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Abstract—We consider distributed covariance estimation in
Gaussian graphical models. A typical motivation is learning the
potential functions for inference via belief propagation in large
scale networks. The classical approach based on a centralized
maximum likelihood principle is infeasible, and suboptimal
distributed alternatives which tradeoff performance with com-
munication costs are required. We begin with a natural solution
where each node performs independent estimation of its local
covariance with its neighbors. We show that these local solutions
are consistent, and can be interpreted as a pseudo-likelihood
method. Based on this interpretation, we propose to enhance the
performance by introducing additional symmetry constraints. We
enforce these using the methodology of the Alternating Direction
Method of Multipliers. This results in a flexible message passing
protocol between neighboring nodes which can be implemented
in large scale networks.

I. INTRODUCTION

Covariance estimation in Gaussian distributions is a classi-
cal and fundamental problem in statistical signal processing.
Recent interest in large scale inference using small sample
sizes has caused the topic to rise to prominence once again. A
natural approach in these settings is to incorporate additional
prior knowledge in the form of structure and/or sparsity in
order to ensure stable estimation. Graphical models provide
a method of representing conditional independence structure
using graphs. In the Gaussian case, this structure leads to
sparsity in the inverse covariance and allows for efficient
implementation of statistical inference algorithms, e.g., belief
propagation (BP).

From a distributed signal processing perspective, graphical
models are attractive as inference can be preformed as decen-
tralized computations in large scale networks [1], [2]. In many
applications, the topology of the network can be associated
with a statistical graphical model, and this can be exploited to
distribute statistical analysis. For example, Bayesian inference
can be implemented using message passing. This has been
shown when the underlying graph is a tree and recently in
arbitrary topologies [3]. A crucial step in Bayesian inference
is learning the model parameters from data. In the Gaussian
case, this step corresponds to covariance estimation where the
BP potential functions are learned from data.

The classical approach to covariance estimation in Gaussian
graphical models (GGM) is based on the maximum likelihood
(ML) principle [4], [5]. This approach is consistent and asymp-
totically optimal in terms of mean squared error (MSE). When
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the underlying graph is a tree, the ML estimate has a simple
closed form solution which requires little communication
between nodes. Unfortunately, in arbitrary topologies, finding
the ML estimate requires the solution to a difficult high di-
mensional convex optimization problem. It can be solved using
general purpose optimization toolboxes or using the classical
iterative proportional fitting (IPF) method [4]. A distributed
version of IPF can be achieved by implementing each of its
iterations via BP or its variants [6], but this approach can be
too computationally intensive. In some scenarios, approximate
estimation may be achieved using low rank assumptions [7]. In
general, distributed covariance estimation via message passing
is still a difficult task and suboptimal approaches are in order.

In this work, we propose alternative distributed estimation
methods that approximate global ML estimators by trading
high performance for lower communication costs. The most
natural distributed approach to covariance estimation is to
force each node to perform independent estimation of its
local covariance. This simple approach has a closed form
solution which requires no message passing. We show that it
is consistent, and can be interpreted as a pseudo or composite
likelihood method (See [8]-[10] and references within). Based
on this interpretation, we propose to improve it by introducing
additional symmetry constraints. We enforce these constraints
using the methodology of the Alternating Direction Method
of Multipliers [11]. This results in a flexible message passing
protocol between neighboring nodes.

The outline of the paper is as follows. In Section II we
briefly review the basics of GGM and formulate the distributed
covariance estimation problem. In Section III, we describe the
classical global estimator, derive a competing local estimator
and then propose a distributed estimator which provides a
promising tradeoff between them. Finally, in Section IV we
demonstrate the performance of the estimators using a numer-
ical example.

II. PROBLEM FORMULATION

Traditionally, the multivariate Gaussian distribution is rep-
resented by its mean 7 and covariance 3. In graphical models,
it is more natural to use the canonical parameters J = X!
and h = X715 which lead to the following representation
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Graphical models are intuitive characterizations of condi-
tional independence structures within distributions [4]. An
undirected graph G = (V, E) is a set of nodes V' connected
by undirected edges' E. Let x be a zero mean random vector
whose elements are indexed by the nodes in V. The vector x
satisfies the Markov property with respect to G - if for any
pair of non-adjacent nodes the corresponding pair of elements
in x are conditionally independent of the remaining elements

2

for all {i,j} ¢ E. Applying (2) to the Gaussian distribution
in (1), yields

[J]

p (Xianlxv\i,j) =p (XiIXV\i,j) p (lexV\i,j) )

=0 for all {i,j} ¢ E. 3)

This property is the core of GGM: the concentration matrix J
has a sparsity pattern which follows the topology of the con-
ditional independence graph. The sparsity allows for efficient
inference. For example, simple algebraic manipulations estab-
lish that the minimum min squared error (MMSE) estimator
reduces to

i,J
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that depends only on the neighboring nodes V;. This principle
is the main building block of BP methods [3].

The centralized covariance estimation problem in GGM can
be formulated as follows. Let x be zero mean Gaussian random
vector, with inverse covariance matrix J. Given 7" independent
and identically distributed (i.i.d.) realizations of x denoted
by {x[t]}L;, and knowledge of the conditional independence
structure through G = (V, E), the goal is to estimate J.

In this paper, we consider a distributed version of the
covariance estimation problem. Specifically, we associate with
each of the random variables x; a node in a network. We
assume that the nodes are physically separated and have com-
munication links to their neighbors in the graph G = (V, E).
Each node i has access only to {x; n,j[t]}{=; where N; is
the set of indices corresponding to the neighbors of . Using
this data along with message passing with its neighbors, each
node tries to estimate its local covariance information defined
by Jijini-

Our definition of local covariance information stems from
the fact that J; [; v, is sufficient for inference as shown in (4),
whereas knowledge of the intuitive local covariance matrix
35, N;),[,v;) involves more parameters and is insufficient.
Thus, our framework is that each node tries to estimate its own
Ji1i,n,]- For simplicity, we collect these in one global matrix,
namely J, whose {4, [i N;]} elements are the local estimates
in the ’th node. Note that J; ; and J; ; are both estimators of
J;; = J;; but may be different since each is estimated by a
different node.

There are different criteria for measuring the performance
of the estimator J. First, we will use the standard MSE of

I'We use the convention that each node is connected to itself, i.e., {i, z} S
EVieV.

estimators of ¥ = J~! and of J based on the Frobenius norm.
Second, assuming that the overall goal is to implement the
estimator in (4), we will use the Bayesian MSE for evaluating
the estimator of xs given xy\ ¢ where S is a subset of indices
and the true J is replaced by a plug in estimate J.

III. ESTIMATORS

In this section, we review the computationally intensive
global ML approach to covariance estimation in GGM. We
describe a local ML approach which is completely decoupled,
but does not exploit global information. Finally, we propose a
distributed solution which improves the local approach through
a flexible increase in computational complexity.

A. Global estimator

The classical covariance estimation method is based on a
global ML technique [4]

T
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where S is the sample covariance

1~ o
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and the feasible set defined by the conditional independence
structure is

J = {J=z0, J;=0 {ij}¢E}. )

This global estimator is consistent in the sense that Jylobal
converges to J asymptotically in 7. It is efficient and its MSE
asymptotically achieves the Cramer Rao bound.

The problem in (5) is a convex optimization problem. It
can be solved using general purpose convex optimization
techniques or special purpose methods such as iterative pro-
portional fitting [4]. However, it is difficult to implement these
procedures in a distributed manner, motivating suboptimal
approaches.

B. Local estimator

A natural alternative to the global solution is the local ML
method. This estimator aggregates p decoupled ML estimators
implemented independently at each of the nodes. Locally,
each node belongs to a network of 1 4+ |V;| nodes. Due to
properties of the multivariate normal distribution, the marginal
distribution of x|; y,] is also Gaussian with zero mean and an
inverse covariance equal to

[[J_l} li Ni)Ji Ni]}

In general, J? is not equivalent to J [i N;],[i N;]» but using the
sparsity and the inversion formula for partitioned matrices,
it is easy to show that the elements we are interested in,
namely {i,[i N;|}, are identical. Thus, a natural approach to
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distributed covariance estimation is to let each node inde-
pendently estimate its J°. Assuming that the nodes are not
aware of the conditional independence relations between their
neighbors, the local estimators are simply the local sample
covariances:

. 1

J'= (S[i Nl [d Ni]) ’ ©)
where S is defined in (6). Together, the local estimator for J
is constructed by placing each of these elements in its global
position:

Jlocal

Wi N;| — (10)

=Jiing = [(S[Z’ Nl [i Ni])il}i,[i N

The local estimates are all locally consistent, i.e., Ji - Ji
as T' — oo. Together with the fact that the local and global
inverse covariances are identical in their {7, [ N;]} positions,
we obtain global consistency:

Jlocal _, 3 as T — oo.

(1)

C. Distributed estimator

We now propose a modification to the local estimators
which allows for improved performance by message passing.
The basic principle behind this improvement is to exploit
the symmetry in the inverse covariance. The local estimators
do not utilize this inherent property and can therefore be
improved. Symmetry can be enforced using simple averaging
between neighboring nodes but this will result in suboptimal
local likelihood values. Instead, we now propose a rigorous
approach using an alternative formulation.

For this purpose, we re-derive Jiocal using global quantities
as sub-blocks of J, rather than local quantities as J i. Con-
sider the conditional distribution of x; given xy,. Using the
properties of the Gaussian conditional distribution, x; given
xp, is jointly Gaussian with canonical parameters —J; n,Xn;,
and J; ;, and is therefore fully characterized by our parameter
of interest J; ; n,- The ’th conditional ML estimate is the
solution to

T
Jii, = arg max Y logp (xiftlxw, [t Jii vy -

z[zN,L]t 1

12)

and it can be shown to be identical to the local estimate in
(10). Moreover, the p independent conditional ML estimates
can be conveniently expressed as a single (yet fully decoupled)
optimization problem:

Jlocal — arg max Z Z logp

i=1 t=1

(%N, [t i wv,y) - (13)

This formulation is known in the statistical literature as
pseudo-likelihood estimation and is known to provide a good
tradeoff between performance and computational complexity
(See [8]-[10] and references within).

Based on the pseudo-likelihood formulation, we can now
rigorously exploit the known symmetry in the inverse covari-
ance and propose the distributed estimator:

Jdist — arg | max ZZlogp x; [t

”_“z 1 t=1

JIxn, [ 3506 vy) > (14)

where we have added simple symmetry conditions J; ; = J; ;.
The objective of (14) is separable and the only coupling
constraints which prevent a distributed implementation are
the constraints. Following [11], we propose to distribute the
solution using the Alternating Direction Method of Multipliers.
We define the augmented Lagrangian

L(j,j;M> Z [Zlogp (x, 11w, [t]; J; [iNi]) (15)

=1

N _ C [/~ — 2
+ Z M, ; (Ji,j - Ji,j) -3 (Ji,j - Ji,j) )

JEN;

where J is the estimated inverse covariance, J is a symmetric
auxiliary matrix, M is a matrix of dual multipliers and c
is a positive scalar parameter. In standard dual decomposi-
tion methods, a saddle point of the augmented Lagrangian
L (j J; M) is found by iteratively solving for the primal

variables J and J with fixed dual variables M and then
updating M. Due to the coupling in the quadratic term, solving
the primal problem is difficult. Remarkably, the method is
guaranteed to converge to the global solution even if we update
M with suboptimal primal values, and use the following
iterations:

5 Jij+3 My +M,,
Jijandji J 5 LA J 5 Lt (16)
ji,[i N, < arg max g; (jz[z Ni]> ; (17)
i[i N;]
Mi,j — Mi,j +c (jj,,j — j@j) R (18)

for all ¢ € V and j € N;, where

0 (1m) -

Zlogp (xl | 1xn, [t]; ji,[iNq-,]> 19)

This algorithm involves local computations and message pass-
ing through the dual multipliers in M.

The most computationally intensive tasks of this distributed
algorithm are the solutions to the local penalized likelihoods
in (17). We now show that each of these sub-problems can
be reduced to a simple line search. For this purpose, we first
solve for J; .- Taking the derivative with respect to J; N, and
equating to zero yields

1
1 _
Jin, =— <ASN,i,Ni + CI) (Snii —m; —cJn,i), (20)
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where m; is vector with the neighboring dual variables.
Plugging J; n, back into the objective yields a line search
with respect to J; ;:

-1

SNmNi ..
1,0

max —J;;S;; + SZT ——— +cl
Jii 4,0

si +log [T, @D

where s; = Sy, ; — m; — cJ , ;. This line search is unimodal
since the original problem was jointly convex. Therefore, it can
be efficiently solved using a bisection method. In the special
case in which M = 0 and ¢ = 0, the line search has a simple
closed form solution which coincides with Jioca,

Positive definiteness: The distributed estimator exploits the
known symmetry in J but may not produce a positive definite
estimator. Performance can be improved by adding this con-
straint to (14). However, we are not aware of simple distributed
methods for enforcing it. Moreover, it is well known that
inequality constraints which do not reduce the dimensionality
of the unknown parameter do not change the asymptotic
performance of M estimators (or the Cramer Rao performance
bound [12]). For the case of finite sample size, incorporation
of positive definiteness constraints can improve performance
and is worthwhile for future study.

Generalizations: Another interesting direction would be to
try to improve the summation aggregation of likelihoods. The
sum of conditional distributions of x;, could be replaced by
a sum over conditional distributions of xg, where §; are
overlapping subsets of indices. The sum could also be replaced
by weighted sum according to the number of neighbors each
node has or other criteria.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the performance advantage
of the distributed estimator using a numerical example. We
simulate a network of p = 50 sensors whose locations are uni-
formly distributed over the unit square. We generate a graph by
connecting each sensor (node) to its four nearest neighbors. We
then compute the values of the inverse covariance as follows:
Ji; = 0if nodes ¢ and j are connected, and J; ; = e 0-7di;
where d; ; is their distance, otherwise. We add an arbitrary
value to the diagonal elements in order to guarantee that the
matrix is positive definite. After computing J we keep it fixed
throughout all the Monte Carlo simulations. In each of the 500
experiments, we generate independent realizations of x and
estimate J using the three estimators. The distributed estimator
is implemented using the message passing protocol described
above with ¢ = 0.1 and 5 iterations. In Fig. 1, we report
the normalized MSEs in J, J=! and x; ... ;> as detailed
in Section II. The performance advantage of the distributed
estimator in comparison to the local estimator is evident in
all three performance measures. The MSES in J and in x
show similar behavior, and strengthen our intuition that J,
rather than J—!, is the natural parameter required for inference.
Examining the iteration count of the distributed estimator
reveals that almost all of the performance gain is obtained
within the first 2-3 iterations, corresponding to a small amount
of message passing.
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Fig. 1. MSE:s as a function of number of samples and the graphical model.
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