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Abstract

Quantitative measurement of brain size, shape and temporal changedfople,

in order to estimate atrophy) is increasingly important in biomedical image analy-
sis applications. New methods of structural analysis attempt to improve relsgstn
accuracy and extent of automation. A fully automated method of longitudimat (te
poral change) analysis, SIENA, was presented in [17]. In this papprovements

to this method are described, and also an extension of SIENA to a new method f
cross-sectional (single time point) analysis. The methods are fully autormated,
bust and accurate: 0.15% brain volume change error (longitudinal);%.5+ain
volume accuracy for single-time point (cross-sectional). A particulaaaige is

the relative insensitivity to differences in scanning parameters.

Keywords: Structural brain analysis, atrophy measurement, normalised registra-
tion

1 Introduction

Various methods have been proposed and implemented for cross-sk(ioglz
time point) or longitudinal (multiple time points) analysis of brain atrophy (or more
general changes in brain size and shape) using magnetic resonantwithig|).

A major potential application of atrophy measurement is as a surrogate niarker



the progression of neuro-degenerative diseases such as Alzlsedisease, or of
diseases with secondary neuronal or axonal injury, such as multipfessle

Cross-sectional methods (e.g., [3]) work by measuring brain tissue voluroe
mally white plus grey matter - and comparing this against a normalisation volume -
normally either brain tissue plus cerebrospinal fluid (CSF) volume, or oraaial
volume. Longitudinal methods (e.g., [4, 9]) typically register (align) two scan
separated in time and find regions of change. In general, cross-seaitalysis
tends to incur higher measurement error than longitudinal analysis. Tlekisd
mainly to the practical difference between integrated (cross-sectiordkjifiar-
ential (longitudinal) measurement of change. Although many data sets twrcon
multiple time point measurements, there are also situations where only single time
points are available, or where the question of interest relates to “absalutghy
rather than its rate.

This paper presents completely automated longitudinal and cross-sectieaal
surement methods named respectively SIENA (Structural Image Evaluagen
ing Normalisation, of Atrophy) and SIENAX (an adaptation of SIENA fonss-
sectional measurement).

SIENA performs segmentation of brain from non-brain tissue in the hedésii
mates the outer skull surface (for both time-points), and uses these teseiss-

ter the two images, while correcting (normalising) for imaging geometry changes
Then the registered segmented brain images are used to find local atmogdy,
sured on the basis of the movement of image edges.

SIENAX also performs segmentation of brain from non-brain tissue in thae he
and estimates the outer skull surface, with data from a single time-point. &lme br
and skull images are then registered to a standard space brain and skelldaia

This step normalises for skull size, and means that it is not necessary somaea
CSF volume (otherwise a problem in T1-weighted images as it is hard to accu-
rately separate CSF and skull). Next a probabilistic brain mask derivedridard
space is applied to make sure that certain structures such as eyes/ogibaes

not been included in the brain segmentation. Finally tissue-type segmentation is
carried out (including partial volume estimation) and a (normalised) braimmelu
estimate is produced.



2 SIENA - Longitudinal Method

The SIENA method was originally described in [17]. The major subsequent im-
provement is in the final stage (the change analysis), so the initial stageslgr
described briefly.

2.1 Brain Extraction

The first processing stage is the extraction of the brain from each of pha in
images, that is, the segmentation of brain from non-brain tissue. The metbdd u
is known as BET - Brain Extraction Tool [15, 16]. BET uses a tessellateghnoe
model the surface; this model is allowed to deform according to variouandin
local controlling terms until it optimally fits the brain surface. Results are normally
in extremely good correspondence with manually segmented output, ewardaro
the eyes, one of the most difficult areas to segment from the brain.

BET provides a binary brain mask, the segmented brain image and an éxterna
skull surface image as output. The cerebellum is included in the segmeaniad br

as is the upper part of the brain stem - the stem is automatically cut according to
a surface interpolated sagittally across the ventral cerebellum, ponsrapdrtd
lobes.

For an example extracted brain surface, see Figure 1 (left).

Figure 1. Left: Example brain surface found by BET. Middle: Examplellsku
surface found by BET. Right: example subtraction image after registratitwoo
images from a subject without atrophy.



2.2 Skull Extraction

Measurement of changes in brain size benefits from the estimation of tHe sku
(which is of fairly unvarying size over time in an adult) as a normalising factor in
both cross-sectional and longitudinal measurements. The importance iof tines
latter case will now be explained in more detail.

Before brain change can be measured, the two images of the brain haee to b
registered (aligned). Clearly this registration cannot allow rescalingpwibethe
overall atrophy will be underestimated. However, because of posdibleges in
imaging geometry over time (due to gradient calibration drift or variable loela fi
distortions), itis necessary to hold the scale constant (see also [ fEfaops work

on this problem; note that some longitudinal methods have failed to take aafount
this problem, although methods based primarily on cross-sectional meastsemen
tend to normalise against it). With the method described here, this can beexthiev
by using the exterior skull surface (assumed to be constant in size apd &t an
individual) as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1l-weighted images, th
internal surface of the skull is largely indistinguishable from the CSF, hwisc
also dark. Thus the exterior surface is searched for. This also cdifficalt to
identify, even for human experts, but is the most realistic surface to ainotoTire
exterior skull surface is found automatically as the final stage of braia@idn,
using BET. Starting with the estimated brain surface, each surface poikéisda
the start of a search outwards for the optimal skull position. The most t{ftem
the brain) point of low intensity (before the bright scalp) is found, anditeepeak
in gradient outside of this is then defined as the exact position of the exbéthoe
skull surface. This method is quite successful, even in regions of averfglark)
muscle or where there is significant (bright) marrow within the bone.

Thus a skull image is generated for each input image, to be used in registratio
For example, see Figure 1 (middle).

2.3 Registration

As already stated, before the differences between two images can i the
brains in the two images must be aligned, using a registration procedure. The
registration carried out uses a robust and accurate automated linesiratemn

tool, FLIRT (FMRIB's Linear Image Registration Tool) [11].



The use of FLIRT in this application is more complex than in the more normal
case of registration of two single images. A three-step procedure is whete

the brain images are used to optimise the initial registration and the final translation
and rotation, whilst the skull images are used to optimise the scaling and skew.

One could stop here and apply change analysis to the registered seaondriul

the original first brain. However, this is not optimal, as the second braingrhag
been through a processing step that the first brain image has not, nanpeljah s
transformation (involving interpolation of its values). The images will therefore
look slightly different; the transformed second brain image will be slightly more
blurred than the first brain image. To ensure that the images being compared
dergo equivalent processing steps, both input images are transftoragubsition
which is halfway between the two. In this way both images are subjected to a
similar degree of interpolation-related blurring.

The typical quality of this brain registration is illustrated in Figure 1 (right), an
example subtraction of a registered pair of head images, which showspprly-a
ciable motion outside of the skull.

All of the brain and skull images are now discarded; only the originalgmsated
images and the brain mask images are kept. The transformations are applied to
these images so that two registered (“common-space”) head images andisvo re
tered brain mask images result. These four images are passed on to tegext

2.4 Masking

The registered binary brain masks are now combined into a single mask willich w
be applied to the registered head images to produce two new registeredhirain
ages. The reason for this (rather than keeping the original registaagdiimages)

is that even slight differences in the original brain segmentations (i.e., ¢t
tion of the brain masks) would cause the artefactual appearance ofchiaiige.
Thus the two masks are “binary ORed” - i.e., if either is 1 at a particular voxel,
the output is 1. (They cannot be “ANDed” as the brain from the secondpoime
would cause incorrectly reduced masking of the first time point image in thee cas
of atrophy.)

The resulting combined mask is then applied to the registered head images to pro-
duce two registered brain images. These two images are passed to thtafieal s
for the analysis of change.



2.5 Change Analysis

The next stage in the analysis is the change estimation itself. There is grie&t va
in how this is achieved amongst published longitudinal atrophy methods. @sme r
searchers (e.g., [10, 9, 12]) use normalized subtraction of the imagamiag that
resulting areas of significant deviation from zero correspond to afeateresting
brain change. This relies on the assumption that the images will appear g¢kactly
same (apart from the change of interest); various procedures suuistagram-
matching and relative bias field correction have been suggested [12}jen
attempt to make the images look as similar as possible. Others look more directly
for changes around tissue boundaries. For example, [5, 4, 7, éhe@sSboundary
shift integral” (the area under the intensity profile across a boundary ineirhag
is subtracted from that for image 2, and normalised by the boundary hegght,
sulting in an accurate measure of lateral motion), which gives the motion bf eac
edge, even if blurred, but only if image contrasts in general are well redtob-
tween scans. Methods that are principally cross-sectional in natwie,asuthat

of Fisher [3, 14], Ge [8] and Reddick [13] avoid the need to addressstue of
change analysis.

The system presented here first attempts to find all brain surface etge aod
then estimates the motion of these edge points from one time point to the next. This
edge motion is found for the whole brain surface, enabling the total voluaregeh
to be estimated. The previously published version of SIENA found edgédseo
basis of edge strength, and then found edge motion by searching foringegciye
points from one image to the next. This suffered slightly from relatively impesc
definition of edge points, i.e., discrimination was imperfect. The currentorers
uses full tissue-type segmentation to find edge points, and thus is moretlyorre
selective, and also enforces continuity of the estimated brain surfaces thb
system presented here finds all brain surface edge points (includingahleain-
CSF edge points, such as those around the ventricles) and then finds the ofiotio
these points, in a Bayesian framework, perpendicular to the local edgyéh)-taoxel
accuracy.

In order to find all brain surface edge points, tissue segmentation isrpedoon

the image from time point 1 after application of the joint brain mask (see pre-
vious section). The tool used [18] carries out tissue (Grey Matter, Whéte

ter and CSF) segmentation and bias field correction. The method is based on
a hidden Markov random field (segmentation labelling) model and an atsibcia
Expectation-Maximization algorithm for estimating tissue intensity parameters and
bias field (spatial intensity inhomogeneity). The whole process is fully automatic



(after being instructed as to whether the image is T1 or T2, and whether to at-

tempt to segment grey and white matter as a single class or as separatg,classes
producing a tissue-labelled segmentation. It is robust and reliable, cethfuathe

more common finite-mixture-model-based methods, which are sensitive to noise,

particularly as they use no spatial neighbourhood information.

The tissue segmentation labels are used to find all brain edge points. Fasst, gr
and white voxels are combined into a single class, as are also CSF andduaukg
voxels. All boundary voxels between these two resulting classes adefarsthe

next processing stage. Note that this method of finding brain edge voXeises

a continuous surface (without breaks), although not necessarilycdotngally
simple one. Figure 2 shows example slices through an image after edge point
detection (and also example perpendicular image profiles as describad.belo

Figure 2: Example slices through an image after edge point detection, and als
example perpendicular image profiles.

Next, the common-space registered image from time point one is proce &ssathat
brain edge point. First the image gradient direction (in 3D) is found, ussiga

ple 3x3x3 Gaussian-weighted derivative operator. This is used to fendutiace
normal unit vector (and will always point from the darker side of therfolauy to

the lighter side - this information will later be used to tell the difference between
atrophy and “growth”).

Next, a 1D array (an intensity profile perpendicular to the edge) is filled waithes
from the image. These values are sampled at sub-voxel positions (udingdr
interpolation) as the array’s elements will not in general fall exactly aevgrd
positions. The length of the array is preset to a fixed number of millimeters (typ-
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ically +3); the extent will also be limited by the presence of a second edge, for
example, the far side of a sulcus, in order to prevent other nearby &age con-
fusing the motion estimation. A second 1D array is filled with values from exactly
the same image positions from the (common-space registered) image from time
point two.

Edge motion is now estimated by finding the relative shift, between the arrays,
which produces the maximum correlation (to sub-voxel accuracy usingpaite
lation of the correlation scores). However, before the correlatiory aa@y is
pre-processed in two ways.

First each profile is convolved with a differentiating kernel, as it makesesém
correlate the derivatives (edge-enhancements) of the two 1D imagkepmafiner
than the raw image values; if there are intensity or contrast differentesde the

two images, the position of maximum correlation could be skewed, but thig effec
is much reduced if correlating edge-enhanced versions of the profilass this
method requires no (intensity) normalisation of the images, and is not sengitive
problems arising from intensity inhomogeneities across the images.

The second process is the multiplication of each profile by a high-powenerpo

tial profile (smoothed sharp cutoff); this acts as a prior on the expectedmintio
weighting the correlation score, so that higher motions are less likely than small
ones - this helps reduce the effect of large motion mismatches (which otkerwis
make a large contribution to error in the overall method). This can be viewad a
Bayesian prior:

P(displacementlatg « P(datddisplacementP(displacement (1)

where the first term on the right can be thought of as the raw correlatae,sand
second term is the prior on the displacement between the profiles

7displacemen4t

P(displacementoc e 207 | 2

which haso set to a suitable length such as 7mm. Because the posterior on the
displacement is simply used to find the maximum probability the constants of pro-
portionality are unimportant.

Thus the optimal displacement is found for each edge point, and, as stalied e
the direction of the edge normal determines whether atrophy or “grévgitéking

l«Growth” could either be real, e.g. oedema, or due to nonlinear motiomden the two time
points. In the latter case, it will tend to cancel out with atrophy measurena¢iother points in the
image.



place at this point. The position of optimal displcaement is estimated to sub-voxel
accuracy by fitting a quadratic through the correlation values at the pehksa

two neighbours. Figure 3 shows example profiles from one edge poinawlight

shift between time points, and the derivatives of these profiles.
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Figure 3: Example profiles from one edge point with a slight shift between time
points, and the derivatives of these profiles.

For example slices showing atrophy as dark edge points and “growth rasdee
Figure 4.

2.6 Percentage Brain Volume Change Quantification

Brain atrophy is conveniently quantified by a single number such as themeage
brain volume change (PBVC). The initial value obtained from the changedisag
the sum of all edge point motions (linear voxel units), which, when multiplied by
voxel volume, gives the total BVC. This is one possible measure, as weud b



Figure 4: Example slices showing atrophy as dark edge points and “dgresth
light.

PBVC derived directly from this. However, a more invariant measure tigioéd

by dividing this volume by the number of edge points found times the voxe&™are
(Note, the final stages of SIENA are always carried out with cubic igose there

is no confusion about the definition of area here.) This measure is then #re me
perpendicular brain surface motion. The reason why this is preferalkie total
volume change is that it is not (to first order) dependent on the numbedgs
points found. As the number of edge points depends on slice thickneskdssy

- typically by a factor of two between 1mm slices and 6mm) and (to a lesser extent)
other scanning detalils, it is a good idea to normalize for the number of pointd fo
Finally, if it is required to convert the mean surface motion to a PBVC, the rétio o
the brain volume to the brain surface area needs to be estimated.

In this formulation: >
v m
= 3

Y 3)
wherel is the mean surface motiol, m is the edge motion (voxels) summed over
all edge pointsy is voxel volume,N is the number of detected edge points and
is voxel cross-sectional area. Thus,

[ =

10014 1001fV
vV Vv

whereA is the brain surface area (actual, i.e., adt), V' is the actual brain volume,
f is the ratio of actual area to volume.

% brain volume change: =1001f, 4)
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It is possible to findf directly for any given image without knowing or V; if a

single image is scaled by a known amount and then compared with the unscaled
version using the above change analysis, the correct PBVC is knamm thie
scaling that was applied, and the measuremerittben allowsf to be found.

It varies across scanners, slice thicknesses and pulse sequenhnoerrhally lies
between 0.1 and 0.2mm. Applying this method (referred to as self-calibration)
helps reduce bias (systematic error) in the reported estimates of PBVC.

The complete SIENA method is summarised in Figure 5.

3 SIENAX - Cross-Sectional Method

SIENAX is closely related to the SIENA longitudinal method, but, instead ofgusin
images from two different time points, SIENAX attempts to estimate normalised
brain volume (NBV¥ from a single image, using the skull to normalise spatially,
with respect to a standard image. Cross-sectional studies of brainyatrophally
attempt to relate brain size at a given point to the size of the brain at maturay. In
cross-sectional study the latter can only be estimated from skull size,ebdlose
relationship between normal skull and brain growth makes this a reliable marke
Thus, the goal for determination of relative brain atrophy is to accuratdipel
brain size with respect to skull size, normalised to a standard template. Anothe
way of looking at the value of normalising for head/skull size is that it reduc
within-group variations, making cross-group comparisons more sensitive

An alternative to using head size in hormalisation is to estimate CSF volume (to
end up with a measure of intra-cranial volume). One advantage of theaxbpr
described here is that it is not restricted to running on images where GSlfeca
robustly found. For example, in T1-weighted images, it is hard to distingugsh b
tween CSF and skull voxels, reducing the accuracy of CSF-volumedbesmal-
isation; clearly this is not a problem for SIENAX.

Because SIENAX uses several of the techniques already deschibed,dhe de-
scription of the method, given below, is relatively brief.

2«NBV” will be used to refer to brain volume after normalisation to standarace; “BV” will
be used to refer to original brain volume, i.e. before this normalisatiote Mat BV is in mm, and
that the normalisation factor is dimensionless, so that NBV is also if.mm
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Figure 5: Overview of SIENA.
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3.1 Brain Extraction and Normalisation

SIENAX uses BET to find the brain and skull images from the single inpud hea
image. These are then used, in a similar manner to the registration process in
SIENA, to register the image to standard space brain and skull imagese(eri
from the MNI152 standard image [2, 1]). Next a standard space madeto

make sure that no parts of the eyes are left from the brain extractioaubeof the
connection of the optic nerve, this can occasionally happen) and alsovid@a
consistent (i.e., non-arbitrary) cutoff point for the brain stem.

3.2 Tissue Segmentation

Next, the tissue segmentation program described above [18] is usedriergghe
extracted brain image into grey, white, CSF and background, giving esBiviate.
However, unlike the segmentation carried out for SIENA (where thet gxesition-

ing of the brain boundary, to sub-voxel position, is not important, becaus the
motion of the profiles around this position that matter and not the exact central
point of the profiles), the exact volumes of the different tissues is nowimgor-

tant. Thus the segmentation method includes estimation of partial volume effects
for edge voxels, giving higher volumetric accuracy than a “binarisegh®enta-
tion. This is achieved by modelling the distributions of the intensity in each tissue
class, and using these models to estimate partial volume effect for any fzarticu
voxel, given its intensity and its neighbourhood.

This segmentation is actually carried out on the original extracted brain image,
not the normalised one. This is so that no interpolation has been applied to the
image, which would slightly degrade the image and lead to slightly less accurate
segmentation. (The eye and brain stem masking discussed above is acturaly ¢

out on this image, by applying the reverse normalisation registration tramsfor

the standard space mask to bring it into register with the input image.)

Thus the segmentation gives a total volume for brain tissue (BV). This is multiplied
by a volumetric scaling factor (derived from the normalisation transformgive
normalised brain volume (NBV). The NBV can optionally be split into grey and
white volumes.

The complete SIENAX method is summarised in Figure 6.

13
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4 Validation / Results

4.1 SIENA - Investigation of Accuracy as a Function of Slice Thak-
ness

To test the accuracy of SIENA, 16 normal volunteers were scannecdbiedparate
sessions each, with a range of slice thicknesses, to enable the dependestice
thickness of the accuracy to be determined (this data is also used, in Sedtion 4
to test SIENAX). The subjects’ ages ranged from 26 to 44; half waerake. The
scanner was a Philips NT 1.5T operating at the NMR Center of the University
of Siena. Scans 1 to 6 were 1mm to 6mm slice thickness, T1-weighted axial 2D
fast field echo, TE=11ms, TR=35ms, flip=4NAqc=1. The 1mm scan lasted

18 minutes, and each successive scan took less time, with the 6mm scan lasting
3 minutes. Scan 7 was a 3mm slice thickness axial volumetric fast field echo,
TE=3ms, TR=20ms, flip=30 NAgc=1, and lasted 4 minutes. Scan 8 was the
same as scan 7, but with coronal slices, lasting 4 minutes. For all scansdiieein
resolution was 1mm by 1mm, and enough slices were taken to include the top of
the scalp and the bottom of the cerebellum. The inter-session interval wdy mos
between 1 and 7 days. Half of the subjects were scanned with the sliceassckn
order reversed, to control for order effects.

The resulting 128 pairs of images were processed with SIENA, with no rhamua
tervention. The registration results and BET segmentation were checkeghliyan
- no obviously incorrect segmentations were found for any of the 256asagd
no obviously incorrect registrations were found in any of the 128 pairs.

All PBVC measures should ideally be zero, as the subjects should nobivingh
any atrophy over such a short time interval. There are two clear resoitstfre
analysis. Firstly, there is no clear slice-dependence to the errorsn@gcthe
error in PBVC is small - the median absolute error over all results is less tha#0

(a reduction of 0.05% from the median error of 0.2% found using the otigina
version of SIENA, reported in [17]). The fact that thinner slices dogenerate
significantly better results than thicker slices may at first seem surprismgeveér,
one possible reason for this result is that the lower resolution scansarerntere
quickly and therefore probably contain less image distortion due to subjéicirmo
during the scan.

The contribution of the skull-based step in the registration was also investigate
the error introduced by this step was nearly as large as the total erggesing
that the skull-based registration on average may contribute fairly highlyeiatv
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atrophy measurement error. However, this step is important to includm gie
common problem of imaging geometry drift.

As a further test of the SIENA method, one of the subject’s data sets wasl tes
across slice thicknesses - each image from time point 1 was tested agaimst ea
image with a different slice thickness from time point 2. The median absolute
error was only 0.4%, despite the differences between the images in éanly.pa

The final outcome of these investigations, therefore, is that the error isumeg
PBVC between images acquired using the same pulse sequence is ardaind 0.1
This value is not strongly slice-thickness dependent.

4.2 SIENA - Validation Using Patient Data from Three Time Points

Further investigations were carried out with data sets of three-time-p@ins suf
patients. A sensitive method of error analysis [4] can be carried ouicndata;

the atrophy measure from the first time point (t0) to the second (t1) is addled to
measure from the second time point (t1) to the third (t2), and this sum compared
with the direct measure from t0 to t2. This will show up most sources of arror

the atrophy estimation prodecure and is therefore a useful validation witiend.
Sources of error not covered are those which affect both halvie afomparison
equally; for example, if a scaling error was caused by inaccurate situthation

at one time point, and affected the t0 to t1 atrophy measure in the same way that it
affected the tO to t2 measure, this would not show in the three-time-point &alys

Previously, MR images of brains of 39 multiple sclerosis patients were useid in th
manner to show that the error in PBVC estimation on patient data agrees with the
estimate derived from the test-retest normals data [17]. A second datasseiore
recently been analysed using 141 ageing volunteers (mean age 7&rdtdedi-

ation 6 years), courtesy of the Challenge/Optima project, Drs. Kevin Braudtie

Marc Budge, Radcliffe Infirmary, Oxford. The results are shown inFég’; points
should ideally lie on they = x line. The error bars show0.15%, and are suffi-
cient to explain the majority of the deviations from the line (the median distance
from the line is 0.22%), demonstrating that the precision of the method as applied
to “active atrophy” data sets is comparable to that with normal controls (d#tar

sets have shown even closer agreement with the “Siena normals” dinaatesn).

Note that there is a slight bias above the line for higher atrophy ratesestigg

that higher atrophy is slightly underestimated compared with lower rates. $kpos
ble explanation is in the Bayesian weighting against large edge motion (éiseful
reducing error and thus increasing sensitivity) - this tradeoff is beingsiigated

16



further.
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Figure 7: Plot of (PBVC from tO to t2) vs (PBVC from tO to t1 plus that for t1 to
t2).

4.3 SIENA - Intersite Image Testing

As an extreme test of the robustness of SIENA to changes in imaging paramete
three images of the same subject, each using a different MR scannemsezt in

an A-B-C-A atrophy estimation test. Clearly the atrophy results from these thr
tests should sum to zero. Two scans were taken at 1.5T with 3mm slices (NMR
Center, University of Siena and Montreal Neurological Institute) anel @n3T

with 3.5mm slices (FMRIB, Oxford). The scans span a period of one yHa&
mean absolute PBVC estimated is 1.2%, and the summed PBVC is 0.3%.
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4.4 SIENAX - Investigation of Error as a Function of Slice Thickness

To test the error of SIENAX, the data from the 16 normal volunteersribeEstin
Section 4.1 was used. Every pair of within-subject same-slice-thicknegge#ma
was used in a test-retest of both BV and NBV. The mean error in BV (i.e. due
to BET and segmentation only) was 0.4% (this error is expressed as afagree

of brain volume), and the mean error in NBV (i.e. for the whole processdaclu
ing normalisation) was 1%. Thus, as expected, the normalisation step Esreas
test-retest error. However, the value of the normalisation step (by irefamss-
subject variability) can be seen when the standard error of the mearvbiaine

for the group is estimated with and without normalisation; SE(BV) for the gieoup
1.5% and SE(NBV) is 0.7%.

A more detailed investigation of these results is now described. Firstly, Fgure
shows separate plots for the different subjects of the volumetric scality fde-
rived from the normalisation step. The different slice thicknesses ateglm

in the same order as before; however, this time there are two separate falue
each slice thickness (one for each time point). The vertical spread offfae d
ent subjects’ plots shows the variation in head size within this group. Thivecla
constancy of each plot (particularly for the first 6 slice thicknesses)dswrag-
ing. The slightly different results for the final two slice thicknessesdlues of
12 to 15) are still less than the spread across subjects, and are présdomab
to the quite different sequences used for these images (including posisilyy
different imaging geometry calibration).

Figures 9 and 10 show plots of estimated BV and NBV. The BV estimates are
more consistent (within subject) than the NBV estimates, as errors due torthe no
malisation have not been added. However, the value of the normalisatidimecan
seen by noting that the fractional spread across subjects is reduedddigr of at
least 2.

45 SIENAX - MS vs Normals

A comparison was made of a group of normals (N=20) with subgroups of MS
patients (N=72, mean EDSS=4). ANOVA Tukey tests of NBV show significan
difference between normals and all EDSS bins except for ERSS as seen in
Table 1.
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4.6 SIENAX - Extreme Parenchyma Loss

Figure 11 shows the SIENAX output for an epilepsy patient followingtablobe
surgery. SIENAX has successfully coped with both the brain extractidrtiasue
segmentation. The NBV for this patient is estimated.26 « 10° mm? (compared
with 1.45 * 105 mm? in a relevant control group.)

Figure 11: SIENAX output for an epilepsy patient following frontal lolegery.
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4.7 SIENAX - Further Investigation of Error and Age-Dependency

A different study of 19 normals (3mm slice thickness T1-weighted images) wa
processed by SIENAX. Figure 12 shows a plot of NBV vs date-of-biggain,
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Figure 12: NBV vs date-of-birth for 19 normals.

the standard error of the NBV is approximately 0.7%, and the estimated atrophy
rate for these normals is 0.2%p.a.

Other data sets used to test error in SIENAX results have given lower engas
than the 1% found with these two data sets, up to a factor of 2.

5 Conclusion

This paper presents SIENA, a fully automated method of longitudinal (tef)pora
brain change analysis, and an extension to a new method, SIENAX, des-cr
sectional (single time point) analysis. SIENA is useful, for example, foritadg

nal studies where maximal sensitivity to change over time is required. SIBESIAX
useful, for example, for differentiating two groups of subjects on thisledsingle
time point brain size measurement.

The methods are fully automated, robust and accurate: 0.15% brain vofhamge
error (longitudinal) and 0.5-1% brain volume accuracy for single-time foinss-
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sectional).

The SIENA and SIENAX software is freely available as part of the FMBIit-
ware Library (FSL) from thewwv. f nri b. ox. ac. uk/ f s| website.
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Group N | Mean NBV /160 mnm? | SD /10 mn? | P
Controls | 20| 1.45 0.05

TotalMS | 72| 1.39 0.10 0.0001
EDSS< 2 | 33| 1.44 0.07

EDSS< 5 | 61| 1.41 0.09 0.01
EDSS 2-4| 27| 1.38 0.10 0.0001
EDSS5-8| 10 | 1.27 0.10 0.0001

Table 1: Differentiating different MS sub-groups on the basis of SIKNMBV.
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