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Abstract

Quantitative measurement of brain size, shape and temporal change (forexample,
in order to estimate atrophy) is increasingly important in biomedical image analy-
sis applications. New methods of structural analysis attempt to improve robustness,
accuracy and extent of automation. A fully automated method of longitudinal (tem-
poral change) analysis, SIENA, was presented in [17]. In this paper, improvements
to this method are described, and also an extension of SIENA to a new method for
cross-sectional (single time point) analysis. The methods are fully automated,ro-
bust and accurate: 0.15% brain volume change error (longitudinal); 0.5-1% brain
volume accuracy for single-time point (cross-sectional). A particular advantage is
the relative insensitivity to differences in scanning parameters.

Keywords: Structural brain analysis, atrophy measurement, normalised registra-
tion

1 Introduction

Various methods have been proposed and implemented for cross-sectional (single
time point) or longitudinal (multiple time points) analysis of brain atrophy (or more
general changes in brain size and shape) using magnetic resonance imaging (MRI).
A major potential application of atrophy measurement is as a surrogate markerfor
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the progression of neuro-degenerative diseases such as Alzheimer’s disease, or of
diseases with secondary neuronal or axonal injury, such as multiple sclerosis.

Cross-sectional methods (e.g., [3]) work by measuring brain tissue volume- nor-
mally white plus grey matter - and comparing this against a normalisation volume -
normally either brain tissue plus cerebrospinal fluid (CSF) volume, or intra-cranial
volume. Longitudinal methods (e.g., [4, 9]) typically register (align) two scans
separated in time and find regions of change. In general, cross-sectional analysis
tends to incur higher measurement error than longitudinal analysis. This is related
mainly to the practical difference between integrated (cross-sectional) and differ-
ential (longitudinal) measurement of change. Although many data sets do contain
multiple time point measurements, there are also situations where only single time
points are available, or where the question of interest relates to “absolute”atrophy
rather than its rate.

This paper presents completely automated longitudinal and cross-sectionalmea-
surement methods named respectively SIENA (Structural Image Evaluation, us-
ing Normalisation, of Atrophy) and SIENAX (an adaptation of SIENA for cross-
sectional measurement).

SIENA performs segmentation of brain from non-brain tissue in the head and esti-
mates the outer skull surface (for both time-points), and uses these resultsto regis-
ter the two images, while correcting (normalising) for imaging geometry changes.
Then the registered segmented brain images are used to find local atrophy,mea-
sured on the basis of the movement of image edges.

SIENAX also performs segmentation of brain from non-brain tissue in the head
and estimates the outer skull surface, with data from a single time-point. The brain
and skull images are then registered to a standard space brain and skull image pair.
This step normalises for skull size, and means that it is not necessary to measure
CSF volume (otherwise a problem in T1-weighted images as it is hard to accu-
rately separate CSF and skull). Next a probabilistic brain mask derived in standard
space is applied to make sure that certain structures such as eyes/optic nerve have
not been included in the brain segmentation. Finally tissue-type segmentation is
carried out (including partial volume estimation) and a (normalised) brain volume
estimate is produced.
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2 SIENA - Longitudinal Method

The SIENA method was originally described in [17]. The major subsequent im-
provement is in the final stage (the change analysis), so the initial stages are only
described briefly.

2.1 Brain Extraction

The first processing stage is the extraction of the brain from each of the input
images, that is, the segmentation of brain from non-brain tissue. The method used
is known as BET - Brain Extraction Tool [15, 16]. BET uses a tessellated mesh to
model the surface; this model is allowed to deform according to various dynamic
local controlling terms until it optimally fits the brain surface. Results are normally
in extremely good correspondence with manually segmented output, even around
the eyes, one of the most difficult areas to segment from the brain.

BET provides a binary brain mask, the segmented brain image and an external
skull surface image as output. The cerebellum is included in the segmented brain,
as is the upper part of the brain stem - the stem is automatically cut according to
a surface interpolated sagittally across the ventral cerebellum, pons and temporal
lobes.

For an example extracted brain surface, see Figure 1 (left).

Figure 1: Left: Example brain surface found by BET. Middle: Example skull
surface found by BET. Right: example subtraction image after registration of two
images from a subject without atrophy.
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2.2 Skull Extraction

Measurement of changes in brain size benefits from the estimation of the skull
(which is of fairly unvarying size over time in an adult) as a normalising factor in
both cross-sectional and longitudinal measurements. The importance of thisin the
latter case will now be explained in more detail.

Before brain change can be measured, the two images of the brain have to be
registered (aligned). Clearly this registration cannot allow rescaling, otherwise the
overall atrophy will be underestimated. However, because of possible changes in
imaging geometry over time (due to gradient calibration drift or variable local field
distortions), it is necessary to hold the scale constant (see also [7] for previous work
on this problem; note that some longitudinal methods have failed to take accountof
this problem, although methods based primarily on cross-sectional measurements
tend to normalise against it). With the method described here, this can be achieved
by using the exterior skull surface (assumed to be constant in size and shape for an
individual) as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1-weighted images, the
internal surface of the skull is largely indistinguishable from the CSF, which is
also dark. Thus the exterior surface is searched for. This also can bedifficult to
identify, even for human experts, but is the most realistic surface to aim to find. The
exterior skull surface is found automatically as the final stage of brain extraction,
using BET. Starting with the estimated brain surface, each surface point is taken as
the start of a search outwards for the optimal skull position. The most distant (from
the brain) point of low intensity (before the bright scalp) is found, and thefirst peak
in gradient outside of this is then defined as the exact position of the exteriorof the
skull surface. This method is quite successful, even in regions of overlying (dark)
muscle or where there is significant (bright) marrow within the bone.

Thus a skull image is generated for each input image, to be used in registration.
For example, see Figure 1 (middle).

2.3 Registration

As already stated, before the differences between two images can be found, the
brains in the two images must be aligned, using a registration procedure. The
registration carried out uses a robust and accurate automated linear registration
tool, FLIRT (FMRIB’s Linear Image Registration Tool) [11].

4



The use of FLIRT in this application is more complex than in the more normal
case of registration of two single images. A three-step procedure is used,where
the brain images are used to optimise the initial registration and the final translation
and rotation, whilst the skull images are used to optimise the scaling and skew.

One could stop here and apply change analysis to the registered second brain and
the original first brain. However, this is not optimal, as the second brain image has
been through a processing step that the first brain image has not, namely a spatial
transformation (involving interpolation of its values). The images will therefore
look slightly different; the transformed second brain image will be slightly more
blurred than the first brain image. To ensure that the images being comparedun-
dergo equivalent processing steps, both input images are transformedto a position
which is halfway between the two. In this way both images are subjected to a
similar degree of interpolation-related blurring.

The typical quality of this brain registration is illustrated in Figure 1 (right), an
example subtraction of a registered pair of head images, which shows only appre-
ciable motion outside of the skull.

All of the brain and skull images are now discarded; only the original unsegmented
images and the brain mask images are kept. The transformations are applied to
these images so that two registered (“common-space”) head images and two regis-
tered brain mask images result. These four images are passed on to the nextstage.

2.4 Masking

The registered binary brain masks are now combined into a single mask which will
be applied to the registered head images to produce two new registered brainim-
ages. The reason for this (rather than keeping the original registered brain images)
is that even slight differences in the original brain segmentations (i.e., the produc-
tion of the brain masks) would cause the artefactual appearance of brainchange.
Thus the two masks are “binary ORed” - i.e., if either is 1 at a particular voxel,
the output is 1. (They cannot be “ANDed” as the brain from the second timepoint
would cause incorrectly reduced masking of the first time point image in the case
of atrophy.)

The resulting combined mask is then applied to the registered head images to pro-
duce two registered brain images. These two images are passed to the final stage
for the analysis of change.
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2.5 Change Analysis

The next stage in the analysis is the change estimation itself. There is great variety
in how this is achieved amongst published longitudinal atrophy methods. Some re-
searchers (e.g., [10, 9, 12]) use normalized subtraction of the images, assuming that
resulting areas of significant deviation from zero correspond to areasof interesting
brain change. This relies on the assumption that the images will appear exactlythe
same (apart from the change of interest); various procedures such as histogram-
matching and relative bias field correction have been suggested [12], in order to
attempt to make the images look as similar as possible. Others look more directly
for changes around tissue boundaries. For example, [5, 4, 7, 6] usethe “boundary
shift integral” (the area under the intensity profile across a boundary in image 1
is subtracted from that for image 2, and normalised by the boundary height,re-
sulting in an accurate measure of lateral motion), which gives the motion of each
edge, even if blurred, but only if image contrasts in general are well matched be-
tween scans. Methods that are principally cross-sectional in nature, such as that
of Fisher [3, 14], Ge [8] and Reddick [13] avoid the need to address the issue of
change analysis.

The system presented here first attempts to find all brain surface edge points and
then estimates the motion of these edge points from one time point to the next. This
edge motion is found for the whole brain surface, enabling the total volume change
to be estimated. The previously published version of SIENA found edges on the
basis of edge strength, and then found edge motion by searching for matching edge
points from one image to the next. This suffered slightly from relatively imprecise
definition of edge points, i.e., discrimination was imperfect. The current version
uses full tissue-type segmentation to find edge points, and thus is more correctly
selective, and also enforces continuity of the estimated brain surface. Thus the
system presented here finds all brain surface edge points (including internal brain-
CSF edge points, such as those around the ventricles) and then finds the motion of
these points, in a Bayesian framework, perpendicular to the local edge, tosub-voxel
accuracy.

In order to find all brain surface edge points, tissue segmentation is performed on
the image from time point 1 after application of the joint brain mask (see pre-
vious section). The tool used [18] carries out tissue (Grey Matter, WhiteMat-
ter and CSF) segmentation and bias field correction. The method is based on
a hidden Markov random field (segmentation labelling) model and an associated
Expectation-Maximization algorithm for estimating tissue intensity parameters and
bias field (spatial intensity inhomogeneity). The whole process is fully automatic
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(after being instructed as to whether the image is T1 or T2, and whether to at-
tempt to segment grey and white matter as a single class or as separate classes),
producing a tissue-labelled segmentation. It is robust and reliable, compared to the
more common finite-mixture-model-based methods, which are sensitive to noise,
particularly as they use no spatial neighbourhood information.

The tissue segmentation labels are used to find all brain edge points. First, gray
and white voxels are combined into a single class, as are also CSF and background
voxels. All boundary voxels between these two resulting classes are used for the
next processing stage. Note that this method of finding brain edge voxels enforces
a continuous surface (without breaks), although not necessarily a topologically
simple one. Figure 2 shows example slices through an image after edge point
detection (and also example perpendicular image profiles as described below).
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Figure 2: Example slices through an image after edge point detection, and also
example perpendicular image profiles.

Next, the common-space registered image from time point one is processed ateach
brain edge point. First the image gradient direction (in 3D) is found, using asim-
ple 3x3x3 Gaussian-weighted derivative operator. This is used to find the surface
normal unit vector (and will always point from the darker side of the boundary to
the lighter side - this information will later be used to tell the difference between
atrophy and “growth”).

Next, a 1D array (an intensity profile perpendicular to the edge) is filled with values
from the image. These values are sampled at sub-voxel positions (using tri-linear
interpolation) as the array’s elements will not in general fall exactly at voxel grid
positions. The length of the array is preset to a fixed number of millimeters (typ-
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ically ±3); the extent will also be limited by the presence of a second edge, for
example, the far side of a sulcus, in order to prevent other nearby edges from con-
fusing the motion estimation. A second 1D array is filled with values from exactly
the same image positions from the (common-space registered) image from time
point two.

Edge motion is now estimated by finding the relative shift, between the arrays,
which produces the maximum correlation (to sub-voxel accuracy using interpo-
lation of the correlation scores). However, before the correlation, each array is
pre-processed in two ways.

First each profile is convolved with a differentiating kernel, as it makes sense to
correlate the derivatives (edge-enhancements) of the two 1D image profiles rather
than the raw image values; if there are intensity or contrast differences between the
two images, the position of maximum correlation could be skewed, but this effect
is much reduced if correlating edge-enhanced versions of the profiles.Thus this
method requires no (intensity) normalisation of the images, and is not sensitiveto
problems arising from intensity inhomogeneities across the images.

The second process is the multiplication of each profile by a high-power exponen-
tial profile (smoothed sharp cutoff); this acts as a prior on the expected motion by
weighting the correlation score, so that higher motions are less likely than small
ones - this helps reduce the effect of large motion mismatches (which otherwise
make a large contribution to error in the overall method). This can be viewed as a
Bayesian prior:

P (displacement|data) ∝ P (data|displacement)P (displacement), (1)

where the first term on the right can be thought of as the raw correlation score, and
second term is the prior on the displacement between the profiles

P (displacement) ∝ e
−displacement4

2σ
4 , (2)

which hasσ set to a suitable length such as 7mm. Because the posterior on the
displacement is simply used to find the maximum probability the constants of pro-
portionality are unimportant.

Thus the optimal displacement is found for each edge point, and, as stated earlier,
the direction of the edge normal determines whether atrophy or “growth”1 is taking

1“Growth” could either be real, e.g. oedema, or due to nonlinear motion between the two time
points. In the latter case, it will tend to cancel out with atrophy measurements at other points in the
image.
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place at this point. The position of optimal displcaement is estimated to sub-voxel
accuracy by fitting a quadratic through the correlation values at the peak and its
two neighbours. Figure 3 shows example profiles from one edge point witha slight
shift between time points, and the derivatives of these profiles.
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Figure 3: Example profiles from one edge point with a slight shift between time
points, and the derivatives of these profiles.

For example slices showing atrophy as dark edge points and “growth” as light, see
Figure 4.

2.6 Percentage Brain Volume Change Quantification

Brain atrophy is conveniently quantified by a single number such as the percentage
brain volume change (PBVC). The initial value obtained from the change image is
the sum of all edge point motions (linear voxel units), which, when multiplied by
voxel volume, gives the total BVC. This is one possible measure, as would be a
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Figure 4: Example slices showing atrophy as dark edge points and “growth” as
light.

PBVC derived directly from this. However, a more invariant measure is obtained
by dividing this volume by the number of edge points found times the voxel “area”.
(Note, the final stages of SIENA are always carried out with cubic voxels, so there
is no confusion about the definition of area here.) This measure is then the mean
perpendicular brain surface motion. The reason why this is preferable tothe total
volume change is that it is not (to first order) dependent on the number ofedge
points found. As the number of edge points depends on slice thickness (see below
- typically by a factor of two between 1mm slices and 6mm) and (to a lesser extent)
other scanning details, it is a good idea to normalize for the number of points found.
Finally, if it is required to convert the mean surface motion to a PBVC, the ratio of
the brain volume to the brain surface area needs to be estimated.

In this formulation:

l =
v

∑
m

aN
, (3)

wherel is the mean surface motion,
∑

m is the edge motion (voxels) summed over
all edge points,v is voxel volume,N is the number of detected edge points anda

is voxel cross-sectional area. Thus,

% brain volume change=
100 lA

V
=

100 lfV

V
= 100 lf, (4)

whereA is the brain surface area (actual, i.e., notaN ), V is the actual brain volume,
f is the ratio of actual area to volume.
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It is possible to findf directly for any given image without knowingA or V ; if a
single image is scaled by a known amount and then compared with the unscaled
version using the above change analysis, the correct PBVC is known from the
scaling that was applied, and the measurement ofl then allowsf to be found.
It varies across scanners, slice thicknesses and pulse sequence, but normally lies
between 0.1 and 0.2mm−1. Applying this method (referred to as self-calibration)
helps reduce bias (systematic error) in the reported estimates of PBVC.

The complete SIENA method is summarised in Figure 5.

3 SIENAX - Cross-Sectional Method

SIENAX is closely related to the SIENA longitudinal method, but, instead of using
images from two different time points, SIENAX attempts to estimate normalised
brain volume (NBV)2 from a single image, using the skull to normalise spatially,
with respect to a standard image. Cross-sectional studies of brain atrophy normally
attempt to relate brain size at a given point to the size of the brain at maturity. Ina
cross-sectional study the latter can only be estimated from skull size, but the close
relationship between normal skull and brain growth makes this a reliable marker.
Thus, the goal for determination of relative brain atrophy is to accurately define
brain size with respect to skull size, normalised to a standard template. Another
way of looking at the value of normalising for head/skull size is that it reduces
within-group variations, making cross-group comparisons more sensitive.

An alternative to using head size in normalisation is to estimate CSF volume (to
end up with a measure of intra-cranial volume). One advantage of the approach
described here is that it is not restricted to running on images where CSF can be
robustly found. For example, in T1-weighted images, it is hard to distinguish be-
tween CSF and skull voxels, reducing the accuracy of CSF-volume-based normal-
isation; clearly this is not a problem for SIENAX.

Because SIENAX uses several of the techniques already described above, the de-
scription of the method, given below, is relatively brief.

2“NBV” will be used to refer to brain volume after normalisation to standard space; “BV” will
be used to refer to original brain volume, i.e. before this normalisation. Note that BV is in mm3, and
that the normalisation factor is dimensionless, so that NBV is also in mm3.
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FLIRT-based
registration

reslicing

combine masks apply combined maskapply combined mask

calculate brain change

brain extraction brain extraction

mask 1 brain 1 skull 1 brain 2 mask 2skull 2

input 1 input 2

reg mask 1reg head 1 reg mask 2 reg head 2

combined maskreg brain 1 reg brain 2

brain change

Figure 5: Overview of SIENA.
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3.1 Brain Extraction and Normalisation

SIENAX uses BET to find the brain and skull images from the single input head
image. These are then used, in a similar manner to the registration process in
SIENA, to register the image to standard space brain and skull images (derived
from the MNI152 standard image [2, 1]). Next a standard space mask is used to
make sure that no parts of the eyes are left from the brain extraction (because of the
connection of the optic nerve, this can occasionally happen) and also to provide a
consistent (i.e., non-arbitrary) cutoff point for the brain stem.

3.2 Tissue Segmentation

Next, the tissue segmentation program described above [18] is used to segment the
extracted brain image into grey, white, CSF and background, giving a BV estimate.
However, unlike the segmentation carried out for SIENA (where the exact position-
ing of the brain boundary, to sub-voxel position, is not important, because it is the
motion of the profiles around this position that matter and not the exact central
point of the profiles), the exact volumes of the different tissues is now very impor-
tant. Thus the segmentation method includes estimation of partial volume effects
for edge voxels, giving higher volumetric accuracy than a “binarised” segmenta-
tion. This is achieved by modelling the distributions of the intensity in each tissue
class, and using these models to estimate partial volume effect for any particular
voxel, given its intensity and its neighbourhood.

This segmentation is actually carried out on the original extracted brain image,
not the normalised one. This is so that no interpolation has been applied to the
image, which would slightly degrade the image and lead to slightly less accurate
segmentation. (The eye and brain stem masking discussed above is actually carried
out on this image, by applying the reverse normalisation registration transform to
the standard space mask to bring it into register with the input image.)

Thus the segmentation gives a total volume for brain tissue (BV). This is multiplied
by a volumetric scaling factor (derived from the normalisation transform), togive
normalised brain volume (NBV). The NBV can optionally be split into grey and
white volumes.

The complete SIENAX method is summarised in Figure 6.
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4 Validation / Results

4.1 SIENA - Investigation of Accuracy as a Function of Slice Thick-
ness

To test the accuracy of SIENA, 16 normal volunteers were scanned in two separate
sessions each, with a range of slice thicknesses, to enable the dependence on slice
thickness of the accuracy to be determined (this data is also used, in Section 4.4,
to test SIENAX). The subjects’ ages ranged from 26 to 44; half were female. The
scanner was a Philips NT 1.5T operating at the NMR Center of the University
of Siena. Scans 1 to 6 were 1mm to 6mm slice thickness, T1-weighted axial 2D
fast field echo, TE=11ms, TR=35ms, flip=40o, NAqc=1. The 1mm scan lasted
18 minutes, and each successive scan took less time, with the 6mm scan lasting
3 minutes. Scan 7 was a 3mm slice thickness axial volumetric fast field echo,
TE=3ms, TR=20ms, flip=30o, NAqc=1, and lasted 4 minutes. Scan 8 was the
same as scan 7, but with coronal slices, lasting 4 minutes. For all scans the in-slice
resolution was 1mm by 1mm, and enough slices were taken to include the top of
the scalp and the bottom of the cerebellum. The inter-session interval was mostly
between 1 and 7 days. Half of the subjects were scanned with the slice thickness
order reversed, to control for order effects.

The resulting 128 pairs of images were processed with SIENA, with no manual in-
tervention. The registration results and BET segmentation were checked manually
- no obviously incorrect segmentations were found for any of the 256 images and
no obviously incorrect registrations were found in any of the 128 pairs.

All PBVC measures should ideally be zero, as the subjects should not be showing
any atrophy over such a short time interval. There are two clear results from the
analysis. Firstly, there is no clear slice-dependence to the errors. Secondly, the
error in PBVC is small - the median absolute error over all results is less than 0.15%
(a reduction of 0.05% from the median error of 0.2% found using the original
version of SIENA, reported in [17]). The fact that thinner slices do not generate
significantly better results than thicker slices may at first seem surprising. However,
one possible reason for this result is that the lower resolution scans are taken more
quickly and therefore probably contain less image distortion due to subject motion
during the scan.

The contribution of the skull-based step in the registration was also investigated;
the error introduced by this step was nearly as large as the total error, suggesting
that the skull-based registration on average may contribute fairly highly to overall
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atrophy measurement error. However, this step is important to include, given the
common problem of imaging geometry drift.

As a further test of the SIENA method, one of the subject’s data sets was tested
across slice thicknesses - each image from time point 1 was tested against each
image with a different slice thickness from time point 2. The median absolute
error was only 0.4%, despite the differences between the images in each pairing.

The final outcome of these investigations, therefore, is that the error in measuring
PBVC between images acquired using the same pulse sequence is around 0.15.
This value is not strongly slice-thickness dependent.

4.2 SIENA - Validation Using Patient Data from Three Time Points

Further investigations were carried out with data sets of three-time-point scans of
patients. A sensitive method of error analysis [4] can be carried out on such data;
the atrophy measure from the first time point (t0) to the second (t1) is added tothe
measure from the second time point (t1) to the third (t2), and this sum compared
with the direct measure from t0 to t2. This will show up most sources of errorin
the atrophy estimation prodecure and is therefore a useful validation of themethod.
Sources of error not covered are those which affect both halves ofthe comparison
equally; for example, if a scaling error was caused by inaccurate skull estimation
at one time point, and affected the t0 to t1 atrophy measure in the same way that it
affected the t0 to t2 measure, this would not show in the three-time-point analysis.

Previously, MR images of brains of 39 multiple sclerosis patients were used in this
manner to show that the error in PBVC estimation on patient data agrees with the
estimate derived from the test-retest normals data [17]. A second data sethas more
recently been analysed using 141 ageing volunteers (mean age 75, standard devi-
ation 6 years), courtesy of the Challenge/Optima project, Drs. Kevin Bradley and
Marc Budge, Radcliffe Infirmary, Oxford. The results are shown in Figure 7; points
should ideally lie on they = x line. The error bars show±0.15%, and are suffi-
cient to explain the majority of the deviations from the line (the median distance
from the line is 0.22%), demonstrating that the precision of the method as applied
to “active atrophy” data sets is comparable to that with normal controls (otherdata
sets have shown even closer agreement with the “Siena normals” error estimation).
Note that there is a slight bias above the line for higher atrophy rates, suggesting
that higher atrophy is slightly underestimated compared with lower rates. A possi-
ble explanation is in the Bayesian weighting against large edge motion (usefulfor
reducing error and thus increasing sensitivity) - this tradeoff is being investigated
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Figure 7: Plot of (PBVC from t0 to t2) vs (PBVC from t0 to t1 plus that for t1 to
t2).

4.3 SIENA - Intersite Image Testing

As an extreme test of the robustness of SIENA to changes in imaging parameters,
three images of the same subject, each using a different MR scanner, were used in
an A-B-C-A atrophy estimation test. Clearly the atrophy results from these three
tests should sum to zero. Two scans were taken at 1.5T with 3mm slices (NMR
Center, University of Siena and Montreal Neurological Institute) and one at 3T
with 3.5mm slices (FMRIB, Oxford). The scans span a period of one year. The
mean absolute PBVC estimated is 1.2%, and the summed PBVC is 0.3%.
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4.4 SIENAX - Investigation of Error as a Function of Slice Thickness

To test the error of SIENAX, the data from the 16 normal volunteers described in
Section 4.1 was used. Every pair of within-subject same-slice-thickness images
was used in a test-retest of both BV and NBV. The mean error in BV (i.e. due
to BET and segmentation only) was 0.4% (this error is expressed as a percentage
of brain volume), and the mean error in NBV (i.e. for the whole process includ-
ing normalisation) was 1%. Thus, as expected, the normalisation step increases
test-retest error. However, the value of the normalisation step (by reducing cross-
subject variability) can be seen when the standard error of the mean brainvolume
for the group is estimated with and without normalisation; SE(BV) for the groupis
1.5% and SE(NBV) is 0.7%.

A more detailed investigation of these results is now described. Firstly, Figure8
shows separate plots for the different subjects of the volumetric scaling factor de-
rived from the normalisation step. The different slice thicknesses are plotted inx

in the same order as before; however, this time there are two separate values for
each slice thickness (one for each time point). The vertical spread of the differ-
ent subjects’ plots shows the variation in head size within this group. The relative
constancy of each plot (particularly for the first 6 slice thicknesses) is encourag-
ing. The slightly different results for the final two slice thicknesses (x values of
12 to 15) are still less than the spread across subjects, and are presumably due
to the quite different sequences used for these images (including possiblyslightly
different imaging geometry calibration).

Figures 9 and 10 show plots of estimated BV and NBV. The BV estimates are
more consistent (within subject) than the NBV estimates, as errors due to the nor-
malisation have not been added. However, the value of the normalisation canbe
seen by noting that the fractional spread across subjects is reduced bya factor of at
least 2.

4.5 SIENAX - MS vs Normals

A comparison was made of a group of normals (N=20) with subgroups of MS
patients (N=72, mean EDSS=4). ANOVA Tukey tests of NBV show significant
difference between normals and all EDSS bins except for EDSS< 2, as seen in
Table 1.
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Figure 8: Plots (one plot for each subject) of volumetric scaling factor (y) derived
from normalisation vs different slice thicknesses (x).
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4.6 SIENAX - Extreme Parenchyma Loss

Figure 11 shows the SIENAX output for an epilepsy patient following frontal lobe
surgery. SIENAX has successfully coped with both the brain extraction and tissue
segmentation. The NBV for this patient is estimated at1.26 ∗ 106 mm3 (compared
with 1.45 ∗ 106 mm3 in a relevant control group.)

Figure 11: SIENAX output for an epilepsy patient following frontal lobe surgery.
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4.7 SIENAX - Further Investigation of Error and Age-Dependency

A different study of 19 normals (3mm slice thickness T1-weighted images) was
processed by SIENAX. Figure 12 shows a plot of NBV vs date-of-birth. Again,

Figure 12: NBV vs date-of-birth for 19 normals.

the standard error of the NBV is approximately 0.7%, and the estimated atrophy
rate for these normals is 0.2%p.a.

Other data sets used to test error in SIENAX results have given lower meanerrors
than the 1% found with these two data sets, up to a factor of 2.

5 Conclusion

This paper presents SIENA, a fully automated method of longitudinal (temporal)
brain change analysis, and an extension to a new method, SIENAX, for cross-
sectional (single time point) analysis. SIENA is useful, for example, for longitudi-
nal studies where maximal sensitivity to change over time is required. SIENAXis
useful, for example, for differentiating two groups of subjects on the basis of single
time point brain size measurement.

The methods are fully automated, robust and accurate: 0.15% brain volume change
error (longitudinal) and 0.5-1% brain volume accuracy for single-time point(cross-
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sectional).

The SIENA and SIENAX software is freely available as part of the FMRIBSoft-
ware Library (FSL) from thewww.fmrib.ox.ac.uk/fsl website.

6 Acknowledgements

SMS and PMM acknowledge funding from the MRC (UK) to support the FMRIB
centre; MJ and NDS were funded by the EC Biomed II programme (MICRODAB).

References

[1] A. Evans, L. Collins, C. Holmes, T. Paus, D. MacDonald, A. Zijdenbos,
A. Toga, P. Fox, J. Lancaster, and J. Mazziota. A 3D probabilistic atlas of
normal human neuroanatomy. InThird Int. Conf. on Functional Mapping of
the Human Brain, page 349, 1997.

[2] A.C. Evans, D.L. Collins, and C.J. Holmes. Computational approaches to
quantifying human neuroanatomical variability. In J.C. Mazziotta and A.W.
Toga, editors,Brain Mapping: The Methods, pages 343–361. Academic
Press, 1996.

[3] E. Fisher, R.M. Cothren, J.A. Tkach, T.J. Masaryk, and F. Cornhill.
Knowledge-based 3D segmentation of the brain in MR images for quanti-
tative multiple sclerosis lesion tracking. InSPIE Proc. Medical Imaging:
Image Processing, pages 19–25, 1997.

[4] N.C. Fox and P.A. Freeborough. Brain atrophy progression measured from
registered serial MRI: Validation and application to Alzheimer’s disease.
Journal of Magnetic Resonance Imaging, 7:1069–1075, 1997.

[5] N.C. Fox, P.A. Freeborough, and M.N. Rossor. Visualisation and quantifica-
tion of rates of atrophy in Alzheimer’s disease.The Lancet, 348:94–97, july
1996.

[6] P.A. Freeborough and N.C. Fox. The boundary shift integral: An accurate
and robust measure of cerebral volume changes from registered repeat MRI.
IEEE Trans. on Medical Imaging, 16(5):623–629, 1997.

24



[7] P.A. Freeborough, R.P. Woods, and N.C. Fox. Accurate registration of serial
3D MR brain images and its application to visualizing change in neurodegen-
erative disorders.Journal of Computer Assisted Tomography, 20(6):1012–
1022, 1996.

[8] Y Ge, R J Grossman, J K Udupa, L Wei, L J Mannon, M Polansky, and
D L Kolson. Longitudinal quantitative analysis of brain atrophy in relapsing-
remitting and secondary-progressive multiple sclerosis. InInternational Soc.
of Magnetic Resonance in Medicine, 1999.

[9] J.V. Hajnal, N. Saeed, A. Oatridge, E.J. Williams, I.R. Young, and G.M. By-
dder. Detection of subtle brain changes using subvoxel registration andsub-
traction of serial MR images.Journal of Computer Assisted Tomography,
19(5):677–691, 1995.

[10] J.V. Hajnal, N. Saeed, E.J. Soar, A. Oatridge, I.R. Young, and G.M. Bydder.
A registration and interpolation procedure for subvoxel matching of serially
acquired MR images.Journal of Computer Assisted Tomography, 19(2):289–
296, 1995.

[11] M. Jenkinson and S.M. Smith. A global optimisation method for robust affine
registration of brain images.Medical Image Analysis, 5(2):143–156, June
2001.

[12] L. Lemieux, U.C. Wieshmann, N.F. Moran, D.R. Fish, and S.D Shorvon. The
detection and significance of subtle changes in mixed-signal brain lesions by
serial MRI scan matching and spatial normalization.Medical Image Analysis,
2(3):227–242, 1998.

[13] W E Reddick, J O Glass, and J W Langston. A non-invasive MRI measure
of subtle longitudinal volume changes in brain. InInternational Soc. of Mag-
netic Resonance in Medicine, 1999.

[14] R. A. Rudick, E. Fisher, J. C. Lee, J. Simon, and L. Jacobs. Useof the brain
parenchymal fraction to measure whole brain atrophy in relapsing-remitting
MS. Neurology, 53(8):1698–704, Nov 1999.

[15] S.M. Smith. Robust automated brain extraction. InSixth Int. Conf. on Func-
tional Mapping of the Human Brain, page 625, 2000.

[16] S.M. Smith. Robust automated brain extraction.NeuroImage, 2000. submit-
ted.

25



[17] S.M. Smith, N. De Stefano, M. Jenkinson, and P.M. Matthews. Normalised
accurate measurement of longitudinal brain change.Journal of Computer
Assisted Tomography, 25(3):466–475, May/June 2001.

[18] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through
a hidden Markov random field model and the expectation maximization algo-
rithm. IEEE Trans. on Medical Imaging, 20(1):45–57, 2001.

26



Group N Mean NBV /106 mm3 SD /106 mm3 P
Controls 20 1.45 0.05
Total MS 72 1.39 0.10 0.0001
EDSS< 2 33 1.44 0.07
EDSS< 5 61 1.41 0.09 0.01
EDSS 2-4 27 1.38 0.10 0.0001
EDSS 5-8 10 1.27 0.10 0.0001

Table 1: Differentiating different MS sub-groups on the basis of SIENAX NBV.
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