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Abstract The Iowa gambling task (IGT) has been used in
numerous studies, often to examine decision-making perfor-
mance in different clinical populations. Reinforcement
learning (RL) models such as the expectancy valence (EV)
model have often been used to characterize choice behavior
in this work, and accordingly, parameter differences from
these models have been used to examine differences in
decision-making processes between different populations.
These RL models assume a strategy whereby participants
incrementally update the expected rewards for each option
and probabilistically select options with higher expected
rewards. Here we show that a formal model that assumes a
win-stay/lose-shift (WSLS) strategy—which is sensitive on-
ly to the outcome of the previous choice—provides the best
fit to IGT data from about half of our sample of healthy
young adults, and that a prospect valence learning (PVL)
model that utilizes a decay reinforcement learning rule pro-
vides the best fit to the other half of the data. Further
analyses suggested that the better fits of the WSLS model
to many participants’ data were not due to an enhanced
ability of the WSLS model to mimic the RL strategy as-
sumed by the PVL and EV models. These results suggest
that WSLS is a common strategy in the IGT and that both
heuristic-based and RL-based models should be used to

inform decision-making behavior in the IGT and similar
choice tasks.
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The Iowa gambling task (IGT) has been used in numerous
studies to examine decision making, particularly in clinical
populations with neuropsychological abnormalities
(Bechara, Damasio, Damasio, & Anderson, 1994). The
IGT is useful in assessing participants’ sensitivity to poten-
tial gains and losses in the environment and their ability to
make decisions under uncertainty. The task requires partic-
ipants to make repeated selections from four decks of cards.
Each deck often gives a positive gain in points on each draw,
but losses can also be given. Two decks (A and B) are
disadvantageous because the cumulative amount lost will
exceed the amount gained, and two decks (C and D) are
advantageous because the cumulative amount gained will
exceed the amount lost (see Table 1). However, the disad-
vantageous decks always give a higher gain (100 points)
than the advantageous decks (50 points), so that participants
must learn to avoid the disadvantageous decks because they
lead to larger losses, and a poorer cumulative payoff, despite
consistently yielding larger gains.

One of the most interesting developments has been the
emergence of reinforcement learning (RL) models to quanti-
tatively characterize human behavior in this task (Busemeyer
& Stout, 2002; Hochman, Yechiam, & Bechara, 2010;
Yechiam, Busemeyer, Stout, & Bechara, 2005). The expec-
tancy valence (EV) model is the predominant RL model that
has been fit to IGT data. The EV model has been very useful
in examining how different clinical or neuropsychological
disorders affect different decision-making processes. For ex-
ample, Yechiam et al. used the model to identify groups that
attend more to gains than to losses (cocaine users, cannabis
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users, and seniors), attend more to losses than to gains
(Asperger’s patients), or attend to only the most recent out-
comes (ventromedial prefrontal cortex patients). More recent
work has found that another RL model, the prospect valence
learning (PVL) model, can provide an even better fit to IGT
data than the EV model does, although this model has been
used much less extensively (Ahn, Busemeyer, Wagenmakers,
& Stout, 2008; Ahn, Krawitz, Kim, Busemeyer, & Brown,
2011). The EV, PVL, and other RL models have been a
dominant class of models used to characterize decision-
making behavior in numerous studies (Gureckis & Love,
2009a, b; Worthy, Maddox, & Markman, 2007). The basic
assumptions underpinning these RL models is that the out-
comes of past decisions are integrated to determine expected
reward values for each option, and that decision-makers select
options with higher expected rewards with greater probability
than they select options with lower expected rewards.

However, recent work from our labs has shown that a
model that assumes a simple win-stay/lose-shift (WSLS) strat-
egy can often characterize behavior in repeated choice
decision-making tasks better than do traditional RL models
(Otto, Taylor, & Markman, 2011; Worthy & Maddox, 2012;
Worthy, Otto, & Maddox, 2012). The WSLS strategy is fairly
straightforward: Participants “stay” by picking the same op-
tion on the next trial if they are rewarded (a “win” trial) or
switch by picking a different option on the next trial if they are
not rewarded (a “loss” trial). In the IGT, Cassotti, Houde, and
Moutier (2011) recently attempted to identify WSLS behavior
by defining any net outcome on a trial that is greater than or
equal to zero as a win, and any net outcome that is less than
zero as a loss, allowing the investigators to examine response-
switching behavior as a function of net gains versus losses.

However, to our knowledge, a formal WSLS model has not
been fit to IGT data. The WSLS assumes a different strategy
than do RL models in decision-making tasks like the IGT
(Worthy et al., 2012), and the prevalence of each type of
strategy is an important empirical question that we address
in the present work. In the next section, we formally describe
the EV, PVL, and WSLS models, as well as our model
comparison procedure. We then present the behavioral and
modeling results of an experiment that we conducted with
healthy young adults who performed the original version of
the IGT (Bechara et al., 1994).

EV, PVL, and WSLS models

The EV model assumes that decision-makers maintain an
“expectancy” for each deck that represents that option’s
expected reward value. After a choice is made and feedback
[i.e., points gained—win(t)—and lost—loss(t)] is presented,
the utility u(t) for the choice made on trial t is given by

uðtÞ ¼ w � winðtÞ � 1� wð Þ � lossðtÞ: ð1Þ
The model has a total of three free parameters. One free

parameter represents the degree to which participants weight
gains relative to losses (0 ≤ w ≤ 1). Values greater than .50
indicate a greater weight for gains than for losses. The utility
of each choice [u(t)] is then used to update the expectancy
for the chosen option on trial t using a delta reinforcement
learning rule (Yechiam & Busemeyer, 2005):

EjðtÞ ¼ Ej t � 1ð Þ þ f � uðtÞ � Ej t � 1ð Þ� �
: ð2Þ

The recency parameter (0 ≤ ϕ ≤ 1) describes the weight
given to recent outcomes in updating expectancies, with
higher values indicating a greater weight to recent out-
comes. The predicted probability that deck j will be chosen
on trial t, P[Gj(t)], is calculated using a Softmax rule (Sutton
& Barto, 1998):

P GjðtÞ
� � ¼ eθðtÞ�

EjðtÞ
P

j¼1
4eθðtÞ�EjðtÞ

: ð3Þ

Consistency in choices is determined by the following
equation:

θðtÞ ¼ t

10

� �c

; ð4Þ

where c (–5 ≤ c ≤ 5) is the response consistency or exploi-
tation parameter. Positive values of c indicate an increase in
the degree to which participants select higher-valued options
as the number of trials (t) increases, and negative values of c
indicate more random responding over the course of the
task.

Table 1 Reward schedule for the Iowa gambling task

Deck A Deck B Deck C Deck D

Draw From Deck

1 100 100 50 50

2 100 100 50 50

3 100, –150 100 50, –50 50

4 100 100 50 50

5 100, –300 100 50, –50 50

6 100 100 50 50

7 100, –200 100 50, –50 50

8 100 100 50 50

9 100, –250 100, –1,250 50, –50 50

10 100, –350 100 50, –50 50, –250

Cumulative Payoff –250 –250 250 250

See Bechara et al. (1994) for the full table, which lists payoffs for the
first 40 cards drawn from each deck. In the present task, the sequence
was repeated for Cards 41–80 and 81–100, so that a participant could
potentially select the same deck on all 100 draws
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The PVL model also assumes that participants maintain
an expectancy for each deck, but it differs from the EV
model as to how the expectancies are computed. The eval-
uation of outcomes follows the prospect utility function,
which has diminishing sensitivity to increases in magnitude
and different sensitivities to losses and gains. The utility, u
(t), on trial t, of each net outcome, x(t), is

uðtÞ ¼ xðtÞa if xðtÞ � 0;
�l xðtÞj ja if xðtÞ < 0:

�
ð5Þ

Here, α is a shape parameter (0 < α < 1) that governs the
shape of the utility function, and λ is a loss aversion param-
eter (0 < λ < 5) that determines the sensitivity of losses as
compared to gains. If an individual has a value of λ greater
than 1, it indicates that the individual is more sensitive to
losses than to gains, and a value less than 1 indicates a
greater sensitivity to gains than to losses. The PVL model
uses a decay reinforcement learning rule (Erev & Roth,
1998) that assumes that the expectancies of all decks decay,
or are discounted, over time, and that the expectancy of the
chosen deck is added to the current outcome utility:

EjðtÞ ¼ A � Ej t � 1ð Þ þ djðtÞ � uðtÞ: ð6Þ
The parameter A (0 < A < 1) determines how much the

past expectancy is discounted. δj(t) is a dummy variable that
is 1 if deck j is chosen, and 0 otherwise. The PVL model that
we used in the present work utilizes Eq. 3 to determine the
probability of selecting each action, along with a trial-
independent choice-consistency rule in place of Eq. 4:

θðtÞ ¼ 3c � 1: ð7Þ
Equation 4 assumes trial-dependent consistency in

choices, while Eq. 7 assumes trial-independent consistency
in choices. We use these versions of the EVand PVL models
because they have been used most consistently in previous
work (e.g., Ahn et al., 2011; Yechiam et al., 2005).1

The WSLS model that we used in the present work has
two free parameters. The first parameter represents the
probability of staying with the same option on the next trial
if the net gain received on the current trial is equal to or
greater than zero:

P GjðtÞ choicet�1 ¼ Gj&r t � 1ð Þ � 0
��� � ¼ P stay winjð Þ:

ð8Þ
In Eq. 8, r represents the net payoff received on a given

trial, where any loss is subtracted from the gain received.
The probability of switching to another option following a

win trial is 1 – P(stay | win). To determine a probability of
selecting each of the other three options, we divide this
probability by 3, so that the probabilities for selecting each
of the four options sum to 1.2

The second parameter represents the probability of shift-
ing to the other option on the next trial if the reward received
on the current trial is less than zero:

P GjðtÞ choicet�1 ¼ Gj&r t � 1ð Þ < 0
��� � ¼ P shift lossjð Þ:

ð9Þ
This probability is divided by three and assigned to each

of the other three options. The probability of staying with an
option following a “loss” is 1 – P(shift | loss).3

To address the prevalence of RL versus WSLS strategy use
in the IGT, we conducted an experiment in which healthy
young adults performed the original version of the IGT (e.g.,
Bechara et al., 1994), and we fitted the data with the EV, PVL,
and WSLS models, along with a baseline (or null) model that
prescribes no reactivity to outcomes. To foreshadow the results,
we found that approximately half of the participants’ data were
best fit by theWSLSmodel, with the PVLmodel providing the
best fit to about half of the data sets as well. We also present the
results of a parametric bootstrap cross-fitting analysis designed
to address whether the good fit for the WSLS model is a result
of its flexibility in mimicking the EV and PVL models
(Wagenmakers, Ratcliff, Gomez, & Iverson, 2004; Worthy et
al., 2012). The results of this analysis suggest that the WSLS
assumes a strategy different from that assumed by either RL
model, with theWSLS and RLmodels being equally unable to
fit data generated by the other model. Finally, we show that
behavior predicted from simulations of the WSLS and PVL
models more closely aligns with the experimental data than
does the behavior predicted from the EV model.

Method

Participants

A group of 41 undergraduate students from Texas A&M
University, Commerce, participated in the experiment for

1 Ahn et al. (2008) found that there was little difference in the quality
of the fits when Eq. 4 or 7 was used for the EV model, but that using
the trial-independent choice rule from Eq. 7 provided a better fit for the
PVL model. We also found a better fit for the PVL model with the trial-
independent than with the trial-dependent choice rule.

2 We fit several models with additional parameters that weighted the
probability of switching to each of the other three options by average or
recent rewards, but these additional assumptions did not significantly
improve the model’s fit. Additionally, our goal was to compare our
WSLS heuristic versus RL strategy use in the task, and incorporating
information about the expectancy of each option into the WSLS model
would potentially make the models less distinct.
3 In the present and in prior work, we have consistently found that a
WSLS model with separate parameters for staying on a win or switch-
ing on a loss provides a significantly better fit than does a one-
parameter model or a model that assumes that the probability of staying
on a win or switching on a loss is set to 1.
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course credit (mean age 0 21.29 years, range 0 18–29; 30
female, 11 male).

Procedure

The participants performed a computerized version of the
IGT programmed with the PEBL experiment-building soft-
ware (Mueller, 2010). Four decks appeared on the screen,
and participants selected one deck on each of 100 trials.
Upon each selection, the computer screen displayed the card
choice, reward, penalty, and net gain beneath the card decks.
The total score was displayed on a score bar at the bottom of
the screen. Participants were told that they had received a
loan of $2,000. Their goal was to maximize their gains and
minimize losses. The task was self-paced, and participants
were unaware of how many card draws they would receive.
The schedules of rewards and penalties were identical to
those used in the original IGT (Table 1; Bechara et al. 1994).

Results

Choice behavior

Figure 1 plots the average proportions of draws from each of
the four decks in each of five 20-trial blocks of trials. A 4
(deck) × 5 (block) repeated measures ANOVA revealed a
main effect of deck. To further examine the main effect of
deck, we conducted paired-sample t tests on the proportions
of draws from each deck across all trials. We compared the
proportions of draws from Decks A and B to the proportion
of draws from each of the other decks (five comparisons), as
well as comparing the proportions of draws from the advan-
tageous decks (C and D). Thus, we performed a total of six
paired-sample t tests. To control for the Type I error rate, we
performed a Bonferroni correction and used a significance
threshold of .0083 for each pairwise comparison. The only

comparison that did not reach significance at this threshold
was the comparison between decks C and D, t(40) 0 –0.10,
p > .10. All other comparisons were significant (p < .001 for
each comparison). Deck A was selected significantly less
often than any of the other decks, Deck B was selected
significantly more often than any of the other decks, and
Decks C and D were selected equally often.

We also found a significant Deck × Block interaction,
F(12, 480) 0 3.02, p < .001, η2p ¼ :070. To investigate

the locus of this interaction, we conducted repeated measures
ANOVAs on the proportion of draws for each deck and
examined the linear trends. We found significant effects of
block for Deck A, F(1, 40) 0 31.93, p < .001,η2p ¼ :444; Deck

C, F(1, 40) 0 5.96, p < .05,η2p ¼ :130; and Deck D, F(1, 40) 0

4.84, p < .05, η2p ¼ :108. The effect of block was not signif-

icant for Deck B, F(1, 40) < 1, p > .10. Thus, preferences for
Decks A, C, and D changed over the course of the task, but
preferences for Deck B did not.

Modeling results

To assess which account of choice behavior (RL vs. WSLS)
described decision-makers’ behavior better, we fit each par-
ticipant’s data individually with the EV, PVL, and WSLS
models described above. We also fit a three-parameter base-
line model that assumed fixed choice probabilities (Gureckis
& Love, 2009a; Worthy & Maddox, 2012; Yechiam et al.,
2005). The baseline model had three free parameters that
represented the probabilities of selecting Decks A, B, and C
(the probability of selecting Deck D was 1 minus the sum of
the three other probabilities).

The models were assessed on their ability to predict
each choice that a participant would make on the next
trial, by estimating parameter values that maximized the
log-likelihood of each model, given the participant’s
choices. We used Akaike’s information criterion (AIC;
Akaike, 1974) to examine the fit of each model relative
to the fit of the baseline model. AIC penalizes models
with more free parameters. For each model i, AICi is
defined as

AICi ¼ �2 log Li þ 2Vi; ð10Þ

where Li is the maximum likelihood for model i and Vi is the
number of free parameters in the model. Smaller AIC values
indicate a better fit to the data. We compared the fits of the EV,
PVL, and WSLS models relative to the fit of the baseline
model by subtracting the AIC of each model from the AIC of
the baseline model for each participant’s data (e.g., Gureckis
& Love, 2009a):

Relative FitðMÞ ¼ AICB � AICM : ð11Þ
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Fig. 1 Average draws from each deck in each 20-trial block in the
experiment
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Positive values indicate a better fit of the learning model,
and negative values indicate a better fit of the baseline
model.

Table 2 shows the average best-fitting parameter values for
eachmodel. The average relative fit for the EVmodel was only
slightly greater than zero (M 0 0.58, SE 0 1.89), with data from
44 % of participants being fit better by the EV model than by
the baseline model. The average relative fit for the PVL model
was much higher (M 0 24.27, SE 0 4.78), with data from 78%
of participants being fit better by the PVL model than by the
baseline model, and the average relative fit for the WSLS
model was similar to that of the PVL model (M 0 23.14,
SE 0 4.91), with data from 90 % of the participants being
fit better by the WSLS model than by the baseline model.
The EV model provided the best fit to two of the 41
participants’ data (4.9 %); the PVL model provided the best
fit to 17 participants’ data (41.5 %); the WSLS model
provided the best fit to 20 participants’ data (48.8 %); and
the baseline model provided the best fit to two participants’
data (4.9 %).

We also examined the proportions of times that participants
who were fit best by either the PVL or the WSLS model
selected each deck, but there were no significant differences
between these groups (for Deck A, PVL 0 .13, WSLS 0 .16;
for Deck B, PVL 0 .35, WSLS 0 .33; for Deck C, PVL 0 .24,
WSLS 0 .26; for Deck D, PVL 0 .28, WSLS 0 .26).

Recent work has demonstrated that model complexity
cannot solely be accounted for by measures like AIC or
the Bayesian information criterion (Schwarz, 1978) that
penalize models for the number of free parameters (Djuric,
1998; Myung & Pitt, 1997), since often models with the
same number of free parameters differ in how flexibly they
can fit data. Here, the WSLS model may be more flexible
than the EV or PVL models, because it can account for a
wider range of behavior in decision-making tasks. To ad-
dress this issue, we used a procedure known as the para-
metric bootstrap cross-fitting method (PBCF), proposed by
Wagenmakers et al. (2004). This method involves simulat-
ing a large number of data sets with each of two models and
then fitting each data set with each model. If neither model
can mimic the other, then the model that generated the data
should provide the best fit to the majority of data sets.

Performing these cross-fitting analyses between the WSLS
and PVL and between the WSLS and EV models allowed us
to determine the degrees to which the WSLS model and the
RL models assume unique strategies.

For the simulated data sets, we used the parameter values
that best fit our participants’ data. For each model, we
generated 1,000 data sets using parameter combinations that
were sampled with replacement from the best-fitting param-
eter combinations for participants in our experiment. Thus,
for the EV model we randomly sampled a combination of w,
ϕ, and θ that provided the best fit to one participant’s data
and used those parameter values to perform one simulation
of the task. We generated 1,000 simulated data sets in this
manner and performed the same simulation procedure with
the WSLS and PVL models. We then fit each simulated data
set with each model and determined the Relative FitWSLS

value for each data set. For the EV-versus-WSLS compari-
son, the relative fit of the WSLS model is given by

Relative FitWSLS�EV ¼ AICEV � AICWSLS : ð12Þ

Relative FitWSLS-PVL was computed by replacing AICEV

with AICPVL in Eq. 12. Figure 2A plots the distribution of
Relative FitWSLS-EV values for the data generated by each
model. The EV model provided the best fit for 97.0 % of the
data sets that were generated by the EV model, while the
WSLS model provided the best fit for 97.9 % of the data sets
that were generated by the WSLS model. Figure 2B plots the
distribution of Relative FitWSLS-PVL values for data generated
by each model. The PVL model provided the best fit for
88.0 % of the data sets that were generated by the PVLmodel,
while the WSLS model provided the best fit for 88.1 % of the
data sets that were generated by the WSLS model.

We also examined the average proportions of times that
each model selected each deck across the 1,000 simulations for
each model, with results plotted in Fig. 3. Interestingly, the EV
model predicted that Deck A (M 0 .26) would be selectedmore
frequently than Deck B (M 0 .22), whereas human participants
and the PVL and WSLS models selected Deck B (M 0 .34 for
the participants, M 0 .29 for the PVL model, and M 0 .26 for
the WSLS model) more often than Deck A (M 0 .14 for
participants, M 0 .17 for the PVL model, and M 0 .21 for the
WSLS model), with the PVL model’s predictions most closely
aligning with the proportions of times that human participants
selected each disadvantageous deck.

Comparison of high versus low performers

While several studies of IGT performance in healthy young
adults have found a high preference for Deck B (e.g., Dunn,
Dalgleish, & Lawrence, 2006; Lin, Chiu, Lee, & Hsieh,
2007; Toplak, Jain, & Tannock, 2005), this preference is
characterized as a determinant of poor performance in the

Table 2 Average best-fitting parameter values for the EV, PVL, and
WSLS models

EV Model PVL WSLS

w .45 (.06) α .34 (.06) P(stay | win) .41 (.04)

ϕ .46 (.07) λ 3.08 (0.33) P(shift | loss) .89 (.02)

c 0.10 (0.28) A .57 (.05)

c 0.49 (0.05)

Standard errors of the means are listed in parentheses
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task (Ahn et al., 2008). To examine how each model fit the
data for high and low performers, we performed a median
split on the proportions of selections from the good decks, C
and D (treating the lower and upper halves as low and high
performers, respectively).

The average fits of each model—relative to the baseline
model—are shown in Table 3, revealing that the WSLS
model provided the best fit to the high performers’ data,
while the PVL model provided the best fit to low perform-
ers’ data. We compared the relative fits of the WSLS model
and the PVL model (Relative FitWSLS-PVL 0 AICPVL –
AICWSLS) between the high- and low-performing groups.
Relative FitWSLS-PVL values were significantly higher for
high performers (M 0 3.65, SE 0 3.15) than for low perform-
ers (M 0 –6.17, SE 0 3.32), t(39) 0 2.15, p < .05.

Table 4 lists the average best-fitting parameter values for
each model. The only parameter that differed significantly
between the low- and high-performing participants was the
EV model’s w parameter, which weights the value of gains
compared to losses. High performers’ data (M 0 .32, SE 0

.07) were fit best by lower values of w than were low
performers’ data (M 0 .60, SE 0 .08), t(39) 0 –2.51, p < .05.

Discussion

The IGT has perhaps been the task most frequently used
to examine decision-making behavior, and RL models,
particularly the EV model, have been predominantly used
to describe behavior in the task. Our analyses demonstrate
that a WSLS model—which assumes that people stay or
switch on the basis of whether the net reward is greater
than or equal to zero—provides the best fit for about half
of the data sets, with the PVL model fitting the other half
best. Cross-fitting analyses demonstrated that the WSLS
model assumes a strategy unique from those of the EV
and PVL models.

When simulated, the PVL and WSLS models selected
Deck B more often than Deck A, which was in line with the
observed behavior of our participants, but the EV model
showed the opposite pattern of behavior. The high

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Deck A Deck B Deck C Deck D

P
ro

po
rt

io
n 

of
 D

ra
w

s

Predicted and Observed Proportions 
of Draws From Each Deck

EV Sim

PVL Sim

WSLS Sim

Participants
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Table 3 Average relative fit values of each model (relative to the
baseline model) for high and low performers

EV Model PVL Model WSLS Model

High performers 2.08 (2.93) 27.25 (8.31) 30.89 (8.21)

Low performers –1.01 (2.37) 21.16 (4.66) 14.99 (4.81)

Higher numbers indicate better model fits. Standard errors of the means
are listed in parentheses. High and low performers were classified on
the basis of the proportion of draws from Deck B. None of the differ-
ences between high and low performers in the relative fit values for
each model reached significance

Fig. 2 Results of parametric bootstrap cross-fitting. Panel A depicts the
distributions of RelativeFitWSLS-EV values for data sets generated by the
EV (black) andWSLS (gray) models. Panel B depicts the distributions of
RelativeFitWSLS-PVL values for data sets generated by the PVL (black)
and WSLS (gray) models. Positive values indicate a better fit for the
WSLS model than for either the EV (A) or the PVL (B) model
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preference for Deck B that we observed has been observed
in other IGT experiments and is an example of a broader
phenomenon in experience-based decision making, whereby
people underweight rare events (Barron & Erev, 2003; Barron
& Yechiam, 2009). Deck B is an appealing choice in the
IGT because it gives a larger gain than Deck C or D (100
points, vs. 50 points for C and D) on each trial and a loss
only once in every ten trials (although the loss of 1,250
points is quite large). A participant using a WSLS strategy
will “win” on 90 % of the trials, and thus stay with this
option much of the time. The PVL model predicted the
greatest preference for Deck B—indeed, individuals who
selected Deck B more often were fit better by the PVL
than by the WSLS model. Intuitively, the PVL model’s
decay rule may have allowed it to quickly discount the
large but rare losses given by Deck B.

Our results suggest that human behavior in the IGT, a
task in which choice has been previously characterized as
being guided by an incremental updating procedure com-
putationally instantiated by either the EV or PVL model,
may be better characterized as a heuristic-based WSLS
strategy for a large proportion of participants. While we fit
models that strictly assumed either WSLS or RL strategy
use, it is possible that many people use some combination
of the two strategies or switch strategies throughout the
task. We also only examined behavior in one task. Future
work should consider the degree to which the fits of each
of these models can be used to predict subsequent decision-
making behavior in other tasks (Ahn et al., 2008; Yechiam &
Busemeyer, 2008).

In the present work, we only examined decision-making
behavior in a group of predominantly female, healthy young
adults who were not offered an incentive for good perfor-
mance. Future work should address how gender and moti-
vation influence strategy use, as well as (a) whether the
WSLS and PVL models also characterize the behavior of
patient groups better and (b) how differences in parameter
values—as demonstrated in applications of the EV model to
patient populations—can be brought out in fits of the WSLS

and PVL models in order to elucidate deficits in decision
making found in these patient groups.

Author note A.R.O. is now at the Center for Neural Science, New
York University, New York, NY.
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