
1

A Software Architecture Reconstruction Method

George Yanbing Guo1, Joanne M. Atlee1 & Rick Kazman2

1Department of Computer Science, University of Waterloo, Waterloo, ON, Canada
2Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, U.S.A

Keywords: Design recovery, Reverse engineering, Software Architecture Analysis,
Design Patterns, Pattern Recognition

Abstract: Changes to a software system during implementation and maintenance can
cause the architecture of a system to deviate from its documented architecture.
If design documents are to be useful, maintenance programmers must be able
to easily evaluate how closely the documents conform to the code they are
meant to describe. Software architecture recovery, which deals with the
extraction and analysis of a system’s architecture, has gained more tool support
in the past few years. However, there is little research on developing effective
and efficient architectural conformance methods. In particular, given the
increasing emphasis on patterns and styles in the software engineering
community, a method needs to explicitly aid a user in identifying architectural
patterns. This paper presents a semi-automatic method, called ARM
(Architecture Reconstruction Method), that guides a user in the reconstruction
of software architectures based on the recognition of patterns. Once the
system’s actual architecture has been reconstructed, we can analyze
conformance of the software to the documented design patterns.

1. INTRODUCTION

A software architecture is a high-level description of a software system’s
design, often a model of the software’s components (e.g., objects, processes,
data repositories, etc.), the externally visible properties of those components,
and the relationships among them (Bass, et al., 1998). The concept of
software architectures has received considerable attention lately, and
developers are starting to document software architectures. However, the
living architecture of a software system may drift from the documented

2 Guo, Atlee, Kazman

architecture if architecture changes are made during software
implementation or maintenance and no similar effort is made to maintain the
architecture documents. Although architectural integrity could, in theory, be
enforced by a rigorous review process, in practice this is seldom done.

Architecture conformance analysis can be used to evaluate how well the
architecture of a software system corresponds to its documentation; it can
also assist in keeping the architecture documents up to date. Some progress
on this problem has been made at the source file and module levels, where
the software’s call-graph is extracted from source code and compared with
the expected call-graph (Murphy, et al., 1995), (Woods & Yang, 1995). In
addition, a number of reverse engineering tools have been developed to
automatically extract, manipulate, and query source model information (e.g.,
REFINE (Reasoning, -). Imagix (Imagix, -), Rigi (Wong, et al., 1994),
(Storey, et al., 1996), LSME (Murphy & Notkin, 1996), IAPR (Kazman &
Burth, 1998), RMTool (Murphy, et al., 1995)).

Design patterns are an attempt to codify solutions to recurring problems,
to make routine design easier. In an architecture, design patterns prescribe
specific abstractions of data, function, and interconnections. Automated
conformance analysis of newer software architectures is actually
complicated by the use of design patterns and architectural styles in
architecture documents. While this statement seems at first to be
contradictory to the thesis of this paper, the complication stems from the fact
that extraction tools extract code-level information, not architectural
information. Hence, the analyst needs some way to map from the low-level
extracted information up to architectural concepts. To properly analyze the
architectures of systems developed using design patterns, we need tools and
techniques for recognizing instances of pattern-level abstractions.

This paper shows how code-level extraction can feed into pattern-based
architecture conformance analysis. We present a semi-automatic analysis
method, called ARM (Architecture Reconstruction Method), that codifies
heuristics for applying existing reverse-engineering tools (for reasoning
about code-level artifacts) to the problem of recognizing more abstract
patterns in the implementation. Once the system’s actual architecture has
been reconstructed, we can analyze conformance of the software to the
documented design patterns.

Following this introduction, Section 2 provides a review of software
architecture recovery. Section 3 describes ARM in detail. Evaluation of the
method with case studies is presented in Section 4. Finally, Section 5
summarizes this work and proposes future research.

A Software Architecture Reconstruction Method 5

2. SOFTWARE ARCHITECTURE RECOVERY

Software architecture recovery can be divided into two phases:
1. identification and extraction of source code artifacts, including the

architectural elements; and
2. analysis of the extracted source artifacts to derive a view of the

implemented architecture.

The extracted source artifacts form a source model, which comprises a
collection of elements (e.g., functions, files, variables, objects, etc.), a set of
relations between the elements (e.g., ‘‘function calls function’’, ‘‘object A
has an instance’’) and a set of attributes of these elements and relations (e.g.,
‘‘function calls function N times’’), to represent the system (Kazman &
Carriere, 1998).

2.1 Architecture Recovery Frameworks

There exist many source model extraction tools, such as LSME (Murphy
& Notkin, 1996), SNiFF+ (SniFF, -), ManSART (Yeh, et al., 1997) and
Imagix (Imagix, -), that parse code fragments and extract source model
elements, relations and attributes. Tools that use relational algebra to infer
new facts from existing facts, such as SQL and Grok (Holt, 1998), can be
used to manipulate and analyze source model artifacts. Tools for extracting
and analyzing software architectures, such as Rigi (Wong, et al., 1994), CIA
(Chen, et al., 1990) and SAAMTool (Kazman, 1996), provide not only
visualization but also manipulation mechanisms to help the user simplify and
navigate through the visual system representation. However, each individual
tool or system has its limitations and restrictions in terms of the architecture
recovery phases it covers, its support for applications developed in different
programming languages and its flexibility in supporting customized analysis.

A software architecture framework integrates and leverages multiple
tools in an organized structure to facilitate architecture recovery.

Kontogiannis et al. have developed a toolset, called RevEngE (Reverse
Engineering Environment), to integrate heterogeneous tools, such as Ariadne
(Kontogiannis, et al., 1994), ART (Johnson, 1993) and Rigi (Wong, et al.,
1994) for extracting, manipulating and analyzing system facts, through a
common repository specifically designed to support architecture recovery.

The architecture recovery framework of the Software Bookshelf project
(Finnigan, et al., 1997) provides access to a variety of extractors, such as C
Fact Extractor (CFX) and CIA, for source model extraction. Manipulation
and analysis of the source model stored in the repository is possible via tools
like grep, sort, or Grok, to emit architectures of the subsystems and of the

2 Guo, Atlee, Kazman

system. The architecture that Bookshelf produces is a hierarchical structural
decomposition of system in terms of subsystems, files, and functions. The
architectures can be visualized using tools such as the Landscape Viewer.

The Dali architecture workbench (Kazman & Carriere, 1999), is an
infrastructure for the integration of a wide variety of extraction,
manipulation, analysis, and presentation tools. The architecture recovery
work presented in this paper was performed using Dali.

2.2 The Dali Workbench

Dali’s architecture is shown in Figure 1, where the rectangles represent
distinct tools and lines represent data flow among them.

Source model extraction can be performed by a variety of lexical-based,
parser-based or profiling-based tools that produce static or dynamic views of
the system under examination. A view is a source model extracted by a
single extraction tool or technique. A static view contains static source
artifacts extracted from source code. A dynamic view contains dynamic
elements including dynamic typing information, process spawning and
instances of interprocess communication (IPC). These extracted views are
stored in a repository, currently a relational database. The various extracted
views can be fused together into fused views (Kazman & Carriere, 1998).

Figure 1: The Dali Workbench

Visualization tools can be deployed in Dali to present the source model
and the result of architecture analysis. For example, Rigi is used to present

.Lexical Parsing ..

View Extraction

Profiling

Repository

View Fusion

Visualization

External

Analysis

and Interaction

Manipulation

A Software Architecture Reconstruction Method 7

systems as a graph with nodes denoting the artifacts and arcs representing
the relations between them. Dali supports various external manipulation and
analysis tools, such as Grok, IAPR (Kazman & Burth, 1998), and RMTool
(Murphy, et al., 1995). The system view can be exported to these tools and
the analysis results can be added back to the repository. Using Rigi’s
command language, new tools can be added in Dali and a software analyst
can choose among tools when performing an analysis task. Dali does not rely
on having an Abstract Syntax Tree (AST). This allows it to cope with
architecture analysis on systems that can not be parsed.

2.3 Architecture Recovery Methods

Automated tools and frameworks can be used to extract and reason about
code-level facts. However, human input is needed to extract and infer facts
about higher-level abstractions (e.g., design patterns). An architecture
recovery method defines a series of steps, and the pre/post conditions for
each step, to guide an analyst in systematically applying existing reverse
engineering tools to recover a system’s architecture.

Most current architecture recovery methods are based on a system
decomposition hierarchy to reason about software architecture by looking at
the relations (calls and uses relations in most cases) between the subsystems,
between the files and between the functions (Portable Bookshelf, -).
However, it is difficult to use these methods to recover architectures that are
designed and implemented with design patterns. As design patterns are
described as well-defined structures with constraint rules, a pattern-oriented
architecture recovery method must incorporate the design pattern rules as
well as structural information such as the system decomposition hierarchy.

Shull et al. developed the BACKDOOR analysis method to recognize
design patterns in object-oriented systems (Schull, et al., 1996). This method
uses a general abstract pattern description, rather than an application-specific
pattern instantiation, to guide pattern recognition, and hence could be
ineffective in producing accurate results. The pattern definition, detection
and evaluation in this method are performed manually, which makes the
method primarily applicable to small systems.

3. ARCHITECTURE RECONSTRUCTION METHOD

To assist software architecture recovery of systems designed and
developed with patterns, we developed the Architecture Reconstruction
Method (ARM) - a semi-automatic analysis method for reconstructing
architectures based on the recognition of architectural patterns.

2 Guo, Atlee, Kazman

ARM is depicted in Figure 2. As indicated by the dashed boxes in this
figure, ARM consists of four major phases:

1. Developing a concrete pattern recognition plan.
2. Extracting a source model.
3. Detecting and evaluating pattern instances.
4. Reconstructing and Analyzing the architecture.

Design Expert
Knowledge

Design
Document

Design Pattern
Literature

Source Code Source Code

Develop

ExtractInstantiated Pattern
Description

Pattern Recognition
Plan

Source Model

Develop

Detect

Detection
Results

Recognized
Pattern Instances

Reconstruct
& Analyze

Architecture

Necessary input to ARM

Supplemental input to ARM

Process requiring
human input

Evaluate

Phase 1 Phase 2

Phase 3

Phase 4

Improvement on queries Improvement on extraction

Figure 2: Pattern Recognition Process Flow Chart

3.1 Developing a Concrete Pattern Recognition Plan

Constructing a pattern recognition plan consists of three steps. The first is
to develop an instantiated pattern description. By instantiation, we mean a
concrete pattern description, with all the pattern elements and their relations

A Software Architecture Reconstruction Method 9

described in terms of the constructs available from the chosen
implementation language.

Starting with a design document, one can manually determine the
patterns used in the design and can extract the abstract pattern rules - the
design rules that define a pattern’s structural and behavioral properties.
Pattern descriptions found in the design pattern literature, e.g., (Buschmann,
et al., 1996), or obtained from humans who are familiar with the system
design can be used to supplement these rules. Using these abstract pattern
rules as a guide, one can then examine the source code of several potential
pattern instances to derive the corresponding concrete pattern rules - the
implementation rules that realize abstract pattern rules using data structures,
coding conventions, coding methods and algorithms. Such concrete pattern
rules can be recognized via syntactic cues, such as naming conventions and
programming language keywords, or an analysis of data access and control
flow.

An instantiated pattern description is a specification of the concrete
pattern rules written in Rigi Standard Format (RSF) (Wong, et al., 1994). A
clause in RSF is a tuple (relation, entity1, entity2), which represents the
relationship entity1 relates to entity2.

Mediator Colleague

ConcreteMediator ConcreteColleague1 ConcreteColleague2

Figure 3: Mediator Design Pattern

For example in the Mediator design pattern (see Figure 3), a Mediator
component serves as the communication hub for all the Colleague
components. An abstract pattern rule for this pattern is

“The Mediator component mediates communications between colleague
components.”

2 Guo, Atlee, Kazman

In one of our case studies, the Mediator pattern is implemented in a C++
class where mediator and colleague components are member functions. 1

Based on call sequence information (control flow), the following concrete
pattern rule is identified to realize the above abstract rule where function B is
a Mediator and function A and C are Colleagues.

“Within a class, function A calls function B and function B calls function
C, where functions A, B, and C are distinctive.”

Using RSF, this rule can be formally specified as:

((calls, Class1:Func1, Class2:Func2) AND
(calls, Class2:Func2, Class3:Func3) AND
(not_equal, Class1:Func1, Class2:Func2) AND
(not_equal, Class1:Func1, Class3:Func3) AND
(equal, Class1, Class2) AND
(equal, Class1, Class3))

If an abstract pattern rule can not be mapped to a concrete pattern rule
(e.g., the pattern is defined by complex dynamic attributes), one needs to
assess whether it is a necessary rule for the pattern recognition task in hand.
A necessary abstract pattern rule specifies a distinct characteristic of the
target pattern. A potential pattern instance that is missing such a
characteristic would be disqualified from being an actual pattern instance.
Based on the assessment, one may decide to proceed to the next step of
ARM if the missing abstract pattern rules are not necessary, or to terminate
the recognition task if any necessary abstract pattern rule is missing in the
concrete pattern rules.

The second step is to translate the instantiated pattern description into
pattern queries, written for one of the query and/or analysis tools supported
by Dali. If the concrete pattern rules describe specific types of components
and connectors, then tools based on a relational algebra such as SQL are
suitable because they provide efficient and accurate matching on specific
components and relations (connectors). If, on the other hand, the concrete
pattern rules do not specify types of components or connectors, but rather
allow for a wide range of possible realizations for a pattern, then tools that
support more generalized searching criteria, such as the SAAMTool/IAPR
toolset, should be used. A user can use the SAAMTool to specify a pattern
as a graph and use attributed subgraph isomorphism provided by IAPR to
match patterns.

For example, the Mediator pattern description can be translated into an
SQL query as follows:

1 This use of the mediator design pattern is an adaptation of what is found in (Gamma, et al.,
1994).

A Software Architecture Reconstruction Method 11

SELECT DISTINCT c1.tcaller,
 c1.tcallee as mediator, c2.tcallee
INTO TABLE med
FROM calls c1, calls c2
WHERE c1.tcallee = c2.tcaller AND
 c1.tcaller <> c1.tcallee AND
 c1.tcaller <> c2.tcallee AND
 classname(c1.tcaller)=classname(c1.tcallee)
 AND
 classname(c1.tcaller)=classname(c2.tcallee);

Finally, a concrete pattern recognition plan must be developed to specify
the ‘‘key’’ component of the pattern that should be recognized first and the
order in which the subsequent components should be detected. The queries
for a ‘‘key’’ component should not depend on detection of other pattern
components. The mediator component in the Mediator pattern, for example,
serves as the communication hub between colleague components and thus is
the key to recognizing this pattern.

If part of the target pattern is designed and implemented using other
lower-level patterns, it is necessary to develop concrete pattern recognition
plans for each pattern component and the compound pattern.

3.2 Extracting a Source Model

The second phase of ARM is to extract a source model that represents a
system’s source elements and the relations between them. The output of this
phase is a source model that contains the information that is used for
detecting necessary pattern rules. For example, Table 1 shows some of the
relations that Dali currently extracts from C++ programs (Kazman &
Carriere, 1999). The relations needed for detecting the necessary pattern
rules of the Presentation-Abstraction-Control (PAC) pattern2 (Buschmann, et
al., 1996) in our case studies are denoted by *.

One complication is that patterns are revealed at different levels of
abstraction (e.g., the function level vs. the class level), thus different parts of
the recognition plan may need to be applied to a source model at different
levels of abstraction. Using abstraction techniques, such as the aggregation
technique provided by Dali (Kazman & Carriere, 1999), lower level source
model elements can be grouped together into a higher level element without
loss of information. Thus one can use it to bring the source model to
appropriate levels of abstraction for pattern detection and architecture
analysis.

2 The PAC pattern is described in detail in section 4.1.

2 Guo, Atlee, Kazman

Relation From To
calls * function function
contains file function
defines file class
has_subclass * class class
has_friend class class
defines_fn * class function
has_member * class variable
defines_var * function variable
has_instance * class variable
defines_global * file variable
var_access * function variable

Table 1: Typical Set of Source Relations Extracted by Dali.

3.3 Detecting and Evaluating Pattern Instances

Detecting pattern instances using Dali is an automatic process in which
one uses query tools to execute a recognition plan with respect to a source
model. After running the recognition plan on the source model using the
query tools, the detection output consists of all the pattern instance
candidates. Human evaluation of these candidates is required to compare
them with the designed pattern instances and determine which candidates are
intended, which are false positives and false negatives. A false positive is a
candidate which is not designed as a pattern instance, but is ‘‘detected’’
falsely as an instance. A false negative is a candidate which is designed as
an instance, but is not detected as one.

One can try to improve the results (i.e., remove false positives and
negatives) by modifying either the recognition plan or the source model and
reiterating through ARM method. To improve the pattern recognition plan,
one may choose another component of the pattern as the anchor and reorder
the queries to form a new plan, or refine the query constraints for some of
the pattern elements. If the source model extraction caused the deficiencies,
an analyst needs to try to improve the extraction process by refining the
existing extraction tools to catch the defects and/or incorporating other
extraction tools to enhance the accuracy of source model, as described in
(Kazman & Carriere, 1998).

However, if the source code is incomplete or if the pattern is defined by
complex dynamic attributes, it may be impossible for the recognition
technique to precisely detect all pattern instances. The evaluation process
ends when Dali can detect the maximal set of true pattern instances, and the

A Software Architecture Reconstruction Method 13

human analyst can explain the presence of false positive and the absence of
false negative instances. The output is the set of validated pattern instances.

3.4 Reconstructing and Analyzing the Architecture

In the final step, the analyst uses a visualization tool, such as Rigi, to
align the recognized architectural pattern instances with the designed pattern
instances, organizing the other elements in the source model around the
detected instances. The resultant architecture can be analyzed for deviations
from the designed architecture.

4. CASE STUDIES

In an attempt to evaluate the applicability and generality of ARM, we
applied it to two case studies where the systems were designed and
developed with specific architectural patterns in mind. We obtained both
source code and design documents for the applications from Informatique et
Mathematiques Appliquees de Grenoble (IMAG) Institute in France.

4.1 SupraAnalyse System

The first application is a 25 KLOC system written in C++, called
SupraAnalyse, that analyzes experimental data about human subjects’
behavior when performing tasks using an interactive system (Lischetti &
Coutaz, 1994). SupraAnalyse uses the Presentation-Abstraction-Control
(PAC) pattern in its architectural design and implementation. The PAC
pattern defines a structure for interactive software systems in the form of a
hierarchy of co-operating agents. Every agent is responsible for a specific
aspect of the application’s functionality and consists of three components:
presentation, abstraction, and control. The Presentation component provides
the visible interface; the Abstraction component maintains and accesses the
data model; and the Control component manages intra-agent
communications between the Presentation and Abstraction components and
inter-agent communications with other PAC agents.

2 Guo, Atlee, Kazman

P A
C

P A
C

P A
C

P A
C

P A
C

P A
C

P A
C

P - Presentation Component
C - Control Component
A - Abstraction Component

PAC Pattern Hierarchy PAC Agent Internal Structure

PAC Agent W

PAC Agent Y PAC Agent Z

Presentation X Abstraction X

Control X

Figure 4: PAC Patterns

Based on the instantiation of PAC patterns in SupraAnalyse, we first
developed a recognition plan which consists of a sequence of SQL queries.
Because the internal structure of a PAC agent is designed using the Mediator
pattern, we iterated the recognition plan development phase to fully specify a
sub-plan for recognizing the Mediator pattern. Several extraction tools,
including LSME (Murphy & Notkin, 1996), Imagix (Imagix, -) and SNiFF+
(SNiFF+, -), were used to extract a source model that was stored in an SQL
database.

Before applying the recognition plan, the source model was simplified to
function level and class level abstractions using the aggregation technique.
That is, class information such as methods and member variables, was
aggregated with class definition; and function information, such as local
variable usage, was aggregated with function definitions. PAC pattern
components were then detected at function level abstraction, and PAC agents
were recognized at the class level.

Evaluation of the detection results was performed to identify false
positives and false negatives. For example, the designed PAC agent
‘‘Ciment’’ is identified as a false negative because it can not be aligned to
any detected pattern instance candidates. Subsequent iterations of ARM
were taken to improve the source model extraction and recognition plan. We
ended the iteration process when all false positives and false negatives were

A Software Architecture Reconstruction Method 15

removed or explained by valid causes (such as incompleteness of the source
code for the case where some class implementations were missing). For the
false positive ‘‘Ciment’’ agent, further study of the source code shows that
this designed agent is not implemented.

Finally, we re-constructed the as-implemented architecture (Figure 5) by
aligning detected PAC agents with the intended PAC agents in the designed
architecture, and grouping the unmatched detected agents together (at the
bottom of Figure 5). Architecture conformance was analyzed to identify
deviations of the as-implemented architecture from the documented
architecture.

Figure 5: As-implemented Architecture of SupraAnalyse Using PAC
Patterns

The as-implemented architecture shows that there are relations that
bridge layers of objects and thus violate the design principles of the PAC
pattern. For example, agents ‘‘CSujet’’ and ‘‘CDetaillee’’ communicate
directly with the top agent ‘‘CApp’’ and thus bridge over the
‘‘CDocumentAnalyst’’ agent. A further investigation of the layer bridging in

2 Guo, Atlee, Kazman

the SupraAnalyse system was performed via searching for the Layer-
Bridging pattern in the PAC agent hierarchy. ARM was applied again for
this task. Because a layer may contain any type of component and because
layer bridging can happen in several types of relations, an SQL pattern
recognition plan was deemed inappropriate, since it would have involved
listing all possible combinations of component and relation types. Instead
we used SAAMTool to construct the Layer-Bridging pattern query as a
graph. Nodes in the graph represent any type of component and edges
represent any type of connector. The IAPR tool was then used to process the
graphical query on a source model graph---the query posed as a subgraph
isomorphism problem (Kazman & Burth, 1998). Three instances of Layer-
Bridging pattern were detected. These instances represent problematic areas
where the implementation of SupraAnalyse has drifted from the design,
when we asked the authors of the system about the layer bridging, they said
they were unaware of the presence of the design violations.

4.2 MATIS System

The second case study was conducted on a larger system (77 KLOC)
called Multimodal Airline Travel Information System (MATIS): an
interactive system which allows the end-user to obtain information about
flight schedules using speech, mouse, keyboard, or a combination of these
interfaces (Nigay & Coutaz, 1991), (Nigay & Coutaz, 1993). It was
implemented in Objective C using the NeXTSTEP Application Development
Kit. The primary architectural pattern, the PAC-Amodeus model (see Figure
6) consists of 5 components organized symmetrically around a key
component: the Dialogue Controller (DC), which itself is designed using
the PAC pattern. The Functional Core (FC) maintains domain data and
performs domain-related functions. The Interface with the Functional Core
(IFC) defines a set of interface objects to the Dialogue Controller and maps
these interface objects into the formalism of the Functional Core.

The Low Level Interaction Component (LLIC) contains the toolkits that
implement the physical interface between the user and the application. The
Presentation Techniques Component (PTC) is a mediator between the
Dialogue Controller and the Low Level Interaction Component, and controls
the perceivable behavior of the application via input and output commands.
The key component Dialogue Controller is responsible for task level
sequencing, by creating a thread for each request received from PTC and
linking the appropriate IFC objects to perform the request. The IFC and
PTC components are abstraction layers to enhance portability.

A Software Architecture Reconstruction Method 17

Dialogue Controller

Interface
Functional Core

Presentation Techniques
Component

Functional Core Low Level Interaction
Component

Figure 6: PAC-Amodeus Pattern

Realizing that the DC component is the easiest to recognize as a PAC
pattern instance, we formed our recognition plan as follows: first detect the
PAC pattern instances and use these to identify the DC; second detect other
components and hence the entire PAC-Amodeus pattern using the DC as the
‘‘anchor’’ of the pattern. The PAC pattern queries developed for
SupraAnalyse were reused because they were applied to the elements and
relations stored in the source model repository and therefore were not
dependent on the particular language of implementation. Since the source
code contains Objective C files and C++ files, language-specific extractors
were developed and used to extract information from the system. A source
model was created by combining the extraction results.

Running the PAC pattern queries, we detected 8 PAC agents. Evaluating
these PAC agents against the design document shows that the DC is
composed of 4 PAC agents; another 4 recognized PAC agents belong to
other PAC-Amodeus components. The detected PAC agent information was
then added to the repository to enrich the source model. Using the DC as the
starting point, other PAC-Amodeus components were subsequently detected
by executing the rest of the recognition plan.

2 Guo, Atlee, Kazman

Figure 7: Recognized PAC-Amodeus Pattern in MATIS. Solid lines
represent calls relations and shaded lines represent variable access relations

After evaluating the detection results, we reconstructed the implemented
architecture of MATIS, shown in Figure 7, using the recognized PAC-
Amodeus instance. The PAC-Amodeus structure is evident, but there are
several anomalies that need to be investigated. For example, the
implemented architecture shows that the FC component, which was designed
as an SQL database to process requests sent from the IFC, is missing.
Investigation of the source code confirms that these requests are handled by
a function in IFC that simulates the database processing by returning pre-
defined values to certain requests.

A Software Architecture Reconstruction Method 19

As another example, Figure 7 shows that the LLIC calls the DC directly,
bridging over the PTC. This clearly violates the design of the PTC
component as a layer between the DC and LLIC.

5. LESSONS LEARNED

These case studies both used patterns as the primary technique for
reconstructing software architectures. The studies demonstrate the
usefulness of ARM in assessing, planning and executing pattern recognition
tasks. A recognition plan can be layed out to recognize a pattern by a)
recognizing nested lower-level patterns first; b) recognizing the pattern’s key
element; and c) recognizing other elements of the pattern and hence the
entire pattern. The pattern matching process is facilitated by using
automated query and analysis tools. If an iteration of ARM can not be
completed because the exit conditions for a step can not be met, proper
assessment of the task should be conducted to identify the causes of
detection deficiencies and to provide guidelines for future efforts to improve
the pattern detection.

This process is efficient both in terms of the analyst’s time and in terms
of the amount of processing required to do pattern recognition. Consider, for
example, the tools presented here: SQL queries to match patterns are quite
efficient (as long as appropriate database indices have been built in advance
on the tables of interest), and IAPR pattern-matching, while in principle NP-
hard, can be rendered tractable by the judicious use of features that limit the
search space, as reported in (Kazman & Burth, 1998).

The time spent in learning and using ARM can be amortized over several
architecture reconstruction tasks performed on similar systems (written in
the same language and/or using the same design patterns). Queries
developed from previous applications of ARM may be reused in executing
one or more pattern recognition tasks, as we showed by reusing the PAC
pattern queries.

The case studies also provide evidence that static analysis of source code
is not always sufficient for pattern recognition. Patterns that are implemented
using only static mechanisms can be recognized from a source model
containing static source artifacts. Patterns whose implementation involves
dynamic mechanisms will require extraction of dynamic information, such
as process spawning, instances of interprocess communication (IPC), and
run-time procedure invocation. In the MATIS implementation, for example,
object variables are dynamically typed. That is, an object variable is declared
to be a generic type, and assigned specific class types at run time. The best
way to solve this problem is to extract the object-type information at run

2 Guo, Atlee, Kazman

time. However, due to the lack of access to the NeXT Application
Development Kit environment (including its class libraries), we could not
execute the system or use dynamic analysis tools to extract the missing
object-type information. Fortunately, the object variables were never
assigned to more than one type in MATIS. Therefore, we were able to use
the static object creation and assignment information to resolve the type of
each object. This suggests that extracting dynamic information of a system at
run time will sometimes be necessary even in reconstructing a static
architecture.

6. CONCLUSIONS

Using design patterns in software design has become a widely used
technique for achieving a high quality architecture. Reconstructing
architectures of systems that were designed and developed with design
patterns has traditionally been approached through manual source code
inspections (Schull, et al., 1996). In this paper, we presented ARM - a semi-
automatic analysis method - to reconstruct architectures based on recognized
instances of design patterns. ARM is an iterative and interpretive process; a
human is an integral part of the loop, to evaluate the results and determine
what patterns to apply in the subsequent iteration. Two aspects differentiate
ARM from other approaches for pattern recognition. One, ARM clearly
distinguishes abstract pattern description from concrete pattern instantiation
and uses the latter to guide pattern detection. Two, using automated tools to
perform pattern matching makes the pattern recognition process less error-
prone, compared to manual inspections. Upon the reconstruction of the
system’s architecture, we can analyze conformance of the software to the
documented design patterns.

To further validate the usefulness and applicability of ARM, more case
studies need to be conducted on systems in various application domains.
Another area of future work is to incorporate approximate pattern matching
techniques into ARM. The associated metrics to measure the dissimilarity
between the pattern query and the actual pattern instance need to be further
studied and established.

Finally, to make ARM still more cost-effective, a pattern knowledge base
could be built to provide recognition plans tailored for common
instantiations of a given pattern.

A Software Architecture Reconstruction Method 21

REFERENCES

Bass, L., Clements, P., Kazman, R. (1998), Software Architecture in Practice, Addison-
Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996), Pattern-Oriented
Software Architecture, Wiley.

Chen, Y., Nishimoto, M., Ramamoorthy, C. (1990), The C Information Abstraction System,
IEEE Transactions on Software Engineering, 3, 325-334.

Finnigan, P., Holt, R. C., et al. (1997), The Software Bookshelf, IBM Systems Journal, 36(4),
564-593.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994), Design Patterns, Addison Wesley.
Imagix Corporation, http://www.imagix.com
Portable Bookshelf, http://turing.toronto.edu/~holt/pbs
Johnson, J. (1993), Identifying Redundancy in Source Code Using Fingerprints, Proceedings

of CASCON ’93, 171-183.
Kazman, R., Abowd, G., Bass, L., Webb, M. (1994), SAAM: A Method for Analyzing the

Properties of Software Architectures, Proceedings of the 16th International Conference on
Software Engineering, 81-90, IEEE Computer Society Press.

Kazman, R. (1996), Tool Support for Architecture Analysis and Design, Joint Proceedings of
the SIGSOFT ‘96 Workshops (ISAW-2), 94-97, ACM.

Kazman, R., Burth, M. (1998), Assessing Architectural Complexity, Proceedings of 2nd
Euromicro Working Conference on Software Maintenance And Reengineering (CSMR),
104-112, IEEE Computer Society Press.

Kazman, R., Carrière, S. J. (1998), View Extraction and View Fusion in Architectural
Understanding, Fifth International Conference on Software Reuse, 290-299.

Kazman, R., Carrière, S. J. (1999), Playing Detective: Reconstructing Software Architecture
from Available Evidence, Automated Software Engineering, 6:2, April 1999, to appear.

Kontogiannis, K., DeMori, R., Bernstein, M., Merlo, E. (1994), Localization of Design
Concepts in Legacy Systems, Proceedings of International Conference on Software
maintenance ’94, 414-423.

Lischetti, N., Coutaz, J. (1994), Supraanalyse de supratel. Technical report, Informatique et
Mathematiques Appliquees de Grenoble (IMAG).

Murphy, G., Notkin, D. (1996), Lightweight Lexical Source Model Extraction, ACM
Transactions on Software Engineering and Methodology, 5(3), 262-292.

Murphy, G., Notkin, D., Sullivan, K. (1995), Software Reflexion Models: Bridging the Gap
Between Source and High-Level Models. Proceedings of the Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 18-28, ACM Press.

Nigay, L., Coutaz, J. (1993), A Design Space for Multimodal Systems: Concurrent Processing
and Data Fusion, Proceedings of InterCHI ‘93, ACM Press.

Nigay, L., Coutaz, J. (1993), Building User Interfaces: Organizing Software Agents,
Proceedings of ESPRIT ‘91, 707-719.

Reasoning Inc., http://www.reasoning.com
SNiFF+, http://www.seed.arch.adelaide.edu.au/docs/sniff_online
Schull, F., Melo, W., Basili, V. (1996), An Inductive Method for Discovering Design Patterns
from Object-Oriented Software Systems, UMIACS-TR-96-10, University of Maryland.
Storey, M., Muller, H., Wong, K. (1996) Manipulating and Documenting Software Structures,

Software Visualization, World Scientific.
UIMS Tool Developers Workshop (1992), A Metamodel for the Runtime Architecture of an

Interactive System, SIGCHI Bulletin, 24(1), 32-37.

2 Guo, Atlee, Kazman

Wong, K., Tilley, S., Muller, H., Storey, M. (1994), Programmable Reverse Engineering,
International Journal of Software Engineering and Knowledge Engineering, 4(4), 501-
520.

Woods, S. G., Yang, Q. (1995), Program Understanding as Constraint Satisfaction,
Proceedings of the IEEE Seventh International Workshop on Computer-Aided Software
Engineering (CASE-95), IEEE Computer Society Press.

Yeh, A., Harris, D., Chase, M. (1997), Manipulating Recovered Software Architecture Views,
Proceedings of ICSE 19, 184-194, ACM Press.

