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ABSTRACT 

In this paper we present a two-stage best-first bottom-up 
word-lattice parser which we use as a language model for 
speech recognition. The parser works by using a “Figure 
of Merit’’ that selects lattice paths while simultaneously se- 
lecting syntactic category edges for parsing. Additionally, 
we introduce a modified version of the Inside-Outside algo- 
rithm used as a pruning stage between syntactic context-free 
parsing and lexicalized context-dependent parsing. We re- 
port our results in terms of Word Error Rate on the HUF-1 
word-lattices and compare these results to other syntactic 
language modeling techniques. 

1. INTRODUCTION 

This paper describes a best-first word-lattice chart parser 
and shows how it can be used for language modeling. Best- 
first parsing requires an estimate be used to select “good” 
syntactic edges for parsing. This estimate is known as the 
“Figure of Merit” (FOM). The FOM presented in this paper 
combines word-lattice and parse-chad information allowing 
the parser to simultaneously perform both path search in 
the word-lattice and parse search in the set of all possible 
parses. The parser is divided into two stages. First, we use a 
PCFG model to select a set of candidate edges which are then 
passed to the second stage that selects the best parse using a 
more sophisticated language model. The second stage model 
exploits lexical and other information in the way that Char- 
niak’s [l] and Collins’ [2] parsers do. Dividing the parser 
into two stages is necessary for efficiency reasons; there are 
simply too many possible parses for the sophisticated model 
to examine. 

In previous work on syntactic language models, the most 
successful techniques are based on n-best list rescoring[3, 
4.51. These systems extract a set of strings from the word- 
lattice using a trigram model and then rescore the strings us- 
ing the syntactic language model. By parsing directly from 

This material is based upon work supported by the National Science 
Foundation under IGERT Award No. 9870676. 

0-7803-7980-2/03/$20.00 Q 2003 IEEE 

Mark Johnson 

Brown University 
Department of Cognitive and Linguistic Sciences 

and Department of Computer Science 
MarkJohnsonQbrown.edu 

a word-lattice, we consolidate the work expended to process 
identical substrings. In other words, we parse all strings rep- 
resented by the word-lattice simultaneously. Any common 
substrings are automatically processed as they occur in the 
lattice as a single sub-path. 

The most closely related work to our word-lattice chart 
parsing can be found in [6]. As in our work, they derive 
a “Figure of Merit” that is used to direct a best-first chart- 
parser. Unlike the workdiscussed in this paper their parser is 
based on a pseudo-probabilistic unification-based grammar. 
Chappalier, et. al. [7] describe a word-lattice chart parsing 
scheme which is similar to the one we use here although they 
use a modified CKY parser rather than a best-first parsing 
solution. We are unaware of any previous results for word- 
lattice chart-parsing techniques used for speech-recognition 
language modeling. 

Our work is also very closely related to methods for 
best-first PCFG parsing of strings devised by Caraballo and 
Charniak[B] and Goldwater et a1.[9]; indeed, this paper can 
be seen largely as an attempt to extend the techniques these 
authors developed for string parsing to word-lattices. Cara- 
ballo and Chamiak[8] presented the basic best-first bottom- 
up parsing architecture and introduced the idea of approxi- 
mating the outside probability of an edge by a bitag model 
estimate that we use here. Goldwater et a1.[9] refined this 
model by using a binarized “Markov” grammar rather the 
original PCFG, and by using the Viterbi inside score for the 
most likely subtree rooted in that edge in place of the tradi- 
tional inside score (which sums the probability of all possible 
subtrees). 

The model presented here differs from the one presented 
by Goldwater et a1.[9] in two main respects. First, because 
we are parsing from a word-lattice rather than a string, we 
define the outside score approximation in terms of the paths 
from the lattice start and end vertices to the beginning and 
ending vertices of the edge respectively. And second, in cal- 
culating all edge scores, including the outside score approx- 
imation, we always use the Viterbi score, which considers 
only the most likely derivation rather than summing over all 
derivations. This speeds up calculation and is robust to the 
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kinds of “weight movement” changes that occur when the 
speech lattice is preprocessed by standard weighted FSM 
tools. 

The rest of the paper is structured as follows. In the fol- 
lowing section, we present an overview of our word-lattice 
parser. Next, Section 3 describes in detail the input to the 
first-stage parser, the word-lattices. Section 4 describes the 
algorithms that implement the first-stage parser. In Section 
5 we describe the HUB-I experiments and present the re- 
sults for our lattice-parser combined with Charniak’s parser. 
Finally, Section 6 summarizes and concludes the paper. 

2. WORD-LATTICE PARSER LANGUAGE MODEL 

Step 3: A set of “local trees” in the form required for the 
second stage of the language modeVparser is asrem- 
bled from the filtered category edges by a process very 
much like parsing. A local tree consists of a a parent 
plus its immediate children together with a pair ofbe- 
ginning and ending vertices for each node. 

The second stage takes the output from Step 3, and ap- 
plies alexicalized context dependent syntactic parsing model. 
Each local tree is assigned a new probability by this model 
from which the standard Inside and Outside probabilities are 
computed. Once this is done, the second stage selects the 
most probable complete parse. Charniak‘s parser models 
long-distance lexical dependencies; for example, the prob- 
ability of a word given the head-word of the grand-parent 
phrase (a phrase which dominates a phrase dominating the 
word). Due to the complexity of these models (e.g. fourth- 
order Markov Models), the number of local trees that can be 
processed is limited (by both size and time). 

Fig. 1. Overview of the word-lattice parser 

Figure 1 depicts the general flow of the word-lattice 
parser we present in this paper. Prior to the first parsing 
 stage^  the^ word-lattices are converted’into weighted Finite 
State Machines. This step is done to reduce the size of the 
lattice and therefore reduce the amount of duplicate effort 
the parser expends on identical substrings. We provide a 
description of this step in the next section. 

This iirst-stage parser itself consists of several steps, the 
output of previous serving as the input of the next. 

Step 1: A best-first, bottom-up PCFG chart parser identifies 
candidate category edges (i.e., a category label plus a 
beginning and ending vertex from the word-lattice). 
The bulk of this paper is concerned with this step. 

Step 2: The edges produced by the bottom-up parser are fil- 
tered by a modified version of the inside-outside algo- 
rithm that selects just those edges that are contained in 
some parse tree constructible tkom the edge set whose 
probability is greater than a threshold. This ensures 
that all of the filtered edges are “useful”. 

3. WORD LATTICES 

A word-lattice is a compact representation of a set of shing 
hypotheses. The word-lattices we consider in this paper have 
been extracted from speech-lattices where all recognizer- 
based time-frame information has been removed (following 
word s t d e n d  quantization). Specifically, we are using the 
NIST HUB-1(93) evaluation set which is encoded in the 
HTK Standard Lattice Format (SLF) 
(http://htk.eng.cam.ac.uk/docs/docs.shtml). 
For reasons of space efficiency, the SLF format assigns labels 
to nodes rather than the arcs to which they are associated. 
Each arc entering a node should carry the label that is on the 
node the arc enters. We describe the lattices as if the labels 
were on the arcs. A word-lattice L = (V, E )  is a labeled 
directed acyclic graph (DAG) where: 

V a set of nodes (or vertices) which represent the transitions 
between words. 

E a set of labeled, weighted edges which represent a word 
hypotheses. In the SLF format, each arc may con- 
tain multiple weights, each associated with a separate 
model. Two such weights are: 

acoustic score is the score assigned by the acoustic 
model. This is an estimate ofp(a;lwi), the con- 
ditionally probability of the acoustic observation 
(for the time-frame loosely associated with the 
current word) ai, given word ut; (from a closed 
vocabulary). Thesescores arecomputedthrough 
a series of HMMs that predict phonemes from 
acoustic measurements and then words from 
phonemes[ IO]. 
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language model score is the score assigned by a lan- 
guage model (most commonly a trigram): 
P ( W i I w i - l , W 4 , . . . ) .  

Eachpaththrough the word-latticecorrespondsto astring 
hypothesis. The probability assigned to a path by the acous- 
tic model is computed by multiplying the acoustic scores 
along the path (or in log-space, summing the scores followed 
by a conversion back to probability space). For example, 
the probability of the acoustic evidence, A, for the utterance 
given the lattice path W = ( W I ,  . . . , w,, . . . , wn) is defined 
as: 

p(AIW)= p ( 4 w i )  (1) 
W i E W  

In the current work, we are ignoring the trigram scores 
and instead using our parser as the language model. 

In order to reduce the size of a lattice while preserv- 
ing the scores, we inherit a well-known observation: the 
weighted lattices can be represented by weightedFinite State 
Machines (FSM). A weighted Finite State Acceptor associ- 
ated with a lattice accepts all strings that were encoded in 
the word-lattice and &signs each string the cumulative score 
associated with the path in the word-lattice containing that 
string. 

After transforming the lattice into FSMs we apply stan- 
dard techniques which reduce the size of the lattice. First, we 
determinize the weighted FSM, ensuring that there is only 
one path for any unique string. And second, weminimize the 
FSM, combining common sub-paths of the FSM. In order to 
perform these manipulations while preserving the scores as- 
sociated with strings, the weights associated with each FSM 
transition must be shifted. We use the AT&T FSM toolkit 
to perform these manipulations[ll]. More information on 
these tools is available at 
http://www.research.att.com/sw/tools/fsm 

By shifting the scores within the weighted FSM, we no 
longer have accurate scores assigned to each arc. A greedy 
searcb,through the FSM after weight shifting may produce 
a different result than the same search done on the original 
FSM. The parsing technique, in particular the "Figure of 
Merit", proposed in this paper is designed to be resilient to 
this weight shifting. 

Finally, we note that the weighted DAG (associated with 
the weighted FSM) is a prefect representation for the chart 
as used in chart parsing. This follows from the insights made 
in[6] and [7] .  

4. PARSING FROM SPEECH-LATTICES 

The parsing model we propose is similar to the string pars- 
ing models found in [S, 91. The FOM is an estimate of 
the probability that a category edge exists in the complete 

parse chart, where a category edge is defined as a start node, 
an end node, and a syntactic category which dominates the 
span. The probability of an edge is the product of the inside 
probability times the outside probability divided by the total 
probability assigned to the word-lattice by the parsing model 
(we can ignore the denominator when comparing parses for 
the same word-lattice). During bottom-up parsing, we com- 
pute an approximation of the inside probability but are lack- 
ing the structure needed to compute the outside probability. 
The FOM we define here is the product of the approximated 
inside probability and an estimate of the outside probability. 

Caraballo and Charniak suggest using a hitag model to 
approximate the outside probability[8], where the tags are 
the part-of-speech tags. We also make use of the bitag prob- 
ability but must consider the many partial strings preceding 
and succeeding a particular edge. We describe these modi- 
fications later in this section. 

In each iteration of the chart-parsing algorithm, we re- 
trieve acategory edge from the agenda. Best-first chartpars- 
ing replaces the FIFO queue agenda with a priority queue. 
The priority of an edge is simply the FOM of the edge. 

4.1. Binarization and  Markovization 

The chart-parsing algorithm is typically defined in terms of 
' active and passive edges. By requiring the grammar to be bi- 

nary (each production expands to at most two constituents), 
we need only work with passive edges, simplifying the algo- 
rithm. In order to create a PCFG based on a binary grammar, 
we transform trees in the training set in the following man- 
ner. For any wee with greater than two children: A-B C 
D becomes A-B-C D, where B-C is a new category and 
a new subtree B-C-B C is inserted in the tree. The bi- 

NP NP 

me PY 

Fig. 2. Left binarization 

narization shown in Fig. 2 is known as right-factoring, or 
left-binarization. This results in a left-branching tree. Simi- 
larly, we could left-factor the tree. Note that a PCFG trained 
on the binarized trees assigns the same probability mass to 
original tree as the binaized tree. 

Another technique that was used in 191 is Markovization. 
We will describe Markovization as another tree transforma- 
tion, but it should be clear that Markovization, unlike bina- 
rization, does alter the probability model. Markovization is 
a form of smoothing in that the Markov grammar assigns 
probability to strings that the old grammar did not. The 
Markov grammar is also smaller than the original. 

To Markovize a tree, we first hinarize the tree. For each 
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binarized category that is made up of more than two sub- 
categories (e.g. the category '"-VP-PP'), we retain only a 
subset of the categories. In this work we chose the most ex- 
treme variety of Markovization and removed all internal cat- 
egories. .This means that a category A-B-C-D-E becomes 
A-E in the Markovized trees. Alternatively, we could substi- 
tute the internal nodes with some more meaningful syntactic 
information, such as the category of the head constituent. 

4.2. Viterbi Approximation 

In order to compute the probability of an edge, we compute 
the inside and outside probabilities for that edge. The tradi- 
tional inside (and outside) probabilities effectively sum over 
the probability assigned to all possible tree structures that 
include the categoIy edge. An alternative that was used in 
[9], is to compute the Viterbi probability of an edge. The 
Viterbi probability of an edge is the max probability of any 
single tree in which that edge occurs. This greatly reduces 
the complexity of the parsing algorithm without a noticeable 
loss in accuracy[91. 

In the remainder of the paper, we choose to extend the 
use of the Viterbi approximation. The primary motivation, 
described immediately above, is to simplify and speed-up 
the parsing algorithm. When computing the estimate of the 
outside probability, we also use the Viterbi estimate in an 
attempt to be compatible with theviterbi inside probabilities. 

4.3. Computing the FOM 

We now describe the "Figure of Merit" used by our parser 
which directs the search through the word-lattice and parses 
simultaneously. The recursion used to compute Kterbi in- 
side probability is: 

T ( N ' ,  ) - maxp'(Nik)p ' (N&)p(N'  --* N'N') (2) 

where N' is the ith category in the grammar, N$ is an N" 
category edge spanning from node j to node 1 ,  and 
p(N' 3 N P N s )  is the PCFG probability of the production. 
Inthecase ofpreterminal edges. theviterhi inside probability 
is defined as: 

I '  - r , s , k  

p'(N;,[)  = maxp(N' --* wj, [ )s ( j ,  1 )  (3) 
Wl,' 

where wj,[ is a the word label on an arc between node j and 
node 1,  and s ( j ,  1 )  is the scaled lattice score associated with 
that arc, s ( j ,  1 )  = exp (a  In(a(j, l ) ) ) ,  where a scales the 
raw acoustic score, a( j ,  l ) ,  to account for incorrect indepen- 
dence assumptions in the acoustic model. The probability 
p(N' + U+,[) isestimatedby arelativefrequencyestimator. 
It is necessary to smooth this disaibution due to unknown 
words (words that were not seen in the training data). We 

use Laplace smoothing where the number of unknown vo- 
cabulary. items is determined from the vocabulary used for 
the speech-recognition task (a closed vocabulary). 

In order to compute the Viterbi outside probabili?f we 
follow Caraballo and Charniak[S] in using a combination of 
a bitag model and a tag-category boundary model. We define 
the recursion used to compute the Viterbi outside estimate 
as: 

where Ti is the ith part-of-speech tag, and Ti,b is a part-of- 
speech arc extending from node a to node b. The functions 
f*(T&) and b*(TCm) are the HMM Viterbi forward and 
backward bitag probabilities (described below). The bound- 
ary probabilities p(NilTd) and p(2''lN') are estimated us- 
ing relative frequency estimators. 

The bitag model for the lattice is created by adding new 
part-of-speech arcs to the graph. For each word arc we cre- 
ate part-of-speech arcs for each par-of-speech to which the 
word belongs. Since there may be multiple word arcs for 
any pair of nodes, we make sure not to create duplicate part- 
of-speech arcs. In this new graph (an acoustichitag HI\IM), 
we compute the Viterbi forward and Viterbi backward values 
as follows: 

(5)  

The f' and b' probabilities represent the bitagprobability of 
the path that maximizes both the bitag model and the acoustic 
model from the word-lattice. 

is de- 
fined as the product of the Viterbi outside probability and 
the Wterbi inside probability. 

Finally, the "Figure of Merit" for an edge Ni 
I !k.  

As in [9] we add a correction term, 77 to correct for the differ- 
ence between the PCFG model and the bitag model. C(j ,  k) 
is the number of words on the path associated with the max 
inside probability for edge 

Given the FOM, the parser works in the normal manner 
of best-first parsing. Edges with a high FOM are added to 
the chart. Then, neighboring edges are combined with the 
new edges; the resulting new edges are scored (an FOM is 
computed for them) and inserted into the agenda. Parsing 
continues until a root edge (an edge labeled with the root 
category spanning the entire lattice) is popped off the agenda. 
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4.4. Connecting to the second-stage parser 

In the first-stage PCFG parsing, our goal is to generate a set 
of candidate edges which we then pass on to a more sophis- 
ticated parser. In this paper we use a modified version of the 
Charniak parser which accepts apacked forestrepresentation 
of a parse chart (local trees). 

Due to the complexity of the language model in the Char- 
niak parser, the number of local trees that can be processed 
is limited; this is largely due to memory constraints. There- 
fore, we must he judicious in choosing which local trees are 
passed on to the second stage. In the first-stage parsing, we 
useanestimateoftheedgeprobability tochoose whichedges 
are added to the chart. It is possible for this estimate to di- 
rect the parser to populate the chart with some edges that are 
not in the most likely PCFG parse. Additionally, we are not 
only looking for the edges that are in the most likely PCFG 
parse, but a rich set of edges that are likely according to the 
PCFG model. We accomplish this by over-parsing; continu- 
ing to parse after we have found the first complete parse for 
the word-lattice. As in previous work, the parser continues 
generating edges until it has popped many more edges off 
the agenda than it took to reach the first parse[9, 121. The 
threshold for the number of popped edges is dynamically de- 
fined to be a multiple of the number of agenda pops needed 
to reach the first parse; typically this multiplier is between 
10 and 100. 

Having populated the syntactic category chart, we com- 
pute the exact Viterbi outside probabilities for each edge in 
the given chart. Computing the Viterbi outside is much like 
computing the traditional outside probability[l3], replacing 
the sum operators with max operators. Following, we com- 
pute the probability of each edge occurring in a parse, given 
the current chart, We now have a probability for each edge 
which we use to prune edges that are less likely. 

_._-..YP --- ..__ _..-. "P'?. 

5. EXPERIMENTS 

We test the performance of our parserflanguage model on the 
word-lattices from the NIST HUB-1 evaluation task from 
1993. This corpus was chosen so that we can make a direct 
comparison between our work and previous work on syn- 
tactic language modeling[4,3,141. The HUB-1 lattices are 
a set of 213 word-lattices in HTK SLF (described in Sec- 
tion 3). These lattices are derived from a set of utterances 
produced by professional readers reading excerpts from the 
Wall Street Journal newspaper. 

We trained the PCFG for our first-stap parser on a mod- 
ified version of sections 2-24 of the Penn Treebank Wall 
Street Journal. In the modified version, newspaper text is 
converted to speech-like text; punctuation is removed, num- 
bers are converted to words, etc. Brian Roark at AT&T pro- 
vided a utility to perform this conversion. A detailed de- 
scription of the conversion process can be found in [15,4]. 

As mentioned above, the second-stage parser we use is 
the Charniak parser[l]. We obtained a version of the Char- 
niak parser (from Charniak) which accepts a packed forest 
representation of the parse chart. This parser was trained 
on a version of the BLLIP99 corpus that was transformed to 
speech-like text in  the same manner as described above. The 
sentences used for the HUB-I speech evaluation originated 
from Wall Street Journal articles which are contained in the 
BLLIP99 corpus. Prior to training the parser, we removed all 
occurrences of the HUE-1 strings from the BLLIP99 corpus. 

Model 
4011-word trigram 
ChelbaOZ SLM (n-best list) 
RoarkOl (n-best list) 
Chamiak Parser (n-best list) 
Lattice Parser (n-best lattices) 
Lattice Parser (acoustic lattices) 

Table 1. Word Error Rate (WER) for various language models on 
the HU€-1 lattices. 

In Table 1 we report the results of various language mod- 
els. All of-these models, with the exclusion of the trigram, 
use syntactic/parsing information to guide the search through 
the lattice. The Chelba02[5] and RoarkOl[3] models are left- 
to-right processing models. These models work with a list 
of n candidate strings extracted from the word-lattice(n-best 
lists). Each string is parsed and the n-best list is rescored 
according to the probability assigned to each parsed string. 
The n-best list for these two models was generated using a 
40 million word trigram. 

The results presented for parsing the n-best lists with the 
Charniak parser have not previously been reported'. Much 
like Chelba02 and RoarkOl, we parsed the n-best strings 
individually. To do this we created a lattice for each of the 

'We have verified these results with Eugene Chamiak 

Fig. 3. A section of the syntactic category chart 

Local trees are generated by combining category edges 
with children that span the same categories. For example, 
the NP edge in Fig. 3 will expand to: ( N P o , ~  -+ D T ~ J  
"1,~). (NPo,2 + DTOJ VBl,?). etc. The probability for 
these local trees are computed and pruned in the same manner 
as the chart edges. Finally, we pass these lacal trees to the 
the second-stage parser. The second-stage parser returns 
the most likely parse according to its language model. The 
most likely string is the string associated with the most likely 
parse. 
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Model (1 ChaEdges 
Chamiak Parser (n-best list) 2,950,730 
Lattice Parser (n-best lattices) 880,976 

6. CONCLUSION 

. 

We have presented an efficient best-first bottom-up word- 
lattice parser used for language modeling. The “Figure of 
Merit”usedtodrivethisparsercombinesthesearchforapath 
through the lattice and the search for a good parse. Although 
this initial version of the word-lattice parser does not perform 
better than the current n-best list syntactic language-models, 
we have shown that by parsing the word-lattice in one pass, 
we greatly reduce the amount of work required. In future 
work, we will augment the PCFG model and the estimate 
the outside probability model to improve the quality of the 
edges generated from the first-stage parser. 
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