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ABSTRACT

We propose to incorporate a weighted difference of anisotropic
and isotropic total variation (TV) norms into a relaxed formu-
lation of the two phase Mumford-Shah (MS) model for image
segmentation. We show results exceeding those obtained by
the MS model when using the standard TV norm to regular-
ize partition boundaries. In particular, examples illustrating
the qualitative differences between the proposed model and
the standard MS one are shown. A fast numerical method
is introduced to minimize the proposed model utilizing the
difference-of-convex algorithm (DCA) and the primal dual
hybrid gradient (PDHG) method.

Index Terms— Total-Variation, Segmentation, Mumford-
Shah Functional, Chan-Vese Model, Primal-Dual

1 Introduction
The celebrated Mumford and Shah (MS) model [1] in 2-phase
form known as the Chan-Vese (CV) model [2] is one of the
most studied and successful models in image processing. The
CV model has the following formulation:

min
Σ,c1,c2

Per(Σ) + λ

∫
Σ

(c1 − f)2dx+

∫
Σc

(c2 − f)2dx. (1)

Here, f is a given gray scale image, Σ denotes a region, and
Σc the outside of that region. The key idea is to minimize
the above functional (1) by matching two regions (constants)
in the L2 sense while also minimizing the perimeter of the
boundaries between them. The values are designated by c1
and c2 and are obtained on the regions Σ and Σc respectively.
The two regions and values are unknowns and need to be
solved for during the minimization. In general, the CV model
is difficult to implement in practice. Chan and Vese utilized
a level set method formulation and showed successful results.
Conventionally, level set methods can be slow to converge due
to the need for periodic reinitialization of the level set func-
tion to a signed distance one. More recently, Chan et al. [3]
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and Bresson et al. [4] proposed convex relaxed formulations
of the CV model. The general formulation follows as:

min
0≤u≤1

∫
Ω

g|∇u| dx+ λ

∫
Ω

{
(c1 − f)2 − (c2 − f)2

}
u dx

(2)

where Ω is the image domain and g(x) is an edge detector
or set to value 1. The segmented region Σ is realized by
taking the upper level set of u in the following way: Σ =
{x : u(x) ≥ 1/2}. The main idea was to relax the non-convex
constraint of u being binary to a convex one. Once the min-
imization problem (2) is solved, one simply thresholds u to
obtain the segmented region. The authors show accurate and
successful segmentations along with fast numerical results.

The L0 norm on the gradient J(u) = ‖∇u‖0 is construed
as the length of partition boundaries in the context of the clas-
sical Potts model [5] or two-phase Mumford-Shah segmen-
taion [1]. To circumvent the NP-hard L0 norm, the convex re-
laxed approach is to use the L1 norm on∇u, see [6]. L1 norm
on the gradient is known as the total-variation (TV) norm [7].
To approximate L0, a series of works show that L1 − L2 is
better than L0 (greedy approaches), L1, and Lp in compres-
sive sensing [8]. When applying L1−L2 on image gradients,
it enforces gradients to be either horizontal or vertical. To
account for other gradient directions, a weighted difference,
i.e. L1 − αL2 is considered in the recent work by Lou et
al. [9], where α is chosen according to gradient distributions.
They show accurate results and provide a convergence proof
using a difference-of-convex algorithm (DCA) [10, 11, 12].
L1 − 0.5L2 is also observed to be numerically more stable
compared to L1 − L2. We also note that the level curves for
the convex addition L1 + αL2 closely resemble those of L1

while those for L1 − αL2 are closer to L0.

This work is an extension of the work by Lou et al. [9]
to the image segmentation problem. To that end, we propose
incorporating a weighted difference of anisotropic-isotropic
TV into the two-phase relaxed CV model. For the remainder
of the paper, we refer to L1−αL2 as the weighted difference
of anisotropic and isotropic TV:

Jani−αJiso = ‖ux‖1 + ‖uy‖1−α‖
√
|ux|2 + |uy|2‖1 (3)



where it is understood that these norms are operating on the
gradients of the image. Here, α ∈ [0, 1] and is chosen based
on gradient distributions.
Thus, the key contributions of this paper are:
• Introduce a variant of the relaxed CV model that geo-

metrically better preserves boundaries of regions over
the standard CV model.

• Presentation of new numerical schemes utilizing a
DCA algorithm with primal dual hybrid gradient
(PDHG) methods to solve sub-problems efficiently.
DCA has provable convergence properties in certain
settings.

• The method can be executed with complete automation.
Related work includes the preceding CV model [2] and

convex relaxed variants [3, 4]. A recent hybrid ADMM and
dynamic programming to solve the Potts model is introduced
by Storath et al. in [13] while convex relaxed approaches are
found in Pock et al. [14] and Chambolle et al. [15].

The paper is organized as follows, in section 2 we intro-
duce the proposed model along with the methodology to min-
imize it. Numerical results are shown in section 3. Lastly,
conclusions and future work can be found in section 4.

2 Relaxed Anisotropic-Isotropic
Chan-Vese Model (AICV)

We propose a variant of the relaxed CV model proposed by
Chan et al. [3] and the CVG model proposed by Bresson
et al. [4]. Given an initial image f defined on domain Ω
containing a region to be segmented that we denote by Σ, the
AICV model seeks to minimize the following:

min
0≤u≤1

∫
Ω

|ux(x)|+ |uy(x)| − α|∇u(x)| dx

+ λ

∫
Ω

{
(c1 − f(x))2 − (c2 − f(x))2

}︸ ︷︷ ︸
r1(x,c1,c2)

u(x) dx

= min
0≤u≤1

F (u, c1, c2, λ). (4)

The anisotropic-isotropic (AI) term
∫

Ω
|ux| + |uy| − α|∇u|

denotes a regularization of the region Σ and enforces regu-
larity on the boundary that separates the regions where the
two values c1 and c2 are taken. We outline the minimization
method and subsequent algorithm below.

Assuming that either c1, c2 and λ are known or c1 and
c2 will be solved for during the minimization, we refer to the
objective functional F (u, c1, c2, λ) as F (u) and r1(x, c1, c2)
as r1(x). Then the above AICV model (4) can be written
as a minimization of a difference-of-convex (DC) functionals
F (u) = G(u)−H(u) in the following manner:{

G(u) = ‖ux‖1 + ‖uy‖1 + c‖u‖22 + λ 〈r1, u〉
H(u) = α‖∇u‖2,1 + c‖u‖22

(5)

where c is a small parameter in front of ‖u‖22 enforcing strong
convexity on G and H in the difference. We linearize the

strongly convex term in H(u) and obtain the following itera-
tive scheme:
un+1 = arg min

0≤u≤1
‖ux‖1 + ‖uy‖1 + c‖u‖22 + λ〈r1, u〉

− α‖∇u‖2,1 − 2c〈u, un〉.
(6)

The aforementioned minimization associated to the iterative
scheme in model (6) has the following equivalent uncon-
strained split formulation:
un+1 = arg min

u,v
‖ux‖1 + ‖uy‖1 + c‖u‖22 + λ〈r1, v〉

+ 1
2θ‖u− v‖

2
2 + β〈ν(v), 1〉 − α‖∇u‖2,1 − 2c〈u, un〉. (7)

Here ν(ξ) = max{0, 2|ξ − 1
2 | − 1} is an exact penalty given

that β is chosen large enough, see [4]. Each DCA subproblem
in (7) can be solved by solving the two subproblems:

1. v being fixed, we search for u as a solution of:

min
u
‖ux‖1 + ‖uy‖1 − α‖∇u‖2,1 +

1

2θ
‖u− v‖22

+ c‖u‖22 − 2c〈u, un〉, (8)
2. u being fixed, we search for v as a solution of:

min
v

1

2θ
‖u− v‖22 + λ〈r1, v〉 + β

∫
Ω

ν(v)dx. (9)

The solution to (9) is given by a simple shrinkage scheme:

v = min
{

max
{
u(x)− θλr1(x, c1, c2), 0

}
, 1
}
. (10)

The solution to (8) is obtained by a primal-dual hybrid gradi-
ent (PDHG) method by Zhu and Chan [16] which we focus
on now. More on the PDHG method and variants thereof can
be found in [17].

The minimization problem in (8) reduces to the following
min-max problem:

min
u

max
~p∈X̃, ~q∈X

〈u, −div ~p + α div ~q 〉+
1

2θ
‖u− v‖22

+ c‖u‖22 − 2c 〈u, un〉
= min

u
max

~p∈X̃, ~q∈X
Φ(u, ~p, ~q),

(11)

where X̃ = {~p = 〈p1, p2〉 : |p1| ≤ 1 & |p2| ≤ 1} and X =
{~q = 〈q1, q2〉 : |~q | ≤ 1}. We will optimize (11) in the fol-
lowing two step manner below.

Step 1. Dual Step
Part A. Fix u = uk and ~q = ~q k and apply one step
of projected gradient ascent to max problem:

max
~p∈X̃

Φ(uk, ~p , ~q k). (12)

The projected gradient ascent for the maximization
(12) is simply:

~p k+1 = PX̃(~p k + τk∇uk) (13)
where τk is a time step and the projection is obtained
by the following operation:

PX̃(~p ) =

〈
p1

max{|p1|, 1}
,

p2

max{|p2|, 1}

〉
. (14)

Part B. Fix u = uk and ~p = ~p k+1 and apply one



step of projected gradient ascent to max problem:
max
~q∈X

Φ(uk, ~p k+1, ~q ). (15)

The projected gradient ascent for the maximization
(15) is simply:

~q k+1 = PX(~q k + τk(−α∇uk)) (16)
where τk is a time step and the projection is obtained
by the following operation:

PX(~q ) =
~q

max{‖~q ‖, 1}
. (17)

Step 2. Primal Step
Fix ~p = ~p k+1 and ~q = ~q k+1 and apply one step of gradi-
ent descent method to the minimization problem:

min
u

Φ(u, ~p k+1, ~q k+1). (18)

The gradient descent associated to the minimization (18)
is given by:

uk+1 = (1− θk − 2c θkθ)u
k

+ θk

(
v − θ(−div ~p k+1 + α div ~q k+1 − 2cun)

) (19)

where θk is a time step. The PDHG algorithm for min-
imizing the unconstrained AICV (7) model is shown in
Algorithm 1. We note that when choosing time steps τk
and θk, one can utilize dynamic time stepping to acceler-
ate convergence. Guidelines are given in [17].

Algorithm 1 DCA to minimize unconstrained AICV (7)

Initialization: Pick u0, MaxDCA, MaxPDHG, step size τk
and θk, and set u = 0.
for 1 to MaxDCA do

Set v0 = ~p 0 = ~q 0 = 0 and k ← 0
for 1 to MaxPDHG do
vk+1 = min

{
max

{
uk − θλr1(x, c1, c2), 0

}
, 1
}

~p k+1 = PX̃(~p k + τk∇uk)

~q k+1 = PX(~q k + τk(−α∇uk))

uk+1 = (1− θk − 2c θkθ)u
k

+ θk(vk+1 − θ(−div ~p k+1 + α div ~q k+1 − 2cu))

end for
u = uk+1

end for

3 Experiments
In this first example we segment a synthetic image to show
some properties associated to the proposed model. Observed
in Fig.1 (a) is a clean square image while a medium noisy
version with initial contour is in (b); Gaussian noise σ = 0.5.
In Fig. 1 (c) the segmentation from the standard CV model is
observed where straight boundaries are captured but corners
are rounded off. What is well known about the TV norm in
regard to denoising also manifests itself in the segmentation

(a) clean image f (b) noisy f & initial contour

(c) TV (σ = 0.5) (d) L1, L1 − αL2 (σ = 0.5)

(e) TV (σ = 0.5) (f) L1, L1 − αL2 (σ = 0.5)

(g) TV (σ = 0.65) (h) L1 − 0.5L2 (σ = 0.65)

Fig. 1: Square Segmentation Example.

problem, see [18]. The segmentation results for the L1 and
L1 − αL2 (α = 1, 0.5) CV models are seen in Fig. 1 (d)
where perfect segmentations are observed. Here, the error
‖fclean−{u > 1/2} ‖2 = 0 while that for the TV norm model
is larger than zero. In Fig 1 (e) and (f) zoom-ins of the top
left corner of (c) and (d) respectively where TV in (c) cannot
capture the corner. No amount of tuning λ in this case will
yield a perfect segmentation. In Fig 1 (g) and (h) we segment
the same image under heavier noise, σ = 0.65. In (g) the TV
norm model prominently cuts off the corners while in (h) the
proposed model captures them with much higher accuracy.

We now look at a real example and segment a video frame
obtained from a sequence under atmospheric turbulence. In
Fig. 2 (a) the frame is observed and in (b) a zoomed and pro-
cessed version from the method in [19] is seen with initial



(a) clean image f (b) noisy f & initial contour

(c) TV (d) L1

(e) L1 − L2 (f) L1 − 0.5L2

Fig. 2: Sign Segmentation Example.

contour. In (c), (d), (e), and (f) are the segmentation results
obtained from the CV model with TV norm, L1, L1−L2, and
L1−0.5L2 norms respectively. All methods capture the large
bars, some numbers, and smaller squares. Upon closer in-
spection, differences are observed like in Fig. 3 (a)–(d) where
zoom-ins of the segmentations from the CV model with TV
norm, L1, L1 − L2, and L1 − 0.5L2 norms respectively are
seen. For the top 3 squares in (a), the TV norm does not cap-
ture the geometry completely. The L1−L2 in (c) does a better
job than TV while L1 in (b) and L1−0.5L2 in (d) capture the
squares most accurately. The largest contour in (b) from the
L1 norm appears blocky with the lower contour cutting off
horizontally versus the smoother version found in (d) from
the L1 − 0.5L2 norm. In Fig. 3 (e) and (f) are zoom-ins of
the results from TV and L1 − 0.5L2 on one large vertical bar
where TV cuts off the corner and L1 − 0.5L2 has straighter
geometry keeping the left corner. We deduce that with TV,
some geometry is lost but it affords smooth boundaries while
L1 prefers blocky geometry but doesn’t favor smooth tran-
sitions. L1 − L2 mimics TV with some blocky geometry
preservation. L1 − 0.5L2 has attributes of L1 in that it can
preserve blocky geometry yet simultaneously keep smoother
transitions; a best of both worlds if you will.

In all experiments, λ was tuned to keep as much geometry

(a) TV (b) L1

(c) L1 − L2 (d) L1 − 0.5L2

(e) TV (f) L1 − 0.5L2

Fig. 3: Sign Segmentation Example Zoom-Ins.

and features in the segmentation. 5000 iterations were used
for TV and L1, while MaxDCA = 5 and maxPDHG = 1000
for L1 − L2 and L1 − 0.5L2 with fixed PDHG time-steps
τk, θk = 1/8. We fixed the splitting parameter θ = 0.1 in
all experiments. Constants c1 and c2 were fixed with c1 = 1
and c2 = 0 for the square example while they were c1 =
8.5× 10−2 and c2 = 7.15× 10−1 for the sign experiment.

4 Conclusions and Future Work
We proposed a relaxed version of the CV model utilizing
a difference of convex anisotropic and isotropic TV norms.
Moreover, we showed compelling examples illustrating qual-
itative differences between the proposed model and the stan-
dard CV one. A fast algorithm by way of DCA and PDHG
was also introduced for its minimization. We note that one of
the inner minimizations (8) is non-convex but seems to con-
verge to a minimum consistently in practice. Future work
includes a contrast between a weighted difference of convex
L1−αL2 TV norms and a weighted sum αL1 +(1−α)L2 of
TV norms i.e. α

∫
Ω

(|ux|+|uy|)dx+(1−α)
∫

Ω
|∇u|dx. Qual-

itatively, the results are comparable but the level curves for the
difference more closely resemble those of the L0 norm. The
advantage of the sum is convexity and this detailed compari-
son will be found elsewhere. We also plan on proving conver-



gence using the DCA framework for outer iterations on the
difference of convex TV norms model. For solving the sub-
problems, we will be using Bregman [20, 21] inner iterations
where the non-convex term is linearized yielding a convex
subproblem. A threshold result like in [3] along with exten-
sions of the proposed model to the piecewise smooth MS and
multiphase Potts models are also in the works.
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