
Computation of the Ising partition function for

grid graphs∗

Per H̊akan Lundow

Abstract

The Ising partition function for a graph counts the number of bipartitions
of the vertices into sets of given sizes, with a given size of the induced
edge cut. This is expressed as a 2 variable generating function which is
easily translatable into the partition function studied in statistical physics.
The author has exactly computed this generating function for the square-,
triangular- and union jack grid with open boundary, the largest having
256 vertices. We describe the computing process, which is based upon
transfer matrices and a simple use of symmetry, and do a rudimentary
analysis of the phase transition which occurs when the edge cut attains a
certain critical size.

1 Introduction

The Ising model of ferromagnetism has been thoroughly investigated since its
formulation in the 1920’s. It was solved for the 1-dimensional case by Ising
himself and the 2-dimensional case without external field was solved by Onsager
in the 1940’s. However, not much is known for higher dimensions or indeed for
the 2-dimensional case with external field, which is the object of study in this
article. For a well-written introduction to the subject we refer the reader to
Cipra [Cip87]. The standard Ising partition function Z, for a graph on N
vertices, is defined as

Z(β, J,H,N) =
∑

σ

eβH(σ)

where the sum is taken over all 2N assignments of ±1 to the N variables σi.
Here β = 1/kT with k being Boltzmann’s constant and T is the temperature.
The Hamiltonian H is defined as

H(σ) = −J
∑

{i,j}
σiσj −H

∑

i

σi

where the first sum is taken over the edges (nearest-neighbours) in the graph
and the second sum over the vertices. The constants J and H describe the
interaction between nearest-neighbours and an external field, respectively. We
will modify the definition of this partition function into a purely combinatorial

∗Research reports, No 14, 1999, Department of Mathematics, Ume̊a University

1

function defined for any graph. More specific, for a graph G on n vertices and
m edges it is defined as

Z(G; x, y) =
∑

i,j

ai,j x
i yj

where ai,j is the number of bipartitions of the vertices into parts of order (n−j)/2
and (n + j)/2 respectively, with (m − i)/2 edges between them. It is then a
matter of evaluating the partition function in the right point to obtain the
standard function, i.e.

Z(G; e−βJ , e−βH) = Z(β, J,H,N).

This article is devoted to the subject of exact computation of Z(G; x, y).
This is of some interest not least since one may extract e.g. the matching
polynomial from this partition function. There is a (practical) closed formula for
the number of perfect matchings in Pm×Pn, constructed by Kasteleyn [Kas67]
using the method of Pfaffians, but the matching polynomial, and indeed the
number of matchings, remains difficult to compute. From Z(G; x, 1) one can
extract the Euler polynomial which counts the number of factors in G where each
vertex has even degree (or, each component is an Eulerian graph). Though this
polynomial is easily computed for Cm×Cn with m,n ≤ 32 using Mathematica,
see Beale [Bea96]1, the full partition function in both variables is obtainable only
for considerably smaller grids. The largest computed so far are C10 × C10 by
Baker [Bak94] (though the coefficients aren’t stated) and C12×C12 by Häggkvist
and Lundow (manuscript in preparation).

We will describe a computing process which gives the partition function for
Pn×Pn, where n ≤ 16. As more computational power gets available the method
will render the next two or three grids as well. The method relies on the use of
transfer matrices. Having been in use since the beginning of the Ising model it
has proven to be a powerful ally. In fact, computing Z(C10×C10; x, y) with the
standard transfer matrix is quite manageable on todays computers. In combina-
tion with a technique for compression of transfer matrices, see Lundow [Lun99],
the author has computed e.g. Z(C4 × C4 × Pn; x, y) for n = 1, . . . , 10 and
Z(C4×C4×Pn; x, 1) for n = 1, . . . , 32. Without the compression, the matrices
would have had order 216 = 65536, but with compression the order reduces
to 402. Note that the entries of the compressed matrix contains polynomi-
als, whereas the original matrix contains only monomials. For graphs of type
Cn × Cn × Cn nothing has been computed exactly when n > 4 and we have to
resort to Monte Carlo simulations to obtain information of the coefficients, see
[HR+99].

2 Notation and definitions

A simple graph G = (V,E) is an ordered pair where V is a set of vertices and
E, the edges, is a set of 2-subsets of V . If W is a subset of V (G) then G[W]
is the subgraph of G induced by W . G −W is the graph obtained by deleting
the vertices in W , i.e. G[W], where W = V (G) \W . If W1,W2 ⊆ V (G) then

1Unfortunately the Mathematica program contains a bug, easily fixed though, resulting in
only a few correct digits.

2

[W1,W2] is the set of edges having one end in W1 and the other in W2. If
F ⊆ E(G) then G − F is the graph obtained by deleting the edges F from G.
If F is a set of edges having one end in graph G then G ∪ F is the graph G
together with the edges F and the vertices at the other end of F . We let Pn
and Cn denote the path and cycle respectively on n vertices. If G and H are
graphs then G×H denotes the cartesian product of G and H. The vertices of
G ×H are {(v, w) : v ∈ V (G), w ∈ V (H)}. Two vertices (v1, w1) and (v2, w2)
are adjacent iff v1 = v2 and {w1, w2} ∈ V (H) or w1 = w2 and {v1, v2} ∈ V (G).
For example, Pm × Pn is the m × n - grid with open boundary, and Cm × Cn
is the same but with periodic boundary. The function σ : V → {−1,+1} is the
state of the graph and σv is the spin of vertex v. The restriction of σ to W is
denoted σW .

Definition 2.1. Given a state σ we define the energy ν(G) and magnetisation
µ(G) as

ν(G) =
∑

{u,v}∈E(G)

σuσv and µ(G) =
∑

v∈V (G)

σv

If W ⊆ V (G) and F ⊆ E(G) then

ν(G,W) =
∑

{u,v}∈[W,W]

σuσv, ν(G,F) =
∑

{u,v}∈F
σuσv, µ(G,W) =

∑

v∈W
σv

We suppress the G from ν and µ when the context leaves no room for am-
biguity.

Definition 2.2. The Ising partition function Z(G;x, y) for a graph G = (V,E)
in variables x and y is defined as

Z(G; x, y) =
∑

σ∈{−1,+1}V
xν(G) yµ(G)

Since we will use only the variables x and y we henceforth write Z(G). Let
Z(G, σW) be the partition function when the vertices in W keeps their spins
fixed to σW ,

Z(G, σW) =
∑

σW

xν(G) yµ(G)

3 Basic theorems

If we just use Definition 2.2 we need to run through 2n states to compute Z(G),
here some tricks are indicated to cut down the required work.

Lemma 3.1. Let W ⊆ V (G). Then

ν(G) = ν([W,W]) + ν([W,W]) + ν([W,W])

µ(G) = µ(W) + µ(W)

Proof. See Definition 2.1.

Lemma 3.2. If W ⊆ V (G) then

Z(G) =
∑

σW

Z(G, σW)

3

Proof. See Definition 2.2.

The following theorem is useful since it tells us how to divide up the com-
putation process into smaller chunks.

Theorem 3.3. If G and H are two graphs with W = V (G) ∩ V (H) and F =
E(G) ∩E(H) then

Z(G ∪H) =
∑

σW

Z(G, σW)Z(H,σW)x−ν(F) y−µ(W)

Proof. Let A = V (G) \W , B = V (H) \W and C = (V (G) ∪ V (H)) \W . By
the definition of Z we have

Z(G, σW)Z(H,σW) =

(∑

σA

xν(G)yµ(G)

) (∑

σB

xν(H)yµ(H)

)
=

∑

σA

∑

σB

xν(G)+ν(H)yµ(G)+µ(H)

By Lemma 3.1 and 3.2 this is

∑

σA

∑

σB

xν(G∪H)+ν(F)yµ(G∪H)+µ(W) =

∑

σC

xν(G∪H)yµ(G∪H)xν(F)yµ(W)

Since F contribute twice to the energy and W contribute twice to the magnet-
isation this must be compensated for as in the formulation of the theorem.

Corollary 3.4. If G and H are vertex disjoint graphs then Z(G ∪ H) =
Z(G)Z(H).

As the next theorem states, we never need to run through all 2n states of a
graph, only half of them are required by keeping one spin fixed.

Theorem 3.5. Select a vertex v from the graph G. Then

Z(G; x, y) = Z(G, σv=+1; x, y) + Z(G, σv=+1; x, y−1)

Proof. Say that Z(G, σv=+1) =
∑
ai,j x

iyj . Replacing each state σ with −σ
while computing this gives us Z(G, σv=−1) =

∑
bi,j x

iyj . Note that switching
the sign of each spin leaves the energy unchanged but switches the sign of the
magnetisation, i.e. ai,j = bi,−j . Thus

Z(G; x, y) =
∑

ai,j x
iyj +

∑
bi,j x

iyj =
∑

ai,j x
iyj +

∑
ai,−j x

iyj =
∑

ai,j x
iyj +

∑
ai,j x

iy−j =

Z(G, σv=+1; x, y) + Z(G, σv=+1; x, y−1)

4

4 Polygraphs and transfer matrices

Before we describe how to use the transfer matrix method we introduce the
polygraphs, see Babic et al. [B+86]. A polygraph consists of a set of dis-
joint graphs G1, . . . , Gp and a set of binary relations X1, . . . , Xp where Xi ⊆
V (Gi−1) × V (Gi), for i = 1, . . . , p, and the binary relations will be thought of
as sets of edges. We count the indices modulo p so that e.g. G0 means Gp and
Gp+1 means G1. Let Ωp = Ω({Gi}, {Xi}, i = 1, . . . , p) denote the polygraph
having vertices V (G1)∪ · · · ∪ V (Gp) and edges X1 ∪E(G1)∪ · · · ∪Xp ∪E(Gp).
Let Γp be the polygraph Ωp without the edges X1, i.e. with X1 = ∅. Also, let

Ω̃p be the polygraph different from Ωp only in that the domain of X1 is disjoint
from V (Gp) and is just some set of vertices. A particularly nice polygraph is
when Gi = G and Xi = X for i = 1, . . . , p; denote this polygraph by Ω(G,X, p)
or Γ(G,X, p) when X1 = ∅. For example, if G = ({v}, ∅) and X = {(v, v)}, then
Ω(G,X, p) and Γ(G,X, p) is the cycle and path respectively on p vertices. Let
Di be the domain of Xi and let Hi be the graph Xi ∪Gi on vertices Di ∪V (Gi)
and edges Xi ∪ E(Gi). We refer to Di and Di+1 as the in-vertices and out-
vertices respectively of Hi. Note by the way that Di and Di+1 are disjoint
sets.

Having stated this we are now prepared to formulate the transfer matrix
method, see also Biggs [Big77]. Define the matrices Ti, for i = 1, . . . , p, having
entries

Ti(ζ, ξ) = Z(Hi, σDi=ζ, σDi+1=ξ) y−µ(Di),

Note that Ti has shape 2|Di| × 2|Di+1|.

Theorem 4.1. For all ζ, ξ,

T1 · · ·Tp(ζ, ξ) = Z(Ω̃p, σD1=ζ, σDp+1=ξ) y−µ(D1)

Proof. By induction on p. The theorem is true for p = 1 due to the definition
of the transfer matrix. We assume the theorem to be true for p− 1 and show it
for p.

T1 · · ·Tp(ζ, ξ) =
∑

η

T1 · · ·Tp−1(ζ, η) Tp(η, ξ)

By the induction hypothesis this is

∑

η

Z(Ω̃p−1, σD1=ζ, σDp=η) y−µ(D1) Tp(η, ξ) =

∑

σDp

Z(Ω̃p−1, σD1=ζ, σDp) y
−µ(D1) Z(Hp, σDp, σDp+1=ξ) y−µ(Dp)

and by Theorem 3.3 we obtain

Z(Ω̃p, σD1=ζ, σDp+1=ξ) y−µ(D1)

Corollary 4.2.
Z(Ωp) = trace(T1 T2 · · ·Tp)

5

Proof. Identify D1 with Dp so that Ω̃p becomes Ωp.

Z(Ωp) =
∑

σD1

Z(Ωp, σD1) =

∑

ζ

Z(Ω̃p, σD1=ζ, σDp+1=ζ) = trace(T1 · · ·Tp)

Corollary 4.3. Define the vector v with entries v(ζ) = Z(G1, σD2=ζ) and let
1 be a vector of 1’s. Then

Z(Γp) = vt T2 · · ·Tp 1.

Proof. Let X1 = ∅ in the previous corollary.

Corollary 4.4. If G1 = · · · = Gp = G and X1 = · · · = Xp = X then T1 =
· · · = Tp = T and

Z(Ωp) = trace(Tp), Z(Γp) = vt Tp−1 1

Example 4.5. We set up the transfer matrix for computing Z(P2 × Cn) and
Z(P2×Pn), i.e. for the 2×n grid with and without periodic boundary conditions
respectively (in the n direction). Let G = P2 and X = {(1, 1), (2, 2)}. The
transfer matrix becomes

T =




σ −,− +,− −,+ +,+

−,− x3y−2 x−1 x−1 x−1y2

+,− xy−2 x x−3 xy2

−,+ xy−2 x−3 x xy2

+,+ x−1y−2 x−1 x−1 x3y2




and the vector v becomes

vt =
(
xy−2, x−1, x−1, xy2

)

The state of G indicated in Figure 1 correspond to position 2 of v and the state
of X ∪ G correspond to row 2 and column 3 of T. Corollary 4.4 tells us how
to compute the desired partition functions, i.e. Z(P2 × Cn) = trace(Tn) and
Z(P2 × Pn) = vt Tn−1 1.

-1 +1

-1+1+1

-1

Figure 1: The graphs G and X ∪G of Example 4.5.

6

Figure 2: The graph P5 × P5.

5 Application to the grid

In this section we describe how to use the theorems in the previous sections to
compute the partition function for the open grid Pm×Pn, see Figure 2. Let the
vertices of this graph be the set {(i, j) : i = 1, . . . ,m, j = 1, . . . , n}. We split up
the graph into two subgraphs G = Pk×Pn and H = P`×Pn where m = k+`−1.
Let G be the graph induced by the set {(i, j) : i = 1, . . . , k, j = 1, . . . , n} and H
be the graph induced by the set {(i, j) : i = k, . . . ,m, j = 1, . . . , n}, see Figure
3. With W = V (G ∩H) and F = E(G ∩H) the graph (W,F) is isomorphic to
the path Pn induced by the vertices {(k, j) : j = 1, . . . , n}. Now we are ready
to apply Theorem 3.3 to G and H. We have

Z(Pm × Pn) =
∑

σW

Z(G, σW)Z(H,σW)x−ν(F) y−µ(W) (1)

It remains to compute each Z(G, σW) and Z(H,σW) with the transfer matrix
method. We focus on the Z(G, σW), the other case being analogous. Take
a path Pk and the relation X = {(i, i) : i = 1, . . . , k} so that Γ(Pk, X, n) is
isomorphic to G. As in Example 4.5 we set up the transfer matrix T and the
vector v so that Z(G) = vt Tn−1 1. However, we wanted to keep the spins in
σW fixed. Note that the matrix T consists of the four submatrices T(±,±) and

the vector v of the two subvectors v±, each of order 2k−1, as in

T =

(
T(−,−) T(−,+)

T(+,−) T(+,+)

)
v =

(
v−
v+

)

Indeed, the canonical ordering of the rows and columns induces these blocks.
Now let the vertices of Pk and X∪Pk be labelled as in the right picture in Figure
3. The index of v correspond to the spin of vertex k in Pk and the indices of
T correspond to the spins of vertices k and 2k in X ∪ Pk. Given a σW we just
compute the correct vector-matrix product. For σW = (σ1, . . . , σn) we have

Z(G, σW) = vt
σ1

T(σ1,σ2) T(σ2,σ3) . . . T(σn−1,σn) 1

For example, with n = 5 and σW = (−1,+1,+1,−1,−1), to obtain Z(G, σW)
we compute

vt
− T(−,+) T(+,+) T(+,−) T(−,−) 1

7

1

2

3

1

2

3

4

5

6

Figure 3: Left: the graph G for k = 3 and n = 5. Right: the graphs Pk and
X ∪ Pk for k = 3.

Observe that we need not restrict ourselves to grids of type Pm × Pn when
applying this method. It will obviously work for other types of grid graphs such
as the triangular grid Pn / Pn and the strong product grid Pm ∗ Pn (the union
jack grid), see Figure 4.

Figure 4: P5 / P5 and P5 ∗ P5.

We end this section with a few notes on how to cut down still further on the
required amount of work. The sum of Equation (1) has 2n terms and this can
be reduced by roughly a factor four. Keeping one of the spins in σW fixed is
the first step, this reduces by a factor two. When n is odd we can gain another
factor 2 (approximately) by exploiting the symmetry of Pn. In this case we keep
the spin of the middle vertex of Pn fixed. Unfortunately this symmetry doesn’t
exist in the case of triangular grids.

6 A special case

In the special case Pn×Pn there is an even better way to organise the computa-
tions. Let G be the lower triangular part of Pn×Pn, see Figure 5, with W being
the vertices on the diagonal. As before we apply Equation (1) and as in the
previous section each Z(G, σW) is computed with the transfer matrix method.
We split up G into subgraphs H1, H2, . . . , H2n−2 as in Figure 6, where each Hi

are separated by dashed lines, which also indicate how the Hi are joined. Going
from, say left to right, let Ai be the in-vertices and Bi the out-vertices of Hi.
We define the transfer matrices T(1),T(2), . . . ,T(2n−2) with entries

T(1)(ζ, ξ) =Z(H1, σA1=ζ, σB1=ξ),

T(i)(ζ, ξ) =Z(Hi, σAi=ζ, σBi=ξ) y
−µ(Ai), i = 2, . . . , 2n− 2

8

Figure 5: Lower triangular part of P5 × P5.

We still want to keep the spins σW fixed so we note that each Hi contains a

vertex of W and let T
(i)
σ be the submatrix of T(i) where that particular vertex

is fixed to σ. As in the previous section we then have

Z(G, σW) = T(1)
σ1

T(2)
σ2

T(3)
σ2
· · ·T(2n−4)

σn−1
T(2n−3)
σn−1

T(2n−2)
σn

and then remains to plug this in to Equation (1). For example, with n = 5 and
σW = (−1,+1,+1,−1,−1), to obtain Z(G, σW) we compute

T
(1)
− T

(2)
+ T

(3)
+ T

(4)
+ T

(5)
+ T

(6)
− T

(7)
− T

(8)
−

Observe by the way that T
(1)
σ is a 1× 2 matrix and T

(2n−2)
σ is a 2 × 1 matrix,

so the result is a 1× 1 matrix.

2

1

2

3 3

4 4

5

Figure 6: The building blocks.

7 Implementation

The methods described were implemented in Fortran 90 and the source code
can be obtained by contacting the author. The programs were run on IBM ma-
chines located at the Center for Parallel Computers in Stockholm, and at the
High Performance Computing Center North in Ume̊a, Sweden, using a total of

9

more than three years of CPU-time. Since the nature of the problem is embar-
rassingly parallel (map each fixed spin-configuration σW to its own processor),
parallelisation is very simple using e.g. MPI.

The author has written a portable module for operations on multi-variate
polynomials with coefficients of various types, e.g. REALs and multi-precision
integers, see [Lun00a, Lun00b]. The polynomials are stored as linked lists of
monomials allowing the polynomials to grow dynamically in size. The resulting
files of data are easily read and manipulated using e.g. Mathematica. These
files can be downloaded from <http://www.math.umu.se>.

Since the transfer matrices never contain anything more complicated than
monomials with coefficient 1 there is no need to actually store them, it is more
practical to simply generate the (i, j):th position of the matrix with a special
function. This was done using the bit-operations available in Fortran 90.

A drawback with doing the computations with fully stored polynomials is of
course the memory requirements. The vast majority of the processors available
at the time were equipped with a 256 MByte RAM memory, which was quite
sufficient. After all, the major obstacle is time. For example, P16×P16 required
about two years (sic) of CPU-time.

8 The phase transition

Let us now take a look at the coefficients of the polynomials. We delete first the
empty energies and magnetisations and normalise the coefficients so that at each
energy the maximum coefficient is 1. The result is shown in the density plots in
Figures 7, where the magnetisation is on the x-axis and the energy on the y-axis.
We see here a phenomenon which is found in almost all graphs, namely that
above a certain critical energy the distribution of the magnetisations undergoes
a phase transition; we go from a unimodal distribution to a bimodal distribution,
see Figures 8 to 11. The natural question is then, at what critical energy does
this take place and what is the asymptotic behaviour for a certain family of
graphs? An early study of this phenomenon can be found in [HR97]. Though
we will not be able to give an analytic solution to these questions here, we can
at least indicate some tendencies. To begin with, we need a definition of critical
energy. Though this definition may not be suitable for all graphs, it goes well
with the grid graphs.

Definition 8.1. The critical energy νc of a graph G is the maximum energy
where the distribution of magnetisations is unimodal.

In Table 1 we see where this phase transition occurs for the various grid
graphs.

At this point we shall try to guess an asymptotic formula for the value of
the relative energy νc/m for our three families of grids. From classical Ising
model theory, see Lavis and Bell [LB99] volume 1 chapter 8.3, we learn that
ν/m at the critical temperature is 1/

√
2 for an infinite square grid. For an

infinite triangular grid this value is 2/3. We will simply assume that our critical
energies νc/m coincide with these values in the limit. For the strong product
grid no such value is known (or at least it is a well hidden fact) but we will
attempt to guess its corresponding value.

10

n νc(Pn × Pn) νc(Pn / Pn) νc(Pn ∗ Pn)

2 0 -1 -2
3 4 -2 0
4 2 3 2
5 10 14 8
6 20 23 18
7 32 38 32
8 46 59 52
9 62 78 74
10 82 107 102
11 104 134 132
12 130 167 168
13 156 206 210
14 186
15 220
16 256

Table 1: Critical energy for the computed grids.

Figure 7: Density plot of polynomial for P12 × P12, P12 / P12 and P12 ∗ P12.

First the square grids, for these we have m = 2n2 − 2n. The plot to the left
of Figure 12 shows 1/

√
2− νc/m vs n−3/4 (this seems to be a good exponent if

we keep to the simple rational ones). The points fit very well to a straight line
for n ≥ 7. The fitted line has equation

√
2x; a nice formula.

Then the triangular grids for which we have m = 3n2 − 4n + 1. We stick
to the exponent 3/4 since it seems to be optimal. The middle plot of Figure
12 shows 2/3− νc/m vs n−3/4. The fitted line has equation 3x/2, another nice
formula.

Finally the strong product grids for which m = 4n2 − 6n + 2. Here we are
in the dark when it comes to the asymptotic critical energy. If we however stick
to the exponent 3/4, which seems like a good choice, it is not very far-fetched
to suggest that νc/m ≈ 0.6 in the limit (though we could choose from a whole
interval between, say, 0.57 and 0.62). Actually we will take a bold approach and
use 2−

√
2 ≈ 0.5858 as limit. The line is then chosen as 1/(2−

√
2)x ≈ 1.7071x

giving a remarkably good fit, see the right plot in Figure 12, while preserving
the patterns of the two previous expressions. Alternatively, we could choose
3/5 as limit value and 5/3 as the coefficient for the straight line and still have

11

Figure 8: P16 × P16 at energy 236 Figure 9: P16 × P16 at energy 256

Figure 10: P16 × P16 at energy 276 Figure 11: P16 × P16 at energy 296

a nicely fitted line, though not quite as good.
To conclude then, we suggest the following formulae describing the asymp-

totic behaviour of νc/m:

1√
2
− νc
m
∼
√

2

n3/4
for Pn × Pn,

2

3
− νc
m
∼ 3

2n3/4
for Pn / Pn,

2−
√

2− νc
m
∼ 1

(2−
√

2)n3/4
for Pn ∗ Pn

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1

Figure 12: Difference between limit and νc/m vs n−3/4 for Pn × Pn, Pn / Pn
and Pn ∗ Pn

9 The largest coefficient

The polynomials Z(G; x, y) are much too large to fit in this article, for P16×P16

the polynomial has 61296 terms with a largest coefficient on 75 decimal digits.
We turn our eyes to exactly these coefficients for the respective grids and state
some conjectures about their location. Let Z(G; x, y) =

∑
i,j ai,j x

i yj and

12

Z(G; x, 1) =
∑

i ai x
i. In Table 2 to 4 we show max ai,j together with their

normalised logarithm in base 2. Note by the way that this is asymptotically 1.
We claim the following,

Conjecture 9.1. For Pn × Pn we have

max ai,j =

{
a−2,1 if n is odd
a−2,0 if n is even

for n ≥ 5

max ai = a0, for n ≥ 2

Conjecture 9.2. For Pn / Pn we have

max ai,j =

{
a−6,1 if n is odd
a−5,0 if n is even

for n ≥ 6

max ai =

{
a−2 if n is odd
a−1 if n is even

for n ≥ 5

Conjecture 9.3. For Pn ∗ Pn we have

max ai,j =

{
a−6,1 if n is odd
a−6,0 if n is even

for n ≥ 5

max ai = a−2, for n ≥ 3

To conclude, the maximum coefficient ai,j does not seem to be located at
the energy having the biggest mass.

n max ai,j
log max ai,j

n2

2 4 0.5
3 36 0.574436
4 2320 0.698744
5 695640 0.776319
6 973834528 0.829419
7 5673741811548 0.864642
8 141460632490772352 0.890206
9 14390759809325529848172 0.908735
10 6092514598324034508016214752 0.922991
11 10441515477625473407244455893410332 0.933949
12 73471005512190717430558400705352992061504 0.942738
13 2084491309826665170718150803756677204192216177596 0.949777
14 240973360217665607148486961057273755484504818452029959168 0.955596
15 112068521122941253996693659377049559938496510114714776753105770300 0.960399
16 211370163233793783577778862882300725803431088183715892914734867614335413216 0.964463

Table 2: Maximum coefficients for Pn × Pn.

n max ai,j
log max ai,j

n2

2 4 0.5
3 33 0.560488
4 2196 0.693791
5 615548 0.76926
6 854319200 0.824172
7 4845797273700 0.859997
8 121168825318878960 0.886716
9 12157679590703933310814 0.905732
10 5148986176319146744322186888 0.920563
11 8754829383356913957235691401458166 0.931849
12 61595916040939200402198928817116723765264 0.940972
13 1738780812314585269331291365085312353501653534080 0.948229

Table 3: Maximum coefficients for Pn / Pn.

13

n max ai,j
log max ai,j

n2

2 6 0.646241
3 38 0.583103
4 2320 0.698744
5 585380 0.766361
6 781838700 0.820619
7 4419808185964 0.857288
8 108087171073133240 0.88414
9 10848200715015058231932 0.903702
10 4547619894022801720048409280 0.918772
11 7735977455878602754688545850442768 0.930374
12 54117409784305161003960632103241903052286 0.939675
13 1528323994171524803264414984644676340178019401444 0.947127

Table 4: Maximum coefficients for Pn ∗ Pn.

References

[B+86] D. Babic et al. The matching polynomial of a polygraph. Discrete
Appl. Math., 15:11–24, 1986.

[Bak94] G.A. Baker. The Markov property method applied to Ising model
calculations. J. Stat. Phys., 77:955–976, 1994.

[Bea96] P. Beale. Exact distribution of energies in the two-dimensional Ising
model. Phys. Rev., 76:78–81, 1996.

[Big77] N. Biggs. Interaction models. Cambridge University Press, 1977.

[Cip87] B.A. Cipra. An introduction to the Ising model. Amer. Math.
Monthly, 94:937–959, 1987.

[HR97] R. Häggkvist and A. Rosengren. Some conjectures concerning the
coefficients in the Ising polynomial. Manuscript, 1997.

[HR+99] R. Häggkvist, A. Rosengren, et al. Microcanonical Monte Carlo stud-
ies of the coefficients in the Ising polynomial. Manuscript, 1999.

[Kas67] P.W. Kasteleyn. Graph theory and crystal physics. In Graph theory
and theoretical physics. Academic press, 1967.

[LB99] D.A. Lavis and G.M. Bell. Statistical mechanics of lattice systems.
Springer, 1999.

[Lun99] P.H. Lundow. Compression of transfer matrices. Technical Report 5,
Department of mathematics, Ume̊a university, 1999.

[Lun00a] P.H. Lundow. Multiprecision integers: a Fortran 90 module. Manu-
script, 2000.

[Lun00b] P.H. Lundow. Polynomials: a Fortran 90 module. Manuscript, 2000.

14

