
A NOTE ON THE SUM OF DIFFERENCES CHOICE FUNCTION

FOR FUZZY PREFERENCE RELATIONS

DENIS BOUYSSOU

Abstract

This note deals with the problem of choice functions based on fuzzy preference relations. We study

a choice function based on the sum of the differences and show that it is the only one to satisfy a

system of three independent properties.
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I- Introduction

As argued in [1], there are many situations in which a choice is to be made from a set of

alternatives on the basis of fuzzy preferences. How should one make such a choice ?

A possible way to analyze this problem is to list a number of rationality requirements and look for a

method of choice that would satisfy them. This is the route followed in [1] where nine possible

methods are presented and analyzed. However, as noted in this paper, the very definition of rational

choice based on fuzzy preferences is far from being obvious.

Instead of asking what are the properties of a method of choice, we may try to find a number of

properties that this method would be the only one to satisfy, i.e., to characterize this method. Such a

characterization would hopefully allow a better understanding of the method and offer a sound

basis to compare it with other methods. The purpose of this note is to illustrate this alternative route

by presenting a characterization of a method of choice based on the sum of differences. This

method have been presented and analyzed in [1]. The results presented here heavily rests on [2] in

which a ranking method based on sum of differences is characterized. We formalize our problem in

the next section and present our results in section 3.

II- Notations and Definitions

Let A be a finite set of objects called "alternatives" with at least two elements, P(A) being the set of

all nonempty subsets of A. We define a fuzzy (binary) relation on a set A as a function R

associating with each ordered pair of alternatives (a, b) ∈  A2 with a ≠ b an element of [0, 1]. From a

technical point of view, the condition a ≠ b could be omitted from this definition at the cost of

minor modifications in the sequel. However, since it is clear that the values R(a, a) are of little help

in order to find "good" alternatives, we shall use this definition throughout this note. We define



R(A) as the set of all fuzzy relations on A. It should be noted that, contrary to what is done in [1],

we do not restrict our attention here to connected fuzzy relations. Fuzzy preferences often arise

from poor and conflicting information concerning the alternatives and it seems reasonable not to

exclude fuzzy relations for which R(a, b) + R(b, a) < 1 for some a, b ∈  A.

A (preference-based) Choice Function (CF) on A is a function C : P(A) × R(A) → P(A), such that

C(B, R) ⊆  B, for all R ∈  R(A) and all B ∈  P(A),

i.e., a function associating with each nonempty subset B of A and each fuzzy relation R on A a

nonempty choice set C(B, R) included in B which we may interpret as the set of the "best"

alternatives in B given the relation R.

A simple way to obtain a CF is to associate a score W(a, B, R) with each alternative a ∈  B based on

the behavior of R on B and to include in the choice set C(B, R) the alternatives with the highest

score, i.e.

C(B, R) = {b ∈  B : W(b, B, R) ≥ W(a, B, R) for all a ∈  B} (1)

All the CF analyzed in [1] are of this type. In the next section, we characterize the CF based on the

following "sum of differences" score:

SD(a, B, R) = ( ( , ) ( , ))
\{ }

R a c R c a
c B a

−
∈
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We shall refer to the CF based on this score as the SD CF. Apart from its simplicity and its intuitive

appeal, a reason to study the SD CF lies in its long history in the literature on choice functions.

When R is crisp, i.e. when R(a, b) can only take the value 0 or 1, the SD CF amounts to the well-

known Copeland CF (see [3] or  [4]). It has been characterized in [6], extending previous results in

[7], when R is a crisp and connected relation. When R is fuzzy the SD CF has been analyzed at

length in [1]. Furthermore, if R(a, b) is interpreted as a percentage of voters considering that a is

preferred or indifferent to b, this CF amounts to the well-known Borda rule (see [3], [5], [8]).

III- Results

A CF is said to be neutral if for all σ ∈  G(A), all R ∈  R(A), all B ∈  P(A):

[a ∈  C(B, R) ⇒  σ(a) ∈  C(σ(B), Rσ)]

where Γ(A) is the set of all permutations on A, Rσ is such that Rσ(σ(a), σ(b)) = R(a, b) for all a, b

∈ A and σ(B) = {σ(a) : a ∈  B}.

Neutrality expresses the fact that a CF does not discriminate between alternatives just because of

their labels. It is a classical property in this context (see, e.g., [6] or [7]). It is obvious that the SD

CF is neutral.



A CF is said to be monotonic if an alternative in the choice set remains in the choice set after its

position has been improved vis-à-vis some other alternative. More formally, a CF is monotonic if

for all R ∈  R(A) and all B ∈  P(A),

[a ∈  C(B, R) ⇒  a ∈  C(B, R′)]

where R′ is identical to R except that R(a, c) < R′(a, c) or R(c, a) > R′(c, a) for some c ∈ B\{a}.

A CF is said to be strongly monotonic if for all R ∈  R(A) and all B ∈  P(A),

[a ∈  C(B, R)  ⇒  {a} = C(B, R′)]

where R′ is defined as previously. Though strong monotonicty is a very strong property, it is

obvious that the SD CF is strongly monotonic and, thus, monotonic.

In order to introduce our last property, let us recall some well-known definitions used in Graph

Theory. A digraph consists of a set of nodes X and a set of arcs U ⊆  X2. We say that x is the initial

extremity and y is the final extremity of the arc u = (x, y) ∈  U.

A cycle of length q in a digraph is an ordered collection of arcs (u1, u2, ..., uq) such that for i = 1, 2,

..., q, one of the extremities of ui is an extremity of ui-1 and the other is an extremity of ui+1 (u0 being

interpreted as uq and uq+1 as u1). A cycle is elementary if and only if each node being the extremity

of one arc in the cycle is the extremity of exactly two arcs in the cycle. A cycle is said to be in Y ⊆

X if all the extremities of the arcs in the cycle are in Y. An arc ui in a cycle is forward if its

common extremity with ui–1 is its initial extremity and backward otherwise. A cycle containing

only forward arcs is called a circuit.

Let us consider a digraph, its set of nodes being A and its set of arc being U = {(a, b) : a, b ∈  A and

a ≠ b}. It is not difficult to see that there is a one-to-one correspondence between fuzzy relations on

A and valuations between 0 and 1 of the arcs of this graph. In the sequel, we identify a fuzzy

relation R with its associated valued digraph in which the valuation vR(u) of the arc u = (a, b) is

R(a, b).

Consider an elementary cycle in the graph associated with a fuzzy relation. A transformation on an

elementary cycle consists in adding the same positive or negative quantity to the valuation of the

forward arcs in the cycle and subtracting it from the valuation of the backward arcs. A

transformation on an elementary cycle is admissible if all the transformed valuations are still

between 0 and 1. When we apply an admissible transformation on an elementary cycle in B ⊆  A to

the graph associated with a fuzzy relation R, we obtain another fuzzy relation R′. Consider a fuzzy

relation R″ such that R″(a, b) = R′(a, b) for all a, b ∈  B with a ≠ b. In such a situation, we say that

R″ on B can be obtained from R on B through an admissible transformation on an elementary cycle



in B. Admissible transformations on elementary cycles are closely related to the SD scores of the

alternatives and we have:

Lemma 1. For all R, R′ ∈  R(A) and all B ∈  P(A),

[SD(a, B, R) = SD(a, B, R′) for all a ∈  B] ⇔ [R′ on B can be obtained from R on B through a finite

number of admissible transformations on elementary cycles in B].

Proof. The ⇐  part is obvious. In order to prove the ⇒  part, suppose that for some R, R′ ∈  R(A) and

some B ∈  P(A), SD(c, B, R) = SD(c, B, R′) for all c ∈  B.

If R = R′ on B, the lemma is proved.

If R ≠ R′ on B then R(a, b) ≠ R(a, b) for some a, b ∈  B with a ≠ b and we suppose for definiteness

that R(a, b) > R′(a, b) (the other case being symmetric).

We claim that either R(c, a) > R′(c, a) or R(a, d) < R′(a, d) for some c, d ∈  B\{a}, for otherwise

R(c, a) ≤ R′(c, a), R(a, d) ≥ R′(a, d) for all c, d ∈   B\{a, b}, R(a, b) > R′(a, b) and  R(b, a) ≤ R′(b, a)

would contradict SD(a, B, R) = SD(a, B, R′). In either case, we can repeat the same argument and

therefore, since the number of alternatives in B is finite, this process will lead to an elementary

cycle in B in the graph associated with R. Let ∆ be the minimum over the arcs in the cycle of |R(x,

y) – R′(x, y)|. It is easily checked that adding ∆ to the arcs in the cycle such that R(x, y) < R′(x, y)

and subtracting it from the arcs in the cycle such that R(x, y) > R′(x, y) is an admissible

transformation on the cycle. We thus obtain a fuzzy relation R1. If R1 = R on B, the lemma is

proved. If not, we can repeat the same argument starting with R1 instead of R.

Because B is finite, there is only a finite number of arcs in B such that R(x, y) ≠ R′(x, y). Since, at

each step the number of arcs in B on which the current relation and R are different is decreased by

at least one unit, this process will thus terminate after a finite number of steps, which completes the

proof of lemma 1. ■

The following two lemmas show that any admissible transformation on an elementary cycle can be

performed through a finite number of admissible transformations on elementary circuits of length 2

or 3.

Lemma 2. For all R, R ∈  R(A) and all B ∈  P(A), if [R on B can be obtained from R on B through

an admissible transformation on an elementary cycle in B] then [R on B can be obtained from R on

B through a finite number of admissible transformations on elementary circuits in B].

Proof. Consider an elementary cycle in B in the graph associated with R and suppose that R′ on B

can be obtained from R on B by adding δ to the forward arcs of the cycle and subtracting δ from the

backward arcs. We respectively note UF and UB the set of forward and backward arcs in the cycle.

If δ = 0, there is nothing to prove. Suppose that δ > 0 (the other case being symmetric).



Define αmax  = max ( , )
( , )a b UB

Rv b a
∈

.

If αmax ≤ 1 – δ then adding δ on the elementary circuit (all the circuits that we shall consider in the

proof are obviously in B) obtained by considering the arcs in UF and the set {(b, a) ∈  U : (a, b) ∈

UB}, is an admissible transformation. Now, subtracting δ from all the 2-circuits of the type ((a, b),

(b, a)) with (a, b) ∈  UB are admissible transformations which lead to R′ on B.

If αmax > 1 – δ, define UP = {(a, b) ∈  UB : vR(b, a) > 1 – δ}. For all (a, b) ∈  UP, we have vR(a,

b) ≥ δ and vR(b, a) > 0. Since δ > 0, we can find a sufficiently large integer n such that subtracting

δ/n from all the 2-circuits ((a, b), (b, a)) with (a, b) ∈  UP are admissible transformations. Then

adding δ/n on the elementary circuit obtained by considering the arcs in UF and the arcs (b, a) if (a,

b) is in UB, is an admissible transformation. It is easily seen that it is possible to repeat these

operations n times. We thus obtain R′ on B after subtracting δ from the 2-circuits B ((a, b), (b, a))

with (a, b) ∈  UB\UP, all these transformations being admissible by construction. This completes

the proof of lemma 2. ■

Lemma 3. For all R, R′ ∈  R(A) and all B ∈  P(A), if [R′ on B can be obtained from R on B through

an admissible transformation on an elementary circuit in B] then [R′ on B can be obtained from R

on B through a finite number of admissible transformations on elementary circuits in B of length 2

or 3].

Proof. The proof is by induction on the length q of the elementary circuit in B (which is necessarily

finite). If q = 2 or 3, then the lemma is proved. Suppose now that the lemma is true for all q ≤ k

with k ≥ 3 and let us show that it is true for q = k+1. Consider an elementary circuit in B of length

k+1:

u1 = (a1, a2), u2 = (a2, a3), ..., uk = (ak, ak+1), uk+1 = (ak+1, a1), and suppose that R′ on B can

been obtained from R on B adding δ on the arcs of that circuit.

If δ = 0, there is nothing to prove.

Suppose that δ > 0 (the proof being similar for δ < 0). We define r = (a1, ak) and s = (ak, a1).

If vR(r) ≤ 1 – δ and vR(s) ≤ 1 – δ, then we have two elementary circuits (all the circuits that we

shall consider in the proof are obviously in B) (u1, u2, ..., uk–1, s) and  (uk, uk+1, r) of respective

length k and 3 on which adding δ is an admissible transformation. Now, subtracting δ from the 2-

circuit (r, s) is an admissible transformation which leads to R′ on B.



If vR(r) > 1 – δ and vR(s) ≤ 1 – δ (the case vR(r) ≤ 1 – δ and vR(s) > 1 – δ being symmetric), then

adding δ on (u1, u2, ..., uk–1, s) is an admissible transformation. Since now the valuations of r and

s are strictly positive, we can find a sufficiently large integer n so that subtracting δ/n from the 2-

circuit (r, s) is an admissible transformation. Adding δ/n on (uk, uk+1, r) is now an admissible

transformation. Repeating n times these operations leads to R′ on B.

If vR(r) > 1 – δ and vR(s) > 1 – δ, both vR(s) and vR(r) are strictly positive and we can find a

sufficiently large integer n so that subtracting δ/n from the 2-circuit (r, s) is an admissible

transformation. Adding δ/n on (uk, uk+1, r) and on (u1, u2, ..., uk–1, s) are now admissible

transformations. Repeating n times these operations leads to R′ on B. This completes the proof of

lemma 3. ■

Combining the preceding three lemmas suggests the following property:

A CF is independent of circuits if for all R, R′ ∈  R(A) and all B ∈  P(A),

[R′ on B can be obtained from R on B through an admissible transformation on an elementary

circuit in B of length 2 or 3] ⇒   C(B, R) = C(B, R′).

This property has a straightforward interpretation. Independence of 2-circuits implies that the

choice is only influenced by the differences R(a, b) – R(b, a). Independence of 3-circuits implies

that intransitivities of the kind R(a, b) > 0, R(b, c) > 0 and R(c, a) > 0 can be "wiped out"

subtracting Min(R(a, b) ; R(b, c) ; R(c, a)) from the 3-circuit ((a, b) ; (b, c) ; (c, a)). Contrary to

neutrality and monotonicity, this property makes an explicit use of the cardinal properties of the

numbers R(a, b).

Given two Choice functions C and C′ on A, we say that C is smaller than C′ if, for all R ∈ R(A)

and all B ∈  P(A), C(B, R) ⊆  C′(B, R).

We are now in position to state our main result:

Theorem

•  The SD CF is the smallest CF that is neutral, monotonic and independent of circuits;

•  The SD CF is the only CF that is neutral, strongly monotonic and independent of circuits.

The following lemma will be helpful in the proof of the theorem:

Lemma 4. If a Choice Function C is monotonic and independent of circuits then, for all R ∈ R(A)

and all B ∈  P(A),

[SD(a, B, R) ≥ SD(b, B, R) and b ∈  C(B, R), for some a, b ∈  B] ⇒

[b ∈  C(B, R′) for some fuzzy relation R′ on A such that

SD(b, B, R′) = SD(a, B, R)



SD(a, B, R′) = SD(b, B, R) and

SD(c, B, R′) = SD(c, B, R) for all c ∈ B\{a, b}].

Proof of lemma 4.

If SD(a, B, R) = SD(b, B, R), taking R′ = R establishes the thesis.

Suppose now that δ = SD(a, B, R) – SD(b, B, R) > 0.

If δ ≤ R(a, b) + (1 – R(b, a)), taking R′ identical to R except that R′(a, b) < R(a, b) and/or R′(b, a) >

R(b, a) and applying monotonicity, establishes the thesis.

If  δ > R(a, b) + (1 – R(b, a)), consider the fuzzy relation R1 identical to R except that  R1(a, b) = 0

and R1(b, a) = 1. Since b ∈  C(B, R), monotonicity implies that b ∈  C(B, R1). We obviously have

SD(c, B, R) = SD(c, B, R1) for all c ∈  B\{a, b}, whereas SD(a, B, R1) = SD(a, B, R) – R(a, b) and

SD(b, B, R1) = SD(b, B, R) + 1 – R(a, b).

Let  δ1 = SD(a, B, R1) – SD(b, B, R1).

We define the following sets of alternatives:

B1 = {c ∈  B \ {a,b} : R1(a, c) > R1(b, c)},

B2 = {d ∈  B \ {a,b} : R1(d, b) < R1(d, a)}.

Since δ1 > 0, it is obvious that at least one of B1 and B2 is nonempty. Suppose that B1 is nonempty

and let c ∈  B1. Consider the elementary cycle in B [(a, b), (b, c), (a, c)] in the graph associated with

R1 in which (a, b) is a forward arc. It is easy to see that performing a transformation of ε such that

0 < ε ≤ R(a, c) – R(b, c), is an admissible transformation on that cycle. After such an admissible

transformation, we obtain a relation R′1. Given lemmas 1, 2 and 3, we know that C(B, R1) = C(B,

R′1) by independence of circuits so that b ∈  C(B, R′1).

Consider now a relation R2 identical to R′1 except that R2(a, b) = 0. Monotonicity implies that  b ∈

C(B, R2) whereas we obviously have SD(c, B, R1) = SD(c, B, R2) for all c ∈  B\{a, b}, SD(a, B,

R2) = SD(a, B, R1) – ε and SD(b, B, R2) = SD(b, B, R1) + ε. It is easy to see that a similar process

can be conducted by taking an alternative d in B2 and performing a transformation of ε with 0 < ε ≤

R(d, b) – R(d, a) on the elementary cycle [(a, b), (d, b), (d, a)].

Since it is obvious that:

( ( , ) ( , )) ( ( , ) ( , )) ,R a c R b c R d b R d a
c B d B

1 1
1

1 1
2

1− + − >
∈ ∈
∑ ∑ δ



repeating these operations, starting either with an element of B1 or of B2, with suitably chosen ε

will lead to the desired relation in a finite number of steps.

This completes the proof of lemma 4. ■

Proof of the Theorem.

Part 1.

In order to prove the first part of the theorem, all we have to show is that if a Choice Function C is

neutral, monotonic and independent of circuits then, for all R ∈  R(A), all B ∈  P(A) and all a, b ∈

B:

SD(a, B, R) ≥ SD(b, B, R) and b ∈  C(B, R) ⇒  a ∈  C(B, R) (3)

Suppose that SD(a, B, R) ≥ SD(b, B, R) and b ∈  C(B, R). Define θ as the permutation on A

transposing a and b so that θ(B) = B. Consider now the relation R′ as defined in lemma 4. We have

b ∈  C(B, R′). We also have SD(c, B, Rθ) = SD(c, B, R′) for all c ∈ B. Given lemmas 1, 2 and 3,

repeated applications of independence of circuits lead to C(B, Rθ) = C(B, R′). Thus, b ∈ C(B, Rθ)

and neutrality implies a ∈  C(B, R), which completes the proof of the first part of the theorem.

Part 2.

In order to prove the second part of the theorem, it suffices to observe that, if monotonicity is

replaced by strong monotonicity the previous demonstration and that of lemma 4 shows that:

SD(a, B, R) > SD(b, B, R) and b ∈  C(B, R),

is impossible, which completes the proof. ■

It is worth observing that the SD CF is not the only CF being neutral, monotonic and independent

of circuit. For instance, this is also the case for the CF defined by:

C(B, R) = {b ∈  B : SD(b, B, R) + ε ≥ SD(a, B, R) for all a ∈  B}, with ε > 0.

Let us also notice that the three properties characterizing the SD CF are independent as shown by

the following examples:

i- Let F : A  → {1, 2, ..., |A|} be a one-to-one function.

Define a CF by (1) with W(a, B, R) = SD(a, B, R)/F(a).

This CF is strongly monotonic and independent of circuits but not neutral.

ii- Define a CF by (1) with W(a, B, R) = –SD(a, B, R).

This CF is neutral and independent of circuits but not strongly monotonic.

iii- Define a CF by (1) with:

W(a, B, R) = ( ( , ) ( , ) ),
\{ }

R a c R c a
c B a

2 2

∈
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This CF is neutral and strongly monotonic but not independent of circuits.



Let us finally observe that obvious modifications of the three properties used in this note allow to

characterize the SF CF and the SA CF introduced in [1] that are respectively based on the following

two scores SF a B R R a c
c B a

( , , ) ( , )
\{ }

=
∈
∑  and SA a B R R c a

c B a
( , , ) ( , )

\{ }
= −

∈
∑
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