
Tracklet Descriptors
for Action Modeling and Video Analysis

Michalis Raptis and Stefano Soatto

University of California, Los Angeles
{mraptis, soatto}@cs.ucla.edu

Abstract. We present spatio-temporal feature descriptors that can be
inferred from video and used as building blocks in action recognition sys-
tems. They capture the evolution of “elementary action elements” under
a set of assumptions on the image-formation model and are designed to
be insensitive to nuisance variability (absolute position, contrast), while
retaining discriminative statistics due to the fine-scale motion and the lo-
cal shape in compact regions of the image. Despite their simplicity, these
descriptors, used in conjunction with basic classifiers, attain state of the
art performance in the recognition of actions in benchmark datasets.

1 Introduction

The analysis of “activities” (or “events” or “actions”) in video is important and
yet elusive as there is no obvious taxonomy and their measurable correlates are
subject to significant variability. While many activities can be classified based
on still images [33], the temporal evolution is important to tease apart more
subtle differences [12]; it is obvious that a viable approach has to successfully
combine both spatial and temporal statistics. We use the words “activities” or
“actions” in quotes, because we do not have a precise (operational) definition for
them. However, we postulate that such complex phenomena can be understood
as the composition of relatively simple spatio-temporal statistics, which we will
attempt to characterize in Sect. 2.

In this paper we define elementary spatio-temporal statistics under a set
of modeling assumptions about the image formation process (Sect. 2), propose
a model to infer them (Sect. 2.2), and evaluate the resulting descriptors on
classification tasks using benchmark datasets (Sect. 4).

We focus on low-level representation, to devise statistics of the spatio-temporal
signal that are insensitive to nuisance factors and yet sufficiently discriminative,
that can be used as building blocks for more sophisticated models that exploit
top-down structure and priors. Thus we purposefully operate with impoverished
models that emphasize the low level, keeping top-down processing, shape and
motion priors, and learning machinery to a minimum. Even with this impover-
ished representation, we show that we can achieve competitive performance in
end-to-end classification tasks on benchmark datasets. More importantly, how-
ever, we believe that our features can be profitably used by more sophisticated
models that do exploit top-down information in the form of global temporal
statistics or spatial context.
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1.1 Related work

We propose spatio-temporal feature descriptors that capture the local struc-
ture of the image around trajectories tracked over time. We actively restrict our
attention to a subset of the spatial image domain and encode its “local pho-
tometry”. Our approach differs from “holistic” ones [3, 8, 43, 20, 42] that use the
entire video volume to extract global statistics, and compare them with stan-
dard norms, block correlation [43], or dynamic time warping [20]. Unlike these
approaches, we explicitly model “simple” nuisance variability (position, contrast
etc.), detect a corresponding frame with a co-variant detector, and “undo” it in
the descriptor, which is therefore by construction invariant to such nuisances.
The residual “complex” nuisances (local deformation, deviation from Lamber-
tian reflection, complex illumination changes) are instead averaged out in the
descriptor. Such averaging is performed relative to the structure of the nuisances,
learned during the training phase, and plays a similar role to spatial binning (a
form of “unstructured” averaging) in [23]. In this sense, our approach relates to
part-based representations for action recognition, including [34, 7, 21, 29, 40].

Different local descriptors have been proposed to capture shape [34, 7] or
joint motion and shape [18, 17, 4] by aggregating features within video cubes
centered at spatio-temporal interest points into a static descriptor. In contrast,
we retain in our tracklet descriptor the entire feature time series from birth
to death of each tracked region. Other recent works [38, 27, 25, 13] also use a
collection of trajectories to increase the discriminative power of local spatio-
temporal volumes, but utilize different representations: [38] uses the stationary
statistics of the Markov chain of instantaneous velocities to describe the evolution
of the trajectories, which suffers from small-sample effects, while we explicitly
maintain the entire time series and employ dynamic time warping to compare
our variable-length descriptors. Messing et al. [27] use velocities as observations
in a sequential graphical model.

We illustrate the general architecture of our descriptors using off-the-shelf de-
tectors and local motion estimators and perform averaging or aggregation using
the computational architecture of [23]. While more sophisticated instantiations
are possible, already these simple choices attain state-of-the-art performance
in the Activities of Daily Living (ADL)[27], the KTH [34] and the Hollywood
Human Action (HOHA) [17] datasets. The implementation of the proposed de-
scriptor is available at: http://vision.ucla.edu/~raptis/tracklets.

2 Spatio-temporal Tracklet Descriptors

We now describe the modeling assumptions under which we operate, and the pro-
cedure to infer the resulting representation (Sect. 2.2). While one would want
to assemble these elementary actions (dictionary elements) into a model that
captures the joint spatio-temporal statistics at a more global spatial scale (“con-
text”), in Sect. 4 we show that even a naive use of the dictionary labels as a
“spatial bag” yields competitive performance in end-to-end tasks.
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2.1 Model and assumptions

We assume that each “object” is defined at rest as a compact region of space,
only part of which may be visible due to occlusions, and projected onto a subset
D of the image plane, yielding a function ρ : D ⊂ R2 → R+; x 7→ ρ(x) where
D ⊂ Ω is the base image region. There is no requirement that an entire object be
captured by one base region. Instead, we can expect objects to be over-segmented
in multiple base regions, with their spatio-temporal relations characterizing the
object.1 Base regions move under the action of a finite-dimensional group g(t) ∈
G, which we assume without loss of generality to be the group of rigid motions
G = SE(2), with the residual motion, that depends on the shape of the scene
and viewpoint, captured by a general diffeomorphism w : Ω → Ω;x 7→ w(x).
Finally, a contrast transformation is applied to the range of the image in the
base region, and all other photometric factors (specularities, translucency, inter-
reflections etc.) are lumped together as an additive component n(x, t). These
assumptions are summarized in the model:

ρ(x), x ∈ D ⊂ R2 base region

ρ ◦ g(t)
.
= ρ(g(t)x), g(t) ∈ SE(2) global motion

ρ ◦ w(x, t) ◦ g .
= ρ (w(g(t)x, t)) w : R2 → R2 local deformation

h(t) ◦ ρ ◦ w ◦ g .
= h(ρ(w(g(t)x, t)), t), h : R+ × R+ → R+ contrast

I(x, t) = (h ◦ ρ ◦ w ◦ g)(x, t) + n(x, t) complex illumination, noise, etc.

(1)
The above equation is valid only for those x ∈ R2 that intersect the domain of
the image Ω. Elsewhere, the image is due to phenomena other than the base
region, which we call clutter, β(x, t). So, the actual measured image is given by

I(x, t) =

{
h ◦ ρ ◦ w ◦ g(x, t) + n(x, t), ∀ x ∈ g−1(t)w−1(D, t) ∩Ω
β(x, t) elsewhere.

(2)

The components (hidden factors) of the extended temporal observation of an
object are the (multiple) base image regions ρi|D , their (variable) length T̂i =

Ti − τi, global trajectory {gi(t)}Ti
t=τi , their local deformation2 {wi(x, t); x ∈

gi(t)D}Ti
t=τi , the contrast transformation {hi(t)}Ti

t=τi , while everything else is
lumped in ni(x, t). In the rest of this section we will omit the index i and focus
on inference and representation: How can we “extract” the hidden components
from a time series {I(x, t), x ∈ Ω}Tt=τ? What components of the data-formation
process matter for classification? In order to make the inference tractable, we
make the following modeling assumptions: The effect of complex nuisances
n(x, t) is small relative to other factors, so we (a) seek explanations of the
data that minimize their effects (e.g. a suitable norm of n(x, t)). The contrast

1 Although it is precisely these contextual spatial relations that we ignore in Sect. 4,
to test the representational power of the descriptor alone.

2 Here giD = {gix | x ∈ D}.
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transformation h “contains no information” (i.e., we wish the outcome of the
task to be independent of contrast), so we (b) seek to eliminate it from the
representation. The global motion g(t) may or may not contain information,
depending on the task, so we (c) seek to infer it from the data for later use, or to
(d) provide a local reference where to compute the deformation field w(x, t). The
base region ρ and the local deformation w contain all the photometric, geometric
and dynamic information, respectively, embedded in the data. Therefore, the
inference problem can be stated as:

{ρ̂, ŵ, ĝ}Tt=τ = arg min
ρ,w,D,h,g

∫ T

τ

‖n(x, t)‖Ddt (3)

subject to (2), where ‖n(x, t)‖D =
∫
D
|n(x, t)|2dx, with the addition of an area

regularizer to avoid the trivial solution D = ∅. This formalizes (a). To eliminate
h, (b) we simply encode the estimate of the base image region ρ̂I(x)

.
= I ◦ ŵ−1 ◦

ĝ−1 using a complete contrast-invariant, such as the geometry of the level lines
(or its dual, the gradient orientation), or a local contrast normalization, e.g.

φ(ρ̂(x))
.
=
∇ρ̂I(x)

‖∇ρ̂I(x)‖ε
or φ(ρ̂(x))

.
=
I −

∫
D
Idx

‖std(I|D )‖ε
(4)

where3 ‖I‖ε = min{‖I‖, ε}. We are then left with estimating (c) the global
motion g, and (d) the local deformation w. Rewriting eq. (3) we have a sequence
of equivalent optimizations in fewer and fewer unknowns:

arg min
h,ρ,w,g

∫ T

τ

∫
D

|I(x, t)− h ◦ ρ ◦ w ◦ g|dxdt = (thm. 7.4, p. 269 of [31])

= arg min
ρ,w,g

∫ T

τ

∫
D

|φ(I(x, t))− φ(ρ ◦ w ◦ g)|dxdt = (thm. 1, p. 4 of [37])

= arg min
w,g

∫ T

τ

∫
D

|φ(I(x, t))− φ(I(x, t+ 1) ◦ w ◦ g)|dxdt .= {ĝ(t), ŵ(x, t)} (5)

This problem can be solved using variational optimization techniques [37]; a
more efficient, albeit suboptimal, solution can be arrived at by first assuming

w(x, t) = x and estimating ĝ(t) = arg ming
∫ T
τ

∫
D
|φ(I(x, t)) − φ(I(x, t + 1) ◦

g(t))|dxdt with any tracking algorithm [24, 35, 27]. Then, given {ĝ(t)}Tt=τ , esti-

mate ŵ(x, t) = arg minw
∫ T
τ

∫
D
|φ(I(x, t)) − φ(I(x, t + 1) ◦ w ◦ ĝ(t))|dxdt with

any optical flow algorithm. Note that ŵ depends on ĝ, and there is no guaran-
tee that substituting ŵ, ĝ in (5) minimizes the cost. However, this approach is
sufficient for our purposes, otherwise one can revert to an infinite-dimensional
optimization of (5).

3 Since the gradient direction will be weighted by its norm in the averaging operation
to compute the descriptor (Sect. 2.2), the value of ε does not matter in practice. As
an alternative, when color images are available, one can use spectral ratios or local
normalization to eliminate contrast transformations.
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2.2 Simplest instantiation and inference of the representation

Following the derivation above, given a video sequence {I(x, t), x ∈ Ω}Tt=1,
we first select candidate regions via any feature detector [23, 10, 1], and track
them over time using a contrast-compensated translational tracker to obtain a
number of trajectories {ĝi(t)}Ti

t=τi of varying length T̂i, addressing (c). Many
trackers also provide a rotational and scale reference; the latter can be used to
select the base regions Di ⊂ R2. The former can be used to fix local orientation,
although we select the vertical image coordinate as reference. In the resulting
local frame {Di, ĝi(t)} we then estimate the local motion {ŵi(x, t)}Ti

t=τi using
any of a number of local optical flow algorithms, the simplest being [24]. This
addresses (d) and completes the (co-variant) frame selection process. Therefore,
we design an invariant descriptor by representing the image in the selected frame,
{Di, ĝi(t)} via the contrast invariant {φ(I ◦ ĝi)}, and concatenate that with the
motion field {ŵi(x, t) ◦ ĝi(t)} in the base region Di.

If we had priors on the intra-class variability dP (g, w), we would marginalize
the resulting descriptor; in their absence, it is common to assume that the object
or category of interest is described by an “uncertainty ball” around a reference
descriptor, that is therefore “blurred” in some sense, ideally by averaging with
respect to the prior, but more often by coarse spatial binning. In the latter case,
the descriptor for {φ(I ◦ ĝi)} corresponds to a histogram of gradient orienta-
tions (HoG) [23, 6], and the descriptor for {ŵi(x, t)◦ĝi(t)|Di

} corresponds to a

histogram of optical flow vectors (HoF).
Although many have used HoG/HoF descriptors [18, 22, 17, 4], they aggre-

gate them into a static signature, whereas our previous analysis and [36] suggest
retaining their temporal evolution. However, rather than averaging by spatial
binning (that presumes ergodicity), we prefer to use at least a crude approxi-
mation of the prior dP (g, w) in the form of samples {g(tj)}, {w(x, tj)} inferred
during the training phase. The resulting descriptor, which we call AoG (average
of gradient orientation) and AoF (average of optical flow), averages over the
training samples – inferred in a sliding temporal window {tj}Lj=1 and thought of
as samples from an importance distribution:

AoG(t|x, gi, Di) =

t+bL/2c∑
τ=t−bL/2c

φ(I(x, τ)) ◦ g−1i (τ) x ∈ gi(τ)Di ∩Ω (6)

where giDi is defined in footnote 2. Although “oG” in AoG stands for the gra-
dient orientation, in analogy to HoG, any other contrast-normalizing statistic φ
can be used, as in (4). Similarly, we have

AoF (t|x, gi, Di) =

t+bL/2c∑
τ=t−bL/2c

(wi ◦ gi)(x, τ) x ∈ Di ∩Ω (7)

We call Tracklet Descriptor (TD) the concatenation of the entire time series of
either HoG/HoF, or AoG-HoF, and compare the two in Sect. 4, where we show
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the latter to yield marginally improved performance at a significantly lower
computational cost. Optionally, the TD can be augmented with some sample
statistic, for instance the trajectory relative to the spatial or spatio-temporal
mean.

πi(t|I)
.
= {A/HoGi(t), A/HoFi(t)} (8)

As stated in Sect. 1, we postulate compositionality of our representation, so it
is natural to organize tracklet descriptors into a “dictionary.” However, because
we retain the entire time series, the process is more involved as descriptors of
different length have to be compared. In Sect. 3 we describe how this can be
done using dynamic time warping and clustering by affinity propagation. As an
alternative to averaging, one could consider histograms aggregated over time,
rather than space, with similar results, as advocated by [19].

3 Implementation

Following Sect. 2.2, we reduce the group G = R2 to pure translations, and
estimate {ĝi(t) ∈ G}Ti

t=τi using [35], as implemented by [2], without affine consis-
tency check, similar to [27]. Features lost during tracking are replaced by newly
selected ones. We prune tracks that are less than Ti = 5-frames long, or that
move less than ĝi(Ti) = 3-pixels in standard deviation. Unlike [38], we do not
impose an upper bound on T̂i, and unlike [7, 34, 4, 25] we do not use a fixed
time-scale.

3.1 Constructing tracklet descriptors

We capture the contrast-invariant statistics φ of the base regions Di using the
gradient orientation spatially binned (HoG) or averaged (AoG) in a sliding tem-
poral window, e.g., L = 5 with fixed scale and orientation, centered at each spa-
tial location ĝi(t) along the trajectory. The size of Di(t) could be adapted using
the scale component estimated on-line by the tracker. Although we estimate ro-
tation of the base regions Di we discard it, and use the vertical component of
the image plane as a reference. In yet a simpler instantiation, one can consider
the base regions Di fixed to, say, 18×18 or 32×32 pixels. We estimate the local
deformation ŵi(x, t) using [24] and aggregate it either in a spatial histogram
(HoF) or in an average (AoF) within each region Di. While HoG/HoF result
in a fixed 128-dimensional vector each, AoG/AoF have variable size depending
on |Di|; therefore they are quantized into a comparable number of components
(225 in the experiments, corresponding to 15× 15 patches). The two vectors are
concatenated4 and stacked sequentially over time into a matrix.

3.2 Tracklet dictionary

For each base image regionDi, a tracklet descriptor represents a multi-dimensional
time series, πi : [τi, Ti] → RN . To define a distance between two descriptors we

4 Although one could introduce weights between the spatial and temporal component,
and optimize the weight to a particular dataset, we do not do so in Sect. 4.
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must discount initial time, speed of execution, and duration of an action. There-
fore, we adopt the dynamic time warping (DTW) distance [32]:

d(πi, πj)
.
= inf
α,β∈H

1

M

M∑
t=1

‖πi(α(t))− πj(β(t))‖1 (9)

where α, β ∈ H are continuous monotonic transformations [39, 20] of the tempo-
ral domain. For HoG, HoF and AoG we use the `1 distance. Optical flow vectors,
however, are not sparse, so `2 should be used instead, allowing small discrep-
ancies. Therefore, AoG and AoF cannot be simply concatenated, but instead
separate dictionaries, and combinations of separate kernels, have to be learned.
The different structures of AoG and HoF also do not lead to a “meaningful”
compact descriptor. To make comparison as fair as possible, in Sect. 4 we test
AoG vs. HoG in isolation (Table 3). For a track of 100 frames, HoG takes 13 sec-
onds to be computed (in non-optimized C code), whereas AoG takes 0.6 seconds
(in Matlab).

Because of the variable length, many commonly used clustering algorithms
(e.g., k-means) are inapplicable to clustering time series. Agglomerative cluster-
ing [15] and k-medoids have been used to select cluster centers for time series.
We compute pairwise distances among tracklet descriptors, and set the distance
to infinity for pairs with length ratio not between 0.5 and 2, since DTW does not
provide a meaningful warping path for those cases [30]. We use affinity propaga-
tion [9] to cluster and select dictionary elements. This method is efficient due to
the sparsity of the initial distance matrix and effective to define discriminative
exemplars without the need of multiple random initializations that algorithms
like k-centers require. In our experiments the size of the dictionaries was not
pre-specified but it was automatically selected by affinity propagation.

It is not immediate to visualize our cluster centers, since our model is not
strictly generative. However, Fig. 1 shows parts of the tracks colored according to
their nearest neighbor in a tracklet dictionary. Fig. 2 shows a sample trajectory
with samples of the quantized histogram of gradient orientations and optical
flow super-imposed on the image. These histograms are concatenated to form a
temporal sample of the time series {πi(t)}.

3.3 A basic classification scheme

The simplest recognition method we consider is akin to a bag-of-features (BoF)
[5], whereby we discard global temporal ordering, capturing only the local tem-
poral variation of a tracklet. This admittedly naive model achieves performance
already close to the state of the art. Given a codebook of TDs, we assign each
trajectory in a test frame to the closest codebook element (Sect. 3.2); then each
video is represented by a histogram of occurrences of dictionary elements. We
use a support-vector machine with either a RBF-χ2 kernel or an intersection ker-
nel. The penalty parameter is selected by 10-fold cross-validation in the training
set, whereas the scale parameter of the RBF kernel is selected as the mean χ2

distance of the training samples. The RBF-χ2 SVM achieves an improvement of
1− 2% over the intersection one.
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Fig. 1. Tracks extracted from ADL, KTH and HOHA datasets. Color indicates their
label based to the tracklet descriptor dictionary.

Fig. 2. A track with samples of the histogram of gradient orientation (left, blue) and
histogram of optical flow (right, red) along the trajectory. These are concatenated
to form a 256-dimensional temporal sample of the time series that represents that
elementary action.

4 Experimental Evaluation

We evaluate the proposed scheme on three publicly available datasets: KTH [34]
Activities of Daily Living (ADL) [27] and Hollywood Human Actions (HOHA)
[17]. As pointed out in Sect. 3.2, AoG cannot be simply concatenated with ei-
ther AoF or HoF, but has to be combined using multiple kernels. In our first two
experiments we use the compact tracklet descriptor based on the HoG/HoF, so
we can use one dictionary and one kernel, and have a fair comparison with exist-
ing local descriptors [7]. In the most challenging dataset (HOHA) the individual
components HoG and AoG are compared in Table 3, and their combination with
HoF is reported in Table 4.

KTH is chosen because of its popularity, though its modest spatial (160×120
pixels) and temporal (25 frames per second) resolution make for an impoverished
data stream that is not well suited for local representations. There are 6 actions
performed by 25 subjects in 4 scenarios (outdoors (s1), outdoors with scale vari-
ation (s2), outdoors with different clothes (s3) and indoor (s4)), resulting in
598 clips. The simplicity of these actions, combined with an uncluttered static
background, make this dataset ideally suited for global representations [20]. Nev-
ertheless, even without exploiting background subtraction or the global evolution
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of the silhouette (hard to obtain in most realistic scenarios), our scheme is com-
petitive with the state of the art (Table 1).

More specifically, we track an average of 340 trajectories per video with an
average length T̂i = 23 frames. Low resolution and the compression artifacts are
a challenge to tracking, so the average length is relatively small. Our base regions
Di are fixed at 18 × 18 pixels, similar to the spatial size of Cuboids [7, 28, 29].
Examples of tracks and the corresponding HoG descriptors are shown in Fig. 3.
The classification performance of algorithms that use spatio-temporal descriptors
computed in volumes around interest points [21, 17, 4, 29, 7, 28] has proven that
the choice of the temporal scale is crucial. Laptev et al. [17] construct static
HoG/HoF around points detected by spatio-temporal Harris-3D [16] at multiple
scales, using ∆t = 25, 36; [4] computes a HoG/HoF around points detected by
[23] in a volume with ∆t = 60. Instead, our descriptors have variable temporal
length depending on the image region Di. Moreover, the optical flow in the image
regions Di can be estimated reliably. This is not the case for the spatio-temporal
cubes around a specific interest point.

We use leave-one(person)-out cross validation and average the results over the
25 permutations. To construct the codebook we use a relatively small training
set, similar to [28], to examine the generalization of our algorithm. We only use
the descriptors extracted from the first two parts of the 72 videos of 3 subjects.
Those descriptors are excluded from the test and training sets. It should be noted
that [21, 4] used the videos of 24 subjects to construct the codebook, whereas
[17] used 8 subjects. Using a codebook with 1560 TDs of HoG/HoF, we achieve
94.5% recognition rate using RBF-χ2 SVM (Table 1) considering the dataset as
a single large set (all average in one). Using linear SVM with intersection kernel
we achieve 93.82% recognition rate. Considering each scenario separately the
recognition rate is : (s1) 98%, (s2) 92.67%, (s3) 91.95% , (s4) 96.67%.

20

40

60

80

100

120

Fig. 3. Example of the tracks and an instance of the corresponding appearance de-
scriptor of a boxing action on the KTH dataset.

We could push the performance of our algorithm by optimizing the weights
between the different components of the features (spatial, motion), but our point
is not to propose an action recognition system, but just to evaluate descriptors,
so we refrain.

The ADL dataset has higher-resolution (1280 × 720 pixels at 30FPS) with
10 different complex activities targeted to an assisted living scenario (e.g. “an-
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evaluation
Recognition Rate Structural

all scenarios in one average of all scenarios Information

Our tracklets Leave-One-Out 94.5% 94.8% No

Niebles et al. [28] Leave-One-Out 81.5% N/A No

Dollár et al. [7] Leave-One-Out 81.2% N/A No

Schuldt et al. [34] Split 71.7% N/A No

Nowozin et al. [29] Split 84.7% N/A No

Liu et al. [22] Leave-One-Out N/A 94.15% Yes

Lin et al. [20] Leave-One-Out 93.4% 95.8% Yes

Messing et al. [27] Split 74% N/A No

Yao et al. [41] Split 87.8% N/A Yes

Laptev et al. [17] Split 91.8% N/A Yes

Jhuang et al. [11] Split N/A 91.7% No

Schindler et al. [33] Split 92.7% 90.7% No

Yeffet et al. [42] Split 90.1% N/A Yes

Chen et al. [4] Leave-One-Out 95.0% N/A No

Table 1. Performance comparison on KTH dataset. Despite not using background
subtraction or structural information, our approach is competitive with the state of
the art.

swering phone (aP),” “eating snack (eS),” “eating banana (eB)”). Five subjects
perform each activity thrice for a total of 150 clips of duration varying between
10 and 60 seconds. It has drawbacks similar to KTH, in that all actions are
taken against a still background from a fixed vantage point, an incentive to
overfitting by using background subtraction and global statistics such as the
absolute position of tracks in the image. Despite not using absolute positions,
a simple classifier based on TDs HoG/HoF outperforms the state of the art
by a sizeable margin. We extract on average 1300 tracks with mean duration
T̂i = 110 frames. The base regions Di are fixed at 36 × 36 pixels. We again
use leave-one (person)-out evaluation, similar to [27, 26], and report the average
over the 5 permutations of the dataset. We randomly sampled 25K tracklets
from the training set and constructed a dictionary with 2900 elements. Using
this dictionary we achieve 82.67% average recognition rate using RBF-χ2 SVM
(Table 2). Comparison to [27] shows that our tracklet descriptor achieves com-
parable results without using any structural information (relative position or
absolute position). It outperforms [27] even when their classifier uses the posi-
tion of the extracted trajectories relative to the position of the face of the actor.
In order to have a fair comparison with existing methods that report results in
the ADL dataset, we incorporate a codebook of the absolute position (ḡi(t), t̄)
of the tracks with size 60 obtained using K-means. Combining linearly the two
χ2 kernels, we achieved 90% average recognition rate. We should note that, al-
though absolute position is relevant in this dataset, and in particular it helps
boost the performance of our algorithm as well as [27] significantly, it does so
only because all sequences are taken from the same vantage point, in an envi-
ronment with fixed layout. In general, we advocate not using absolute position,
even if it improves the performance in this particular dataset.

The HOHA dataset overcomes the limitations of ADL and KTH. The dataset
contains 430 movie videos (240×450 at 24FPS) with challenging camera motion,
rapid scene changes and cluttered and unconstrained background. Moreover, the
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Recognition Rate

Our Tracklets 82.67%

Spatio-temporal cuboids [7] (implemented by [26] ) 43%

Velocity Histories [27] 63%

Latent Velocity Histories [27] 67%

Augmented Velocity Histories with Relative Position [26] 72%

Augmented Velocity Histories with Relative and Absolute Position [27] 89%

Table 2. Performance comparison on ADL. Despite not using structural information
or background subtraction, we improve the state of the art by a large margin. Using
structural information, which we do not advocate, we can further improve recognition
rate to 90%, highlighting the limitations of this particular dataset.

human actions that are included are not constrained to single actor behaviors,
e.g. “Sit down”, but also interactions between humans, e.g. “Kiss”, and objects,
e.g. “Get Out of a Car”. We evaluate our trajectory descriptors following the
experimental setting proposed by [17], i.e. the test set has 211 videos with 217
labels and the training set has 219 videos with 231 labels (manually annotated).
For each action we train a binary classifier and we evaluate our performance
with average precision (AP) of the precision/recall curve.

In order to manage the large variability of the image sequences contained in
the dataset, features [35] are detected in multiple scales. We extract on average
500 tracks with mean duration T̂i = 51 frames. For each image region Di a HoG,
HoF and AoG descriptor is constructed as described in (Sect. 3). First, a dictio-
nary is created for each individual component of our tracklet descriptors and we
evaluate its performance using RBF-χ2 SVM (Table 3). Our TD of optical flow
significantly outperforms the HoF proposed by Laptev et al. [17], proving to be
more robust to background motion and large viewpoint changes. We also note
that the performance of TD HoF is slightly worse than the trajectory transition
descriptor (TTD) [38], which is combined with spatio-temporal grid to incorpo-
rate some structural information in the descriptor. Our TD of AoG outperforms
marginally both our TD HoG and the HoG of [17], at a significantly reduced
computational cost. Next, we construct our compact HoG/HoF tracklet descrip-
tor and with a codebook with 2220 elements we achieve 32.1% mean average
precision (MAP) (Table 4). In order to fuse the TD AoG feature descriptor with
TD HoF feature in our classification framework, we build a kernel as a convex
combination of their χ2 kernels: KAoG−HoG = λKAoG + (1−λ)KHoF , λ was se-
lected using cross-validation in the training set. The performance of the obtained
kernel is 34.3% MAP. Our TD descriptors outperforms all the local descriptors
that have been evaluated in HOHA dataset in a bag-of-features setting [14, 25,
17] and we are competitive with the holistic approach proposed by [42] and the
methods that use multi-channel Gaussian kernels [17, 38] for combining the 48
or more channels provided by spatio-temporal grids.

5 Discussion

We have presented local spatio-temporal descriptors intended as low-level statis-
tics to be used in action recognition systems. Our descriptors are deduced from
an explicit model with all assumptions explicitly stated. They do not involve
top-down modeling and can be efficiently learned from data. They can capture
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Class
Our Tracklet Laptev et al. [17]

HoG HoF AoG HoG HoF
BoF BoF BoF BoF BoF

Answer phone 24.9% 22.1% 33% 13.4% 24.6%

Get out of car 21.1% 19.3% 22.3% 21.9% 14.9%

Hand shake 20.4% 19.1% 17.4% 18.6% 12.1%

Hug person 22.3% 28.2% 22.0% 29.1% 17.4%

Kiss 48.4% 47.0% 47.5% 52.0% 36.5%

Sit down 21.8% 22.2% 22.5% 29.1% 20.7%

Sit up 16.7% 17.5% 15.3% 6.5% 5.7%

Stand up 40.5% 59.9% 40.2% 45.4% 40.0%

MAP 27.1% 29.4% 27.5% 27.0% 21.5%

Table 3. Performance comparison on HOHA Dataset of Individual components of
Descriptors

Class

Our Tracklet Laptev et al. [17]
Yeffet et al. [42] Matikainen et al. [25] Kläser et al. [14]

Sun et al. [38]
HoG/HoF AoG-HoF

Single Combined
TTD TTD-SIFT

BoF BoF BoF BoF Combined Combined

Answer phone 26.7% 33.0% 26.7% 32.1% 35.1% 35.0% 18.6%

Get out of car 28.1% 27.0% 22.5% 41.5% 32.0% 7.7% 22.6%

Hand shake 18.9% 20.1% 23.7% 32.3% 33.8% 5.3% 11.8%

Hug person 25.0% 34.5% 34.9% 40.6% 28.3% 23.5% 19.8% N/A N/A

Kiss 51.5% 53.7% 52.0% 53.3% 57.6% 42.9% 47.0%

Sit down 23.8% 27.4% 37.8% 38.6% 36.2% 13.6% 32.5%

Sit up 23.9% 19.0% 15.2% 18.2% 13.1% 11.1% 7.0%

Stand up 59.1% 60.0% 45.4% 50.5% 58.3% 42.9% 38.0%

MAP 32.1% 34.3% 32.9% 38.4% 36.8% 22.8% 24.7% 30.3% 44.94%

Table 4. Performance comparison on HOHA Dataset.

the discriminative statistics of the local causal structure of the data (temporal
ordering), and the local shape and deformation of each base region. However,
they do not enforce global shape or motion statistics, nor global temporal or-
dering. They could be used as a building block of more complex models for the
recognition and classification of actions.

Although our goal is not to present a complete action recognition system,
in order to test our descriptors we have employed them in simple classification
schemes to recognize actions in commonly used benchmark datasets. In all cases,
we obtain results comparable to or exceeding the state of the art, despite not
making use of top-down structure.
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