protocol, including tran-
sient states. Differences with respect to the MSI protocol are highlighted with boldface font. The
protocol adds to the set of cache states both the stable E state as well as transient states to handle
transactions for blocks initially in state E.

This protocol is somewhat more complex than the MSI protocol, with much of the added
complexity at the directory controller. In addition to having more states, the directory controller
must distinguish between more possible events. For example, when a PutS arrives, the directory
must distinguish whether this is the “last” PutS; that is, did this PutS arrive from the only current
sharer? If this PutS is the last PutS, then the directory’s state changes to I.

TABLE 8.3: MESI Directory Protocol—Cache Controller
164

TABLE 8-3. MESI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

E
x

c
l
u

s
i
v

e
 d

a
t
a

f
r
o

m
 D

i
r

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS

to Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/E -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SMAD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data

to Dir/MI
A

send data to Req

and Dir/S

send data to

Req/I

E hit hit/M send PutE

(no data) to

Dir/EI
A

send data to Req

and Dir/S

send data to

Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data to

Req/II
A

-/I

EI
A stall stall stall send data to Req

and Dir/SI
A

send data to

Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-4. MESI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data

from Owner

PutM from

Non-Owner

PutE (no data)

from Owner

PutE from

Non-Owner Data

I send Exclusive

data to Req, set

Owner to Req/E

send data to

Req, set Owner

to Req/M

 send Put-

Ack to Req

 send Put-Ack

to Req

send Put-Ack to

Req

send Put-Ack

to Req

S send data to Req,

add Req to Shar-

ers

send data to

Req, send Inv

to Sharers,

clear Sharers,

set Owner to

Req/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

E forward GetS

to Owner, make

Owner sharer,

add Req to

Sharers, clear

Owner/S
D

forward GetM

to Owner, set

Owner to

Req/M

send Put-

Ack to Req

send Put-

Ack to Req

copy data to

mem, send Put-

Ack to Req,

clear Owner/I

send Put-Ack

to Req

send Put-Ack to

Req, clear

Owner/I

send Put-Ack

to Req

M forward GetS to

Owner, make

Owner sharer,

add Req to Shar-

ers, clear

Owner/S
D

forward GetM

to owner, set

Owner to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to

mem, send Put-

Ack to Req, clear

Owner/I

send Put-Ack to

Req

send Put-Ack

to Req

S
D stall stall remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

copy data to

LLC/mem/S

DIRECTORY COHERENCE PROTOCOLS 153

8.4 ADDINg THE OWNED STATE
For the same reason we added the Owned state to the baseline MSI snooping protocol in Chapter 7,
an architect may want to add the Owned state to the baseline MSI directory protocol presented in
Section 8.2. Recall from Chapter 2 that if a cache has a block in the Owned state, then the block is
valid, read-only, dirty (i.e., it must eventually update memory), and owned (i.e., the cache must re-
spond to coherence requests for the block). Adding the Owned state changes the protocol, compared
to MSI, in three important ways: (1) a cache with a block in M that observes a Fwd-GetS changes its
state to O and does not need to (immediately) copy the data back to the LLC/memory, (2) more co-
herence requests are satisfied by caches (in O state) than by the LLC/memory, and (3) there are more
3-hop transactions (which would have been satisfied by the LLC/memory in an MSI protocol).

8.4.1 High-Level Protocol Specification
We specify a high-level view of the transactions in Figure 8.7, with differences from the MSI proto-
col highlighted. The most interesting difference is the transaction in which a requestor of a block in
state I or S sends a GetM to the directory when the block is in the O state in the owner cache and in
the S state in one or more sharer caches. In this case, the directory forwards the GetM to the owner,

TABLE 8.4: MESI Directory Protocol—Directory Controller

164

TABLE 8-3. MESI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

E
x

c
l
u

s
i
v

e
 d

a
t
a

f
r
o

m
 D

i
r

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS

to Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/E -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SMAD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data

to Dir/MI
A

send data to Req

and Dir/S

send data to

Req/I

E hit hit/M send PutE

(no data) to

Dir/EI
A

send data to Req

and Dir/S

send data to

Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data to

Req/II
A

-/I

EI
A stall stall stall send data to Req

and Dir/SI
A

send data to

Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-4. MESI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data

from Owner

PutM from

Non-Owner

PutE (no data)

from Owner

PutE from

Non-Owner Data

I send Exclusive

data to Req, set

Owner to Req/E

send data to

Req, set Owner

to Req/M

 send Put-

Ack to Req

 send Put-Ack

to Req

send Put-Ack to

Req

send Put-Ack

to Req

S send data to Req,

add Req to Shar-

ers

send data to

Req, send Inv

to Sharers,

clear Sharers,

set Owner to

Req/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

E forward GetS

to Owner, make

Owner sharer,

add Req to

Sharers, clear

Owner/S
D

forward GetM

to Owner, set

Owner to

Req/M

send Put-

Ack to Req

send Put-

Ack to Req

copy data to

mem, send Put-

Ack to Req,

clear Owner/I

send Put-Ack

to Req

send Put-Ack to

Req, clear

Owner/I

send Put-Ack

to Req

M forward GetS to

Owner, make

Owner sharer,

add Req to Shar-

ers, clear

Owner/S
D

forward GetM

to owner, set

Owner to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to

mem, send Put-

Ack to Req, clear

Owner/I

send Put-Ack to

Req

send Put-Ack

to Req

S
D stall stall remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

copy data to

LLC/mem/S

154 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

(1) GetS

(2) Data

(1) GetM

(2) Data[ack=0]

(1) GetS (2) Fwd-GetS

(3) Data

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

(1) PutM+data

(2) Put-Ack

(1) GetM

(2) Data[ack>0]

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I to S

Transitions from I or S to M

Transitions from M or O or S to I

(2) Inv

(1) GetM

Sharer

(2) Fwd-GetM[ack>=0]

(3) Data[ack>=0]

(3) Inv-Ack

(2) Inv

(1) PutO+data

(2) Put-Ack

(1) PutS

(2) Put-Ack

(1) GetM

(2) AckCount

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

(2) Inv

Transition from O to M

I S
Req

I S
Dir

S S
I S
Req M O

Dir

O O
M O
Onwer

O O

I M
Req

I M
Dir

I M
Req

M M
Dir

M I
Owner

I M
Req

S M S M
Dir S I

Sharer

S I
Sharer

I M
Req

S M
O M
Dir

O I
Owner

S I

Sharer
S I

Sharer
S I

O M
Dir

O M
Req O I

Dir

O S

Req
S I

Dir
S I
S S

Req
M I

Dir
M I

O I
Req

FIguRE 8.7: High-Level Description of MOSI Directory Protocol. In each transition, the cache con-
troller that requests the transaction is denoted “Req”.

DIRECTORY COHERENCE PROTOCOLS 155

and appends the AckCount. The directory also sends Invalidations to each of the sharers. The owner
receives the Fwd-GetM and responds to the requestor with Data and the AckCount. The requestor
uses this received AckCount to determine when it has received the last Inv-Ack. There is a similar
transaction if the requestor of the GetM was the owner (in state O). The difference here is that the
directory sends the AckCount directly to the requestor because the requestor is the owner.

This protocol has a PutO transaction that is nearly identical to the PutM transaction. It
contains data for the same reason that the PutM transaction contains data, i.e., because both M and
O are dirty states.

8.4.2 Detailed Protocol Specification
Tables 8.5 and 8.6 present the detailed specification of the MOSI protocol, including transient
states. Differences with respect to the MSI protocol are highlighted with boldface font. The pro-
tocol adds to the set of cache states both the stable O state as well as transient OMAC, OMA, and

TABLE 8.5: MOSI Directory Protocol—Cache Controller

167

TABLE 8-5. MOSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

A
c
k

C
o

u
n

t

f
r
o

m
 D

i
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS

to Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data

to Dir/MI
A

send data to

Req/O

send data to

Req/I

MI
A stall stall stall send data to

Req/OI
A

send data to

Req/II
A

-/I

O hit send GetM to

Dir/OM
AC

send

PutO+data

to Dir/OI
A

send data to

Req

send data to

Req/I

OM
AC hit stall stall send data to

Req

send data to

Req/IM
AD

-/OM
A ack--

OM
A hit stall stall send data to

Req

stall ack-- -/M

OI
A stall stall stall send data to

Req

send data to

Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-6. MOSI Directory Protocol - Directory Controller.

GetS

GetM from

Owner

GetM from

NonOwner

PutS-

NotLast PutS-Last

PutM+data

from Owner

PutM+data

from

NonOwner

PutO+data

from Owner

PutO+data

from

NonOwner

I send Data to

Req, add Req to

Sharers/S

send Data to

Req, set

Owner to

Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

send Put-Ack

to Req

S send Data to

Req, add Req to

Sharers

send Data to

Req, send Inv

to Sharers, set

Owner to Req,

clear Shar-

ers/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

O forward GetS to

Owner, add Req

to Sharers

send Ack-

Count to Req,

send Inv to

Sharers, clear

Sharers/M

forward GetM

to Owner, send

Inv to Sharers,

set Owner to

Req, clear

Sharers, send

AckCount to

Req/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, copy

data to mem, send

Put-Ack to Req,

clear Owner/S

remove Req

from Sharers,

send Put-Ack to

Req

copy data to

memory, send

Put-Ack to Req,

clear Owner/S

remove Req

from Sharers,

send Put-Ack

to Req

M forward GetS to

Owner, add Req

to Sharers/O

forward GetM

to Owner, set

Owner to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to

mem, send Put-

Ack to Req, clear

Owne/I

send Put-Ack to

Req

send Put-Ack

to Req

156 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

TABLE 8.6: MOSI Directory Protocol—Directory Controller

167

TABLE 8-5. MOSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

A
c
k

C
o

u
n

t

f
r
o

m
 D

i
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS

to Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data

to Dir/MI
A

send data to

Req/O

send data to

Req/I

MI
A stall stall stall send data to

Req/OI
A

send data to

Req/II
A

-/I

O hit send GetM to

Dir/OM
AC

send

PutO+data

to Dir/OI
A

send data to

Req

send data to

Req/I

OM
AC hit stall stall send data to

Req

send data to

Req/IM
AD

-/OM
A ack--

OM
A hit stall stall send data to

Req

stall ack-- -/M

OI
A stall stall stall send data to

Req

send data to

Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-6. MOSI Directory Protocol - Directory Controller.

GetS

GetM from

Owner

GetM from

NonOwner

PutS-

NotLast PutS-Last

PutM+data

from Owner

PutM+data

from

NonOwner

PutO+data

from Owner

PutO+data

from

NonOwner

I send Data to

Req, add Req to

Sharers/S

send Data to

Req, set

Owner to

Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

send Put-Ack

to Req

S send Data to

Req, add Req to

Sharers

send Data to

Req, send Inv

to Sharers, set

Owner to Req,

clear Shar-

ers/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req

from Sharers,

send Put-Ack to

Req

remove Req

from Sharers,

send Put-Ack

to Req

O forward GetS to

Owner, add Req

to Sharers

send Ack-

Count to Req,

send Inv to

Sharers, clear

Sharers/M

forward GetM

to Owner, send

Inv to Sharers,

set Owner to

Req, clear

Sharers, send

AckCount to

Req/M

remove Req

from Shar-

ers, send Put-

Ack to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, copy

data to mem, send

Put-Ack to Req,

clear Owner/S

remove Req

from Sharers,

send Put-Ack to

Req

copy data to

memory, send

Put-Ack to Req,

clear Owner/S

remove Req

from Sharers,

send Put-Ack

to Req

M forward GetS to

Owner, add Req

to Sharers/O

forward GetM

to Owner, set

Owner to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to

mem, send Put-

Ack to Req, clear

Owne/I

send Put-Ack to

Req

send Put-Ack

to Req

OIA states to handle transactions for blocks initially in state O. The state OMAC indicates that the
cache is waiting for both Inv-Acks (A) from caches and an AckCount (C) from the directory, but
not data. Because this block started in state O, it already had valid data.

An interesting situation arises when core C1’s cache controller has a block in OMAC or
SMAD and receives a Fwd-GetM or Invalidation from core C2 for that block. C2’s GetM must
have been ordered at the directory before C1’s GetM, for this situation to arise. Thus, the direc-
tory state changes to M (owned by C2) before observing C1’s GetM. When C2’s Fwd-GetM or
Invalidation arrives at C1, C1 must be aware that C2’s GetM was ordered first. Thus, C1’s cache
state changes from either OMAC or SMAD to IMAD. The forwarded GetM or Invalidation from C2
invalidated C1’s cache block and now C1 must wait for both Data and Inv-Acks.

8.5 REPRESENTINg DIRECTORY STATE
In the previous sections, we have assumed a complete directory; that is, the directory maintains the
complete state for each block, including the full set of caches that (may) have shared copies. Yet
this assumption contradicts the primary motivation for directory protocols: scalability. In a system
with a large number of caches (i.e., a large number of potential sharers of a block), maintaining the
complete set of sharers for each block requires a significant amount of storage, even when using a
compact bit-vector representation. For a system with a modest number of caches, it may be reason-

DIRECTORY COHERENCE PROTOCOLS 157

able to maintain this complete set, but the architects of larger-scale systems may wish for more
scalable solutions to maintaining directory state.

There are many ways to reduce how much state the directory maintains for each block. Here
we discuss two important techniques: coarse directories and limited pointers. We discuss these
techniques independently, but observe that they can be combined. We contrast each solution with
the baseline design, illustrated in the top entry of Figure 8.8.

8.5.1 Coarse Directory
Having the complete set of sharers enables the directory to send Invalidation messages to exactly
those cache controllers that have the block in state S. One way to reduce the directory state is to
conservatively maintain a coarse list of sharers that is a superset of the actual set of sharers. That is,
a given entry in the sharer list corresponds to a set of K caches, as illustrated in the middle entry
of Figure 8.8. If one or more of the caches in that set (may) have the block in state S, then that bit
in the sharer list is set. A GetM will cause the directory controller to send an Invalidation to all K
caches in that set. Thus, coarse directories reduce the directory state at the expense of extra inter-
connection network bandwidth for unnecessary Invalidation messages, plus the cache controller
bandwidth to process these extra Invalidation messages.

8.5.2 Limited Pointer Directory
In a chip with C caches, a complete sharer list requires C entries, one bit each, for a total of C bits.
However, studies have shown that many blocks have zero sharers or one sharer. A limited pointer
directory exploits this observation by having i (i< C) entries, where each entry requires log2C bits, for
a total of i * log2C bits, as illustrated in the bottom entry of Figure 8.8. A limited pointer directory

2-bit log2C-bit

state owner complete sharer list
(bit vector)

C-bit

2-bit log2C-bit

state owner coarse sharer list
(bit vector)

C/K-bit

2-bit log2C-bit

state owner pointers to i sharers

i*log2C-bit

Coarse directory - each bit in sharer list
represents K caches

Complete directory -
each bit in sharer list
represents one cache

Limited directory - sharer list is divided into i
entries, each of which is a pointer to a cache.

FIguRE 8.8: Representing directory state for a block in a system with N nodes.

158 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

requires some additional mechanism to handle (hopefully uncommon) situations in which the system
attempts to add an i+1th sharer. There are three well-studied options for handling these situations, de-
noted using the notation DiriX [2, 8], where i refers to the number of pointers to sharers, and X refers
to the mechanism for handling situations in which the system attempts to add an i+1th sharer.

Broadcast (DiriB): If there are already i sharers and another GetS arrives, the directory
controller sets the block’s state to indicate that a subsequent GetM requires the directory to
broadcast the Invalidation to all caches (i.e., a new “too many sharers” state). A drawback of
DiriB is that the directory could have to broadcast to all C caches even when there are only
K sharers (i<K<C), requiring the directory controller to send (and the cache controllers to
process) C-K unnecessary Invalidation messages. The limiting case, Dir0B, takes this ap-
proach to the extreme by eliminating all pointers and requiring a broadcast on all coherence
operations. The original Dir0B proposal maintained two state bits per block, encoding the
three MSI states plus a special “Single Sharer” state [3]. This new state helps eliminate a
broadcast when a cache tries to upgrade its S copy to an M copy (similar to the Exclusive
state optimization). Similarly, the directory’s I state eliminates broadcast when memory
owns the block. AMD’s Coherent HyperTransport [6] implements a version of Dir0B that
uses no directory state, forgoing these optimizations but eliminating the need to store any
directory state. All requests sent to the directory are then broadcast to all caches.
No Broadcast (DiriNB): If there are already i sharers and another GetS arrives, the direc-
tory asks one of the current sharers to invalidate itself to make room in the sharer list for the
new requestor. This solution can incur significant performance penalties for widely-shared
blocks (i.e., blocks shared by more than i nodes), due to the time spent invalidating sharers.
DiriNB is especially problematic for systems with coherent instruction caches because code
is frequently widely shared.
Software (DiriSW): If there are already i sharers and another GetS arrives, the system traps
to a software handler. Trapping to software enables great flexibility, such as maintaining a
full sharer list in software-managed data structures. However, because trapping to software
incurs significant performance costs and implementation complexities, this approach has
seen limited commercial acceptance.

8.6 DIRECTORY ORgANIZATION
Logically, the directory contains a single entry for every block of memory. Many traditional
directory-based systems, in which the directory controller was integrated with the memory control-
ler, directly implemented this logical abstraction by augmenting memory to hold the directory. For

•

•

•

DIRECTORY COHERENCE PROTOCOLS 159

example, the SGI Origin added additional DRAM chips to store the complete directory state with
each block of memory [10].

However, with today’s multicore processors and large LLCs, the traditional directory design
makes little sense. First, architects do not want the latency and power overhead of a directory access
to off-chip memory, especially for data cached on chip. Second, system designers balk at the large
off-chip directory state when almost all memory blocks are not cached at any given time. These
drawbacks motivate architects to optimize the common case by caching only a subset of directory
entries on chip. In the rest of this section, we discuss directory cache designs, several of which were
previously categorized by Marty and Hill [13].

Like conventional instruction and data caches, a directory cache [7] provides faster access
to a subset of the complete directory state. Because directories summarize the states of coherent
caches, they exhibit locality similar to instruction and data accesses, but need only store each block’s
coherence state rather than its data. Thus, relatively small directory caches achieve high hit rates.
Directory caching has no impact on the functionality of the coherence protocol; it simply reduces
the average directory access latency. Directory caching has become even more important in the era
of multicore processors. In older systems in which cores resided on separate chips and/or boards,
message latencies were sufficiently long that they tended to amortize the directory access latency.
Within a multicore processor, messages can travel from one core to another in a handful of cycles,
and the latency of an off-chip directory access tends to dwarf communication latencies and become
a bottleneck. Thus, for multicore processors, there is a strong incentive to implement an on-chip
directory cache to avoid costly off-chip accesses.

The on-chip directory cache contains a subset of the complete set of directory entries. Thus,
the key design issue is handling directory cache misses, i.e., when a coherence request arrives for a
block whose directory entry is not in the directory cache.

We summarize the design options in Table 8.7 and describe them next.

8.6.1 Directory Cache Backed by DRAM
The most straightforward design is to keep the complete directory in DRAM, as in traditional
multi-chip multiprocessors, and use a separate directory cache structure to reduce the average access
latency. A coherence request that misses in this directory cache leads to an access of this DRAM
directory. This design, while straightforward, suffers from several important drawbacks. First, it
requires a significant amount of DRAM to hold the directory, including state for the vast majority
of blocks that are not currently cached on the chip. Second, because the directory cache is decoupled
from the LLC, it is possible to hit in the LLC but miss in the directory cache, thus incurring a
DRAM access even though the data is available locally. Finally, directory cache replacements must
write the directory entries back to DRAM, incurring high latency and power overheads.

160 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

TABLE 8.7: Comparing Directory Cache Designs

171

communication latencies and become a bottleneck. Thus, for multicore processors, there is a strong incen-

tive to implement an on-chip directory cache to avoid costly off-chip accesses.

The on-chip directory cache contains a subset of the complete set of directory entries. Thus the key

design issue is handling directory cache misses, i.e., when a coherence request arrives for a block whose

directory entry is not in the directory cache. We summarize the design options in Table 8-7 and describe

them next.

8.6.1 Directory Cache Backed by DRAM

The most straightforward design is to keep the complete directory in DRAM, as in traditional multi-

chip multiprocessors, and use a separate directory cache structure to reduce the average access latency. A

coherence request that misses in this directory cache leads to an access of this DRAM directory. This

design, while straightforward, suffers from several important drawbacks. First, it requires a significant

amount of DRAM to hold the directory, including state for the vast majority of blocks that are not currently

cached on the chip. Second, because the directory cache is decoupled from the LLC, it is possible to hit in

the LLC but miss in the directory cache, thus incurring a DRAM access even though the data is available

TABLE 8-7. Comparing Directory Cache Designs

Inclusive directory caches (Section 8.6.2)

Directory cache

backed by DRAM

directory

(Section 8.6.1)

Inclusive directory cache

embedded in inclusive

LLC

(Section 8.6.2.1)

Standalone inclusive directory

cache

(Section 8.6.2.2)

Null Directory

Cache

(Section 8.6.3)

No Recalls With Recalls No Recalls With Recalls

directory location DRAM LLC LLC none

uses DRAM yes no no no

miss at directory

implies

must access DRAM block must be I block must be I block could be in

any state must

broadcast

inclusion

requirements

none LLC includes L1s directory cache includes L1s none

implementation

costs

DRAM plus sepa-

rate on-chip cache

larger LLC

blocks;

highly asso-

ciative LLC

larger LLC

blocks

highly associa-

tive storage for

redundant tags

storage for

redundant tags

none

replacement

notification

none none desirable required desirable none

→

8.6.2 Inclusive Directory Caches
We can design directory caches that are more cost-effective by exploiting the observation that we
need only cache directory states for blocks that are being cached on the chip. We refer to a directory
cache as an inclusive directory cache if it holds directory entries for a superset of all blocks cached on
the chip. An inclusive directory cache serves as a “perfect” directory cache that never misses for ac-
cesses to blocks cached on chip. There is no need to store a complete directory in DRAM. A miss
in an inclusive directory cache indicates that the block is in state I; a miss is not the precursor to
accessing some backing directory store.

We now discuss two inclusive directory cache designs, plus an optimization that applies to
both designs.

8.6.2.1 Inclusive Directory Cache Embedded in Inclusive LLC
The simplest directory cache design relies on an LLC that maintains inclusion with the upper-level
caches. Cache inclusion means that if a block is in an upper-level cache then it must also be present
in a lower-level cache. For the system model of Figure 8.1, LLC inclusion means that if a block is
in a core’s L1 cache, then it must also be in the LLC.

DIRECTORY COHERENCE PROTOCOLS 161

A consequence of LLC inclusion is that if a block is not in the LLC, it is also not in an L1
cache and thus must be in state I for all caches on the chip. An inclusive directory cache exploits this
property by embedding the coherence state of each block in the LLC. If a coherence request is
sent to the LLC/directory controller and the requested address is not present in the LLC, then the
directory controller knows that the requested block is not cached on-chip and thus is in state I in
all the L1s.

Because the directory mirrors the contents of the LLC, the entire directory cache may be em-
bedded in the LLC simply by adding extra bits to each block in the LLC. These added bits can lead
to non-trivial overhead, depending on the number of cores and the format in which directory state
is represented. We illustrate the addition of this directory state to an LLC cache block in Figure 8.9,
comparing it to an LLC block in a system without the LLC-embedded directory cache.

Unfortunately, LLC inclusion has several important drawbacks. First, while LLC inclusion
can be maintained automatically for private cache hierarchies (if the lower-level cache has sufficient
associativity [4]), for the shared caches in our system model, it is generally necessary to send spe-
cial “Recall” requests to invalidate blocks from the L1 caches when replacing a block in the LLC
(discussed further in Section 8.6.2.3). More importantly, LLC inclusion requires maintaining re-
dundant copies of cache blocks that are in upper-level caches. In multicore processors, the collective
capacity of the upper-level caches may be a significant fraction of (or sometimes, even larger than)
the capacity of the LLC.

8.6.2.2 Standalone Inclusive Directory Cache
We now present an inclusive directory cache design that does not rely on LLC inclusion. In this
design, the directory cache is a standalone structure that is logically associated with the directory
controller, instead of being embedded in the LLC itself. For the directory cache to be inclusive, it
must contain directory entries for the union of the blocks in all the L1 caches because a block in the
LLC but not in any L1 cache must be in state I. Thus, in this design, the directory cache consists
of duplicate copies of the tags at all L1 caches. Compared to the previous design (Section 8.6.2.1),

tag data

(a) typical LLC block

tag data
directory

state

(b) L3 block with LLC-Embedded Directory Cache

FIguRE 8.9: The cost of implementing the LLC-embedded directory cache

162 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

this design is more flexible, by virtue of not requiring LLC inclusion, but it has the added storage
cost for the duplicate tags.

This inclusive directory cache has some significant implementation costs. Most notably, it
requires a highly associative directory cache. (If we embed the directory cache in an inclusive LLC
(Section 8.6.2.1), then the LLC must also be highly associative.) Consider the case of a chip with
C cores, each of which has a K-way set-associative L1 cache. The directory cache must be C*K-way
associative to hold all L1 cache tags, and the associativity unfortunately grows linearly with core
count. We illustrate this issue for K=2 in Figure 8.10.

The inclusive directory cache design also introduces some complexity, in order to keep the
directory cache up-to-date. When a block is evicted from an L1 cache, the cache controller must
notify the directory cache regarding which block was replaced by issuing an explicit PutS request
(e.g., we cannot use a protocol with a silent eviction, as discussed in Section 8.7.4). One common
optimization is to piggy-back the explicit PutS on the GetS or GetX request. Since the index bits
must be the same, the PutS can be encoded by specifying which way was replaced. This is some-
times referred to as a “replacement hint,” although in general it is required (and not truly a “hint”).

8.6.2.3 Limiting the Associativity of Inclusive Directory Caches
To overcome the cost of the highly-associative directory cache in the previous implementation,
we present a technique for limiting its associativity. Rather than design the directory cache for the
worst-case situation (C*K associativity), we limit the associativity by not permitting the worst-case
to occur. That is, we design the directory cache to be A-way set associative, where A<C*K, and we
do not permit more than A entries that map to a given directory cache set to be cached on chip.
When a cache controller issues a coherence request to add a block to its cache, and the correspond-
ing set in the directory cache is already full of valid entries, then the directory controller first evicts
one of the blocks in this set from all caches. The directory controller performs this eviction by issu-

set 0

set S-1

core 0

set 0
way 0

set 0
way 1

core 1
set 0
way 0

set 0
way 1

set 1
way 0

set 1
way 1

set 1
way 0

set 1
way 1

set S-1
way 0

set S-1
way 1

set S-1
way 0

set S-1
way 1

core C-1

set 1
way 0

set 1
way 1

set S-1
way 0

set S-1
way 1

set 0
way 0

set 0
way 1

FIguRE 8.10: Inclusive directory cache structure (assumes 2-way L1 caches). Each entry is the tag
corresponding to that set and way for the core at the top of the column.

DIRECTORY COHERENCE PROTOCOLS 163

ing a “Recall” request to all of the caches that hold this block in a valid state, and the caches respond
with acknowledgments. Once an entry in the directory cache has been freed up via this Recall, then
the directory controller can process the original coherence request that triggered the Recall.

The use of Recalls overcomes the need for high associativity in the directory cache but,
without careful design, it could lead to poor performance. If the directory cache is too small, then
Recalls will be frequent and performance will suffer. Conway et al. [6] propose a rule of thumb that
the directory cache should cover at least the size of the aggregate caches it includes, but it can also
be larger to reduce the rates of recalls. Also, to avoid unnecessary Recalls, this scheme works best
with non-silent evictions of blocks in state S. With silent evictions, unnecessary Recalls will be sent
to caches that no longer hold the block being recalled.

8.6.3 Null Directory Cache (with no backing store)
The least costly directory cache is to have no directory cache at all. Recall that the directory state
helps prune the set of coherence controllers to which to forward a coherence request. But as with
Coarse Directories (Section 8.5.1), if this pruning is done incompletely, the protocol still works
correctly, but unnecessary messages are sent and the protocol is less efficient than it could be. Taken
to the extreme, a Dir0B protocol (Section 8.5.2) does no pruning whatsoever, in which case it does
not actually need a directory at all (or a directory cache). Whenever a coherence request arrives at
the directory controller, the directory controller simply forwards it to all caches (i.e., broadcasts the
forwarded request). This directory cache design, which we call the Null Directory Cache, may seem
simplistic, but it is popular for small- to medium-scale systems because it incurs no storage cost.

One might question the purpose of a directory controller if there is no directory state, but it
serves two important roles. First, as with all other systems in this chapter, the directory controller
is responsible for the LLC; it is, more precisely, an LLC/directory controller. Second, the directory
controller serves as an ordering point in the protocol; if multiple cores concurrently request the same
block, the requests are ordered at the directory controller. The directory controller resolves which
request happens first.

8.7 PERFORMANCE AND SCALABILITY OPTIMIZATIONS
In this section, we discuss several optimizations to improve the performance and scalability of direc-
tory protocols.

8.7.1 Distributed Directories
So far we have assumed that there is a single directory attached to a single monolithic LLC. This
design clearly has the potential to create a performance bottleneck at this shared, central resource.

164 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

The typical, general solution to the problem of a centralized bottleneck is to distribute the resource.
The directory for a given block is still fixed in one place, but different blocks can have different
directories.

In older, multi-chip multiprocessors with N nodes—each node consisting of multiple chips,
including the processor core and memory—each node typically had 1/N of the memory associated
with it and the corresponding 1/Nth of the directory state.

We illustrate such a system model in Figure 8.11. The allocation of memory addresses to
nodes is often static and often easily computable using simple arithmetic. For example, in a system
with N directories, block B’s directory entry might be at directory B modulo N. Each block has a
home, which is the directory that holds its memory and directory state. Thus, we end up with a sys-
tem in which there are multiple, independent directories managing the coherence for different sets
of blocks. Having multiple directories provides greater bandwidth of coherence transactions than
requiring all coherence traffic to pass through a single, central resource. Importantly, distributing
the directory has no impact on the coherence protocol.

In today’s world of multicore processors with large LLCs and directory caches, the approach
of distributing the directory is logically the same as in the traditional multi-chip multiprocessors.
We can distribute (bank) the LLC and directory cache. Each block has a home bank of the LLC
with its associated bank of the directory cache.

8.7.2 Non-Stalling Directory Protocols
One performance limitation of the protocols presented thus far is that the coherence controllers
stall in several situations. In particular, the cache controllers stall when they receive forwarded
requests for blocks in certain transient states, such as IMA. In Tables 8.8 and 8.9, we present a vari-
ant of the baseline MSI protocol that does not stall in these scenarios. For example, when a cache

cache

core
memory

D
ir

ec
to

ry

interconnection network

Node

cache
controller

cache
controller

cache

core

directory
controller

directory
controller

memory

D
ir

ec
to

ry

Node

FIguRE 8.11: Multiprocessor system model with distributed directory.

DIRECTORY COHERENCE PROTOCOLS 165

controller has a block in state IMA and receives a Fwd-GetS, it processes the request and changes
the block’s state to IMAS. This state indicates that after the cache controller’s GetM transaction
completes (i.e., when the last Inv-Ack arrives), the cache controller will change the block state to
S. At this point, the cache controller must also send the block to the requestor of the GetS and to
the directory, which is now the owner. By not stalling on the Fwd-GetS, the cache controller can
improve performance by continuing to process other forwarded requests behind that Fwd-GetS in
its incoming queue.

TABLE 8.8: Non-stalling MSI Directory Protocol—Cache Controller

177

TABLE 8-8. Non-stalling MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send

GetS to

Dir/IS
D

send GetM

to Dir/IM
AD

IS
D stall stall stall send Inv-Ack to

Req/IS
D

I

-/S -/S

IS
D

I
stall stall stall -/I -/I

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall

-/IM
A

S -/IM
A

I
ack-- -/M

IM
A

S stall stall stall send Inv-Ack

to Req/IM
A

SI

ack-- send data to

Req and Dir/S

IM
A

SI stall stall stall ack-- send data to

Req and Dir/I

IM
A

I
stall stall stall ack-- send data to

Req/I

S hit send GetM

to Dir/SM
AD

send PutS

to Dir/SI
A

send Inv-Ack to

Req/I

SM
AD hit stall stall stall stall send Inv-Ack to

Req/IM
AD

-/M -/SM
A -/M ack--

SM
A hit stall stall -/SM

A
S -/SM

A
I ack-- -/M

SM
A

S
stall stall stall send Inv-Ack

to Req/SM
A

SI

ack-- send data to

Req and Dir/S

SM
A

SI
stall stall stall ack-- send data to

Req and Dir/I

SM
A

I stall stall stall ack-- send data to

Req/I

M hit hit send

PutM+data

to Dir/MI
A

send data to

Req and

Dir/S

send data

to Req/I

MI
A stall stall stall send data to

Req and

Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack to

Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-9. Non-stalling MSI Directory Protocol - Directory Controller.

GetS GetM PutS-NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to

Req, add Req to

Sharers/S

send data to Req, set

Owner to Req/M

send Put-Ack to

Req

send Put-Ack to

Req

send Put-Ack to

Req

S send data to

Req, add Req to

Sharers

send data to Req, set

Owner to Req, send

Inv to Sharers, clear

Sharers/M

send Put-Ack to

Req, remove Req

from Sharers

send Put-Ack to

Req, remove Req

from Sharers/I

remove Req from

Sharers, send Put-

Ack to Req

M forward GetS to

Owner, add Req

to Sharers, clear

Owner/S
D

forward GetM to

Owner, set Owner to

Req

send Put-Ack to

Req

send Put-Ack to

Req

copy data to mem-

ory, send Put-Ack

to Req, clear

Owner/I

send Put-Ack to

Req

S
D stall stall send Put-Ack to

Req, remove Req

from Sharers

send Put-Ack to

Req, remove Req

from Sharers

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

166 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

A complication in the non-stalling protocol is that, while in state IMAS, a Fwd-GetM could
arrive. Instead of stalling, the cache controller processes this request and changes the block’s state
to IMASI (in I, going to M, waiting for Inv-Acks, then will go to S and then to I). A similar set
of transient states arises for blocks in SMA. Removing stalling leads to more transient states, in
general, because the coherence controller must track (using new transient states) the additional
messages it is processing instead of stalling.

We did not remove the stalls from the directory controller. As with the memory controllers
in the snooping protocols in Chapter 7, we would need to add an impractically large number of
transient states to avoid stalling in all possible scenarios.

8.7.3 Interconnection Networks Without Point-to-Point Ordering
We mentioned in Section 8.2, when discussing the system model of our baseline MSI directory
protocol, that we assumed that the interconnection network provides point-to-point ordering for
the Forwarded Request network. At the time, we claimed that point-to-point ordering simplifies
the architect’s job in designing the protocol because ordering eliminates the possibility of certain
races.

We now present one example race that is possible if we do not have point-to-point ordering
in the interconnection network. We assume the MOSI protocol from Section 8.4. Core C1’s cache
owns a block in state M. Core C2 sends a GetS request to the directory and core C3 sends a GetM
request to the directory. The directory receives C2’s GetS first and then C3’s GetM. For both re-
quests, the directory forwards them to C1.

TABLE 8.9: Non-stalling MSI Directory Protocol—Directory Controller

177

TABLE 8-8. Non-stalling MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send

GetS to

Dir/IS
D

send GetM

to Dir/IM
AD

IS
D stall stall stall send Inv-Ack to

Req/IS
D

I

-/S -/S

IS
D

I
stall stall stall -/I -/I

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall

-/IM
A

S -/IM
A

I
ack-- -/M

IM
A

S stall stall stall send Inv-Ack

to Req/IM
A

SI

ack-- send data to

Req and Dir/S

IM
A

SI stall stall stall ack-- send data to

Req and Dir/I

IM
A

I
stall stall stall ack-- send data to

Req/I

S hit send GetM

to Dir/SM
AD

send PutS

to Dir/SI
A

send Inv-Ack to

Req/I

SM
AD hit stall stall stall stall send Inv-Ack to

Req/IM
AD

-/M -/SM
A -/M ack--

SM
A hit stall stall -/SM

A
S -/SM

A
I ack-- -/M

SM
A

S
stall stall stall send Inv-Ack

to Req/SM
A

SI

ack-- send data to

Req and Dir/S

SM
A

SI
stall stall stall ack-- send data to

Req and Dir/I

SM
A

I stall stall stall ack-- send data to

Req/I

M hit hit send

PutM+data

to Dir/MI
A

send data to

Req and

Dir/S

send data

to Req/I

MI
A stall stall stall send data to

Req and

Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack to

Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-9. Non-stalling MSI Directory Protocol - Directory Controller.

GetS GetM PutS-NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to

Req, add Req to

Sharers/S

send data to Req, set

Owner to Req/M

send Put-Ack to

Req

send Put-Ack to

Req

send Put-Ack to

Req

S send data to

Req, add Req to

Sharers

send data to Req, set

Owner to Req, send

Inv to Sharers, clear

Sharers/M

send Put-Ack to

Req, remove Req

from Sharers

send Put-Ack to

Req, remove Req

from Sharers/I

remove Req from

Sharers, send Put-

Ack to Req

M forward GetS to

Owner, add Req

to Sharers, clear

Owner/S
D

forward GetM to

Owner, set Owner to

Req

send Put-Ack to

Req

send Put-Ack to

Req

copy data to mem-

ory, send Put-Ack

to Req, clear

Owner/I

send Put-Ack to

Req

S
D stall stall send Put-Ack to

Req, remove Req

from Sharers

send Put-Ack to

Req, remove Req

from Sharers

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

DIRECTORY COHERENCE PROTOCOLS 167

With point-to-point ordering (illustrated in Figure 8.12): C1 receives the Fwd-GetS, re-
sponds with Data, and changes the block state to O. C1 then receives the Fwd-GetM,
responds with Data, and changes the block state to I. This is the expected outcome.
Without point-to-point ordering (illustrated in Figure 8.13): The Fwd-GetM from C3
may arrive at C1 first. C1 responds with Data to C3 and changes the block state to I. The
Fwd-GetS from C2 then arrives at C1. C1 is in I and cannot respond. The GetS request
from C2 will never be satisfied and the system will eventually deadlock.

The directory protocols we have presented thus far are not compatible with interconnection
networks that do not provide point-to-point order for the Forwarded Request network. To make
the protocols compatible, we would have to modify them to correctly handle races like the one
described above. One typical approach to eliminating races like these is to add extra handshaking
messages. In the example above, the directory could wait for the cache controller to acknowledge
reception of each forwarded request sent to it before forwarding another request to it.

•

•

Dir

C1 C3C2

GetS

GetM

Fwd-GetS
(C2)

Fwd-GetM
(C3)

1

2

5

3

Data

Data

4

6

1

4

6

M

O

I

timeC1’s state

FIguRE 8.12: Example with point-to-point ordering.

Dir

C1 C3C2

GetS
GetM

GetS
(C2)

GetM
(C3)

1

2

3

5

Data

4

1

4

M

I

time C1’s state

FIguRE 8.13: Example without point-to-point ordering. Note that C2’s Fwd-GetS arrives at C1 in
state I and thus C1 does not respond.

168 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Given that point-to-point ordering reduces complexity, it would seem an obvious design
decision. However, enforcing point-to-point ordering prohibits us from implementing some poten-
tially useful optimizations in the interconnection network. Notably, it prohibits the unrestricted use
of adaptive routing.

Adaptive routing enables a message to dynamically choose its path as it traverses the network,
generally to avoid congested links or switches. Adaptive routing, although useful for spreading traf-
fic and mitigating congestion, enables messages between endpoints to take different paths and thus
arrive in a different order than that in which they were sent. Consider the example in Figure 8.14,
in which Switch A sends two messages, M1 and then M2, to Switch D. With adaptive routing, they
take different paths, as shown in the figure. If there happens to be more congestion at Switch B than
at Switch C, then M2 could arrive at Switch D before M1, despite being sent after M1.

8.7.4 Silent vs. Non-Silent Evictions of Blocks in State S
We designed our baseline directory protocol such that a cache cannot silently evict a block in state
S (i.e., without issuing a PutS to notify the directory). To evict an S block, the cache must send a
PutS to the directory and wait for a Put-Ack. Another option would be to allow silent evictions of
S blocks. (A similar discussion could be made for blocks in state E, if one considers the E state to
not be an ownership state, in which case silent evictions of E blocks are possible.)

Advantages of Silent PutS
The drawback to the explicit PutS is that it uses interconnection network bandwidth—albeit for
small data-free PutS and Put-Ack messages—even in cases when it ends up not being helpful. For
example if core C1 sends a PutS to the directory and then subsequently wants to perform a load to
this block, C1 sends a GetS to the directory and re-acquires the block in S. If C1 sends this second

A

DC

B

Message M1

Message M2

FIguRE 8.14: Adaptive Routing Example.

DIRECTORY COHERENCE PROTOCOLS 169

GetS before any intervening GetM requests from other cores, then the PutS transaction served no
purpose but did consume bandwidth.

Advantages of Explicit PutS
The primary motivation for sending a PutS is that a PutS enables the directory to remove the cache
no longer sharing the block from its list of sharers. There are three benefits to having a more precise
sharer list. First, when a subsequent GetM arrives, the directory need not send an Invalidation to
this cache. The GetM transaction is accelerated by eliminating the Invalidation and having to wait
for the subsequent Inv-Ack. Second, in a MESI protocol, if the directory is precisely counting the
sharers, it can identify situations in which the last sharer has evicted its block; when the directory
knows there are no sharers, it can respond to a GetS with Exclusive data. Third, recall from Sec-
tion 8.6.2 that directory caches that use Recalls can benefit from having explicit PutS messages to
avoid unnecessary Recall requests.

A secondary motivation for sending a PutS, and the reason our baseline protocol does send a
PutS, is that it simplifies the protocol by eliminating some races. Notably, without a PutS, a cache
that silently evicts a block in S and then sends a GetS request to re-obtain that evicted block in S
can receive an Invalidation from the directory before receiving the data for its GetS. In this situ-
ation, the cache does not know if the Invalidation pertains to the first period in which it held the
block in S or the second period (i.e., whether the Invalidation is serialized before or after the GetS).
The simplest solution to this race is to pessimistically assume the worst case (the Invalidation per-
tains to the second period) and always invalidate the block as soon as its data arrives. More efficient
solutions exist, but complicate the protocol.

8.8 CASE STuDIES
In this section, we discuss several commercial directory coherence protocols. We start with a tradi-
tional multi-chip system, the SGI Origin 2000. We then discuss more recently developed directory
protocols, including AMD’s Coherent HyperTransport and the subsequent HyperTransport Assist.
Last, we present Intel’s QuickPath Interconnect (QPI).

8.8.1 SgI Origin 2000
The Silicon Graphics Origin 2000 [10] was a commercial multi-chip multiprocessor designed in
the mid-1990s to scale to 1024 cores. The emphasis on scalability necessitated a scalable coherence
protocol, resulting in one of the first commercial shared-memory systems using a directory proto-
col. The Origin’s directory protocol evolved from the design of the Stanford DASH multiproces-
sor [11], as the DASH and Origin had overlapping architecture teams.

170 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

As illustrated in Figure 8.15, the Origin consists of up to 512 nodes, where each node consists
of two MIPS R10000 processors connected via a bus to a specialized ASIC called the Hub. Unlike
similar designs, Origin’s processor bus does not exploit coherent snooping and simply connects the
processors to each other and to the node’s Hub. The Hub manages the cache coherence protocol
and interfaces the node to the interconnection network. The Hub also connects to the node’s por-
tion of the distributed memory and directory. The network does not support any ordering, even
point-to-point ordering between nodes. Thus, if Processor A sends two messages to Processor B,
they may arrive in a different order than that in which they were sent.

The Origin’s directory protocol has a few distinguishing features that are worth discussing.
First, because of its scalability, each directory entry contains fewer bits than necessary to represent
every possible cache that could be sharing a block. The directory dynamically chooses, for each
directory entry, to use either a coarse bit vector representation or a limited pointer representation
(Section 8.5).

A second interesting feature in the protocol is that because the network provides no ordering,
there are several new coherence message race conditions that are possible. Notably, the examples
from Section 8.7.3 are possible. To maintain correctness, the protocol must consider all of these
possible race conditions introduced by not enforcing ordering in the network.

A third interesting feature is the protocol’s use of a non-ownership E state. Because the E
state is not an ownership state, a cache can silently evict a block in state E (or state S). The Origin
provides a special Upgrade coherence request to transition from S to E without needlessly request-
ing data, which is not unusual but does introduce a new race. There is a window of vulnerability
between when processor P1 sends an Upgrade and when the Upgrade is serialized at the directory;
if another processor’s GetM or Upgrade is serialized first, then P1’s state is I when its Upgrade
arrives at the directory, and P1 in fact needs data. In this situation, the directory sends a negative
acknowledgment (NACK) to P1, and P1 must send a GetM to the directory.

Another interesting feature of the Origin’s E state is how requests are satisfied when a pro-

Node

interconnection network

NodeNode

Hub

to network

bus (not coherent)

memory &
directory

MIPS
R10000

MIPS
R10000

FIguRE 8.15: SGI Origin.

DIRECTORY COHERENCE PROTOCOLS 171

cessor is in E. Consider the case where processor P1 obtains a block in state E. If P2 now sends
a GetS to the directory, the directory must consider that P1 (a) might have silently evicted the
block, (b) might have an unmodified value of the block (i.e., with the same value as at memory), or
(c) might have a modified value of the block. To handle all of these possibilities, the directory re-
sponds with data to P2 and also forwards the request to P1. P1 sends P2 either new data (if in M)
or just an acknowledgment. P2 must wait for both responses to arrive to know which message’s data
to use.

One other quirk of the Origin is that it uses only two networks (request and response) in-
stead of the three required to avoid deadlock. A directory protocol has three message types (request,
forwarded request, and response) and thus nominally requires three networks. Instead, the Origin
protocol detects when deadlock could occur and sends a “backoff ” message to a requestor on the
response network. The backoff message contains the list of nodes that the request needs to be sent
to, and the requestor can then send to them on the request network.

8.8.2 Coherent HyperTransport
Directory protocols were originally developed to meet the needs of highly scalable systems, and
the SGI Origin is a classic example of such a system. Recently, however, directory protocols have
become attractive even for small- to medium-scale systems because they facilitate the use of point-
to-point links in the interconnection network. This advantage of directory protocols motivated the
design of AMD’s Coherent HyperTransport (HT) [5]. Coherent HT enables glueless connections
of AMD processors into small-scale multiprocessors. Perhaps ironically, Coherent HT actually uses
broadcasts, thus demonstrating that the appeal of directory protocols in this case is the use of point-
to-point links, rather than scalability.

AMD observed that systems with up to eight processor chips can be built with only three
point-to-point links per chip and a maximum chip-to-chip distance of three links. Eight proces-
sor chips, each of which can have 6-cores in current generation technology, means a system with a
respectable 48 cores. To keep the protocol simple, Coherent HT uses a variation on a Dir0B direc-
tory protocol (Section 8.5.2) that stores no stable directory state. Any coherence request sent to the
directory is forwarded to all cache controllers (i.e., broadcast). Coherent HT can also be thought
of as an example of a null directory cache: requests always miss in the (null) directory cache, so it
always broadcasts. Because of the broadcasts, the protocol does not scale to large-scale systems, but
that was not the goal.

In a system with Coherent HT, each processor chip contains some number of cores, one
or more integrated memory controllers, one or more integrated HyperTransport controllers, and
between one and three Coherent HT links to other processor chips. A “node” consists of a processor
chip and its associated memory for which it is the home.

172 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

There are many viable interconnection network topologies, such as the four-node system
shown in Figure 8.16. Significantly, this protocol does not require a total order of coherence re-
quests, which provides greater flexibility for the interconnection network.

A coherence transaction works as follows. A core unicasts a coherence request to the directory
controller at the home node, as in a typical directory protocol. Because the directory has no state
and thus cannot determine which cores need to observe the request, the directory controller then
broadcasts the forwarded request to all cores, including the requestor. (This broadcast is like what
happens in a snooping protocol, except that the broadcast is not totally ordered and does not origi-
nate with the requestor.) Each core then receives the forwarded request and sends a response (either
data or an acknowledgment) to the requestor. Once the requestor has received all of the responses,
it sends a message to the directory controller at the home node to complete the transaction.

Looking at this protocol, one can view it as the best or worst of both worlds. Optimistically,
it has point-to-point links with no directory state or complexity, and it is sufficiently scalable for up
to eight processors. Pessimistically, it has the long three-hop latency of directories—or four hops, if
you consider the message from the requestor to the home to complete the transaction, although this
message is not on the critical path—with the high broadcast traffic of snooping. In fact, Coherent
HT uses even more bandwidth than snooping because all broadcasted forwarded requests generate
a response. The drawbacks of Coherent HT motivated an enhanced design called HyperTransport
Assist [6].

8.8.3 HyperTransport Assist
For the 12-core AMD Opteron processor-based system code-named Magny Cours, AMD devel-
oped HyperTransport Assist [6]. HT Assist enhances Coherent HT by eliminating the need to

multicore
processor

multicore
processor

multicore
processor

multicore
processor

DRAM DRAM

DRAM DRAM

m
em

or
y

co
nt

ro
lle

r

crossbar

H
T

C
on

tr
ol

H
T

C
on

tr
ol

core core

Coherent
HT link

FIguRE 8.16: Four-node Coherent HyperTransport System (adapted from [5]).

DIRECTORY COHERENCE PROTOCOLS 173

broadcast every forwarded coherence request. Instead of the Dir0B-like protocol of Coherent HT,
HT Assist uses a directory cache similar to the design described in Section 8.6.2. Each multicore
processor chip has an inclusive directory cache that has a directory entry for every block (a) for
which it is the home and (b) that is cached anywhere in the system. There is no DRAM directory,
thus preserving one of the key features of Coherent HT. A miss in the directory cache indicates
that the block is not cached anywhere. HT Assist’s directory cache uses Recall requests to handle
situations in which the directory cache is full and needs to add a new entry. Although HT Assist
appears from our description thus far to be quite similar to the design in Section 8.6.2, it has several
distinguishing features that we present in greater detail.

First, the directory entries provide only enough information to determine whether a coher-
ence request must be forwarded to all cores, forwarded to a single core, or satisfied by the home
node’s memory. That is, the directory does not maintain sufficient state to distinguish needing to
forward a request to two cores from needing to forward the request to all cores. This design decision
eliminated the storage cost of having to maintain the exact number of sharers of each block; instead,
two directory states distinguish “one sharer” from “more than one sharer.”

Second, the HT Assist design is careful to avoid incurring a large number of Recalls. AMD
adhered to a rule of thumb that there should be at least twice as many directory entries as cached
blocks. Interestingly, AMD chose not to send explicit PutS requests; their experiments apparently
convinced them that the additional PutS traffic was not worth the limited benefit in terms of a
reduction in Recalls.

Third, the directory cache shares the LLC. The LLC is statically partitioned by the BIOS
at boot time, and the default is to allocate 1MB to the directory cache and allocate the remaining
5MB to the LLC itself. Each 64-byte block of the LLC that is allocated to the directory cache is
interpreted as 16 4-byte directory entries, organized as four 4-way set-associative sets.

8.8.4 Intel QPI
Intel developed its QuickPath Interconnect (QPI) [9, 12] for connecting processor chips starting
with the 2008 Intel Core microarchitecture, and QPI first shipped in the Intel Core i7-9xx pro-
cessor. Prior to this, Intel connected processor chips with a shared-wire bus called the Front-Side
Bus (FSB). FSB evolved from a single shared bus to multiple buses, but the FSB approach was
fundamentally bottlenecked by the electrical signaling limits of the buses. To overcome this limita-
tion, Intel designed QPI to connect processor chips with point-to-point (i.e., non-bus) links. QPI
specifies multiple levels of the networking stack, from physical layer to protocol layer. For purposes
of this primer, we focus on the protocol layer here.

QPI supports five stable coherence states, the typical MESI states and the F(orward) state.
The F state is a clean, read-only state, and it is distinguished from the S state because a cache with

174 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

a block in F may respond with data (i.e., forward the data) to coherence requests. Only one cache
may hold a block in F at a given time. The F state is somewhat similar to the O state, but differs in
that a block in F is not dirty and can thus be silently evicted; a cache that wishes to evict a block in O
must copy the block back to memory. The benefit of the F state is that it allows read-only data to be
sourced from a cache, which is often faster than sourcing it from memory (which usually responds
to requests when a block is read-only).

QPI provides two different protocol modes, depending on the size of the system: “home
snoop” and “source snoop.”

QPI’s Home Snoop mode is effectively a scalable directory protocol (i.e., do not be confused
by the word “snoop” in its name2). As with typical directory protocols, a core C1 issues a request to
the directory at the home node C2, and the directory forwards that request to only the node(s) that
need to see it, say C3 (the owner in M). C3 responds with data to C1 and also sends a message to
C2 to notify the directory. When the directory at C2 receives the notification from C3, it sends a
“completion” message to C1, at which point C1 may use the data it received from C3. The directory
serves as the serialization point in the protocol and resolves message races.

QPI’s Source Snoop protocol mode is designed to have lower-latency coherence transactions,
at the expense of not scaling well to large systems with many nodes. A core C1 broadcasts a request
to all nodes, including the home. Each core responds to the home with a “snoop response” that
indicates what state the block was in at that core; if the block was in state M, then the core sends
the block to the requestor in addition to the snoop response to the home. Once the home has re-
ceived all of the snoop responses for a request, the request has been ordered. At this point, the home
either sends data to the requestor (if no core owned the block in M) or a non-data message to the
requestor; either message, when received by the requestor, completes the transaction.

Source Snoop’s use of broadcast requests is similar to a snooping protocol, but with the criti-
cal difference of the broadcast requests not traveling on a totally ordered broadcast network. Be-
cause the network is not totally ordered, the protocol must have a mechanism to resolve races (i.e.,
when two broadcasts race, such that core C1 sees broadcast A before broadcast B and core C2 sees
B before A). This mechanism is provided by the home node, albeit in a way that differs from typical
race ordering in directory protocols. Typically, the directory at the requested block’s home orders
two racing requests based on which request arrives at the home first. QPI’s Source Snoop, instead,
orders the requests based on which request’s snoop responses have all arrived at the home.

Consider the race situation in which block A is initially in state I in the caches of both C1
and C2. C1 and C2 both decide to broadcast GetM requests for A (i.e., send a GetM to the other
core and to the home). When each core receives the other core’s GetM, it sends a snoop response

2 Intel uses the word “snoop” to refer to what a core does when it receives a coherence request from another node.

DIRECTORY COHERENCE PROTOCOLS 175

to the home. Assume that C2’s snoop response arrives at the home before C1’s snoop response. In
this case, C1’s request is ordered first and the home sends data to C1 and informs C1 that there is a
race. C1 then sends an acknowledgment to the home, and the home subsequently sends a message
to C1 that both completes C1’s transaction and tells C1 to send the block to C2. Handling this race
is somewhat more complicated than in a typical directory protocol in which requests are ordered
when they arrive at the directory.

Source Snoop mode uses more bandwidth than Home Snoop, due to broadcasting, but Source
Snoop’s common case (no race) transaction latency is less. Source Snoop is somewhat similar to
Coherent HyperTransport, but with one key difference. In Coherent HT, a request is unicasted
to the home, and the home broadcasts the request. In Source Snoop, the requestor broadcasts the
request. Source Snoop thus introduces more complexity in resolving races because there is no single
point at which requests can be ordered; Coherent HT uses the home for this purpose.

8.9 DISCuSSION AND THE FuTuRE OF DIRECTORY
PROTOCOLS

Directory protocols have come to dominate the market. Even in small-scale systems, directory
protocols are more common that snooping protocols, largely because they facilitate the use of point-
to-point links in the interconnection network. Furthermore, directory protocols are the only option
for systems requiring scalable cache coherence. Although there are numerous optimizations and
implementation tricks that can mitigate the bottlenecks of snooping, fundamentally none of them
can eliminate these bottlenecks. For systems that need to scale to hundreds or even thousands of
nodes, a directory protocol is the only viable option for coherence. Because of their scalability, we
anticipate that directory protocols will continue their dominance for the foreseeable future.

It is possible, though, that future highly scalable systems will not be coherent or at least not
coherent across the entire system. Perhaps such systems will be partitioned into subsystems that are
coherent, but coherence is not maintained across the subsystems. Or perhaps such systems will fol-
low the lead of supercomputers, like those from Cray, that have either not provided coherence [14]
or have provided coherence but restricted what data can be cached [1].

8.10 REFERENCES
[1] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Little Time: Verifying Memory Co-

herence in the Cray X1. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2003. doi:10.1109/IPDPS.2003.1213087

[2] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings of the 15th Annual International Symposium
on Computer Architecture, pp. 280–89, May 1988. doi:10.1109/ISCA.1988.5238

http://dx.doi.org/10.1109/IPDPS.2003.1213087
http://dx.doi.org/10.1109/ISCA.1988.5238

176 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

[3] J. K. Archibald and J.-L. Baer. An Economical Solution to the Cache Coherence Prob-
lem. In Proceedings of the 11th Annual International Symposium on Computer Architecture,
pp. 355–62, June 1984. doi:10.1145/800015.808205

[4] J.-L. Baer and W.-H. Wang. On the Inclusion Properties for Multi-Level Cache Hierar-
chies. In Proceedings of the 15th Annual International Symposium on Computer Architecture,
pp. 73–80, May 1988. doi:10.1109/ISCA.1988.5212

[5] P. Conway and B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro,
27(2):10–21, March/April 2007. doi:10.1109/MM.2007.43

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache Hierar-
chy and Memory Subsystem of the AMD Opteron Processor. IEEE Micro, 30(2):16–29,
March/April 2010. doi:10.1109/MM.2010.31

[7] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes. In Proceedings of the International
Conference on Parallel Processing, 1990.

[8] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Cooperative Shared Memory:
Software and Hardware for Scalable Multiprocessors. ACM Transactions on Computer Sys-
tems, 11(4):300–18, Nov. 1993. doi:10.1145/161541.161544

[9] Intel Corporation. An Introduction to the Intel QuickPath Interconnect. Document Num-
ber 320412-001US, Jan. 2009.

[10] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture, pp. 241–51,
June 1997.

[11] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horo-
witz, and M. Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79,
Mar. 1992. doi:10.1109/2.121510

[12] R. A. Maddox, G. Singh, and R. J. Safranek. Weaving High Performance Multiprocessor Fab-
ric: Architecture Insights into the Intel QuickPath Interconnect. Intel Press, 2009.

[13] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support Server Consolidation. In Pro-
ceedings of the 34th Annual International Symposium on Computer Architecture, June 2007.

[14] S. L. Scott. Synchronization and Communication in the Cray T3E Multiprocessor. In Pro-
ceedings of the Seventh International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 26–36, Oct. 1996.

• • • •

http://dx.doi.org/10.1145/800015.808205
http://dx.doi.org/10.1109/ISCA.1988.5212
http://dx.doi.org/10.1109/MM.2007.43
http://dx.doi.org/10.1109/MM.2010.31
http://dx.doi.org/10.1145/161541.161544
http://dx.doi.org/10.1109/2.121510

177

In Chapters 7 and 8, we have presented snooping and directory coherence protocols in the context
of the simplest system models that were sufficient for explaining the fundamental issues of these
protocols. In this chapter, we extend our presentation of coherence in several directions. In Sec-
tion 9.1, we discuss the issues involved in designing coherence protocols for more sophisticated
system models. In Section 9.2, we describe optimizations that apply to both snooping and directory
protocols. In Section 9.3, we explain how to ensure that a coherence protocol remains live (i.e.,
avoids deadlock, livelock, and starvation). In Section 9.4, we present token coherence protocols
[11], a recently developed class of protocols that subsumes both snooping and directory protocols.
We conclude in Section 9.5 with a brief discussion of the future of coherence.

9.1 SYSTEM MODELS
Thus far, we have assumed a simple system model, in which each processor core has a single-level
write-back data cache that is physically addressed. This system model omitted numerous features that
are typically present in commercial systems, such as instruction caches (Section 9.1.1), translation
lookaside buffers (Section 9.1.2), virtually addressed caches (Section 9.1.3), write-through caches
(Section 9.1.4), coherent DMA (Section 9.1.5), and multiple levels of caches (Section 9.1.6).

9.1.1 Instruction Caches
All modern cores have at least one level of instruction cache, raising the question of whether
and how to support instruction cache coherence. Although truly self-modifying code is rare, cache
blocks containing instructions may be modified when the operating system loads a program or
library, a just-in-time (JIT) compiler generates code, or a dynamic run-time system re-optimizes a
program.

Adding instruction caches to a coherence protocol is superficially straightforward; blocks
in an instruction cache are read-only and thus in either stable state I or S. Furthermore, the core
never writes directly to the instruction cache; a core modifies code by performing stores to its data
cache. Thus, the instruction cache’s coherence controller takes action only when it observes a GetM

Advanced Topics in Coherence

C H A P T E R 9

178 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

from another cache (possibly its own L1 data cache) to a block in state S and simply invalidates the
block.

Instruction cache coherence differs from data cache coherence for several reasons. Most im-
portantly, once fetched, an instruction may remain buffered in the core’s pipeline for many cycles
(e.g., consider a core that fills its 128-instruction window with a long sequence of loads, each of
which misses all the way to DRAM). Software that modifies code needs some way to know when a
write has affected the fetched instruction stream. Some architectures, such as the AMD Opteron,
address this issue using a separate structure that tracks which instructions are in the pipeline. If
this structure detects a change to an in-flight instruction, it flushes the pipeline. However, because
instructions are modified far less frequently than data, other architectures require the software to
explicitly manage coherence. For example, the Power architecture provides the icbi (instruction
cache block invalidate) instruction to invalidate an instruction cache entry.

9.1.2 Translation Lookaside Buffers (TLBs)
Translation lookaside buffers (TLBs) are caches that hold a special type of data: translations from
virtual to physical addresses. As with other caches, they must be kept coherent. Like instruction
caches, they have not historically participated in the same all-hardware coherence protocols that
handle data caches. The traditional approach to TLB coherence is TLB shootdown [17], a software-
managed coherence scheme that may or may not have some hardware support. In a classic imple-
mentation, a core invalidates a translation entry (e.g., by clearing the page table entry’s PageValid
bit) and sends an inter-processor interrupt to all cores. Each core receives its interrupt, traps to a
software handler, either invalidates the specific translation entry from its TLBs or flushes all entries
from its TLBs (depending upon the platform). Each core must also ensure that there are no instruc-
tions in flight which are using the now-stale translation, typically by flushing the pipeline. Each
core then sends an acknowledgment back to the initiating core, using an interprocessor interrupt.
The initiating core waits for all of the acknowledgments, ensuring that all stale translation entries
have been invalidated, before modifying the translation (or reusing the physical page). Some archi-
tectures provide special support to accelerate TLB shootdown. For example, the Power architecture
eliminates costly inter-processor interrupts by using a special tlbie (TLB invalidate entry) instruc-
tion; the initiating core executes a tlbie instruction, which broadcasts the invalidated virtual page
number to all the cores and completes only once all cores have completed the invalidation.

Recent research proposed eliminating TLB shootdown and instead incorporating the TLBs
into the existing all-hardware coherence protocol for the data and instruction caches [15]. This all-
hardware solution is more scalable than TLB shootdown, but it requires a modification to the TLBs
to enable them to be addressable in the same way as the data and instruction caches. That is, the
TLBs must snoop the physical addresses of the blocks that hold translations in memory.

ADVANCED TOPICS IN COHERENCE 179

9.1.3 Virtual Caches
Most caches in current systems—and all caches discussed thus far in this primer—are accessed with
physical addresses, yet caches can also be accessed with virtual addresses. We illustrate both options
in Figure 9.1. A virtually addressed cache (“virtual cache”) has one key advantage with respect to
a physically addressed cache (“physical cache”): the latency of address translation is off the critical
path.1 This latency advantage is appealing for level-one caches, where latency is critical, but gener-
ally less compelling for lower level caches where latencies are less critical. Virtual caches, however,
pose a few challenges to the architect of a coherence protocol:

Coherence protocols invariably operate on physical addresses, for compatibility with main
memory, which would otherwise require its own TLB. Thus, when a coherence request ar-
rives at a virtual cache, the request’s address must undergo reverse translation to obtain the
virtual address with which to access the cache.
Virtual caches introduce the problem of synonyms. Synonyms are multiple virtual addresses
that map to the same physical address. Without mechanisms in place to avoid synonyms,
it is possible for synonyms to simultaneously exist in a virtual cache. Thus, not only does a
virtual cache requires a mechanism for reverse translation but also any given reverse transla-
tion could result in multiple virtual addresses.

Because of the complexity of implementing virtual caches, they are rarely used in current
systems. However, they have been used in a number of earlier systems, and it is possible that they
could become more relevant again in the future.

1A cache that is virtually indexed and physically tagged has this same advantage without the shortcomings of virtual
caches.

•

•

core cache

virtual address

core cache
virtual address

TLB
physical address

(a) Virtually addressed cache

(a) Physically addressed cache

FIguRE 9.1: Physical vs. virtual addressed caches

180 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

9.1.4 Write-Through Caches
Our baseline system model assumes writeback L1 data caches and a shared writeback LLC. The
other option, write-through caches, has several advantages and disadvantages. The obvious disad-
vantages include significantly greater bandwidth and power to write data through to the next lower
level of the memory hierarchy. In modern systems, these disadvantages effectively limit the write-
through/writeback decision to the L1 cache.

The advantages of write-through L1s include the following:

A significantly simpler two state VI (Valid and Invalid) coherence protocol. Stores write
through to the LLC and invalidate all Valid copies in other caches.
An L1 eviction requires no action, besides changing the L1 state to Invalid, because the
LLC always holds up-to-date data.
When the LLC handles a coherence request, it can respond immediately because it always
has up-to-date data.
When an L1 observes another core’s write, it needs only to change the cache block’s state to
Invalid. Importantly, this allows the L1 to represent each block’s state with a single, clear-
able flip-flop, eliminating complex arbitration or dual-ported state RAMs.
Finally, write-through caches also facilitate fault tolerance. Although a detailed discussion
is outside the scope of this primer, a write-through L1 cache never holds the only copy of
a block because the LLC always holds a valid copy. This allows the L1 to use only parity
because it can always just invalidate a block with a parity error.

Write-through caches pose some challenges with multithreaded cores and shared L1
caches. Recall that TSO requires write atomicity, and thus all threads (except the thread performing
the store) must see the store at the same time. Thus, if two threads T0 and T1 share the same L1
data cache, T0’s store to block A must prevent T1 from accessing the new value until all copies in
other caches have been invalidated (or updated). Despite these complications and disadvantages,
several current designs use write-through L1 caches, including the Sun Niagara processors and the
newly announced AMD Bulldozer.

9.1.5 Coherent Direct Memory Access (DMA)
In Chapter 2, when we first introduced coherence, we observed that incoherence can arise only if
there are multiple actors that can read and write to caches and memory. Today, the most obvious
collection of actors are the multiple cores on a single chip, but the cache coherence problem first
arose in systems with a single core and direct memory access (DMA). A DMA controller is an actor
that reads and writes memory under explicit system software control, typically at the page granular-

•

•

•

•

•

ADVANCED TOPICS IN COHERENCE 181

ity. A DMA operation that reads memory should find the most recent version of each block, even if
the block resides in a cache in state M or O. Similarly, a DMA operation that writes memory needs
to invalidate all stale copies of the block.

It is straightforward to provide coherent DMA by adding a coherent cache to the DMA
controller, and thus having DMA participate in the coherence protocol. In such a model, a DMA
controller is indistinguishable from a dedicated core, guaranteeing that DMA reads will always find
the most recent version of a block and DMA writes will invalidate all stale copies.

However, adding a coherent cache to a DMA controller is undesirable for several reasons.
First, DMA controllers have very different locality patterns than conventional cores, and they
stream through memory with little, if any, temporal reuse. Thus, DMA controllers have little use
for a cache larger than a single block. Second, when a DMA controller writes a block, it generally
writes the entire block. Thus, fetching a block with a GetM is wasteful, since the entire data will be
overwritten. Many coherence protocols optimize this case using special coherence operations. We
could imagine adding a new GetM-NoData request to the protocols in this primer, which seeks M
permission but expects only an acknowledgment message rather than a Data message. Other pro-
tocols use a special PutNewData message, which updates memory and invalidates all other copies
including those in M and O.

DMA can also be made to work without hardware cache coherence, by requiring the operat-
ing system to selectively flush caches. For example, before initiating a DMA to or from a page P, the
operating system could force all caches to flush page P using a protocol similar to TLB Shootdown
(or using some other page flushing hardware support). This approach is inefficient, and thus gener-
ally only seen in some embedded systems, because the operating system must conservatively flush a
page even if none of its blocks are in any cache.

9.1.6 Multi-Level Caches and Hierarchical Coherence Protocols
Our baseline system assumes a single multicore chip with two levels of cache: private level-one
data (L1) caches for each core and a shared last-level memory-side cache that holds both data and
instructions (LLC). But many other combinations of chips and caches are possible. For example,
the recent Intel Nehalem and AMD Opteron processors support systems with multiple multicore
chips as well as an additional level of private (per core) L2 caches. Figure 9.2 illustrates a system
with two multicore processors, each having two cores with private L2 caches between the private
L1s and shared LLC.

We next discuss multiple levels of caches on a single multicore chip (Section 9.1.6.1), systems
with multiple multicore processors (Section 9.1.6.2), and hierarchical coherence protocols (Sec-
tion 9.1.6.3).

182 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

9.1.6.1 Multi-level Caches
With multiple levels of caches, the coherence protocol must be sure to keep all of these caches co-
herent. Perhaps the most straightforward solution is to treat each cache completely independently.
For example, the L1, L2, and LLC could each independently process all incoming coherence re-
quests; this is the approach taken by the AMD Opteron [1].

However, we can also design the cache hierarchy such that not every cache needs to snoop
every coherence request. As discussed in Section 8.6, a key design option is whether and which
caches to make inclusive. An L2 is inclusive if it contains a superset of the blocks in the L1 caches.
Consider the case of an inclusive L2 when the L2 snoops a GetM for block B from another core. If
B is not in the L2, then there is no need to also snoop the L1 caches because B cannot be in any of
them. Thus, an inclusive L2 cache can serve as a filter that reduces the amount of coherence request
traffic that must be snooped by the L1 caches. If instead B is in the L2, then B might also be in the
L1 caches and then the L1 caches must also snoop the request. This is the approach taken by the
AMD Bulldozer.

Inclusion’s benefit—the reduction in L1 snoop bandwidth—must be traded off against the
space wasted by redundant storage of inclusive blocks. The cache hierarchy can hold a greater number
of distinct blocks if it is exclusive (i.e., if a block is in the L2 then it is not in the L1 caches) or non-
inclusive (neither inclusive nor exclusive). Another reason not to provide inclusion is to avoid the com-
plexity of maintaining inclusion (i.e., invalidating a block from the L1 when an L2 evicts that block).

9.1.6.2 Multiple Multicore Processors
Larger systems can be built by composing multiple multicore processor chips. While a full treat-
ment of scalable systems is beyond the scope of this primer, we examine one key issue: how to

core

L1

L2

core

L1

L2

LLC

multicore chip

core

L1

L2

core

L1

L2

LLC

multicore chip

inter-chip interconnection network

MemoryMemory

FIguRE 9.2: System with multiple multicore chips

ADVANCED TOPICS IN COHERENCE 183

use the LLC. In single-chip systems, the LLC is a memory-side cache logically associated with
memory and thus can be largely ignored as far as coherence is concerned. In multi-chip systems, the
LLC can alternatively be viewed as another level of the memory hierarchy. We present the options
from the perspective of a given chip (the “local” chip) and its local memory; other chips are “remote”
chips. The LLC could be used as:

A memory-side cache that holds blocks recently requested from the local memory. The
requests could be either from only the local chip or from both local and remote chips.
A core-side cache that holds blocks recently requested by the cores on the chip. The blocks
in the LLC could have homes on either this chip or other chips. In this case, the coherence
protocol must usually operate among the LLCs and memories of the multiple multicore
chips.

The LLC could also be used for both purposes, in a hybrid scheme. In a hybrid approach, the
architects would have to decide how to allocate the LLC to these different demands.

9.1.6.3 Hierarchical Coherence Protocols
The protocols described in previous chapters are flat protocols, in that there was a single coherence
protocol that every cache controller treats identically. However, once we introduce multiple levels of
caches, we introduce the possible need for hierarchical coherence protocols.

Some systems are naturally hierarchical, including systems comprised of multiple multicore
chips. Within each chip, there could be an intra-chip protocol, and there could be an inter-chip
protocol across the chips. Coherence requests that can be satisfied by the intra-chip protocol do not
interact with the inter-chip protocol; only when a request cannot be satisfied by another node on
the chip does the request get promoted to the inter-chip protocol.

The choice of protocol at one level is largely independent of the choice at another level.
For example, an intra-chip snooping protocol can be made compatible with an inter-chip directory
protocol. Each chip would require a single directory controller that considers the entire chip to be
a single node in the directory protocol. The inter-chip directory protocol could be identical to one
of the directory protocols presented in Chapter 8, with the directory state naturally represented in
a coarse fashion. Another possible hierarchical system could have directory protocols for both the
intra- and inter-chip protocols, and the two directory protocols could be the same or even different
from each other.

An advantage of hierarchical protocols for hierarchical systems is that it enables the design
of a simple, potentially non-scalable intra-chip design for the commodity chip. When designing a
chip, it would be beneficial to not have to design a single protocol that scales to the largest possible

•

•

184 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

number of cores that could exist in a system. Such a protocol is likely to be overkill for the vast ma-
jority of systems that are comprised of a single chip.

There are numerous examples of hierarchical protocols for hierarchical systems. The Sun
Wildfire prototype [5] connects multiple snooping systems together with a higher level directory
protocol. The AlphaServer GS320 [4] has two levels of directory protocols, one within each quad-
processor block and another across these blocks. The Stanford DASH machine [10] consisted of
multiple snooping systems connected by a higher level directory protocol.

In a system with hundreds or thousands of cores, it might not make much sense to have a
single coherence protocol. The system may be more likely to be divided, either statically or dynami-
cally, into domains that each run a separate workload or separate virtual machine. In such a system,
it may make sense to implement a hierarchical protocol that optimizes for intra-domain sharing yet
still permits inter-domain sharing. Recent work by Marty and Hill [12] superposes a hierarchical
coherence protocol on top of a multicore chip with a flat design. This design enables the common
case—intra-domain sharing—to be fast while still allowing sharing across domains.

9.2 PERFORMANCE OPTIMIZATIONS
There is a long history of research into optimizing the performance of coherence protocols. Rather
than present a high-level survey, we focus on two optimizations that are largely independent of
whether the underlying coherence protocol is snooping or directory. Why these two optimizations?
Because they can be effective and they illustrate the kinds of optimizations that are possible.

9.2.1 Migratory Sharing Optimization
In many multithreaded programs, a common phenomenon is migratory sharing. For example, one
core may read and then write a data block, then a second core may read and write it, and so on.
This pattern commonly arises from critical sections (e.g., the lock variable itself) in which the data
block migrates from one core to another. In a typical protocol, each core performs a GetS transac-
tion to read the data and then a subsequent GetM transaction to get write permission for the same
block. However, if the system can predict that the data conforms to a migratory sharing pattern,
cores could get an exclusive copy of the block when they first read it, thus reducing both the latency
and bandwidth to access the data [2, 14, 16]. The migratory optimization is similar to the E state
optimization, except that it also needs to return an exclusive copy when the block is in state M in
some cache, not just when the block is in state I in all caches.

There are two basic approaches to optimizing migratory sharing. First, one can use some
hardware predictor to predict that a particular block exhibits a migratory sharing pattern and is-

ADVANCED TOPICS IN COHERENCE 185

sue a GetM rather than a GetS on a load miss. This approach requires no change to the coherence
protocol but introduces a few challenges:

Predicting migratory sharing: we must design a hardware mechanism to predict when a
block is undergoing migratory sharing. A simple approach is to use a table to record which
blocks were first obtained with a GetS and then subsequently written, requiring a GetM.
On each load miss, the coherence controller could consult the predictor to determine
whether a block exhibits a migratory sharing pattern. If so, it could issue a GetM request,
rather than a GetS.
Mispredictions: if a block is not migrating, then this optimization can hurt performance.
Consider the extreme case of a system in which cores issue only GetM requests. Such a
system would never permit multiple cores to share a block in a read-only state.

Alternatively, we can extend the coherence protocol with an additional Migratory M (MM)
state. The MM state is equivalent to the state M, from a coherence perspective (i.e., dirty, exclusive,
owned), but it indicates that the block was obtained by a GetS in response to a predicted migratory
sharing pattern. If the local core proceeds to modify a block in MM, reinforcing the migratory shar-
ing pattern, it changes the block to state M. If a core in state M receives a GetS from another core, it
predicts that the access will be migratory and sends exclusive data (invalidating its own copy). If the
Other-GetS finds the block in state MM, the migratory pattern has been broken and the core sends
a shared copy and reverts to S (or possibly O). Thus, if many cores make GetS requests (without
subsequent stores and GetM requests), all cores will receive S copies.

Migratory sharing is just one example of a phenomenon that, if detected, can be exploited to
improve the performance of coherence protocols. There have been many schemes that target spe-
cific phenomena, as well as more general approaches to predicting coherence events [13].

9.2.2 False Sharing Optimizations
One performance problem that can plague coherence protocols is false sharing. False sharing oc-
curs when two cores are reading and writing different data that happen to reside on the same cache
block. Even though the cores are not actually sharing the data on the block (i.e., the sharing is false),
there can be a significant amount of coherence traffic between the cores for the block. This coher-
ence traffic hurts performance when a core is waiting for coherence permissions to access a block,
and it increases the load on the interconnection network. The likelihood of false sharing occurring
is a function of the block size—a larger block can hold more unrelated pieces of data and thus larger

•

•

186 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

blocks are more prone to false sharing—and the workload. There are at least two optimizations to
mitigate the impact of false sharing:

Sub-block Coherence
Without reducing the block size, we can perform coherence at a finer, sub-block granularity [7].
Thus, it is possible for a block in a cache to have different coherence states for different sub-blocks.
Sub-blocking reduces false sharing, but it requires extra state bits for each block to hold the sub-
block states.

Speculation
An architect can develop a hardware mechanism to predict when a block that is invalid in a cache is
the victim of false sharing [6]. If the predictor believes the block is invalid due to false sharing, the
core can speculatively use the data in the block until it obtains coherence permissions to the block.
If the prediction was correct, this speculation overcomes the latency penalty of false sharing, but it
does not reduce the traffic on the interconnection network.

9.3 MAINTAININg LIVENESS
In Chapter 2, we defined coherence and the invariants that must be maintained by a coherence
protocol. These invariants are safety invariants; if these invariants are maintained, then the proto-
col will never allow unsafe (incorrect) behavior. Facetiously, it is easy to provide safety because an
unplugged computer never does anything incorrect! The key is to provide both safety and liveness,
where providing liveness requires the prevention of three classes of situations: deadlock, livelock,
and starvation.

9.3.1 Deadlock
As discussed briefly in Section 8.2.3, deadlock is the situation in which two or more actors wait for
each other to perform some action, and thus never make progress. Typically, deadlock results from a
cycle of resource dependences. Consider the simple case of two nodes A and B and two resources X
and Y. Assume A holds resource X and B holds resource Y. If A requests Y and B requests X, then
unless one node relinquishes the resource it already holds, these two nodes will deadlock. We illus-
trate this cyclical dependence graph in Figure 9.3. More generally, deadlock can result from cycles
involving many nodes and resources. Note that partial deadlocks (e.g., the simple case of deadlock
between only nodes A and B) can quickly become complete system deadlocks when other nodes
wait for deadlocked nodes to perform some action (e.g., node C requests resource X).

ADVANCED TOPICS IN COHERENCE 187

Protocol Deadlocks
In coherence protocols, deadlock can arise at the protocol level, at cache resource allocation, and
in the network. Protocol deadlocks arise when a coherence controller waits for a message that will
never be sent. For example, consider a (buggy) directory protocol that does not wait for a Put-Ack
after sending a PutS, and instead immediately transitions to state I. If the directory controller sends
an Inv (e.g., in response to core C1’s GetM request) to core C0 at the same time that core C0 sends
a PutS to the directory, then C1 will never get an Inv-Ack from core C0 and will deadlock waiting
for it. Such deadlocks represent protocol errors and usually arise from untested race conditions.

Cache Resource Deadlocks
Cache resource deadlocks arise when a cache controller must allocate a resource before perform-
ing some action. These deadlocks typically arise either when handling another core’s request or on
writebacks. For example, consider a cache controller that has a set of shared buffers (e.g., transaction
buffer entries, or TBEs) that may be allocated both when the core initiates a coherence request and
when servicing another core’s request. If the core issues enough coherence requests to allocate all the
buffers, then it cannot process another core’s request until it completes one of its own. If all cores
reach this state, then the system deadlocks.

Protocol-Dependent Network Deadlocks
There are two causes of network deadlocks: deadlocks due to buggy routing algorithms, which are
independent of the types of messages and the coherence protocol, and network deadlocks that arise
because of the particular messages being exchanged during coherence protocol operation. We focus
here on this latter category of protocol-dependent network deadlocks. Consider a directory protocol
in which a request message may lead to a forwarded request and a forwarded request may lead to a
response. The protocol must ensure three invariants to avoid cyclic dependences and thus deadlock.

XA

Y
B

A requests X

B holds X

B requests Y

A holds Y

FIguRE 9.3: Example of deadlock due to cyclical resource dependences. Circles are nodes and squares
are resources. An arc that ends at a resource denotes a request for that resource. An arc that starts at a
resource denotes the holder of that resource.

Sidebar: Virtual Networks
Instead of using physically distinct networks, we can use distinct virtual networks. Consider two cores that
are connected with a single point-to-point link. At the end of each link is a FIFO queue to hold incoming
messages before the receiving core can process them. This single network is shown below on the left. To
add another physical network, as shown below on the right, we duplicate the links and the FIFO queues.
Requests travel on one physical network, and replies travel on the other physical network.

core C1Request
for A

Reply
for B

core C2
Request
for B

Reply
for A

core C1

core C2
Request
for B

Reply
for A

One network Two physical networks

Request
for A

Reply
for B

core C1

core C2
Request
for B

Reply
for A

Two virtual networks

Request
for A

Reply
for B

requests

replies

replies

requests

To avoid the cost of replicating the links and switches (switches not shown in figures), we can add a
virtual network, as illustrated. The only cost of a virtual network is an additional FIFO queue at each switch
and endpoint in the network. Adding the second virtual network in this example allows requests to not get
stuck behind replies.

Virtual networks are related to virtual channels [3], and some papers use the terms interchangeably.
However, we prefer to distinguish between them because they address different types of deadlocks. Virtual
networks prevent messages of different classes from blocking each other and thus avoid message-level
deadlocks.

Virtual channels are used at the network level to avoid deadlocks due to routing, regardless of the
message types. To avoid routing deadlock, messages travel on multiple virtual channels (e.g., a message
traveling west in a 2D torus might be required to use virtual channel 2). A virtual channel, like a virtual
network, is implemented as an extra FIFO queue at each switch and end point in the network. Virtual
channels are orthogonal to virtual networks; each virtual network may have some number of virtual chan-
nels to avoid routing deadlock

ADVANCED TOPICS IN COHERENCE 189

As explained in Section 8.2.3, each message class must travel on its own network. The net-
works may be physical or virtual [see sidebar on “virtual networks”], but the key is avoiding
situations in which a message of one class becomes stuck behind a message of another class
in a FIFO buffer. In this example, requests, forwarded requests, and responses all travel on
separate networks. A coherence controller thus has three incoming FIFOs, one for each
network.
Message classes must have a dependence order. If a message of class A can cause a coher-
ence controller to issue a message of class B, then a coherence controller may not stall the
processing of an incoming class B message while waiting for a class A message. In the di-
rectory example, a coherence controller cannot stall the processing of a forwarded request
while waiting for a request to arrive, nor can it stall the processing of a response while
waiting for a forwarded request.
The last message class in this chain of dependences—the response message, in this direc-
tory example—must always be “sunk.” That is, if a coherence controller receives a response
message, there must be no message class than can prevent it from being removed from its
incoming queue.

These three invariants eliminate the possibility of a cycle. Even though a request can be
stalled while waiting for responses or forwarded requests, every request will eventually be processed
because the number of responses and forwarded requests is bounded by the number of outstanding
transactions.

9.3.2 Livelock
Livelock is a situation in which two or more actors perform actions and change states, yet never
make progress. Livelock is a special case of starvation, discussed next. Livelock occurs most fre-
quently in coherence protocols that use negative acknowledgment messages (NACKs). A node may
issue a coherence request, but receive a NACK, prompting a retry. If contention or some repeatable
race with another node causes this case to recur indefinitely, then the nodes livelock. The protocols
in this primer do not use NACKs, so we focus on another well-known livelock involving coherence
permissions that can arise in these protocols.

This cause of livelock is the so-called “window of vulnerability” problem [8], an example of
which is illustrated in Table 9.1. Consider a snooping protocol in which Core C1 issues a GetS re-
quest for block B and changes B’s state to ISAD (in I, going to S, waiting for own GetS and data). At
some point later, C1 observes its own GetS on the bus and changes B’s state to state ISD. Between
when B goes to state ISD and when C1 receives the data response, it is vulnerable to observing a
GetM request for B from another core on the bus. In an optimized protocol, like the protocol in

•

•

•

190 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Section 7.5.5, if a GetM arrives for B in state ISD, C1 will change B’s state to ISDI. In this tran-
sient state, when C1 later receives the data response, C1 changes B’s state to I. Because C1 cannot
perform a load to a block in I, it must issue another GetS for B. However, this next GetS is just as
susceptible to the window of vulnerability problem, and thus C1 may never make forward progress.
The core is still active, and thus the system is not deadlocked, but it never makes forward progress.
Somewhat perversely, this situation is most likely to arise for highly contended blocks, which means
that most or all of the cores are likely to simultaneously be stuck and thus the system can livelock.

This window of vulnerability can be closed by requiring that C1 perform at least one load
when it receives the data response. This load logically appears to occur at the time at which C1’s GetS
is ordered (e.g., on the bus in a snooping protocol) and thus does not violate coherence. However,
if certain conditions are not satisfied, performing this load could violate the memory consistency
model. Satisfying these conditions is sometimes known as the Peekaboo problem, and we discuss it
in more detail in the sidebar. The simplest solution to the Peekaboo problem is to perform the load
in the window of vulnerability if and only if that load was the oldest load in program order when the
coherence request was first issued. A complete analysis of why this solution is sufficient is outside
the scope of this primer, but intuitively the problem cannot arise if a core issues coherence requests
one at a time in the order of demand misses.

TABLE 9.1: Livelock Example for Core C1 Trying to Load
Block B in a Snooping Protocol.

203

NACKs, so we focus on another well-known livelock involving coherence permissions that can arise in

these protocols.

This cause of livelock is the so-called “window of vulnerability” problem [8], an example of which is

illustrated in Table 9-1. Consider a snooping protocol in which Core C1 issues a GetS request for block B

and changes B’s state to IS
AD

 (in I, going to S, waiting for own GetS and data). At some point later, C1

observes its own GetS on the bus and changes B’s state to state IS
D

. Between when B goes to state IS
D

 and

when C1 receives the data response, it is vulnerable to observing a GetM request for B from another core

on the bus. In an optimized protocol, like the protocol in Section 7.5.5, if a GetM arrives for B in state IS
D

,

C1 will change B’s state to IS
D

I. In this transient state, when C1 later receives the data response, C1

changes B’s state to I. Because C1 cannot perform a load to a block in I, it must issue another GetS for B.

However, this next GetS is just as susceptible to the window of vulnerability problem, and thus C1 may

never make forward progress. The core is still active, and thus the system is not deadlocked, but it never

makes forward progress. Somewhat perversely, this situation is most likely to arise for highly contended

blocks, which means that most or all of the cores are likely to simultaneously be stuck and thus the system

can livelock.

This window of vulnerability can be closed by requiring that C1 perform at least one load when it

receives the data response. This load logically appears to occur at the time at which C1’s GetS is ordered

(e.g., on the bus in a snooping protocol) and thus does not violate coherence. However, if certain condi-

tions are not satisfied, performing this load could violate the memory consistency model. Satisfying these

conditions is sometimes known as the Peekaboo problem, and we discuss it more detail in the sidebar. The

TABLE 9-1. Livelock example for Core C1 trying to load

block B in a snooping protocol.

cycle event (all for block B) Core C1’s state for B

0 initial state I

1 load request, issue GetS to bus IS
AD

2 observe Own-GetS on bus IS
D

3 observe Other-GetM on bus IS
D

I

4 receive data for Own-GetS I

5 re-issue GetS to bus IS
AD

6 observe Own-GetS on bus IS
D

7 observe Other-GetM on bus IS
D

I

8 receive data for Own-GetS I

9 Etc. (never completing the load)

ADVANCED TOPICS IN COHERENCE 191

Sidebar: Peekaboo Coherence Problem
Table 9.2 illustrates what is sometimes called the Peekaboo Coherence problem. In this example, the
locations A and B are initially zero, core C0 writes A first and then B, and core C1 reads B first
and then A. Under both the SC and TSO memory consistency models, the only illegal outcome is
r1=1 and r2=0. This example execution uses the optimized directory protocol from Section 8.7.2, but
elides the directory controller’s actions (which are not pertinent to the example). PrefetchS is the one
new operation in this example, which issues a GetS request if a readable block does not already reside
in the cache.

The Peekaboo problem arises when a block is prefetched, invalidated before permission is re-
ceived, and then a demand reference occurs. If we perform the demand reference when the prefetched
but already invalidated Data arrives, then the demand reference is effectively ordered at the time the
block was invalidated. In this example, C1’s load A is effectively ordered at time 4 (when C1 receives
the Inv for block A), while C1’s earlier (in program order) load B is ordered at time 7. Reordering
these two loads violates both SC and TSO. Note that this problem can arise whether the prefetch
operation results from an explicit prefetch instruction, hardware prefetcher, or speculative execution.
This problem can also arise in optimized snooping protocols, such as the one in Section 7.5.5.

TABLE 9.2: Example of Peekaboo Coherence Problem

204

Peekaboo Coherence Problem

Table 9-2 illustrates what is sometimes called the Peekaboo Coherence problem. In this exam-

ple, the locations A and B are initially zero, Core C0 writes A first and then B, and Core C1 reads B

first and then A. Under both the SC and TSO memory consistency models, the only illegal outcome

is r1=1 and r2=0. This example execution uses the optimized directory protocol from Section 8.7.2,

but elides the directory controller’s actions (which are not pertinent to the example). PrefetchS is

the one new operation in this example, which issues a GetS request if a readable block does not

already reside in the cache.

The Peekaboo problem arises when a block is prefetched, invalidated before permission is

received, and then a demand reference occurs. If we perform the demand reference when the

prefetched but already invalidated Data arrives, then the demand reference is effectively ordered at

the time the block was invalidated. In this example, C1's load A is effectively ordered at time 4

(when C1 receives the Inv for block A), while C1's earlier (in program order) load B is ordered at

time 7. Reordering these two loads violates both SC andTSO. Note that this problem can arise

whether the prefetch operation results from an explicit prefetch instruction, hardware prefetcher, or

speculative execution. This problem can also arise in optimized snooping protocols, such as the one

in Section 7.5.5.

TABLE 9-2. Example of Peekaboo Coherence Problem

Core C0 Core C1

Time

A=B=0 initially

store A = 1

store B = 1

prefetchS A (prefetch for read-only access)

load r1 = B

load r2 = A

0 A:M[0]

B:M[0]

A:I

B:I

1 A: prefetchS miss, issue GetS/IS
D

2 A: receive Fwd-GetS, send Data[0]/S

3 A: store miss; issue GetM/SM
AD

4 A: receive Data[0](ack=1)/SM
A

A: receive Inv, send Inv-Ack/IS
D

I

5 A: receive Inv-Ack, perform store/M[1]

6 B: store hit/M[1]

7 B: load miss, issue GetS/IS
D

8 B: receive Fwd-GetS, send Data[1]/S

9 B: receive Data[1], perform load r1=1/S[1]

10 A: load miss, stall/IS
D

I

11 A: receive Data[0], perform load r2=0/I

Core C1 observes A = 0 and B = 1, effectively reordering the loads.

[]1

192 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

This same window of vulnerability exists for stores to blocks in IMDS, IMDSI, or IMDI.
In these cases, the store to the block is never performed because the block’s state at the end of the
transaction is either I or S, which is insufficient for performing a store. Fortunately, the same solu-
tion we presented for the load in ISDI applies to stores in these states. A core that issues a GetM
must perform at least one store when it receives the data, and the core must forward this newly
written data to the other core(s) that requested the block in S and/or M between when it observes
its own GetM and when it receives the data in response to its GetM. Note that the same restriction
needed to avoid the Peekaboo problem still applies: namely, perform the store if and only if the store
was the oldest load or store in program order at the time the coherence request was issued.

9.3.3 Starvation
Starvation is a situation in which one or more cores fail to make forward progress while other cores
are still actively making forward progress. The cores not making progress are considered to be
starved. There are several root causes of starvation, but they tend to fall into two categories: unfair
arbitration and incorrect use of negative acknowledgments.

Starvation can arise when at least one core cannot obtain a critical resource because the re-
source is always obtained or held by other cores. A classic example of this is an unfair bus arbitration
mechanism in a bus-based snooping protocol. Consider a bus in which access to the bus is granted
in a fixed priority order. If Core C1 wishes to make a request, it can make a request. If C2 wishes
to make a request, it may make the request only if C1 has not first requested the bus. C3 must
defer to C1 and C2, etc. In such a system, a core with a low priority may never gain permission to
make a request and will thus starve. This well-known problem also has a well-known solution: fair
arbitration.

The other main class of starvation causes is the incorrect use of negative acknowledgments
(NACKs) in coherence protocols. In some protocols, a coherence controller that receives a coherence
request may send a NACK to the requestor (often used in verb form as “the controller NACKed the
request”), informing the requestor that the request was not satisfied and must be re-issued. NACKs
are generally used by protocols to simplify situations in which there is another transaction in prog-
ress for the requested block. For example, in some directory protocols, the directory can NACK a
request if the requested block is already in the midst of a transaction. Solving these protocol race
conditions with NACKs appears, at least at first blush, to be conceptually easier than designing the
protocol to handle some of these rare and complicated situations. However, the challenge is ensur-
ing that a NACKed request eventually succeeds. Guaranteeing a lack of starvation, regardless of
how many cores are requesting the same block at the same time, is challenging; one of the authors
of this primer confesses to having designed a protocol with NACKs that led to starvation.

ADVANCED TOPICS IN COHERENCE 193

9.4 TOKEN COHERENCE
Until fairly recently, coherence protocols could be classified as either snooping or directory or per-
haps a hybrid of the two. There were many variants of each class and several hybrids, but protocols
were fundamentally some combination of snooping and directory. In 2003, Martin et al. proposed
a third protocol classification called Token Coherence [11]. There are two key ideas behind Token
Coherence (TC).

TC protocols associate tokens with each block instead of state bits. There is a fixed number
of tokens per block, and the cores can exchange—but not create or destroy—these tokens. A core
with one or more tokens for a block can read the block, and a core with all of the tokens for a block
can read or write to the block.

A TC protocol consists of two distinct parts: a correctness substrate and a performance pro-
tocol. The correctness substrate is responsible for ensuring safety (tokens are conserved) and liveness
(all requests are eventually satisfied). The performance protocol specifies what a cache controller
does on a cache miss. For example, in the TokenB performance protocol, all coherence requests are
broadcast. In the TokenM protocol, coherence requests are multicast to a predicted set of sharers.

Token Coherence subsumes snooping and directory protocols, in that snooping and directory
protocols can be interpreted as TC protocols. For example, an MSI snooping protocol is equivalent
to a TC protocol with a broadcast performance protocol. The MSI states are equivalent to a core
having all/some/none of the tokens for a block.

9.5 THE FuTuRE OF COHERENCE
Almost since coherence’s invention, some have predicted that it will soon go away because it adds
hardware cost to store extra state, send extra messages, and verify that all is correct. However, we
predict that coherence will remain commonly implemented because in our judgment, the software
cost of dealing with incoherence is often substantial and borne by a broader group of software engi-
neers rather than the few hardware designers that confront implementing coherence.

9.6 REFERENCES
[1] P. Conway and B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro,

27(2):10–21, March/April 2007. doi:10.1109/MM.2007.43
[2] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detecting Migratory Shared

Data. In Proceedings of the 20th Annual International Symposium on Computer Architecture,
pp. 98–108, May 1993. doi:10.1145/165123.165146

[3] W. J. Dally. Virtual Channel Flow Control. IEEE Transactions on Parallel and Distributed
Systems, 3(2):194–205, Mar. 1992.

http://dx.doi.org/10.1109/MM.2007.43
http://dx.doi.org/10.1145/165123.165146

194 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

[4] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architecture and Design of Al-
phaServer GS320. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 13–24, Nov. 2000. doi:
10.1145/378993.378997

[5] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In Proceedings of the
Fifth IEEE Symposium on High-Performance Computer Architecture, pp. 172–81, Jan. 1999.
doi:10.1109/HPCA.1999.744361

[6] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence Decoupling: Making Use of In-
coherence. In Proceedings of the Eleventh International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2004.

[7] M. Kadiyala and L. N. Bhuyan. A Dynamic Cache Sub-block Design to Reduce False
Sharing. In Proceedings of the 1995 International Conference on Computer Design, 1995.
doi:10.1109/ICCD.1995.528827

[8] J. Kubiatowicz, D. Chaiken, and A. Agarwal. Closing the Window of Vulnerability in Mul-
tiphase Memory Transactions. In Proceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 274–84, Oct. 1992.
doi:10.1145/143365.143540

[9] H. Q. Le et al. IBM POWER6 Microarchitecture. IBM Journal of Research and Develop-
ment, 51(6), 2007.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor. In Proceedings of the 17th An-
nual International Symposium on Computer Architecture, pp. 148–59, May 1990. doi:10.1109/
ISCA.1990.134520

[11] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Perfor-
mance and Correctness. In Proceedings of the 30th Annual International Symposium on Com-
puter Architecture, June 2003. doi:10.1109/ISCA.2003.1206999

[12] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support Server Consolidation. In Pro-
ceedings of the 34th Annual International Symposium on Computer Architecture, June 2007.

[13] S. S. Mukherjee and M. D. Hill. Using Prediction to Accelerate Coherence Protocols. In
Proceedings of the 25th Annual International Symposium on Computer Architecture, pp. 179–90,
June 1998. doi:10.1109/ISCA.1998.694773

[14] J. Nilsson and F. Dahlgren. Improving Performance of Load-Store Sequences for Transac-
tion Processing Workloads on Multiprocessors. In Proceedings of the International Conference
on Parallel Processing, pp. 246–55, Sept. 1999. doi:10.1109/ICPP.1999.797410

[15] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. UNified Instruction/Transla-
tion/Data (UNITD) Coherence: One Protocol to Rule Them All. In Proceedings of the

http://dx.doi.org/10.1145/378993.378997
http://dx.doi.org/10.1145/378993.378997
http://dx.doi.org/10.1109/HPCA.1999.744361
http://dx.doi.org/10.1109/ICCD.1995.528827
http://dx.doi.org/10.1145/143365.143540
http://dx.doi.org/10.1109/ISCA.1990.134520
http://dx.doi.org/10.1109/ISCA.1990.134520
http://dx.doi.org/10.1109/ISCA.2003.1206999
http://dx.doi.org/10.1109/ISCA.1998.694773
http://dx.doi.org/10.1109/ICPP.1999.797410

ADVANCED TOPICS IN COHERENCE 195

Fifteenth International Symposium on High-Performance Computer Architecture, Jan. 2010.
doi:10.1109/HPCA.2010.5416643

[16] P. Stenström, M. Brorsson, and L. Sandberg. Adaptive Cache Coherence Protocol Opti-
mized for Migratory Sharing. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pp. 109–18, May 1993. doi:10.1145/165123.165147

[17] P. J. Teller. Translation-Lookaside Buffer Consistency. IEEE Computer, 23(6): pp. 26–36,
June 1990. doi:10.1109/2.55498

• • • •

http://dx.doi.org/10.1109/HPCA.2010.5416643
http://dx.doi.org/10.1145/165123.165147
http://dx.doi.org/10.1109/2.55498

197

Author Biographies

Daniel J. Sorin is an associate professor of Electrical and Computer Engineering and of Computer
Science at Duke University. His research interests are in computer architecture, including depend-
able architectures, verification-aware processor design, and memory system design. He received a
PhD and MS in electrical and computer engineering from the University of Wisconsin, and he re-
ceived a BSE in electrical engineering from Duke University. He is the recipient of an NSF Career
Award and a Warren Faculty Scholarship at Duke. He is the author of a previous Synthesis Lecture,
“Fault Tolerant Computer Architecture” (2009).

Mark D. Hill (http://www.cs.wisc.edu/~markhill) is Professor of Computer Sciences and Electrical
and Computer Engineering at the University of Wisconsin, Madison. He is the inventor of the
widely used 3C model of cache behavior (compulsory, capacity, and conflict misses). He currently
co-leads the Wisconsin Multifacet project that develops innovative multiprocessor designs and
simulation methods (e.g., GEMS and gem5). He earned a Ph.D. and M.S. from the University of
California, Berkeley and a B.S.E. from the University of Michigan, Ann Arbor. Hill is an ACM
Fellow, a Fellow of the IEEE, recipient of the ACM SIGARCH Distinguished Service Award,
and has won several university awards (Romnes, Vilas Associate, and Kellett). He has had visiting
appointments at Sun Microsystems, Universidad Politecnica de Catalunya, Columbia University,
AMD, and the University of Washington.

Prof. David A. Wood is Professor of Computer Sciences and Electrical and Computer Engineer-
ing at the University of Wisconsin, Madison. Dr. Wood has a Ph.D. in Computer Science (1990)
from UC Berkeley. Dr. Wood is an ACM Fellow (2006), IEEE Fellow (2004), UW Vilas Associate
(2011), UW Romnes Fellow (1999), and NSF PYI (1991). Dr. Wood is Area Editor (Computer
Systems) of ACM TOMACS, is Associate Editor of ACM TACO, served as Program Committee
Chairman of ASPLOS-X (2002), and has served on numerous program committees. Dr. Wood has
published over 80 technical papers and is an inventor on a dozen U.S. and international patents.
Dr. Wood co-leads the Wisconsin Multifacet project, which distributes the widely used Wisconsin
GEMS full-system multiprocessor simulation system.

http://www.cs.wisc.edu/~markhill

