
Graph Rewrite Systems for

Classical Structures in

†-Symmetric Monoidal Categories

�
Aleks Kissinger

St Catherine’s College

University of Oxford

A thesis submitted for the degree of

Master of Science

September 2008

Abstract

This paper introduces several related graph rewrite systems derived from known identities

on classical structures within a †-symmetric monoidal category. First, we develop a

rewrite system based on a single classical structure, and use it to develop a proof of

the so-called “spider-theorem,” where a connected graph containing a single classical

structure can be uniquely determined by the number of inputs and outputs (i.e. it can

be rewritten as a graph resembling an n-legged spider). These spiders are shown to be

the normal forms of graphs containing a single classical structure. Next, complementary

classical structures are introduced, as well as a new rewrite system on graphs of red and

green spiders. A proof of convergence is given for a limited two-colour rewrite system, as

well as insights into ways to approach normalisation in a more powerful rewrite system.

Acknowledgements

I would first like to thank my supervisor Ross Duncan. It has been a privilege working

with him for the past six months, as his knowledge and energy have been inspirational

to me and pivotal in the creation of this work. To him I give my deepest thanks for the

amount of time he has devoted to helping me, especially given the timing of this project.

For their help and ideas, I would like to thank Lucas Dixon at the University of Edinburgh

and Simon Perdrix, as well as all of the other members of the quantum computing research

group at Oxford. Among these people, I would especially like to thank Bob Coecke and

Samson Abramsky. Their lectures and kind guidance led me into this program and are

largely to credit for my excitement about the subjects represented in this work.

My thanks also go to Michael Collins, Luke Ong, Margaret Sloper, Wendy Adams,

Sandy Patel, and everyone else who has worked to make the MFoCS program at Oxford

so extraordinary.

My most heartfelt thanks goes to John Hale at the University of Tulsa. He has been a

friend, mentor, and inspiration to me. Without him, I most surely would not be where

I am today. Lastly, I would like to thank my parents, for more than I could possibly list

here.

Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Symmetric Monoidal Categories . 3

1.2.1 SMC Morphisms as Graphs . 5

1.3 Abstract Reduction Systems . 6

1.3.1 Termination . 7

1.3.2 Confluence . 7

1.3.3 Reduction Modulo an Equational Theory . 8

1.3.4 Critical Pairs . 9

1.3.5 Completion . 9

1.4 Graphs . 9

1.4.1 Graph Matching and Rewriting . 11

1.4.2 Critical Pair Enumeration . 16

2 Rewriting with a Single Classical Structure 20

2.1 Classical Structures as Graph Components . 20

2.2 An Equational System . 20

2.3 The Rewrite System . 22

2.3.1 Soundness and Power of the Rewrite System 23

2.4 Spiders . 23

2.4.1 The Spider Theorem . 24

2.4.2 Confluence and Termination . 27

3 Complementary Classical Structures 28

3.1 Graphs of Spiders . 28

i

3.2 The Spider Theorem with Graph Patterns . 30

3.2.1 ∗-Rewriting . 30

3.2.2 ∗-Critical Pairs . 33

3.3 Scalars . 34

3.4 An Equational System . 35

3.5 Rewrite Systems Q2 and Q3 . 35

3.5.1 Properties of the System without Bi-Algebra (Q3) 37

3.6 Bi-algebra Completion and 6-Cycles . 43

4 Conclusion and Future Work 46

4.1 Summary of Results . 46

4.2 Future Work . 47

ii

Chapter 1

Introduction

When reasoning about the behaviour of a quantum system, it is important to adopt mechanisms that

cope with the inherently incomplete knowledge one has of the system. More specifically, reasoning

about quantum systems requires one to distinguish information that is “classical” in nature from

information that is somehow “quantum.” Classical information is perfectly knowable. One could

write it down, or erase it, or make many copies of it. In quantum terms, this information corresponds

to the possible outcomes of a measurement. The other kind of information is only imperfectly

knowable. This is the information associated with a quantum state that is in a superposition of

more than one classical state. This interpretation yields the natural representation of a quantum

state as a Hilbert space, where the classical states are a basis, measurements are projections and

state evolutions are unitaries. Though such an interpretation is quite natural, it soon becomes

cumbersome [7] when one seeks to grasp the essence of the interplay between quantum and classical

information. Following this observation, much work in recent years has gone into seeking suitable

abstractions of the Hilbert space interpretation of quantum information [1, 6]. Such abstractions

must be both simple enough to be practical for large systems and powerful enough to recover many

of the uniquely “quantum” qualities of the computation.

To this end, †-symmetric monoidal categories (†-SMCs) provide a clean and powerful means

of reasoning about quantum computation [1]. Since morphisms in symmetric monoidal categories

are inherently two-dimensional (tensor × composition), graphs often provide an elegant means of

expressing and manipulating them (see [1, 9, 19, 14, 13]). This project is concerned with †-SMC’s

generated from a single object and one or more classical structures [9]. A classical structure is

a pair of morphisms that “copy” and “delete” a quantum observable. If two quantum observables

1

are mutually unbiased (i.e. the first observable is an equal superposition of the second), we call

their associated classical structures complementary. Complementary classical structures provide a

powerful computational primitive [8]. We explore the decidability of equations resulting from the

axioms of classical structures by introducing a series of graph rewrite systems and showing that they

are well-behaved.

Classical structures are highly regular when they are composed with themselves, to the extent

that any such configuration is uniquely determined by the number of inputs and outputs. Expressed

graphically, any configuration of the morphisms from a single classical structure can be rewritten as

a graph resembling an n-legged spider. This result is stated without proof in [8] and others, so the

first aim of this work is to provide context and a simple proof of this “spider theorem” using a graph

rewrite system on a single classical structure. After the spider theorem is proven, we go on to study

graphs of complementary classical structures. In the next rewrite system, we introduce a second

classical structure and add rules representing the spider theorem and the interaction between the

classical structures. We show convergence of a subset of this rewrite system by critical pair analysis.

We conclude by showing the non-termination of the full system and offering possible approaches to

a proof of confluence.

At the time of this writing, we are undergoing work on an automated tool for rewriting quantum

graphs. This paper aims to show the correctness and feasibility of such a tool.

1.1 Related Work

Monoidal categories are inherently two-dimensional. In addition to composing maps in the normal

(vertical) sense, one can also lay them “side-by-side” via the tensor product. This spatial inter-

pretation of morphisms yields very natural graphical representations. In 1980, Kelly and Laplaza

showed a strong correlation between the axioms of a type of monoidal category called a compact

closed category and the concept of graph isomorphism [18]. Abramsky and Coecke showed in

2004 that strongly compact closed categories, as well as their graphical representations, provide a

clean semantic structure for describing and manipulating quantum protocols [1]. In 2005, Selinger

formalised this correlation and showed proofs for the validity of graphical representations of several

related kinds of symmetric monoidal categories, including †-SMC’s, which provide the setting for this

work. Still using a graphical language, Coecke and Duncan showed that a particular class of related

morphisms, called complementary classical structures, act as an ideal computational primitive for

many quantum protocols. In doing so, they illustrated all of the identities upon which the rewrite

2

systems in this paper are based.

Term rewrite systems have a rich history, primarily in studying computation. For an arbitrary

term rewrite system, deciding confluence and termination was shown to be equivalent to the word

problem. Because of this, much work in the past fifty years has gone into identifying sufficient

properties for confluence and termination. Many influential results came from Church and Rosser’s

study of λ-calculus in the first part of the 20th century [5]. When considered as a term rewrite

system, the untyped λ-calculus is was shown to be confluent but not terminating. In 1942, Maxwell

Newman found that locally confluent, terminating rewrite systems are confluent [12]. Huet shows in

[17] that a certain kind of local confluence, called strong local confluence implies strong confluence,

which as the name suggests, is a stronger property than confluence. Since then Bezem, von Oostrom,

Gramlich and others sought weaker sufficient conditions for confluence [4, 15], particularly in systems

where rewrite rules have minimal overlap.

Unlike term rewrite systems, there is no single canonical formalism for graph rewrite systems.

There are categorical approaches, which treat rewrites as pullbacks in a category with graphs as

objects and graph homomorphisms as arrows [10]. These maintain context using a gluing graph, or a

sub-graph shared by the left and right hand side of a rewrite rule that maintains connections after the

rewrite is performed. There are also approaches that treat graphs as adjacency matrices, and rewrites

as matrix transformations [20]. Another technique for graph rewriting (as seen in [11]), is to deal with

hypergraphs, where the context of a rewrite is stored as a single hyperedge, connecting and ordering

source vertices of a rewrite rule. The technique in this paper is a combination of de Micheaux’s

and that in [13], in which substitutions are built on graph homomorphisms with several consistency

properties (called matchings in [13] and occurrences in [11]) though we remove the complexity

of ordering boundary vertices by insisting beforehand that graph components be commutative.

1.2 Symmetric Monoidal Categories

A monoidal category is a category equipped with a bifunctor − ⊗ − called the tensor product,

a unit object I, and the following natural isomorphisms: λA : A → I ⊗ A, ρA : A → A ⊗ I, and

αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C. These correspond respectively to left unit, right unit,

and associativity, and they obey certain natural coherence conditions. A symmetric monoidal

category contains an additional natural isomorphism σA,B : A⊗B → B ⊗A that is coherent with

the monoidal structure. For more detail and a precise definition of “coherence,” see e.g. [2].

A compact closed category is a symmetric monoidal category where each object A has a dual

3

object A∗ and a pair of mappings dA : I → A∗ ⊗ A and eA : A ⊗ A∗ → I, such that the following

diagram commutes:

A A⊗ I A⊗ (A∗ ⊗A)

(A⊗A∗)⊗AI ⊗AA

ρA idA ⊗ dA

αA,A∗,A

eA ⊗ idAλ−1
A

idA (1.1)

(−)∗ extends to a contravariant functor by letting f∗ : B∗ → A∗ be defined as:

f∗ = ρ−1
A∗ ◦ (idA∗ ⊗ eA) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (dA ⊗ idB∗) ◦ λB∗

(−)∗ preserves the monoidal structure and has a natural isomorphism A ∼= A∗∗ [18, 19].

A †-symmetric monoidal category (or †-SMC) is an SMC with an additional identity-on-

objects contravariant endofunctor (−)† : C → Cop. It also obeys coherence conditions, such as

(f ⊗ g)† = f† ⊗ g†. For details, see [19], [8], or [1].

A †-compact closed category, as the name suggests, is a †-SMC that is compact closed. We

also require that σA,A∗ ◦ e†A = dA.

Definition 1.2.1. A classical structure is a cocommutative comonoid (A, δZ : A → A ⊗ A, εZ :

A→ I) where δ is isometric and frobenius, meaning:

δ†Z ◦ δZ = idA and δZ ◦ δ†Z = (δ†Z ⊗ idA) ◦ (idA ⊗ δZ)

Remark 1.2.2. Since (−)† is a contravariant functor, (A, δ†Z , ε
†
Z) forms a commutative monoid.

A pair of classical structures (A, δZ , εZ) and (A, δX , εX) are known as complementary if they

satisfy a number of properties described in detail in [8]. There are three properties we are interested

in here. The first is ε†Z ◦ εX = ε†X ◦ εZ = k, where k : I → I is a special arrow called a scalar, by

analogue to Hilbert spaces. The second property is:1

k ⊗ (δZ ◦ ε†X) = idI ⊗ (ε†X ⊗ ε
†
X) and k ⊗ (δX ◦ ε†Z) = idI ⊗ (ε†Z ⊗ ε

†
Z)

In other words, the comultiplication from one classical structure copies the unit of the other.
1This property is usually given differently, employing an abstract analogue to scalar multiplication: k • φ. This

construction is not necessary here, so we refer the interested reader to [1].

4

The third property is:

k ⊗
(

(δ†X ⊗ δ
†
X) ◦ (idA ⊗ σA,A ⊗ idA) ◦ (δZ ⊗ δZ)

)
= idI ⊗ (δZ ◦ δ†X)

This is called the bi-algebra property, because corresponds to the coherence of multiplication with

comultiplication in a bialgebra. [8] shows that complementary classical structures do indeed form a

scaled bi-algebra.

Theorem 1.2.3. The †-SMC generated by one or more classical structures on a single, self dual

object A = A∗ is †-compact closed.

Proof. Let dA = ε†Z ◦ δZ and let eA = d†A. Since δZ is cocommutative, dA = e†A = σA,A ◦ e†A. The

commutation of diagram (1.1) follows from the frobenius and comonoidal properties of the classical

structure. The derivation is omitted here, but we see it graphically in the proof of theorem 2.2.1.

1.2.1 SMC Morphisms as Graphs

Consider two arrows f : A → B and g : C → D in a †-compact closed category. We can represent

these graphically as boxes with labelled edges:

f

>

A

>

B

and g

>

C

>

D

We can express the tensor as juxtaposition, and arrow composition as graph composition (as-

suming B = C):

f ⊗ g := f g

>

A

>

B

>

C

>

D

g ◦ f :=

f

g

>

A

>

B (= C)

>

D

Remark 1.2.4. All graphs in this paper should be read top-to-bottom, as in the previous examples.

Since −⊗− is a bifunctor and σ is a natural transformation:

(idB ⊗ g) ◦ (f ⊗ idC) = (f ⊗ idD) ◦ (idA ⊗ g) and σA,C ◦ (f ⊗ g) = (g ⊗ f) ◦ σB,D

These have graphical representations

5

f

g

>

A

>

B

>

C

>

D

=

f

g>

A

>

B

>

C

>

D

f g

>

A

>

C

>

B

>

D
=

fg
>

D

>

B
>

C
>

A

These observations suggest that there is a relationship between the axioms of a †-compact closed

category and graphs. This is formalised in the following theorem by Selinger [19].

Theorem 1.2.5. (Graphical language of dagger compact closed categories) A well-typed equation

between morphisms in the language of †-compact closed categories follows from the axioms of †-

compact closed categories if and only if it holds, up to graph isomorphism, in the graphical language.

Dual objects in a compact closed category provide a means of flipping the arrow direction. We

define:

>

A = <

A∗

If the category is generated by a single, self-dual object, we often omit edge labels and directions.

We represent tensor types as multiple inputs and outputs. For F : A⊗m → A⊗n, we have:

F

...
m

...
n

and F †

...
n

...
m

If all such boxes represent morphisms that are commutative and cocommutative, then we need

not distinguish incident edges (though we must still distinguish incoming and outgoing edges).

Therefore, it suffices to represent a morphism composed of such boxes and natural isomorphisms

from the †-compact closed structure as a general undirected graph. By theorem 1.2.3, we can use

an undirected graph to represent any morphism in the †-SMC generated by one or more classical

structures on a single self-dual object.

1.3 Abstract Reduction Systems

It is often useful to study properties of reduction systems without reference to the type of objects

being reduced. For that purpose we introduce abstract reduction systems [17].

Definition 1.3.1. An abstract reduction system (ARS) A is a pair (A,→). Where A is a set

and → is a binary relation, called the “reduction relation.”

6

For a relation →, we can define ← as the inverse, ↔ as the symmetric closure, and ∗→ transitive,

reflexive closure.

1.3.1 Termination

Definition 1.3.2. For an ARS A, any a ∈ A is said to be a normal form if there exists no a′ such

that a→ a′.

Definition 1.3.3. A reduction relation → is terminating if ← is well-founded. I.e. there exists

no infinite chain a0 → a1 → a2 →

Some literature (e.g. [17]) refers to terminating relations as “Noetherian relations,” after the

mathematician Emmy Noether. Termination guarantees that any reduction sequence will terminate

in a (not necessarily unique) normal form.

One often proves termination by identifying a reduction order.

Definition 1.3.4. A reduction order ≺ on an ARS A is a pre-order that is strict, well-founded,

and compatible with the rewrite system. That is to say, for every a, b ∈ A, a→ b⇒ a � b.

Since →⊆�, we have ←⊆≺. Since ≺ is well founded, ← is well-founded. So → is terminating.

1.3.2 Confluence

One of the most important properties of well-behaved reduction relations is confluence.

Definition 1.3.5. A reduction → is confluent iff

∀a, b, c ∈ A.(b ∗← a
∗→ c⇒ ∃d ∈ A.(b ∗→ d

∗← c))

Some literature instead uses the (equivalent) notion of being Church-Rosser:

Definition 1.3.6. A reduction → is Church-Rosser (C-R) iff

∀a, b ∈ A.(a ∗↔ b⇒ ∃c ∈ A.(a ∗→ c
∗← b))

Definition 1.3.7. An ARS is convergent if it is both confluent and terminating.

Theorem 1.3.8. If an ARS A is convergent, then for any a, b ∈ A, a ∗↔A b is decidable.

7

Proof. The main point of this argument is that convergent reductions yield unique normal forms.

Since →A is terminating, all a ∈ A have at least one normal form. For a ∈ A, let n1
∗← a

∗→ n2

be normal forms. Then there exists n such that n1
∗→ n

∗← n2, but since n1 and n2 are normal,

n1 = n = n2. Then, the decision of a ∗↔ b reduces to computing the unique normal forms of a and

b and checking their equality.

In certain cases, notably for terminating reductions, confluence can be reduced to the (often

decidable) notion of local confluence.

Definition 1.3.9. A reduction relation → is said to be locally confluent if

∀a, b, c ∈ A.(b← a→ c⇒ ∃d.(b ∗→ d
∗← c))

Note that the elements b and c are only one rewrite step away, rather than possibly many.

Lemma 1.3.10. (Newman) If → is locally confluent and terminating, it is confluent.

1.3.3 Reduction Modulo an Equational Theory

For an ARS with domain A, an equational theory is a set of identities E on elements of A. Let ≡E

be the equivalence relation generated by E.

Often it is useful to treat true reductions (e.g. term substitution, evaluation of arithmetic

operators, etc.) separately from structural congruences inherent in a system, such as association

and commutation. Toward that end, we define reduction systems modulo an equational theory, as

in [17].

Definition 1.3.11. For a reduction relation→R and an equivalence relation≡E , we define→R′ :=→R

/ ≡E as follows, for all a, b ∈ A:

a→′R b ⇐⇒ ∃a′, b′. (a ≡E a′) ∧ (b ≡E b′) ∧ (a′ →R b
′)

Often equivalence classes can be handled efficiently by building congruences into the data struc-

ture. For example, one can treat the arguments of commutative functions as multi-sets rather than

lists. In our case, we shall subsume commutation by using general digraphs rather than digraphs

where vertices have ordered edges.

8

1.3.4 Critical Pairs

A common means of proving local confluence is the study of critical pairs. A critical pair occurs

when the LHS of two rewrite rules overlaps in a non-trivial way. In the case of terms, this occurs

for two rewrite rules l1 → r1 and l2 → r2 when an instance of l1 is a sub-term of an instance of

l2 (or vice-versa). By showing all terms containing critical pairs are joinable, one can prove local

confluence. A notion of critical pairs as it applies to graphs will be introduced later in this chapter.

1.3.5 Completion

When a rewrite system is found to be non-confluent, it can often be “repaired” by adding comple-

tions.

If a rewrite system R has some non-joinable elements b, c ∈ A such that b ∗← a
∗→ c, one can

define a rewrite system R′ where b and c are joinable as R′ := R ∪ {b→ c}. Since we already have

that b ∗↔R c, we have ∗↔R = ∗↔R′ .

Often completions are chosen based on critical pair analysis. A simple completion algorithm

would be to compute a critical pair t1 ← s → t2 of a rewrite system R, then reduce t1 and t2 to

normal forms t̂1 and t̂2. If t̂1 = t̂2, continue to the next critical pair. If t̂1 6= t̂2, admit a rule t̂1 → t̂2

into R and start over. When all critical pairs of R are joinable, we have a confluent system. [3]

1.4 Graphs

Definition 1.4.1. Let a digraph G be a quintuple:

(VG, EG, sG, dG, τG)

where VG is a set of vertices, and EG is a set of edges. The two functions sG : EG → VG + {0}

and dG : EG → VG + {0} assign a source and a destination to an edge such that for all e ∈ EG,

sG(e) = 0⇔ dG(e) = 0. τG : VG → T is a typing function for a set of types T .

In the case that sG(e) = dG(e) = 0, e is called an empty edge, which is represented as a single

edge connected to itself.

Let outG be the inverse image of sG and inG be the inverse image of dG. These are respectively

the edges leaving from and entering a given vertex. For a graph G, and a type t ∈ T , let t[VG] =

9

{v ∈ VG : τG(v) = t}. Also, for a set of types T , let

T [VG] =
⋃
{t[VG] : t ∈ T}.

A digraph homomorphism f : G → H is a pair of maps fv : VG + {0} → VH + {0} and

fe : EG → EH that preserves the graph structure. That is to say, the following diagrams commute:

EG VG + {0}

EH VH + {0}

sG

fvfe

sH

EG VG + {0}

EH VH + {0}

dG

fvfe

dH

Also, fv must have the property that fv(0) = 0. Note that a general digraph homomorphism

does not necessarily preserve types. See the definition of type-soundness below.

Definition 1.4.2. A digraph homomorphism f is strict for a set of types T ′ ⊆ T if

• fe is injective,

• fv restricted to T ′[VG] is injective and

• for all v ∈ T ′[VG], e ∈ EG,

e ∈ inG(v)⇒ fe(e) ∈ inH(fv(v)) and e ∈ outG(v)⇒ fe(e) ∈ outH(fv(v)).

Definition 1.4.3. A digraph homomorphism is type-sound for a set of types T ′ ⊆ T if for all

v ∈ T ′[VG], we have τG(v) = τH(fv(v)).

Remark 1.4.4. If f is strict and type-sound, then the image of fv|T ′[VG] is contained in T ′[VH] and

the following diagrams commute:

T ′[VG] P(EG)

T ′[VH] P(EH)

inG

P(fe)fv|T ′[VG]

inH

T ′[VG] P(EG)

T ′[VH] P(EH)

outG

P(fe)fv|T ′[VG]

outH

In some cases, it is convenient to define undirected graphs as equivalence classes of directed

graphs. For graphs G and H, let G ≡D H iff H can be obtained from G by reversing the direction

of zero or more edges. ≡D clearly forms an equivalence relation, so for a digraph G, let [G]≡D be

the equivalence class under ≡D. We can treat [G]≡D as an undirected graph.

10

1.4.1 Graph Matching and Rewriting

Assume that any set of types includes a special type β ∈ T , labelling boundary vertices. The

set of types I = T\{β} labels internal vertices. The intuition is that if graphs represent some

computation, boundary vertices are the inputs and outputs of that computation. We also now put

the following restriction on boundary vertices:

∀b ∈ β[VG].| inG(b)|+ | outG(b)| = 1

Since the set inG(b) ∪ outG(b) is a singleton for all b, we define the boundary edge mapping

be : β[VG] → EG, which maps b to the unique edge e ∈ inG(b) ∪ outG(b). If e is in outG(b) then b

is called an input. Otherwise, b is called an output.

Definition 1.4.5. A digraph matching m : G → H is digraph homomorphism that is strict and

type-sound on the set of internal types I.

In the following example, “red” and “green” are internal types and black dots are boundary

vertices. A matching m : L→ G is shown with dotted lines.

L : : G (1.2)

Definition 1.4.6. A graph rewrite rule is a pair of graphs L and R such that VL∩VR = β[VL] =

β[VR].2

For a graph G, a rule L → R, and a matching m : L → R, we can define a new graph H as

follows. Assume the graph G has distinct vertices and edges from L and R.

• VH = VG\mv(I[VL]) + I[VR]

• EH = EG\me(EL) +me(ER)

• sH(e) =


sG(e) if e ∈ EG

mv(sR(e)) if sR(e) ∈ β[VR]

sR(e) otherwise

2More generally, we could define an isomorphism ρ : β[VL] ∼= β[VR]. For simplicity, we are assuming ρ = idβ[VL].

11

• dH(e) =


dG(e) if e ∈ EG

mv(dR(e)) if dR(e) ∈ β[VR]

dR(e) otherwise

• τH(v) =


τG(v) if v ∈ VG

τR(v) otherwise

The mappings sH and dH are well-defined because e ∈ EH is in the domain of sR (or dR)

precisely when it is not in EG. When H is a rewrite of G, using a rewrite rule L → R and a

matching m : L→ G, we write H = G[m,L→ R].

Consider this rewrite rule:

L: → R:

The matching m : L→ G from figure (1.2) yields the following graph rewrite:

G : → : G[m,L→ R]

Ideally, rewriting in this manner should be compositional. Rewriting on a sub-graph (i.e. a graph

that has a matching on G) should be consistent with performing the same rewrite on G itself.

Lemma 1.4.7. If f : X → Y and g : Y → Z are matchings, then g ◦ f is a matching.

Proof. fe and ge are injective, so ge ◦ fe is injective. Type-soundness is also preserved in the

composition, so the image of fv|T ′[VX] is contained in T ′[VY]. So, (gv◦fv)|T ′[VX] = gv|T ′[VY]◦fv|T ′[VX],

which is injective. Strictness is preserved because the following diagrams commute:

I[VX] P(EX)

I[VY] P(EY)

I[VZ] P(EZ)

inX

P(fe)fv

inY

P(ge)gv

inZ

I[VX] P(EX)

I[VY] P(EY)

I[VZ] P(EZ)

outX

P(fe)fv

outY

P(ge)gv

outZ

12

Theorem 1.4.8. (Composition) For graphs G and H, a rewrite rule L → R, and matchings p :

H → G and m : L→ H, then:

G[p,H → H[m,L→ R]] = G[p ◦m,L→ R]

Proof. Let G1 be the LHS and G2 be the RHS. We represent the edges of G is a disjoint union

EG′ + EH′ + EL′ , where EL′ = p ◦ m(EL), EH′ + EL′ = p(EH) and EG′ is the set of remaining

edges. Then:

EG1 = EG′ + EH[m,L→R]

= EG′ + (EH′ + ER)

= (EG′ + EH′) + ER

= EG2

Similarly, VG1 = VG2 , as both sides are essentially replacing the non-boundary vertices of L with

the non-boundary vertices of R. Now let e be an edge in EG1 (or EG2), if e ∈ EG′ or e ∈ EH′ , then

it is fixed by either rewrite, so e ∈ EG. Therefore sG1(e) = sG(e) = sG2(e).

Otherwise, e ∈ ER. If sR(e) is not a boundary vertex in R, then sH[m,L→R] = sR(e). Also,

by type-soundness of m it cannot be a boundary vertex in H[m,L → R], so sG1 = sH[m,L→R] =

sR(e) = sG2(e).

If sR(e) is a boundary vertex in R, then it is a boundary vertex in L, so mv(sR(e)) ∈ H[m,L→

R]. This yields two cases. In the case that mv(sR(e)) is a boundary vertex in H[m,L → R],

sG1(e) = pv(sH[m,L→R](e)) = pv(mv(sR(e))) = sG2(e). In the case that mv(sR(e)) is not a boundary

vertex in H[m,L → R], then sG1(e) = mv(sR(e)). But, since it is a boundary vertex in R, it is

fixed by the rewrite G[p,H → H[m,L → R]]. Any vertex v that is fixed by a rewrite on p has the

property that pv(v) = v. For the final case,

sG1(e) = mv(sR(e)) = pv(mv(sR(e))) = sG2(e),

and similarly, dG1 = dG2 .

This gives us almost the semantics we are looking for. However, using rewrite rules as they are

given is too restrictive in the case of graphs that loop back on themselves. The problem lies in the

strictness condition on m. Consider the following rewrite rule:

13

L :

b1 b2

b3 b4

→ R :

b1 b2

b3 b4

We would like to, for instance, be able to apply L→ R to this graph:

G :

The strictness condition requires that any matching must be injective on edges. Therefore L→ R

has no matching on G. To correct this, we introduce the concept of a closure.

Definition 1.4.9. Let O ⊆ β[VH] be the set of outputs of H. A closure, k ⊆ O × β[VH]\O on a

graph H is a set of ordered pairs where each b ∈ β[VH] occurs at most once. We can define Hk

as the graph which connects each of the boundary vertex pairs listed in k. More specifically, we

construct Hk as follows. Let Bk be the set of boundary vertices k (i.e. π1(k) ∪ π2(k)).3

• VHk = VH\Bk

• EHk = EH\be(Bk) ∪ k

• sHk(e) =


sH(e) if e ∈ EH

sH(be(π1(e)) if e ∈ k ∧ sH(be(π1(e))) ∈ VHk

0 otherwise

• dHk(e) =


dH(e) if e ∈ EH

dH(be(π2(e)) if e ∈ k ∧ dH(be(π2(e))) ∈ VHk

0 otherwise

The third cases in s and d are to ensure that the result of performing a closure on two connected

boundary vertices is the empty edge. We can take the closure of a rewrite rule by applying the same

k to both sides. Going back to the example from before, we could apply k = {(b3, b1)} to obtain:

3Where π1 and π2 are the Cartesian projections, and be : β[VH] → EH is the boundary edge mapping defined
at the beginning of this section. Note also that sH(be(π1(e)) and dH(be(π2(e)) are the vertices that were previously
connected to the deleted boundary vertex.

14

L :

b1 b2

b3 b4

→ R :

b1 b2

b3 b4

k⇒ Lk :

b2

b4

→ Rk :

b2

b4

Which does have a matching on G, yielding the graph rewrite:4

G : → G′ :

For S, a collection of graph rewrite rules, we define →S as follows. For two graphs G and

H, G →S H if there exists L → R ∈ S, a closure k, and a matching m : Lk → G such that

H = G[m,Lk → Rk]. We can define a rewrite system on undirected graphs as follows:

[G]≡D →S [H]≡D ⇐⇒ ∃G ∈ [G]≡D , H ∈ [H]≡D .(G→S H)

Remark 1.4.10. For the set of finite typed digraphs G and a set of graph rewrite rules S, (G,→S)

forms an abstract reduction system.

Proposition 1.4.11. For disjoint closures h and k, we have (Gh)k = G(h∪k).

Lemma 1.4.12. (Closure) For a graph rewrite system S if we have G→S H, then for any closure

k on G, we have Gk →S H
k. Graphically:

(G

...

...

→ H

...

...

)⇒ (G

...

...

... → H

...

...

...)

Proof. If G→S H, then there must be a closure h of a rule L→ R that has a match m on G. Let k0

a one-element closure {(b1, b2)}. If neither b1 nor b2 is in the image of m, then m is still a matching

for Lh.

If b1 is in the image of m and b2 is not, then let e be the edge where sG(e) = b2. For b ∈ β[VLh]

where m(b) = b1, there is a matching m′ : Lh → Gk0 , where m′v(b) = dG(e). For the edge e′

where dLh(e′) = b, m′e(e
′) = e∗ where e∗ is the new edge created by the closure. Thus m′ is a

homomorphism, and because b is a boundary vertex, strictness and type-soundness on T\{β} is
4The soundness of such a rewrite can be derived from compact closure. See theorem 2.2.1.

15

preserved. Rewriting on the new matching m′ only varies from rewriting on m by its behaviour on

the closure edge. A symmetric argument applies for b1 not in the image of m and b2 in the image of

m.

If b1 and b2 are in the image of m, then L(h∪k0) clearly has a matching on Gk0 , and this matching

also only varies from m in its behaviour on the closure edge. We can apply proposition 1.4.11 to

generalise to any finite closure k = k0 ∪ k1 ∪ . . . ∪ kn.

1.4.2 Critical Pair Enumeration

Definition 1.4.13. Let graphs G and H have matchings uG and uH into a graph U . We call the

triple (U, uG, uH) a unification if these conditions are satisfied:

• VU = uGv (VG) ∪ uHv (VH)

• EU = uGe (EG) ∪ uHe (EH)

• I[VU] = uGv (I[VG]) ∪ uHv (I[VH])

Definition 1.4.14. For a unification (U, uG, uH), an overlap u is a pair of partial functions uv :

I[VG]→ I[VH] and ue : EG → EH , defined as follows:

• uv :: {v1 7→ v2 : uGv (v1) = uHv (v2)}

• ue :: {e1 7→ e2 : uGe (e1) = uHe (e2)}

Proposition 1.4.15. uv and ue are well-defined and injective.

Proof. Let uv :: {v1 7→ v2, v1 7→ v3}. Then uHv (v2) = uGv (v1) = uHv (v3). Since uHv |I[VH] is injective,

v2 = v3. Let uv :: {v1 7→ v3, v2 7→ v3}. Then uGv (v1) = uHv (v3) = uGv (v2). Since uGv |I[VG] is injective,

v1 = v2. Similarly, these properties for ue follow from uGe and uHe being injective.

Proposition 1.4.16. u uniquely defines a unification (U, uG, uH). In other words, for any unifi-

cation (U ′,mG,mH) with overlap m = u, there exists a type-sound graph isomorphism π : U ∼= U ′

such that the following diagram commutes:

G U H

U ′

uG uH

mG mHπ

16

Proof. Define πe as {uGe (e) 7→ mG
e (e) : e ∈ EG} ∪ {uHe (e) 7→ mH

e (e) : e ∈ EH}. This is well

defined and injective because ∀e.(uGe (e) = uHe (e) ⇔ mG
e (e) = mH

e (e)). It is surjective because U is

a unification. Define π on I[VU] similarly. This is a bijection from I[VU] to I[VU ′] and furthermore

is type-sound, as uG, uH , mG, and mH are all type-sound. For b ∈ β[VU], there exists exactly one

edge e in inU (v) ∪ outU (v). If e ∈ inU (v), then b = dU (e). Let πv(b) = dU ′(πe(e)). If e ∈ outU (v),

then b = sU (e). Let πv(b) = sU ′(πe(e)). This defines a bijection from β[VU] to β[VU ′], because we

can define the inverse π−1
v on boundary vertices using π−1

e .

For e ∈ EU , if sU (e) is a boundary vertex, then πv(sU (e)) = sU ′(πe(e)) by construction. If

it is not a boundary vertex, recall that U is a unification, so e ∈ uGe (EG) ∪ uHe (EH). Assume it

is in uGe (EG) and take e′ ∈ EG such that uGe (e′) = e. Then, by definition, mG
e (e′) = πe(e) and

mG
v (sG(e′)) = πv(uGv (sG(e′))), so

sU ′(πe(e)) = sU ′(mG
e (e′)) = mG

v (sG(e′)) = πv(uGv (sG(e′))) = πv(sU (uGe (e′)) = πv(sU (e))

by definition. The same is true if e ∈ uHe (EH). Similarly, dU ′(πe(e)) = πv(dU (e)). Therefore π is in

fact an isomorphism. By construction, the following diagrams commute:

EG EU EH

EU ′

uGe uHe

mG
e mH

e
πe

I[VG] I[VU] I[VH]

I[VU ′]

uGv uHv

mG
v mH

v
πv

The edge diagram implies the same for boundary vertices, so the diagram stated in the proposition

commutes.

As overlaps define unique unifications, we often write G +u H for the unification of G and H

with overlap u.

Lemma 1.4.17. For any graph G, if graphs H1 and H2 have matchings m : H1 → G and n : H2 →

G, then there exists an overlap u : H1 → H2 such that H1 +u H2 has a matching on G.5

Proof. Let u be the overlap defined by m and n. For v1 ∈ H1, v2 ∈ H2, (m(v1) = n(v2)) ⇒(
uH1(v1) = uH2(v2)

)
, so a digraph homomorphism p that makes the following diagram commute

exists and is unique.
5Alternatively, we could say (H1 +uH2, uH1 , uH2) is a push-out defined in a suitable category, of (O, i1, i2), where

O is the shared portion of H1 and H2 and i1, i2 are the inclusion maps.

17

H1

H2

H1 +u H2 G

m

n

uH1

uH2

p

Strictness and type-soundness follow from the observation that every edge and internal vertex in

H1 +u H2 is in the image of uH1 or uH2 .

Definition 1.4.18. For rules r1 : L1 → R1 and r2 : L2 → R2 we define a critical pair (G1, G2) for

pair of closures k1, k2 and an overlap u : Lk11 → Lk22 . Let Gi be the result of rewriting Lk11 +u L
k2
2 ,

using the matching uL
ki
i for the rule rkii .

Lemma 1.4.19. (Critical pair) If for all critical pairs (G1, G2) in a rewrite system S, there exists

some H such that G1
∗→S H

∗←S G2, then S is locally confluent.

Proof. Let G,H1, H2 be graphs such that H1 ←r1 G →r2 H2, for rewrite rules r1 and r2. Let each

ri : Li → Ri have an associated closure ki and matching mi on to G. Let u be as defined in the proof

of 1.4.17 for matchings m1 and m2. Lk11 +u L
k2
2 has a matching p on G, as above, and generates a

critical pair (C1, C2). Since mi = p ◦ uHi , and Ci = (Lk11 +u L
k2
2)[uHi , Lkii → Rkii], so by theorem

1.4.8 we now have:

G[p, Lk11 +u L
k2
2 → Ci] = G[mi, L

ki
i → Rkii] = Hi

Also, C1 and C2 are joinable to some graph U , so the result of replacing Ci with U yields a graph

G′ with the property that H1
∗→ G′

∗← H2.

The number of critical pairs that need to be checked can be reduced by identifying closures that

interact trivially with the formation of critical pairs.

Proposition 1.4.20. For a critical pair (C1, C2), if there exists a closure k and a joinable critical

pair (D1, D2) such that C1 = Dk
1 and C2 = Dk

2 then (C1, C2) is joinable.

Proof. Follows immediately from lemma 1.4.12.

18

Proposition 1.4.21. For a pair of rewrite rules r1 : L1 → R1, r2 : L2 → R2, if L1 and L2 are

acyclic, then for any closures k1, k2, the critical pairs of (rk11 , rk22) are all of the form (Dk
1 , D

k
2) for

a closure k and a critical pair (D1, D2) of (r1, r2).

For a pair of rewrite rules r1 : L1 → R1, r2 : L2 → R2, each critical pair is determined uniquely

by the chosen overlap. Therefore, we can find every possible critical pair by looking at the set of all

partial graph homomorphisms u : L1 → L2 and consider only those that yield valid overlaps. If L1

and L2 are acyclic and all of the critical pairs of (r1, r2) are joinable, we are done. Otherwise, we

examine the critical pairs of (rk11 , rk22) for all closures k1, k2.

19

Chapter 2

Rewriting with a Single Classical

Structure

In this chapter, we shall introduce a rewrite system Q1, which permits rewriting with a single classical

structure modulo association and frobenius. Q1 acts on a set of graphs with types T = {β, r}. We

will then define a type of graph called a spider and show that Q1 permits writing any arbitrary

graph of a single classical structure to a spider. Using this, we show the convergence of Q1.

2.1 Classical Structures as Graph Components

We can express a classical structure (δZ , εZ , A) as:

δZ := εZ := δ†Z := ε†Z :=

Since δZ is cocommutative and δ†Z is commutative, general graphs will suffice for describing

morphisms composed of these components. We have refrained here from labelling the vertex itself

because the intended component is clear from its arity. Graphs in this section are to be read top-to-

bottom, so edges connected to the tops of vertices are understood to be inputs and edges connected

to the bottom are outputs.

2.2 An Equational System

For a classical structure (A, δZ : A → A ⊗ A, εZ : A → I) in a †-SMC, we can define the following

equational system:

20

Â: ≈E Â†: ≈E

Ĉ: ≈E Ĉ†: ≈E

Û : ≈E Û†: ≈E

Î: ≈E F̂ : ≈E

Â, Ĉ1, and Û arise from (A, δZ , εZ) forming a cocommutative comonoid. The “daggered” versions

of these rules arise from the consistency of (−)† with the comonoidal structure. Î is self-dual with

respect to the dagger. The dual of F̂ can be derived from F̂ and commutation.

Theorem 2.2.1. The graph components δZ , εZ , δ
†
Z , ε
†
Z and the equational system ≈E yield a compact

closed structure. i.e. there exist graphs d and e such that:

d

e

≈E .

Proof. In theorem 1.2.3, we gave this result in the categorical semantics. We now show it graphically

by letting

d := e :=

Then, the equation follows from frobenius and unit rules:

≈ bF
E ≈ bC

E ≈bU†
E ≈bU

E

Corollary 2.2.2. ≈E

1 bC and bC† are identities in the case of general graphs, where vertices do not have an edge ordering. They are
included here merely for the sake of completeness.

21

Proof. ≈CCE ≈bI
E

Corollary 2.2.3. ≈E and ≈E

Proof. ≈CCE ≈ bF
E ≈bI

E ≈bU
E

≈CCE ≈ bF
E ≈bI

E ≈bU†
E

2.3 The Rewrite System

From the above equational system, we wish to derive a confluent rewrite system. It is useful to

differentiate which equations denote actual reductions (i.e. they decrease the size of the graph) and

which denote structural congruences (i.e. they translate into a graph that is “symmetric” in some

sense). For the first, we choose Î, Û and Û†. For the latter, we choose Â, Ĉ, and F̂ . We will consider

the congruence rules as an equational system and the reductive rules as a rewrite system modulo

this equational system.

We begin by defining a smaller equational system ≈AF :

A: ≈AF A†: ≈AF

F : ≈AF

We first attempt to form a rewrite system by directing all the remaining rules from bigger to

smaller graphs.

U : →R U†: →R I: →R

22

But we already know this doesn’t decide E, because none of the identities in corollaries 2.2.2 and

2.2.3 are present as rewrites in R. Instead, let us examine the following system, using the derived

rules from corollaries 2.2.2 and 2.2.3:

U : →Q′1
U†: →Q′1

T : →Q′1
T †: →Q′1

V : →Q′1

We define →Q1 modulo ≈AF , as in section 1.3.3. Let →Q1 :=→Q′1
/ ≈AF . Note that this system

omits an isometry rule. We shall see in the next section that this can now be recovered as a derived

rule from T and T †.

2.3.1 Soundness and Power of the Rewrite System

Proposition 2.3.1. ∗→Q1⊆≈E.

Proof. If we show each individual rewrite rule is derivable from the equational system, then by RST-

closure of ≈E , we have ∗→Q1⊆≈E . All rewrites besides the trace rules are simply directed versions

of rules in E. For the trace rules, refer to 2.2.3 for the proof they are contained in E.

At first glance, this rewrite system seems to have omitted isometry, but this rule is actually

derivable from T and F .

T2: ≈AF →T
Q1

→U†

Q1

I: = ≈AF = →T2
Q1

The derived rules I and T2 will be used in later results.

2.4 Spiders

Spiders are a useful generalisation of one colour graphs. We define them with the following recursion

equations:

23

0

0

...

...
:=

1

1

...

...
:=

0

1

...

...
:=

1

0

...

...
:=

m+ 1

n

...

...
:= m

n

...

...

m

n+ 1

...

...
:=

m

n

...

...

2.4.1 The Spider Theorem

Definition 2.4.1. A δ-tree is a (fully) acyclic graph containing only δ and δ†.

Proposition 2.4.2. Any δ-tree with m inputs and n outputs is equivalent modulo ≈AF to a spider

with m inputs and n outputs.

Proof. δ-trees containing a single vertex are already spiders. Suppose for the sake of induction that

all δ-trees with ≤ k vertices are equivalent to the corresponding spider. Consider all of the ways an

additional δ are δ† can be connected.

Case I

m

n

...

...

≈AF m

n

...

...

=
m− 1

n

...

...

≈AF
m− 1

n

...

...

≈IH m− 1

n+ 1

...

...

=
m

n+ 1

...

...

24

Case II

m

n

...

...

≈AF m

n

...

...

=
m+ 1

n

...

...

Case III

Adjoint to Case I.

Case IV

Adjoint to Case II.

This proposition in conjunction with the following trace lemma will be adequate to prove the

spider theorem.

Lemma 2.4.3. (Trace) Any spider from A⊗m to A⊗n with k outputs connected to k inputs can be

rewritten as a spider from A⊗(m−k) to A⊗(n−k).

Proof. Consider the sub-graph containing a spider and just one trace. We divide into three cases,

based on the values of m and n. If m or n is 0, there can be no traces. If m = n = 1 then tracing

these together yields a single empty edge. If m = 1 and n > 1, we have:

n...
≈AF

n...
= ...

→T

n-1
...

=
0

n-1

...

...

The dual proof holds for m > 1, n = 1. For m > 1 and n > 1 we have:

m

n

...

...
≈AF

m

n

...

...
=

...

...

→T2

m-1

n-1

...

...

If we repeat this process k times, we get the required result.

25

Theorem 2.4.4. Any graph consisting of δ, ε, δ† and ε† can be rewritten to a spider.

Proof. Consider an arbitrary graph G of δ, ε, δ† and ε† with m inputs and n outputs. Let x be the

number of ε† vertices and y the number of ε vertices. We rewrite G as a graph G′ from A⊗(m+x) to

A⊗(n+y), with all ε and ε† on inputs or outputs:

G′

... ...

... ...

Now, let G′′ : A⊗(m+x+k) → A⊗(n+y+k) be a spanning tree of G′. We can now express G′ as G

with all k edges in G′\G′′ drawn as external traces.

G′′

...

...

...

G′′ is a δ-tree, so by proposition is equivalent to a spider. By the trace lemma, the traces

disappear. If G′′ has at least two inputs, we can eliminate an ε† as follows:

m

n

...

...

= m− 1

n

...

...

→U†

m− 1

n

...

...

If m = 0, we can repeat this process x− 1 times to eliminate all but one ε† vertex. If m > 0, we

can repeat this x times and eliminate all ε† vertices. We proceed similarly for ε vertices and outputs.

Recall that:

1

n

...

...

=
0

n

...

...
and

m

1

...

... =
m

0

...

...

So the end result is a spider from A⊗m to A⊗n.

26

2.4.2 Confluence and Termination

Remark 2.4.5. As U , U†, T and T † strictly decrease the number of δ and δ† vertices in the graph,

this rewrite system is necessarily terminating.

Proposition 2.4.6. R is confluent.

Proof. Let G be a graph with m inputs and n outputs. Let H1 and H2 be graphs such that

H1
∗← G

∗→ H2. Graph rewrite systems must preserve the number of inputs and outputs to a graph.

Therefore, H1 and H2 have m inputs and n outputs. By theorem 2.4.4, they both rewrite to the

spider from A⊗m to A⊗n.

R is confluent and terminating, so it is convergent. Spiders are acyclic and contain no (reducible)

occurrences of ε or ε†, so they are normal forms. Since R is convergent, they are the only normal

forms.

27

Chapter 3

Complementary Classical

Structures

In section 1.2, we introduced the concept of “complementary classical structures.” We can represent

such structures by admitting two colours of dots into our graph system. So for (δZ , εZ , A), we

maintain the red dots and additionally define:

δX := εX := δ†X := ε†X :=

The two colours are distinguished using types. The set of types for a two-colour graph is T :=

{β, r, g}. Also, due to the spider theorem and the self-duality of A it is not necessary to distinguish

inputs from outputs in graph elements. For this reason, we will use undirected graphs from now on.

3.1 Graphs of Spiders

To begin, we will develop the mechanism for dealing with spiders as primitive graph elements. A

graph of spiders is simply an arbitrary, undirected graph on the types T = {β, r, g}. We can use

the results from the previous section if we interpret vertices of incidence 0 as the trivial graph,

vertices of incidence 1 as ε, vertices of incidence 2 as identities, and vertices of incidence n > 2 as an

appropriate δ-tree. To make the distinction with graph patterns below, we often call such a graph

a concrete graph of spiders.

In order to match on spiders, we introduce the concept of graph patterns. Graph patterns

are graphs over the set of types T ∗ = {β, r, g, r*, g*}. The types r* and g* are called ∗-types. For

28

convenience, let S ⊂ T ∗ be the set of ∗-types and S[VP] the set of ∗-vertices in a graph pattern P .

We can define an instance of a graph pattern as follows.

Definition 3.1.1. Given a graph pattern P , (B, σ : S[VP]→ P(B)) defines an instance G of P if:

• G is a concrete graph of spiders

• σ is a partition of B

• VG = VP ∪B

• EG = EP ∪ {(v, b) : b ∈ σ(v)}

• τG(v) =



β if v ∈ B

r if τP (v) = r*

g if τP (v) = g*

τP (v) otherwise

The intuition is that σ gives each ∗-vertex a set of concrete boundary vertices. By abuse of

notation, we write G as σP .

Graphically, we can represent a graph pattern P as follows:

∗ ∗s1 s2

So, for σ :: {s1 7→ {b1, b2}, s2 7→ {b3}}, we can construct an instance σP :

b1

b2
b3

Definition 3.1.2. A graph pattern rewrite rule (P Q,χ) consists of a pair of graph patters

P , Q such that P → Q is a graph rewrite rule and χ : S[VP]→ S[VQ] is surjective.

Since χ is surjective, its inverse image χ−1 : S[VQ]→ P(S[VP]) is total, and furthermore defines

a partition of S[VP]. For an instance (B, σ), we can construct a new instance (B, σχ) by setting

σχ(v) =
⋃
σ(χ−1(v)) for all v ∈ S[VQ]. Since χ−1 and the image mapping P(σ) : P(S[VP])→ P(B)

are both partitions, σχ is a partition.

Proposition 3.1.3. For a graph pattern rewrite rule (P Q,χ), and an instance (B, σ) of P ,

(B, σχ) is an instance of Q and σP → σχQ defines a graph rewrite rule.

29

Proof. It suffices to show that VσP ∩ VσχQ = β[VσP] = β[VσχQ]. Since P → Q is a rewrite rule, we

know VP ∩ VQ = β[VP] = β[VQ]. VσP = VP + B, VσχQ = VQ + B. Since B is made up entirely of

boundary vertices in σP and σχQ, the condition holds.

Below is a rewrite pattern and an instance, with χ marked in red and shared boundary vertices

marked in blue:

∗
∗

∗ ∗ ∗
σ⇒

For a graph pattern rewrite system R, we define→R as G→R H if there exists a rule (P Q,χ),

and instance σ and a closure k (as defined in section 1.4.1) such that H can be formed by replacing

(σP)k with (σχQ)k. This is a strict generalisation of a rewrite system, since (P Q, ∅) is the same

as P → Q, provided neither graph contains ∗-vertices. We often omit χ if it is clear from context.

3.2 The Spider Theorem with Graph Patterns

Since we can interpret vertices as δ-trees, the spider theorem justifies the following rewrites:

sp:

∗

∗

∗

tr:
∗

∗

Since we are now treating spiders as primitives, we also need a rule to get rid of them. We do so

by this generalisation of the (co)monoidal unit rewrite:

sp-elim: →

3.2.1 ∗-Rewriting

It would be useful to do graph rewriting with a graph pattern itself, rather than the set of all

instances. To do this, we first need a relaxed version of matching for graph patterns. For convenience,

we identify the set of ∗-types S = {r*, g*}, the set of non-∗, or concrete types C = {r, g}, and the

set of non-boundary, or internal types I = C ∪ S. The full set is then T ∗ = I ∪ {β}.

30

Definition 3.2.1. A graph homomorphism f is ∗-type sound if it is type-sound on C and for all

v:

τ(v) = r* ⇒ τ(fv(v)) ∈ {r, r*}

τ(v) = g* ⇒ τ(fv(v)) ∈ {g, g*}

Definition 3.2.2. A graph homomorphism f is ∗-strict if it is strict on C, injective on I, and has

the property that fv(β[VP]) ∩ fv(S[VP]) = ∅.

Remark 3.2.3. Previously, strictness was enough to ensure that the LHS of a rewrite rule could not

“hook back” onto itself, leading to undefined behaviour. Since we remove this constraint on S, we

need to supply mv(β[VP]) ∩mv(S[VP]) = ∅ explicitly.

Definition 3.2.4. For graph patterns P and G, ∗-matching m : P → G is a graph homomorphism

that is ∗-type sound and ∗-strict.

For a graph G and a pattern rewrite rule p = (P Q,χ), and a ∗-matching m : P → G, we can

construct a new graph H as follows.

• VH = VG\mv(I[VP]) ∪ I[VQ]

• EH = EG\me(EP) ∪me(EQ)

• sH(e) =



sG(e) if e ∈ EG, sG(e) ∈ VG

sQ(e) if e ∈ EQ, sQ(e) ∈ I[VQ]

χ(v) if e ∈ EG, v ∈ S[VP], sG(e) = mv(v)

mv(sQ(e)) otherwise

• dH(e) = (as above, replacing “s” with “d”)

• τH(v) =



τG(v) if v ∈ VG

r if τQ(v) = r*

g if τQ(v) = g*

τQ(v) otherwise

As with concrete rewriting, we can express H as G[m, (P Q,χ)].

Remark 3.2.5. In the above definition, m is injective on S[VP], so χ(v) in the definitions of sH and

dH is uniquely determined. To understand these functions, think of the four cases as follows:

31

(i) edges totally external to the rewrite

(ii) edges totally internal to the rewrite

(iii) edges left dangling by lack of strictness on ∗-vertices

(iv) boundary edges

By analogy to concrete rewrite rules, we can express H as G[m,P Q].

Proposition 3.2.6. For graphs G, H, and a pattern rewrite rule (P Q,χ)

∃m̂. G[m̂, (P Q,χ)] = H ⇐⇒ ∃m,σ. G[m,σP → σχQ] = H

where m is a matching, σ is an instance, and m̂ is a ∗-matching.

Proof. (⇐) Let m̂ be m restricted to P . m̂ is ∗-type-sound because m is type-sound, and it is strict

on C because the only omitted edges are incident to ∗-vertices. For vertices and edges not incident

to a ∗-vertex, both rewrites behave identically. For any ∗-vertex s, any vertex in H that was adjacent

to m(s) (= m̂(s)) in G will be adjacent to χ(s) in both G[m̂, (P Q,χ)] and G[m,σP → σχQ].

(⇒) For each s ∈ S[VP], let σ(s) = {bs,1, bs,2, . . . , bs,r}, where (bs,i)i are new boundary vertices,

and r is (| inG(m̂(s))|+ | outG(m̂(s))|)− (| inP (s)|+ | outP (s)|). I.e. r is the number of extra edges

needed to make s strict. m̂ then extends naturally to a matching to m. Since m̂ is the restriction of

m to P , as above, the two rewrites are equivalent.

Often with ∗-rewriting, it is useful to reason about graphs with arbitrary boundary edges. We

do this by labelling a vertex with a natural number or ellipses:

...

...

or

n1

n2

Since ∗-matchings need not be strict on ∗-vertices, the behaviour of ∗-rewriting on such graphs

is well-defined. As one would expect, we require the following to hold:

For n ≥ 1:
n

=
n− 1

Definition 3.2.7. For a graph pattern P , a ∗-closure is a set of ordered pairs k ⊆ (S[VP]∪β[VP])×

β[VP] where each boundary vertex occurs in k at most once. We define P k as follows (for Bk the

set of boundary vertices that occur in k):

32

• VPk = VP \Bk

• EPk = EP \be(Bk) ∪ k

• sPk(e) =



sP (e) if e ∈ EP

π1(e) if e ∈ k ∧ π1(e) ∈ S[VP]

sP (be(π1(e)) if e ∈ k ∧ π1(e) ∈ β[VP] ∧ sP (be(π1(e))) ∈ VPk

0 otherwise

• dPk(e) =



dP (e) if e ∈ EP

π2(e) if e ∈ k ∧ π2(e) ∈ S[VP]

dP (be(π2(e)) if e ∈ k ∧ π2(e) ∈ β[VP] ∧ dP (be(π2(e))) ∈ VPk

0 otherwise

Remark 3.2.8. Since we still require that each boundary vertex occur at most once, there are only

finitely many ∗-closures for any graph pattern P . One might consider allowing ∗-closure elements

between two ∗-vertices, which would allow an infinite number of ∗-closures. We shall see in the next

proposition that this is not necessary.

Proposition 3.2.9. Let G be a graph. Let (P Q,χ) be a graph pattern rewrite. For any instance

(σ,B), closure k of σP , and matching m : σP → G, there exists a ∗-closure k′ and ∗-matching

m̂ : P k
′ → G such that

G[m, (σP)k → (σχQ)k] = G[m̂, P k
′
 Qk

′
]

Proof. Assume without loss of generality that k contains a single closure (b1, b2) for b1, b2 ∈ β[σP].

If b1 and b2 are in VP , the result is immediate, letting k′ = k. If b1 ∈ β[P] and b2 ∈ B, let s ∈ S[VP]

be the unique vertex such that b2 ∈ σ(s). Let k′ = {(s, b2)}. Let m̂e((s, b2)) = me((b1, b2))1, and m̂

and m coincide on all other edges and vertices in P k
′
. If both vertices are in B, let k′ = {}. The

loop is totally external to the ∗-rewrite, so it will be preserved as it is on the concrete rewrite.

3.2.2 ∗-Critical Pairs

Definition 3.2.10. A ∗-unification U of two ∗-matchings p : P → U and q : Q → U is a graph

pattern such that:

• EU = pe(EP) ∪ qe(EQ)

1Recall that these ordered pairs are the names of the edges created by performing the closure.

33

• VU = pv(VP) ∪ qv(VQ)

• I[VU] = pv(I[VP]) ∪ qv(I[VQ])

• C[VU] = pv(C[VP]) ∪ qv(C[VQ])

The forth condition ensures that the vertex types of the ∗-overlap are the “most general,” i.e.

all internal vertices are ∗-vertices, unless they are forced to be concrete by P or Q. *-overlaps are

constructed for a pair of ∗-matchings the same way overlaps are constructed for matchings.

Definition 3.2.11. For graph pattern rewrites P1 Q1 and P2 Q2, a ∗-overlap u : P1 → P2,

a critical pair (C1, C2) is a pair of graph patterns where Ci is the result of ∗-rewriting P1 +u P2 on

Pi → Qi (i = 1, 2).

Lemma 3.2.12. (∗-Critical Pair) If all ∗-critical pairs of a rewrite system are joinable, then a

rewrite system is locally confluent.

Proof. Follows immediately from 3.2.6.

Thus, to enumerate critical pairs of two graph pattern rewrite rules p1 : P1 Q1 and p2 : P2

Q2, one computes the ∗-overlaps for all ∗-closures ki of Pi (i = 1, 2).

3.3 Scalars

We shall represent scalars graphically as vertices connected to no edges. For the rewrite rules to

follow, we shall only use two scalars, k and 1/k. 2

k := and 1/k :=

Scalars always occur on the RHS of rewrite rules, with the exception of the scalar rule, where ∅

is the empty graph:

→ ∅

Just as scalar multiplication is associative, the scalar rewrite is always confluent with itself. We

see this by looking at the only two critical pairs.

← = → and ← = →

2For reasons described in e.g. [8], if A is a Hilbert space, then k is
√
D, where D is the dimension A.

34

3.4 An Equational System

The equational system is ≈sp with the following additional rules:

≈ ≈ ≈

≈ ≈ ≈ ≈

The top three rules can be generalised to apply to arbitrary spiders.

...
≈sp

...

≈
... ...

≈sp

...

≈
...

... ...

... ...

≈sp

... ...

... ...

≈

... ...

... ...

3.5 Rewrite Systems Q2 and Q3

Take the following to be Q2, which is our naive first guess at a rewrite system:

∗

∗

 spR ∗ ∗
 trR ∗

→elR

∗

∗

 spG ∗ ∗
 trG ∗

→elG

∗
 ccR

∗ ∗
 ccG

∗

∗ ∗

∗ ∗

 ba

∗ ∗

∗ ∗

→sc0 ∅ →sc1 →scR2
→scG2

→sc3

35

When it is clear from context, we will omit the superscripts R and G from the names of rules.

Definition 3.5.1. For a rewrite system R and a pair of types r, g ∈ T , R is said to be (r, g)-dual

(or simply colour-dual) if for every rule r ∈ R there is also a rule r′ ∈ R, which is identical to r

but with opposite colouring.

Proposition 3.5.2. For a colour-dual rewrite system R, if G and H are graphs such that G→R H,

then for their colour-dual graphs G′ and H ′, it is also true that G′ → H ′.

Remark 3.5.3. Q2 is colour-dual.

As we begin to look at critical pairs, we soon find two counter-examples to confluence in this

system. Let the critical pairs (C1, C2) and (D1, D2) be defined as:

C1 :=

...

... ...

←

...

... ...

→

...

... ...

=: C2

D1 :=

...

.........

←

...

.........

→

.........

...

=: D2

We begin by examining (C1, C2). Reducing to normal forms, we have:

...

... ...

→sp

...

... ...

and

...

... ...

→cc

...

... ...

∗→

...

... ...

Since these normal forms don’t match, we join this critical pair by adding the completion:

...

...

 ha

...

...

This identity was noted in [8] along with the observation that complementary classical structures

form a scaled Hopf algebra. Because of this, we shall call this rule ha.

The result of joining the critical pair (D1, D2) yields a non-terminating system. We will explore

this system more in a later section. For now, we consider the (less powerful) rewrite system Q3

obtained from replacing ba in Q2 with ha.

36

3.5.1 Properties of the System without Bi-Algebra (Q3)

Remark 3.5.4. Since Q2 is colour-dual and ha is the colour-dual of itself, Q3 is colour-dual.

Every rule in Q3 decreases the complexity of a graph, so it stands to reason that Q3 should be

terminating. To prove this, we shall enunciate what we mean by complexity.

Definition 3.5.5. For a graph G, the edge complexity ec(G) is

Σ{| in(v) ∪ out(v)| : v ∈ VG, | in(v) ∪ out(v)| > 1}

We define � is the lexicographic order of edge cardinality and edge complexity. I.e.:

G � H ⇔ (|EG| > |EH | ∨ (|EG| = |EH | ∧ ec(G) > ec(H)))

Proposition 3.5.6. � is a reduction order on Q3.

Proof. � is a lexicographic order of two integer values, so it is a strict order. Since EG ≥ 0 and

ec(G) ≥ 0 for all G, it is well-founded. Now, consider G and H such that G→ H. If G is rewritten

using any rule besides cc, the number of edges decreases, so assume G →cc H. Assume that the

∗-vertex in cc matches n nodes. For any n, |EG| = |EH |, so we need to look at the edge complexity.

If n is 0, then ec(H) = ec(G)− 2. If n > 0, then ec(H) = ec(G)− 1. So, G � H.

Remark 3.5.7. Since Q3 has a reduction order, it is terminating. By Newman’s lemma, we need

only local confluence to show that Q3 is confluent.

Definition 3.5.8. We say a ∗-critical pair (C1, C2) is trivial if C1 = Dk
1 and C2 = Dk

2 for some

joinable critical pair (D1, D2), or if it arose from a ∗-overlap u of P1 Q1 and P2 Q2 where

(i) u is empty or total

(ii) arose from a ∗-unification of Pi Qi (i = 1, 2), where no two boundary vertices are connected

that shares only boundary edges

(iii) it shares at most one vertex of each colour

Proposition 3.5.9. All trivial overlaps are joinable.

Proof. The closure case follows immediately from lemma 1.4.21. For case (i), if u is empty, there is

no overlap. If u is total, then C1 = C2. Case (ii) and (iii) are easiest to see visually. Let P1 Q1

be a pattern rewrite rule, with some boundary vertices:

37

P1
 Q1

Where “ ” means any vertex, and the vertices are not necessarily distinct. Note that the internal

vertices may change, but the boundary edges are always preserved. Any two such rules sharing only

boundary vertices is joinable:

P2P1

P2Q1

Q2P1

Q2Q1

Case (iii) follows similarly. Let (P1 Q1, χ1) be a pattern rewrite rule, with (up to) one ∗-vertex

of each colour:

P1

∗
∗
 Q1

∗
∗

Consider a pair of pattern rewrite rules (Pi Qi, χi) for i = 1, 2. For some graph G, let

m : P1 → G and n : P2 → G be ∗-matchings. For a ∗-vertex v ∈ S[P1], we can distinguish in

G the internal edges IEv = me(inP1(v)) from the external edges EEv = inG(me(v))\me(inP1(v)).

The edges in IEv are in the image of P1, so they can be modified by the rewrite, but the edges in

EEv are (mostly) preserved. For e ∈ EEv, the source of e is unchanged and the destination of e is

changed to χ1(v). Since χ1 respects types, if e was connected to a red (resp. green) vertex before

the rewrite, it will be connected to a red (resp. green) vertex after the rewrite. Since χ1 need not

be injective, the ∗-rewrite may merge some ∗-vertices, but if we restrict the overlap of m and n to

at most one ∗-vertex of each colour, this is irrelevant. In the following diagram, m1,m2 label edges

that are internal to P1 and n1, n2 label edges that are internal to P2.

38

m1 n1

m2 n2

m′1 n1

m′2 n2

m1 n′1

m2 n′2

m′1 n′1

m′2 n′2

Proposition 3.5.10. The rules of Q3 generate the following numbers of non-trivial critical pairs:

spR spG trR trG ccR ccG elR elG ha

spR 0 0 0 0 0 1 1 0 0

spG 0 0 0 1 0 0 1 0

trR 0 0 0 1 1 0 0

trG 0 1 0 0 1 0

ccR 2 0 0 1 1

ccG 2 1 0 1

elR 0 0 1

elG 0 1

ha 1

Proof. (spR) This rule consists of an edge and two ∗-vertices. As a result of proposition 3.5.9, we

shall only consider overlaps that share at least one edge or both vertices. Every non-trivial overlap

spR has with itself is joinable by the vertical symmetry of the rule. Since no other rewrite has two

red vertices, we shall only consider those that share an edge. We rule out any other rewrite rule

that contains only green vertices. spR has only trivial overlaps with trR and no overlaps with ccR.

There is one edge in ccG that admits a valid overlap, and one edge in elR. The only overlap with

ha is trivial.

(trR) A non-trivial overlap with trR must share the loop edge. Since trR is the only rule with

a self-loop, we must look at ∗-closures of other rules to obtain possible overlaps. Again we can rule

out rewrites that have only green vertices. The only overlap with itself is trivial. The only available

closures on ccR are on a green vertex. ccG has one closure that yields an overlap, and so too does

elR. The only possible overlaps with ha are trivial.

39

(ccR) Consider overlaps of ccR with itself. If it shares just the ∗-vertex, the overlap is trivial. If it

shares the vertex with incidence 1, it must also share the associated edge. Thus, we only need to look

at cases where ccR shares at least one edge. ccR cannot overlap with ccG, because the incidences of

their respective red and green vertices are incompatible. Since the incidence of the only elR vertex

is 2, it has no overlap with ccR. elG has exactly one overlap, on to the (green) ∗-vertex of ccR. ccR

could not share its concrete vertex (or upper edge, by homomorphism) with ha. There is one unique

way (up to symmetry) that it could share its lower edge with ha.

(elR) This rewrite can only share boundary edges with itself, so all overlaps are trivial. Since its

one vertex has incidence 2, it has one unique overlap with ha.

(ha) To be non-trivial, an overlap of ha with itself must share an edge. There is one way this

can happen. If it shares two edges, it is a total overlap (by homomorphism), which is trivial.

(spG), (trG), (ccG), and (elG) all follow from above, swapping “red” and “green”.

Proposition 3.5.11. Q3 is locally confluent.

Proof. We do this by showing joinability of the non-trivial critical pairs given above.

40

Critical pairs with spR:

n
n

spR

elR

m

n

m n

m− 1 n

0

...

n

...

m m+ 1

...

n

...

m m+ 1

...

n

...

m m

m

n

m− 1

n

ccG

ccG

*

sc3

sc0

spR

ccG

*

Critical pairs with trR:

n

n n

n

ccG
ccG

sc

trR

trR

elR

scR2

scR1

41

Critical pairs with ccR:

n

n

n

n

ccR ccR

ccR ccR

n n

ccR

ccR

0

0
ccG

sc3

sc0

elR

m

n

m

n

m

n

m

n

ccR
ccR

spR

ha

Critical pairs with elR:

n

n n

n

n

ha

scR2

sc0

elR trG

42

Critical pairs with ha:

m

n

m

n

m

n

ha ha

All of the remaining critical pairs are joinable by colour-duality. By the critical pair lemma, Q3

is locally confluent.

Q3 is locally confluent and terminating, so it is confluent by Newman’s lemma. It is confluent

and terminating, so it is convergent.

Proposition 3.5.12. The normal forms N ⊂ G with respect to Q3 are graphs that

(i) contain no spiders of incidence 0

(ii) contain no empty edges

(iii) can contain k or 1/k, but not both

(iv) have the property that all spiders of incidence 1 are connected only to boundary vertices

(v) are bipartite on colour

(vi) only contains even cycles of size four or more

Proof. No rewrite in Q3 applies to graphs with the given properties. For the converse, assume one

of the properties does not hold. If one of the first three conditions is not true, the appropriate scalar

rewrite applies. Let v be a red spider (or dually, a green spider) with incidence 1. If it connected to

another red spider, spR applies. If it is connected to a green spider of incidence 1, sc3 applies. If it is

connected to a green spider of incidence 2, ccR applies. If the graph is no bipartite on colour, either

a spider is connected to itself, or to another spider of the same colour. In these cases, tr and sp

apply, respectively. If there exists a 1-cycle (a loop), tr applies. If there exists a 2-cycle, ha applies.

If there exists any other odd cycle, the graph must not be bipartite on colour, so sp applies.

3.6 Bi-algebra Completion and 6-Cycles

In the previous section, we showed Q2 has a non-joinable critical pair (D1, D2) induced by an overlap

from ba to ba. We could admit D1 → D2 as a rewrite, but instead we chose a slightly simpler rule:

43

∗ ∗ ∗

∗∗∗

 6f

∗ ∗ ∗

∗∗∗

We refer to this as the “six-flip” rule, because it flips four of the edge incidences in a six-cycle.

It closes the critical pair:

D1 :=

...

.........

→6f

...

.........

=

...

.........

→el

...

.........

→sp

.........

...

=: D2

Proposition 3.6.1. →6f ⊆
∗↔Q2 .

Proof. Similar to the derivation of (D1, D2).

Let Q4 be the rewrite system Q3, with the additional rules ba and 6f .

Proposition 3.6.2. Q4 is non-terminating.

Proof. The rule 6f is nearly its own inverse.

...

.........

→6f

...

.........

→6f

...

.........

→el

...

.........

→sp

...

.........

Proposition 3.6.3. Q4 is locally confluent.

Proof. Since all the rules in Q3 join with each other, and 6f can be used to derive its own inverse,

it suffices to show ba joins with the other rules. This can be done with critical pair enumeration, as

in proposition 3.5.11.

Since Q4 is not terminating, we cannot apply Newman’s lemma. It remains an open question

whether Q4 is confluent.

To see some of the properties of Q4, we derive a more specific kind of six-flip rule:

44

...

...

→6f

...

...

→el

...

...

=

...

...

Let this new rule be 6f ′, and note:

...

...

→6f ′

...

...

→6f ′

...

...

ha removes 2-cycles and ba disconnects 4-cycles. While 6f doesn’t directly disconnect 6-cycles,

it does allow bordering 6-cycles to merge.

... ...

... ...

→6f ′

... ...

... ...

→sp

... ...

... ...

→ba

... ...

... ...

More specifically, the 6-cycle on the left “donates” an edge to the 6-cycle on the right, making it

a 4-cycle. It can donate an edge to a bordering cycle of any size, so if multiple 6-cycles are adjacent

to a larger cycle, they can all potentially donate edges until a 2- or 4-cycle is created. This leads to

a possible terminating rewrite strategy.

(i) Perform as many reductions in Q4 − {6f} as possible.

(ii) Identify clusters of connected cycles containing at least two 6-cycles.

(iii) Attempt to form 2- and 4-cycles by applying 6f .

(iv) Repeat until no more reductions in Q4 − {6f} can be found.

If this strategy does indeed yield normal forms modulo 6f , they will look much like the normal

forms of Q3, with the additional constraints that all cycles must be of size 6 or more, and 6-cycles

must be suitably isolated. It is a topic of ongoing research to find sufficient isolation conditions such

that 6-cycles cannot yield additional rewrites via 6f .

45

Chapter 4

Conclusion and Future Work

4.1 Summary of Results

We first introduced the notion of graph matching and rewriting with types, as well as a version of

the critical pair lemma that allows us to seek local confluence in graph rewrite systems. We then

applied this method to construct a rewrite system Q1 that had two types, red vertices and boundary

vertices. It contains rewrite rules that reflect the monoidal, co-monoidal, isometric, and frobenius

identities on a single classical structure. These rules were used to give a proof of the spider theorem

for Q1, which states that any connected graph of a single classical structure is uniquely determined

by the number of inputs and outputs.

For the next rewrite system, Q2, we made two generalisations. The first was to allow for undi-

rected graphs, and the second was to add an additional type for green vertices. Q2 contains rules

implied by the spider theorem for both colours, as well as rules derived from the interaction of

complementary classical structures.

After exploring some of the critical pairs of Q2, we noted that this system is not confluent. We

introduced a completion ha into the system and removed the bialgebra rewrite to get the system

Q3. We showed that this system is terminating and confluent, but it is clearly not as powerful as

Q2.

The final rewrite system we explored was Q4, which re-introduced ba into Q3, as well as a

completion 6f . We showed that this system is locally confluent but not terminating, so it may not

be confluent.

46

4.2 Future Work

We are currently working to mechanise rewriting on two-colour graphs. We have a (partially-

implemented) tool that performs rewrites manually1, and we are pursuing methods of automatically

performing rewrites and seeking out normal forms. An automated tool could also provide a frame-

work for performing mechanised critical pair analysis and completion. With such a tool, we may

be able to input a rewrite system like Q2 and compute a confluent extension using a Knuth-Bendix

completion algorithm [16].

On the theoretical side, the clear next step is to prove confluence for Q4 or a similar system. Next,

it would be useful to demonstrate a rewrite strategy for Q4 that (a) yields normal forms, modulo

6f and (b) can do so with a feasible time complexity. There are also additional graph primitives

that would be useful to include in the rewrite system, namely Hadamard gates and phase angles.

By augmenting two-colour graphs with angle vertices, one can represent all of the unbiased points

in either classical structure, which greatly increases the power of the graphical language. Hadamard

gates provide a change of basis and introduce a natural duality relationship between the two colours,

which also increases the power of the language. Coecke and Duncan describe these additions in-

depth in [8], and go on to show that a pair of complementary classical structures and the Hadamard

gate suffice to construct the “controlled-X” and “controlled-Z” gates, which are computationally

universal. Since quantum gates can therefore be expressed in terms of classical structures, this and

related works might prove a useful new way to study circuit models of quantum mechanics.

1http://dream.inf.ed.ac.uk/projects/quantomatic

47

Bibliography

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. Proceedings

from LiCS, quant-ph, Feb 2004.

[2] Andrea Asperti and Giuseppe Longo. Categories, types, and structures. wiki.ittc.ku.edu, Jan

1991.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. 1998.

[4] Marc Bezem, Jan Willem Klop, and Vincent van Oostrom. Diagram techniques for confluence.

Information and Computation, 141(2):172–204, 1998.

[5] Alonzo Church and J Barkley Rosser. Some properties of conversion. Transactions of the

American Mathematical Society, 39:472—482, 1936.

[6] Bob Coecke. De-linearizing linearity: Projective quantum axiomatics from strong compact

closure. arXiv, quant-ph, Jun 2005.

[7] Bob Coecke. Kindergarten quantum mechanics. arXiv, quant-ph, Oct 2005.

[8] Bob Coecke and Ross Duncan. Interacting quantum observables. ICALP, pages 298—310, Mar

2008.

[9] Bob Coecke and Dusko Pavlovic. Quantum measurements without sums. arXiv, quant-ph, Aug

2006.

[10] A Corradini, U Montanari, F Rossi, H Ehrig, R Heckel, and M Lowe. Algebraic approaches to

graph transformation, part i: Basic concepts and double pushout approach. Handbook of Graph

Grammars and Computing by Graph Transformation, 1:163–245, 1997.

[11] N Lafaye de Micheaux and C Rambaud. Confluence for graph transformations. Theoretical

Computer Science, 154(2):329–348, 1996.

48

[12] Nachum Dershowitz. Open. closed. open. LNCS, 3647:376–393, 2005.

[13] Lucas Dixon and Ross Duncan. Extending graphical representations for compact closed cat-

egories with applications to symbolic quantum computation. AISC/MKM/Calculemu, pages

77—92, Jun 2008.

[14] Ross Duncan. Types for quantum computing. page 175, Jun 2007.

[15] Bernhard Gramlich. Confluence without termination via parallel critical pairs. Colloquium on

Trees in Algebra and Programming, pages 211–225, 1996.

[16] Gérard Huet. A complete proof of correctness of the knuth-bendix completion algorithm. Rap-

ports de Recherche, 25:15, 1980.

[17] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems: Abstract properties and applications to term rewriting systems. Journal of the ACM

(JACM), 27(4):797–821, 1980.

[18] Max Kelly and Miguel L Laplaza. Coherence for compact closed categories. Journal of Pure

and Applied Algebra, 19:193–213, 1980.

[19] Peter Selinger. Dagger compact closed categories and completely positive maps (extended

abstract). Electronic Notes in Theoretical Computer Science, 170:139–163, 2007.

[20] Pedro Pablo Perez Velasco and Juan de Lara. Matrix approach to graph transformation: Match-

ing and sequences. LNCS, 4178:122, 2006.

49

	Introduction
	Related Work
	Symmetric Monoidal Categories
	SMC Morphisms as Graphs

	Abstract Reduction Systems
	Termination
	Confluence
	Reduction Modulo an Equational Theory
	Critical Pairs
	Completion

	Graphs
	Graph Matching and Rewriting
	Critical Pair Enumeration

	Rewriting with a Single Classical Structure
	Classical Structures as Graph Components
	An Equational System
	The Rewrite System
	Soundness and Power of the Rewrite System

	Spiders
	The Spider Theorem
	Confluence and Termination

	Complementary Classical Structures
	Graphs of Spiders
	The Spider Theorem with Graph Patterns
	*-Rewriting
	*-Critical Pairs

	Scalars
	An Equational System
	Rewrite Systems Q2 and Q3
	Properties of the System without Bi-Algebra (Q3)

	Bi-algebra Completion and 6-Cycles

	Conclusion and Future Work
	Summary of Results
	Future Work

