Poster Abstract: Shingled Graph Disassembly:
Finding the Undecidable Path*

Richard Wartell', Yan Zhou?, Kevin W. Hamlen?, and Murat Kantarcioglu?

! Mandiant
2 Computer Science Department, The University of Texas at Dallas
{rhw072000,yan.zhou2,hamlen,muratk}@utdallas.edu

Abstract. A probabilistic finite state machine approach to statically
disassembling x86 executables is presented. It leverages semantic meanings
of opcode sequences to infer similarities between groups of opcode and
operand sequences. Preliminary results demonstrate that the technique
is more efficient and effective than comparable approaches used by state-
of-the-art disassembly tools.

1 Introduction

Static disassembly of binaries for Intel-based architectures is particularly challeng-
ing because of the heavy use of variable-length, unaligned instruction encodings,
dynamically computed control-flows, and interleaved code and data. Most state-of-
the-art disassembly tools, such as IDA Pro [I], decode instructions by recursively
traversing the static control flow of the program, thereby skipping data bytes that
may punctuate the code bytes. However, not all control flows can be predicted
statically. Recent work has introduced a machine learning-based disassembler [2]
developed using modern statistical data compression models. The experimental
results demonstrate substantial improvements over IDA Pro’s traversal-based
approach, but it has the disadvantage of extremely high memory usage.

This poster paper presents an improved machine learning-based technique
that uses a finite state machine with transitional probabilities to infer likely
execution paths through a sea of bytes. Our disassembler is simple, effective, and
much more efficient than alternative approaches with comparable accuracy.

2 Disassembler Design

Our disassembler includes three primary components: (1) a shingled disassembler
that recovers the (overlapping) building blocks (shingles) of all possible valid
execution paths, (2) a finite state machine trained on binary executables, and
(3) a graph disassembler that traces and prunes the shingles to output the
maximum-likelihood execution path.

Shingled Disassembler: The shingled disassembler conservatively considers every
byte as a potential instruction starting point, eliminating paths that reach invalid
opcodes. This is a major benefit of the approach, since the shingled disassembly
encodes a superset of all the possible valid disassemblies of the binary.

* The research reported herein was supported in part by NSF award #1054629, AFOSR
award FA9550-10-1-0088, and ARO award W911NF-12-1-0558.



Opcode State Machine: The state machine is constructed from a large corpus
of pre-tagged binaries, disassembled with IDA Pro v6.3. The byte sequences of
the training executables are used to build an opcode graph, consisting of opcode
states and transitions from one state to another. For each opcode state, we
label its transition with the probability of seeing the next opcode in the training
instruction streams.

Mazximum-Likelihood Ezxecution Path: We find the maximum-likelihood execution
path by tracing the shingled binary through the opcode finite state machine. At
every receiving state, we check which preceding path (predecessor) has the highest
transition probability. The transition probability of each valid shingle-path s € S
resulting in trace ro,...,7;, ...,k is:

Pr(s) = Pr(ro)Pr(r1)--- Pr(r;)--- Pr(rg)

and the optimal path is s* = arg max Pr(s).
se

3 Evaluation

Our disassembler was developed in Windows using Microsoft .NET C#, and was
tested on an Intel Xeon processor with six 2.4GHz cores and 24GB of physical
RAM. We disassembled 24 difficult binaries with very positive results. The pre-
liminary results show that our disassembler identifies 99.9% of instructions that
IDA Pro labels as code while avoiding its mistakes—for example, misclassifica-
tion of large, non-executed data blocks as code; confusion of common opcode
sequences with code addresses; and omission of various direct branch instructions.
Furthermore, our disassembler runs in linear time in the size of the input binary.
It is therefore increasingly faster than IDA Pro as the size of the input grows.

4 Conclusion

We present an extremely simple yet highly effective static disassembly technique
using probabilistic finite state machines. Compared to the current state-of-the-art
IDA Pro, our disassembler runs in linear time in the size of a given binary. We
achieve both greater efficiency and greater accuracy than IDA Pro. More details
can be found in our technical report [3].

References

1. Hex-Rays: The IDA Pro disassembler and debugger. www.hex-rays.com/idapro

2. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differen-
tiating code from data in x86 binaries. In: Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD). Volume 3. (2011) 522-536

3. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M.: Shingled graph disassembly:
Finding the undecideable path. Technical Report UTDCS-12-13, The University of
Texas at Dallas (2013)


www.hex-rays.com/idapro

	Introduction
	Disassembler Design
	Evaluation
	Conclusion
	References

