Formal Verification
by Abstract Interpretation

Patrick Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

NFM 2012, 4th NASA Formal Methods Symposium
Norfolk,Virginia — April 35,2012

th NASA Formal Methods Symposium — Norfolk, il 3-5, 2012]

Formal Verification
by Abstract Interpretation

Patrick Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

joint work with Radhia Cousot

di.ens.fr/rcousot

NFM 2012, 4th NASA Formal Methods Symposium
Norfolk,Virginia — April 35,2012

NFM 2012 th NASA Formal Methods Symposium — Norfolk, ril 3-5, 2012 2

Abstract

Abstract interpretation is a theory of abstraction and constructive approximation of the
mathematical structures used in the formal description of programming languages and the inference
or verification of undecidable program properties.

Developed in the late seventies with Radhia Cousot, it has since then been considerably applied to
many aspects of programming, from syntax, to semantics, and proof methods where abstractions
are sound and complete but incomputable to fully automatic, sound but incomplete approximate
abstractions to solve undecidable problems such as static analysis of infinite state software systems,
contract inference, type inference, termination inference, model-checking, abstraction refinement,
program transformation (including watermarking), combination of decision procedures, security,
malware detection, etc.

This last decade, abstract interpretation has been very successful in program verification for
mission- and safety-critical systems. An example is Astrée (www.astree.ens.fr) which is a static
analyzer to verify the absence of runtime errors in structured, very large C programs with complex
memory usages, and involving complex boolean as well as floating-point computations (which are
handled precisely and safely by taking all possible rounding errors into account), but without
recursion or dynamic memory allocation. Astrée targets embedded applications as found in earth
transportation, nuclear energy, medical instrumentation, aeronautics and space flight, in particular
synchronous control/command such as electric flight control or more recently asynchronous
systems as found in the automotive industry.

Astrée is industrialized by AbsInt (www.absint.com/astree).

NASA Formal Methods Symposium — Norfolk, il 3-5, 2012 3

Examples of abstraction

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, il 3-5, 2012 4

Abstractions of Dora Maar by Picasso Pixelation of a photo by Jay Maisel

/www.petapixel.com/201 1/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/

Image credit: Photograph by Jay Maisel

5 > Cousot NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 6

An old idea... Example of picture abstraction

20 000 years old picture in a spanish cave:

The concrete is not always well-known!

Abstraction...

and concretization

Abstractions of a man / crowd

o /
Height
Fingerprint
Eye color
Grand Canal (Venice) Abstraction... which concretization is an abstract sculpture in front of the Palazzo Grassi DNA
NFM 2012 — 4th NASA Formal Methods Symposium Norfolk, VA, April 3-5, 2012 9 NFM 2012 — 4th NASA Formal Methods Symposium Norfolk, VA, April 3-5, 2012 IO
Numerical abstractions in Astrée Content
Yy Yy o o Loh o o
f [] [] [] [] []
[] [] [] [] [] . . .
A . > ® Fundamental and applied motivations
®a X X e o o o o7
. e o oo o ® An informal introduction to abstract interpretation
e o o] o o
Collecting semantics: Intervals: Simple congruences: ® A touch of theo ry of abstract inte rp retation
partial traces x € [a,b] x = alb) ..
® A short overview of a few applications and on-
s Y Y4 going work on software verification
For a rather complete basic introduction to abstract interpretation and applications to cyber-physical
systems, see:
Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, & Xavier
. . Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In ATAA
Octagons: EulpSGSI Exponentlals: Infotech@@Aem;’pace 2010, Atlanta, GeorgiaJ.) American InstitZle of Aeronautics and Astronautics, 20—22
txty<a 2+ by2 —axy < d _gbt < y(t) < abt April 2010. © ATAA.
NFM 2012 — 4th NASA Formal Methods Symposium Norfolk, VA, April 3-5, 2012 I I NFM 2012 — 4th NASA Formal Methods Symposium Norfolk, VA, April 3-5, 2012 |2

Fundamental motivations

Scientific research
® in Mathematics/Physics:

works towards unification and synthesis

it is science of structure and change aiming at
universal principles

® in Computer science
works towards dispersion and parcelization

it is a collection of local techniques for
computational structures aiming at specific
applications

An exponential process, will stop!

14

Example: reasoning on computational structures

WCET . i
Security protocole gystems biolo Operathnal
Axiomatic verification y OI08Y semantics
; analysis Abstraction
semantics s io
Confidentiality Dataflow Model Database | ofinement
analysis . analysis checking query Type
Program evzzlll::taillon Obfuscation Dependence inference
synthesis Effece Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical rac€ combination transformation Proof

semantics Sh
ape
Code Interpolants Abstract p

model-checking
model analysis

Invariance Symbolic contracts Integrity

proof execution analysis checking Malware
Probabilistic Quantum entanglement Bisimulation detection
verification detection
SMT solvers Code

Parsing Type theory Steganography refactoring

15

Example: reasoning on computational structures

Abstract interpretation

TSR Security protocole gyctems biolo Operational
Axiomatic verification Y 0lOgY semantics
[CUE AL Abstraction
semantics
Confidentiality Dataflow Model = Database (efinement
analysis ~ analysis checking query Type
Program evz?::::ziin Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé combination transformation Proof

model-checking Semantics Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity =~ model analysis
checklng Malware

proof execution analysis
Probabilistic ~ Quantum entanglement Bisimulation ~ detection
verification detection SMT solvers Code

Parsing Type theory Steganography refactoring

16

Applied motivations

All computer scientists have experienced bugs

® Checking the presence of bugs is great

® Proving their absence is even better!

Abstract interpretation

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat
IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble, France. 125 pages. 23 September 1975.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor,
Proceedings of the 2nd international symposium on Programming, 106— 130, 1976, Dunod, Paris.

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un
treillis, analyse sémantique des programmes. These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble,
France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow
Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.,
1981.

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 19

Abstract interpretation
® Started in the 70’s and widely applied since then

® Based on the idea that undecidability and complexity
of automated program analysis can be fought by
sound approximations or complete abstractions

® Wide-spectrum theory so applications range from
static analysis to verification to biology

Does scale up!

Fighting undecidability and complexity
in practical program verification
® Any automatic program verification method will
definitely fail on infinitely many programs (Godel)

® Solutions (excluding non-termination):

® Ask for human help (theorem-prover/proof
assistant based deductive methods)

® Consider finite systems (model-checking) which

are small enough to avoid combinatorial
explosion

® Do sound approximations or complete
abstractions (abstract interpretation) which are
precise enough to avoid false alarms

21

An informal introduction to
abstract interpretation

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer
systems by abstract interpretation. In Logics and Languages for Reliability and
Security, J. Esparza, O. Grumberg, & M. Broy (Eds), NATO Science Series III:

Computer and Systems Sciences, © I0S Press, 2010, Pages 1—29.

22

An informal introduction to
abstract interpretation
(a) Principle

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer

systems by abstract interpretation. In Logics and Languages for Reliability and

Security, J. Esparza, O. Grumberg, & M. Broy (Eds), NATO Science Series III:
Computer and Systems Sciences, © I0S Press, 2010, Pages 1—29.

23

|) Define the programming language semantics

— Finite (Cl+1=):
CECTH CECTT | i | H
B hs : §§ e
— Erroneous (Cl+I+1+1..)
CETTTH CECTH CECTT | et | | cmvame: |
= Eﬁl aRmE ;Eﬂ
.
— Infinite (C0+0+0+0+...)
TR EmTm e [
nERS E.f" ! _iﬁ o
B @ e @

24

Formal concrete semantics Formal concrete semantics (cont’d)

Formalize what you are interested to observe about concrete program
behaviors (e.g. execution traces of a transition system)

’:;T\}?r (xy) € 3

t=1 t

Trajectory Space/time trajectory
in state space X

Il) Define which specification must be checked lll) Choose an appropriate abstraction

Formalize what you are interested to prove about program behaviors Abstract away all information on program behaviors irrelevant to the proof

e ©

Abstraction of the trajectories

\

IV) Mechanically verify in the abstract

The proof is fully automatic in finite time

Forbidden zone

Abstraction of the trajectories

29

An informal introduction to
abstract interpretation

(b) [Un]soundness

30

Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

Abstraction of the trajectories

31

Unsound validation: testing

Try a few cases

Forbidden zone

Test of a few trajectories

32

Unsound validation: bounded abstraction

Simulate the beginning of all executions

Forbidden zone

Bounded model-checking

Examples: bounded model-checking, symbolic execution, ...

33

Unsound validation: incorrect static analysis

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone

Erroneous trajectory abstraction

34

An informal introduction to
abstract interpretation
(c) Incompleteness

35

Incompleteness

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone AL

Error or false alarm ?

By soundness an alarm must be raised for this overapproximation!

36

True error

The abstract alarm may correspond to a concrete error

Forbidden zone Alarm !I!

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Alarm !

False alarm

37

38

What to do about false
alarms: refinement

39

What to do about false alarms?
(I) Automatic refinement

® |nefficient and may not terminate (Godel)

® Refinement needs intelligence

40

Set of functions

How to approximate { fi, fo, f3,fa } ?

41

©P Cousot

Set of functions abstraction

f(t)

42

©P Cousot

f(t) -

Concrete questionsthe f;

3i,t e [Lh] :fi(t) > M ?

Min/max questions on the f;

Ji,te[l,hl:fi(t) <m?

43

©P Cousot

Min/max questions on the f;

f(e) -

Ji,te[Lh]:f() <m? No

44

©P Cousot

A more precise/refined abstraction

f(t)

An even more precise/refined abstraction

f(t)

>t — t
Note: this is already much more elaborate than CEGAR that goes
counter-example by counter-example!

45 ©P Cousot NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 46 ©P Cousot
Intelligent passing to the limit A non-comparable abstraction
f(t) f(c)
>t t

Sound and complete abstraction for min/max questions on
the fi

47

©P Cousot

the f|
NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012

Sound and incomplete abstraction for min/max questions on

©P Cousot

48 I

The hierarchy of abstractions

A complete lattice

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
2012 — 4th NASA Formal Methods Symposium VA 5 01

49

AIAA Infotech@ @Aerospace 2010, Atlanta,
NFM 2012 — 4th NASA Formal Methods Symposi

(I) Automatic refinement: Astrée example
® Filter invariant abstraction:

Execution trace:

2nd order filter:

Unstable polyhedral Stable ellipsoidal

abstraction: s abstraction:)
X .."

£ |"’ F :

X i Yk
h:uﬁ;!n- =7 KUFX)

Julien Bertrane, Patrick Cousot, Radhia Cou:

 Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
tute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.
012

50

What to do about false alarms?
(I) Domain specific refinement

® Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

® e.g. Astrée for synchronous control/command: no
recursion, no dynamic memory allocation,
maximum execution time, etc.

51

A Touch of Abstract
Interpretation Theory

52

Fixpoint
® Set P
® Transformer F € P — P
® Fixpoint

x € P is a fixpoint of F
— F(x)=x

Poset (P, <)

Least fixpoint

x € P is the least fixpoint of F (written x = prgF)
S Fx)=xAVyeP:(Fy)=y) = &<y

53

Fixpoints of increasing functions (Tarski)

A

f(x)

54

Program properties as fixpoints

® Program semantics and program properties can be
formalized as least/greatest fixpoints of increasing
transformers on complete lattices ®

® Complete lattice / cpo of properties

P, <, 0, 1, v, A) [(P, <, 0, V)
® Properties of program P

S[P] = lfpSF[P]

® Transformer of program P
F[P] € # — P, increasing (or continuous)

s. POPL 1977: 238-252

A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints
rogram Analysis Frameworks. POPL 1979: 269-282

55

0D

Example: reachable states

® Transition system (set of states %, initial states J C X,
transition relation 7)

<, 1, 1)
® Reflexive transitive closure
*=lfpSAXelUXoT
® Right-image of a set of states by transitions
post[T]X L24¢ |TAse X : 1(s, 5)}

(()) E——=w(),)
post| |Z

® Reachable states from initial states 7
post[T*]I = pr AX -Z U post[T]X

ntique des programmes. Thése Es Scie

ts fixes d'opéra n treillis, analyse sé

et d'approximation
rance, 21 Mar hl978

sis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applica s, Ch. 10, pages 303 —342, Pres

56

Proof methods

® Proof methods directly follow from the fixpoint
definition

S[P] < P
o IfpSFP] < P
oA :F[PJD) KIANILP

(proof by Tarski’s fixpoint theorem for increasing
transformers on complete lattice or Pataria for
cpos)

fpSF = Afx | F(x) < x)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

57

Example: Turing/Floyd Invariance Proof

® Bad states

BCX

® Prove that no bad state is reachable

post[t*]1 C -8B

® Turing/Floyd proof method

Al cep): T CIApostitlICIANIC -8B

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

58

Abstraction

® Abstract the concrete properties into abstract
properties

<ﬂ9 ;7 J" T, I—l’ H)

® |f any concrete property P € £ has a best abstrac-
tion a(P) € A, then the correspondence is given by
a Galois connection

(P, <) €S (A, D)

VPeP:VQeA:a(P)EQ & P < ¥0)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

59

Example: elementwise abstraction

® Morphism =1,0.1)
hePr A

® Abstraction (=1.0 }‘4 (0,1}
a(X) = {h(x) | x € X} -1 (1)

® Galois connection

(PP, ©) = (p(A), C)

Example: rule of signs
h:7 —{-1,0,1}
h(z) £ 2/l

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

60

In absence of best abstraction

® Best abstraction of a disk by a rectangular
parallelogram

® No best abstraction of a disk by a polyhedron

(Euclid)
P_
>y

use only concretization or abstraction or widening

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)
A S Norfolk, VA, April 3-5, 2012 6l

Example abstract transformer: rule of signs

{-1,-2,-7} * {0,-2,-5) {0,2,4, 14,5, 10, 35}

a a (04

L

(F L 2 {10
Negative Negative Positive
or zero or zero

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979 269-282

62

Example abstract transformer: rule of signs

A
{-3,-4,-7} + {I,2,3} = {-2,-3,-6,-1,-2,-5,0,-1,-4}
a a a

{-1.0}

C
{-I} 1 {I} = {-I,O,I}
Negative Positive Unkown

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979; 269-282

63

Abstract transformer
e An abstract transformer F € A — A s

® Sound iff
VPeP:aoF(P)CF o a(P)
e Complete iff
VPeP:ao F(P)=F -a(P)

® Example (rule of sign)
® Addition: sound, incomplete
® Multiplication: sound, complete

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

64

Fixpoint abstraction

® For an increasing and sound abstract transformer, we
have a fixpoint approximation

a(fpSF) C Iip~F

® For an increasing, sound, and complete abstract
transformer, we have an exact fixpoint abstraction

a(IfpSF) = IfpF

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

NASA Formal Methods Symposium — Norfoll ril 3-5, 2012 65

Iterative fixpoint computation
® Fixpoint of increasing transformers on cpos can be
computed iteratively as limits of (transfinite) iterates
Y2)
N)
F/l é |_|B</1 F'B’

Ultimately stationary at rank €

B + 1 successor ordinal

A limit ordinal

Converges to F€ = Ifp=F
® ¢ = w when F is continuous

® Finite iterates when F' operates on a cpo satisfying
the ascending chain condition

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

NASA Formal Methods Symposium — Norfoll ril 3-5, 2012 66

Example: symbolic execution

® Symbolic execution tree is an abstraction of the
prefix of a trace semantics

From [1, Sec. 3.4.5I:

{11
tantgque sy falre
1zl % . <l ut (RN P 1=2¥) wt (ReFy)) o=y,
(3}
- €llazy) mt (edyl),w-dy,pe (’::]
Program Symbolic execution tree
— References

[1] P. Cousot. Méthodes itératives de construction et d’approzimation de points fizes d’opérateurs monotones sur un treilli.
analyse sémantique de programmes. Th se d tat s sciences math matiques, Universit scienti que et m dicale de Grenobli
Grenoble, 21 mars 1978.

[2] J.C. King. Symbolic Execution and Program Testing, CACM 19:7(385 394), 1976.

NASA Formal Methods Symposium — Norfol /il 3-5, 2012 67 > Cousot

Example: symbolic execution (cont’d)

An abstract interpretation
The abstract properties of A have the form:

H {<Qz; Ez> ‘ (S Ac}

c€Control

(where @Q; is a path condition and F; is a valuation in
terms of initial values Z) with concretization

{{c,2) |32 \/ Q&) Az =Ey(2)}

1€A¢

NASA Formal Methods Symposium — Norfoll ril 3-5, 2012 68

Example: symbolic execution (cont’d)

— Test transformer:

vost [0 ({(Qi, By) | 1 € Ac}) =
{(QiNbz\Ey(z)], By) | i € Ac}

— Assignment transformer:

assign[z := e(2)]({(Q;, B;) |1 € Ac}) =
{{Qi, e[z\E(Z)]) | 1 € Ack

69 ©P Cousot

Example: symbolic execution (cont’d)

Example:
— Program:
{1} -
tantque xzy faire
{z}
Ri=x=y}
{5l
rafaire;
{a}

— Program transformer F:

P, = {<vrai,x,y>}

P, = EEEE[lEF,y]v[xky]i[Pl ou P.)
Fa s ul'i'ecti!l‘.‘.lI:.lrl[llk,y}ql'x'y,y]l[l’z]
P, = testidlx,y).[x<y]N(P, ou P,)

70

©P Cousot

Example: symbolic execution (cont’d)

— Fixpoint iteration: (chaotic iterations)

Pl o {cxﬁﬂl,;,;b}
P! - tuaLflfh.gl.[ny]][P: ou PY) = {<[xzy]).x,y>]
== -3

p! = ufruuLutiﬂn[l[x,y].[x-y,y]][PL] =
—e 3

P! = 1..=m.mx.y},rmynu-‘l ﬂrf] = {<(x<y), %, y>}

= {<vrai,x,y>]

P2 = (<(xzy),.x,y>

, <Ulxzy) et (x22y)).x-y.y>*|
. <(dy) et (x=2y)1,%-2y.y>]

e {<lrey). o,y .« <[x<Zy),x-y.y>)

71 ©P Cousot

Example: symbolic execution (cont’d)

® Chaotic fixpoint iteration explores all finite/infinite
execution paths symbolically.

® These chaotic iterates have a termination problem

72

©P Cousot

Example: symbolic execution (cont’d)

® Solutions to the iteration termination problem:
® Bounded symbolic execution
® or, ask the end-user for a loop invariant
® or, pass to the limit:

® Generalization: express iterates in terms of
the iterate’s rank (using a relational abstraction
such as linear (in-)equalities)

® |nfinite disjunctions (~ existential quantifier
elimination)

® or, more generally, accelerate convergence

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, April 3-5, 2012 73

NFM 2012

Widening
® Definition (widening V € AX A — A)
o (A, C) poset
® Over-approximation
Vx,ye A: xE xVyAyLE xVy

® Termination

Given any sequence (x", n € N), the widened sequence (y", n € N)

A A
W20, .yt =y,

converges to a limit y (such that Vm > £ : y"

=)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

th NASA Formal Methods Symposium — Norfolk, April 3-5, 2012 74

Example: (simple) widening for polyhedra

® |terates

® Widening

>

etd i de points fixes d'op

r, Grenoble, France, 21 March 1978.
'y of Linear Restraints Among Variables of a Program. POPL 1978: 84-96
April 3-5, 2012

sur un treillis, analyse sémantique des programmes.

NFM 2012

Iteration with widening

® [terates with widening for transformer F' € A — A

—0

[I>

F L
F' 2 F when FF)CF
FloaF VE(F) otherwise

® The widening speeds up convergence (at the cost of
imprecision)
Theorem (Limit of iterates with widening) The iterates of F with

widening V from L on a poset (A, C, L) converge to a limit f{)
such that f(f{;) E f€ (and so pr;f g F{) when F is increasing).

® Can be improved by a narrowing.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

th NASA Formal Methods Symposium — Norfolk, April 3-5, 2012 76

A A

Intuition for iteration with widening

/

F K

lfp F' lfp F'

>
>

Infinite iteration Accelerated iteration with widening

(e.g. with a widening based on the
derivative as in Newton-Raphson method)

th NASA Formal Methods Symposium — Norfolk, ril 3-5, 2012 77 > Cousot

Reduced product

® The reduced product combines abstractions by
performing their conjunction in the abstract

(P, <) S (T, T

P2
(P, <) = (P, B2)

A @A, =
(a1 (y1(P) Ay2(P2)), ax(y1(P) Ay2(P2))) | Pr € Ay APy € Ay}

Y1XY2
(P, <) —W (A @A, E; X 5y)

® Example: (positive or zero) ® odd = <positive,odd>

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472

/2012 — 4th NASA Formal Methods Symposium — Norfolk, il 3-5, 2012 78

The abstract interpretation methodology
for static analysis

® Define the semantics, and strongest properties of
any program in fixpoint form

® Define your abstraction (by composition and
combination of elementary abstractions)

® Lift your abstraction to abstract transformers

® Lift your abstraction to abstract fixpoints (using
widening/narrowing when becessary)

® |terate by refinements guided by experiments (or
automate them in simple cases)

® Correct by construction

th NASA Formal Methods Symposium — Norfolk, ril 3-5, 2012 79 > Cousot

Recent advances

® The same principles apply to termination

Patrick Cousot, Radhia Cousot: An abstract interpretation
framework for termination. POPL 2012: 245-258

® and to probabilistic programs

Patrick Cousot and Micha€l Monerau. Probabilistic Abstract Interpretation. In H.
Seidel (Ed), 22nd European Symposium on Programming (ESOP 2012), Tallinn,
Estonia, 24 March—1 April 2012. Lecture Notes in Computer Science, vol.
7211, pp. 166—190, © Springer, 2012.

th NASA Formal Methods Symposium — Norfolk, ril 3-5, 2012 80

NFM 2012

ASTREE

Radhia Cousor

David Monniaux® Xavier RIvaL

B2

Bruno BLaNcHET®® Patrick Cousor

2 °

Laurent MAUBORGNE

J r me FERET

Antoine MIN

68 Nov.2001 Nov. 2003,
69 Nov.2001 Aug. 2007. te =
70 Nov. 2001 — Aug. 2010.

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264 (2009)

Patrick Cousot, Radhia Cousot, Jérdme Feret, Antoine Miné, Laurent Mauborgne, David Monniaux, Xavier of Static Analyzers: A Comparison with ASTREE. TASE 2007: 3-20

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Combination of Abstractions in the ASTREE Static Analyzer. ASIAN 2006:
272-300

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: The ASTREE Analyzer. ESOP 2005: 21-30

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, X:
2003: 196-207

Rival: A static analyzer for large safety-critical software. PLDI

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival

. I: Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety-Critical Real-Time Embedded Software. The Essence of Computation 2002: 85-108

th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 8l

Target language and applications
® C programming language

® Without recursion, 1longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

® With all its horrors (union, pointer
arithmetics, etc)

® Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

® Originally for synchronous control/command

® ec.g. generated from Scade

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 82

NFM 2012

The semantics of C implementations
is very hard to define

What is the effect of out-of-bounds array indexing?

% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647 ;
printf("n = %i, T[n] = %i\n", n, T[n]);
ks

Yields different results on different machines:

n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

Implicit specification

® Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, ...

® Semantics of runtime errors:

® Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

® Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

® Unpredictable outcome: stop (e.g. memory
corruption)

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 84

Abstractions

Yy () o o Uoh o o

f ° ° [] ° °

‘ﬂ /. e o o o o

®a ’5 'x X ° [] ° ° ° xr
o o o o o
° ° ° ° []
Collecting semantics: Intervals: Simple congruences:
partial traces x € [a,b] x = alb]
YA

t
Octagons: Ellipses: Exponentials:

txty<a x24+by? —axy<d —a’ <y(t) <a

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 85

Example of general purpose abstraction: octagons

e Invariants of the form + x4y < ¢, with O(IN?) memory and O(IN?) time cost.

® [xample:
Whilf W { ® At >, the interval domain gives
i _ 2-2’ L < max(max A, (max Z)+(max V)).
if (R>V) ® |n fact, we have L < A.
{ % L =2+V; }
* ® To discover this, we must know at % that
} R=AZandR > V.

® Here, R = A-Z cannot be discovered, but we get L-Z < max R which is sufficient.

o We use many octagons on small packs of variables instead of a large one using

all variables to cut costs. ,
®
Antoine Miné: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1): 31-100 (2006)

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 86 > Cousot

Example of general purpose abstraction:
decision trees

/* boolean.c */

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, \pril 3-5, 2012 87

typedef enum {F=0,T=1} BOOL; T B, F
BOOL B; . 3
void main () { B Br
unsigned int X, Y; T . F T F
while (1) { - i v 2 'u'
B=(X-== O); ﬁ‘f ..ﬂ: -
1f ('B) { The boolean relation abstract
} L/ X domain is parameterized by the
height of the decision tree (an
1 analyzer option) and the
1 abstract domain at the leaves

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE =
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] =X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] *x 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] =
/% S[0], S[1] in [-1327.02698354, 1327.02698354] */

1} BOOLEAN;

t
void main () { X =
while (1) {
= 0.9 x X + 35;

filter (); INIT = FALSE; } !
| ”

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 88 Jérome Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48 > Cousot

0.2 * X + 5; INIT = TRUE;

=xample of domain-specific abstraction: exponential
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) {R=R+1; %}
else {R=0; %}
T = (R >= 100);
__ASTREE_wait_for_clock(());
1}
% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000)) ;
% astree -exec-fn main -config-sem count.config count.clgrep ’|R|’

IRl <= 0. + clock *1. <= 3600001.

+ potential overflow!

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 89 ©P Cousot

Example of domain-specific abstraction: exponentials

void main()
{ FIRST = TRUE;
while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

3>
void dev() % cat retro.config
{ X=E; __ASTREE_volatile_input((E [-15.0, 15.01));
if (FIRST) { P = X; } __ASTREE_volatile_input ((SWITCH [0,1]1));
else __ASTREE_max_clock ((3600000)) ;

{P= (P- ((((2.0*%P) - A -B)

<= . + . _
* 4.491048e-03)); }; [P| (15 5.87747175411e-39

/ 1.19209290217e-07) * (1 +
1.19209290217e-07) “clock - 5.87747175411e-3¢
/ 1.19209290217e-07 <= 23.0393526881

B = A;
if (SWITCH) {A = P;}
else {A = X;}

Y.
< t
Jérome Feret: The Arithmetic-Geometric Progression Abstract Domain. VMCAT 2005: 42-58

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 90 ©P Cousot

An erroneous common belief on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

— May be simple to state (no overflow)

But harder to discover (s[o], S[1] in [-1327.02698354, 1327.02698354]

And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

_ Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

[Fer04] Jérome Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 91 ©P Cousot

Industrial applications

Daniel Kistner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Elodie-Jane Sims. Astrée: Nachweis der it von L i In Workshop ™. dissi Sys ", Germany., June 18, 2009.

Olivier Bouissou, Eric Conquet, Patrick Cousot, Radhia Cousot, Jérome Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490

David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451

Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, imbi , Marc La ibach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 92 ©P Cousot

Examples of applications

® Verification of the absence of runtime-errors in

® Fly-by-wire flight control systems”

® Flight warning system
(on-going work)

(*) No false alarm a all!

93

Industrialization

® 8 years of research (CNRS/ENS/INRIA):

www.astree.ens.fr

® |ndustrialization by Absint (since Jan. 2010):

www.absint.com/astree/ =i = - T R T
3 (=T o = = =]
i i = |
g [I ﬂl-'hm—'-._
Absint a _ = -
fetei 2 [5= =
———
wr = =]
S =]
re S e e

94

On-going work

95

ASTREEA: Verification of
embedded real-time parallel
C programs

Antoine Miné: Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs. ESOP 2011: 398-418

96

Parallel programs Semantics

® Bounded number of processes with shared memory, ® No memory consistency model for C
events, semaphores, message queues, blackboards,... oo . : .
® Optimizing compilers consider sequential processes
® Processes created at initialization only out of their execution context
. . . init: flagl = flag2 = 0
® Real time operating system (ARINC 653) with fixed orocens 1. process 2. .
priorities (highest priority runs first) flagl = 1; flag2 = 1; write to £1ag1/2 and
if (1flag2) if (1flagl) read of £lag2/1 are
® Scheduled on a single processor { { independent so can be
/* critical section */ /* critical section */ reordered — error!

Verified properties ® We assume:
® sequential consistency in absence of data race
® for data races, values are limited by possible

® Absence of unprotected data races interleavings between synchronization points

97 > Cousot NFM 2012 — 4th NASA Formal Methods Symposium — Norfoll ril 3-5, 2012 98

® Absence of runtime errors

Abstractions

® Based on Astrée for the sequential processes

® Takes scheduling into account

E“ L

® Degraded mode (5 processes, 100 000 LOCS)

® OS entry points (semaphores, logbooks, sampling
and queuing ports, buffers, blackboards, ...) are all

stubbed (using Astrée stubbing directives) ® |h40 on 64-bit 2.66 GHz Intel server
® |nterference between processes: flow-insensitive ® A few dozens of alarms (64)
abstraction of the writes to shared memory and ® Full mode (15 processes, | 600 000 LOCS)
inter-process communications
® 24h
Note: interference abstraction is currently being made ® a few hundreds of alarms !!! work going on !!!

(e.g. analysis of complex data structures, logs,

more precise
etc)

99 100

NFM 2012

Abstract interpretation
based static analyzers

Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 101

Software

e Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

® Astrée: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstréeA for asynchronous programs (www.astreea.ens.fr/)

® C Global Surveyor, NASA, static analyzer for flight software of NASA
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

® |[KOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

® Checkmate: static analyzer of multi-threaded Java programs
(www.pietro.ferrara.name/checkmate/)

® CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

® Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

NFM 2012 — 4th NAS

Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 102

NFM 2012

Software

Infer: Static analyzer for C/C** (monoidics.com/)

Julia: static analyzer for Java and Android programs
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
1d=201177234649)

Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/

Invader/Invader/Invader Home.html)

etc.

Apron numerical domains library (apron.cri.ensmp.fr/library/)

Parma Polyhedral Library (bugseng.com/products/ppl/)

etc.

Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 103

Hardware

® (Generalized) symbolic trajectory evaluation (Intel)

. Example of ternary simulation
Intel’s Successes with Formal Methods If some inputs are undefined, the output often is too, but not
always:
John Harrison X -
X |
Intel Corporation 1 Z-in
put
{7 AND gate [—— X
15 March 2012 X1
X 0 = (0}
1= {1}
x X = {01}
X
X .
7-input
6(7 AND gate —— 0
X
Tsinghua software day, March 15, 2012, Tsinghua University, Beijing, China X

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume
2517/2002.70-87.

Jin Yang; Seger, C.-1H.; Introduction to generalized symbolic trajectory evaluation, EEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345-353.

NFM 2012 — 4th NAS

Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 104

Steps towards larger adoption in industry

® RTCA/DO-333 Formal Methods Supplement to
DO-178C and DO-278A

® Mandatory use of Astrée in the software production
chain of a European civil airplane manusfacturer on
all planes in production and design

105 ©P Cousot

Conclusion

106 ©P Cousot

On research

If you reason/compute on computer/biological/...
systems behaviors, you probably do abstract
interpretation

107 ©P Cousot

On applications

If the simulation/analysis/checking of your
computer/biological/... systems model does not
scale up, consider using (sound (and complete))
abstract interpretations

108 ©P Cousot

NFM 2012

The End, Thank You

4th NASA Formal Methods Symposium — Norfolk, VA, April 3-5, 2012 109

©P Cousot

