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ABSTRACT

Initialization of Magneto-rotational Simulation of Core-Collapse Supernovae. TONY Y. LI (Cornell Univer-

sity, Ithaca, NY) SHIZUKA AKIYAMA (Kavli Institute for Particle Astrophysics and Cosmology, Stanford

Linear Accelerator Center, Menlo Park, CA)

The full mechanism behind core-collapse supernovae is currently not fully understood, as computer simula-

tions have been unable to produce explosions for massive progenitor stars. Strong magnetic fields may play a

significant role during the process by driving the stalled shock, transporting angular momentum, and possibly

accounting for observed features of supernovae such as bipolar jets. However, the simulation of magneto-

rotational core collapse is an inherently three-dimensional problem. In this paper, we present in detail our

initialization of a fully three-dimensional core-collapse simulation, which we run using the GRMHD code

COSMOS++. In our initial model, we incorporate a polytropic density distribution, a rotation profile with

variable degree of differential rotation, and a poloidal magnetic field. We describe key features that we have

implemented in our simulation code, including a logarithmically spaced mesh and a magnetic field inclined

to the axis of rotation. In our continuing work we aim to analyze the results of a completed simulation and

perform a comprehensive parameter study of magneto-rotational core collapse.
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INTRODUCTION

The full physical mechanism behind core-collapse supernovae has been a long-standing problem in astro-

physics for several decades. Sufficiently massive stars (& 8M�), toward the end of their stellar evolution,

acquire a central iron core. When this core exceeds a threshold mass at roughly the Chandresekhar limit,

gravity dominates over all other outward pressures, causing the core to collpase until the matter inside

reaches nuclear densities, forming a proto-neutron star (PNS) and sending an outward shockwave to the rest

of the star. However, the mechanism by which this core implosion transforms into an overall stellar explosion

is still not fully understood, despite the inclusion of increasingly sophisticated physics in supernovae models.

At the heart of the problem is the outward shock, which necessarily stalls within the stellar envelope. With-

out reviving the stalled shock, the star fails to explode. Currently, neutrino heating is believed to account

for a significant fraction of that driving energy. However, neutrino-driven models, when simulated, will only

yield explosions for small mass progenitors, and in larger stars (& 15M�), the shock still stalls within stellar

envelope and the star fails to explode. In all likelihood, the present model of core collapse is incomplete and

missing crucial additional physics.

It is possible that magnetic fields, amplified by rotation, play an integral part in this mechanism. This

suggestion is not new, but it has gained traction in recent years, owing to a proliferation of research into

the magnetorotational instability (MRI), a magnetohydrodynamic shear instability previously invoked in the

study of accretion disks. Combined with magnetic winding, the MRI provides a potential mechanism for

rapidly amplifying the magnetic fields to saturation on a short enough timescale (∼10 ms) to be significant

within the context of core collapse [1]. Even if magnetic fields do not provide the complete solution to the

problem of core collapse, there are strong reasons to believe in their importance. The amplified fields may

exert enough magnetic pressure to help drive the stalled shock. They can aid in angular momentum trans-

port, and may account for asymmetries in observed supernovae, such as bipolar jet explosions. Additional

motivation comes from observations of anomalous X-ray pulsars and soft gamma-ray repeaters, which have

been suggested to be magnetars — neutron stars with exceptionally strong magnetic fields.

Numerous magneto-rotational core collapse simulations have been performed in previous studies, but most

have been done in only two dimensions [2, 3, 4]. While two dimensions breaks the restriction of spherical

symmetry, it cannot incorporate non-axisymmetric features such as magnetic fields inclined to the rotation

axis. Such magnetic fields are believed to be a feature of pulsars, and a complete treatment of magneto-
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rotational core collapse requires three-dimensional simulations. Such simulations are relatively new, since

adequate computng power for such simulations has only recently become a reality. In this paper, we present

in detail our initialization and equations for an ongoing magneto-rotational core collapse simulation, which

is indeed designed to be run in three dimensions.

METHODS

Computational Method

The simulations are run using COSMOS++, a massively parallel, general relativistic magnetohydrodynamic

(GRMHD) code. It has previously been used in the study of accretion disks, but its application to core

collapse situations is fairly new. In our implementation, the COSMOS++ code solves an internal energy

formulation of the GRMHD equations with artificial viscosity to incorporate shock heating (see [5] for details).

Our simulations were performed on a computational mesh in spherical coordinates (r, θ, φ). The mesh

contains 300 radial zones, in the domain 0 ≤ r ≤ 2R, where R is the radius of the stellar core. The zones

are logarithmically spaced so that the increase in size between adjacent zones is ∼ 2.5%. The logarithmic

spacing was previously a feature of COSMOS++ in two dimensions, and for the purposes of this study we

have extended it to three dimensions. It ensures a fine enough grid to provide adequate resolution around

both the pre-collapse initial core and the much smaller PNS formed during collapse. In the angular directions,

we have included 60 uniform zones in θ, 0 ≤ θ ≤ π
2 , and 120 uniform zones in φ, 0 ≤ φ < 2π, translating to

3 ◦ of resolution in each angular coordinate.

Polytropic Initial Model

We begin by setting up the initial conditions for the stellar core, just before collapse. We assume that the

core is initially rotating slowly enough to be approximated by a spherically symmetric polytrope. As such,

we can obtain the density profile by specifying an initial adiabatic index γ0 for the core and solving for the

function θ(ξ) in the Lane-Emden equation, given in [6] as

1
ξ2

d

dξ

(
ξ2
dθ

dξ

)
= −θn (1)
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with boundary conditions

θ(ξ = 0) = 1

dθ

dξ

∣∣∣∣
ξ=0

= 0.

The polytropic index n is given by n = 1/(γ0−1), and the variables θ and ξ are related to physical variables

of density ρ and spherical radius r by

ξ = r

(
4πGρ2

c

(n+ 1)Pc

)1/2

= r

(
ξsurf

R

)
, ρ = ρcθ

n

where G is the gravitational constant, ρc and Pc are central density and pressure, respectively, ξsurf is the

first zero of θ(ξ), corresponding to the surface radius R. The pressure within the star is given as

P = Kργ0 (2)

where K is the so-called polytropic constant. Since this is a second-order ODE, we obtain a straightforward

numerical solution via 4th order Runge Kutta.

We have used γ0 = 4/3, corresponding to a relativistic degenerate gas, and ρc = 1010 g cm−3 andR = 1.7×108

cm, approximately following the stellar model of [7] for a 15 M� progenitor.

Rotational Profile

Having obtained an initial density distribution, we add in the rotational profile and magnetic field of the

core. For the rotational profile, we set up our simulation with the option of three profiles from [8]: rigid

rotation, or the so-called v-const and j-const laws, given by

Ω($) = Ωc rigid (3)

Ω($) =
Ωc

1 + a
$

v-const (4)

Ω($) =
Ωc

1 +
(
a
$

)2 j-const (5)
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where $ is the cylindrical radial coordinate, Ωc is the central angular velocity of the core, and a is a

constant with dimensions of length which may be varied to adjust the degree of initial differential rotation.

For sufficiently large a, a� $, the three above equations are very nearly rigid rotation.

We have chosen to use the j-const law of Eq. 5, using a = 5.0× 109 cm and Ωc = 1 s−1 for our initial run.

Magnetic Field

For the magnetic field, we have implemented in our code the option of setting up a poloidal, toroidal, or

purely vertical field directed in the +z direction. The initial characteristic strength B0 of the field can be

varied.

We use the poloidal magnetic field in our simulation, and it derives from the vector potential A(r) of a

circular current loop of radius rmag as given in [9]. Here, B0 is the magnitude of the magnetic field at the

origin. In the most general case, we assume that the magnetic moment of the loop is tilted at an angle α to

the axis of rotation. To calculate the magnetic field, then, we define two coordinate frames: an unprimed

frame spanned by (x, y, z) or (r, θ, φ), in which the z-axis aligns with the rotation axis, and a primed frame

spanned by (x′, y′, z′) or (r′, θ′, φ′), in which the z′-axis aligns with the magnetic moment. As such, the two

frames are related by the transformation:


x′

y′

z′

 =


cosα 0 sinα

0 1 0

− sinα 0 cosα




x

y

z

 . (6)

Note that the simulation itself is carried out in the unprimed frame. However, in the primed frame, the only

nonzero component of A′ is the azimuthal component A′φ, which can be expressed as

A′φ(r′) ∝
∞∑
n=0

(−1)n(2n− 1)!! r′2n+1
<

2n(n+ 1)! r′2n+2
>

P 1
2n+1(cos θ′) (7)

where (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1), r< = min(r, rmag), r> = max(r, rmag), and Pnm denotes the Legendre

polynomials.
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The magnetic field in the primed frame is then calculated from a discrete approximation of B′ = ∇ ×A′,

though in order to avoid any of the inherent singularities in spherical coordinates (i.e. at r = 0, θ = 0, and

θ = π), we perform this calculation by converting to Cartesian coordinates. We then transform the magnetic

field back to the original, unprimed coordinate frame and scale it by B0.

For our initial run, we have chosen rmag = R/4 and B0 = 1012. It is worth noting that this magnetic field

is significantly greater than the pre-collapse fields calculated in [10], but we motivate the magnitude of this

field by noting that we aim to study the effect of high field strengths, but we do not expect to resolve the

MRI on our grid, nor should amplification through collapse and magnetic winding be dynamically significant

within the time window of our simulation.

Equation of State

We use an approximate parametric equation of state, given in [11] and previously adopted in such studies

as [4, 3], which sets the pressure P as a sum of a polytropic component and a thermal component:

P = Pp + Pth (8)

The polytropic component Pp is given by

Pp = Kp ρ
γp (9)

where the adiabatic index γp and the polytropic constant Kp are defined as

γp =


γ1 if ρ < ρnuc

γ2 if ρ ≥ ρnuc

and Kp =


K1 if ρ < ρnuc

K2 if ρ ≥ ρnuc

(10)

This piecewise definition reflects the phase transition which occurs at nuclear density ρnuc. Initially, the

matter in the core is at sub-nuclear densities, and the pressure is primarily due to relativistic degenerate

electrons, giving γ1 . 4/3. However, as the core collapses, the matter within reaches a far more incompress-

ible ρnuc, and the adiabatic index jumps to γ2 ≈ 2.5. Because the pressure is continuous at ρnuc, we can
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relate the polytropic constants K1 and K2 as

K2 = K1 ρ
γ1−γ2
nuc (11)

The thermal component of pressure Pth is of the form

Pth = (γth − 1)εth (12)

where εth is the thermal internal energy. This component of the pressure accounts for thermal heating from

shocks.

Following the work of [4], we have chosen γth = 1.5 to reflect a partially relativistic gas. Additionally, we

have chosen γ1 = 1.28 and γ2 = 2.5. That γ1 is reduced from the initial adiabatic index γ0 = 4/3 reflects the

absorption of electrons occuring within the core, softening the equation of state and initiating gravitational

collapse.

It is important to note that our equations of state do not include the effects of neutrino heating, which is

believed to play an essential role in energizing the stalled outward shock. As such, our simulation results are

restricted to the first several tens of milliseconds, before neutrinos become dynamically important.

RESULTS

A visualization of our computational mesh is shown in Figure 1. Near the center of the mesh, around the

expected radius of ∼ 50 km of the PNS, we obtain a resolution in the radial direction of about ∆r ≈ 1 km.

The density profile of our polytropic model, alongside the core profile of a 15 M� progenitor from [7], is

displayed in Figure 2. Though the two curves diverge from each other near the surface of the core, they are

very close in the central regions, and are qualitatively similar in that they model a rapid dropoff in density

outside of a region of relatively consistent central density. Both models have been used in previous core

collapse simulations.

A vector field visualization of our initial magnetic field, as viewed in the xz-plane, is displayed in Figure 3.
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As is evident in the figure, the field is purely poloidal, tilted by 45 ◦, and is strongest near the center of the

core. We expect that, as the simulation progresses and differential rotation becomes more pronounced during

collapse, the magnetic field lines will wrap around each other and a significant toroidal field component will

develop.

DISCUSSION AND CONCLUSIONS

Because of the intrinsically asymmetric properties of magnetic fields, three dimensional simulations are

a crucial tool in obtaining a full understanding of magneto-rotational effects in core-collapse supernovae.

In our work, we have set up the initialization for a 3D magneto-rotational core collapse simulation. Our

initial conditions specify a polytropic model of the core that reflects a relativistic degenerate electron gas,

a j-constant rotation profile with very slight differential rotation, and a poloidal field inclined to the axis

of rotation. The values of all parameters and constants have been specified for the initial run of the full

simulation.

However, because this is an ongoing study in that we are currently in the midst of running full simulations,

there is ample room for further work. We aim to perform a comprehensive and detailed investigation of

all magneto-rotational parameters, in which we would compare results from varying such parameters as

the strength of the initial rotation, the degree of initial differential rotation, and the initial magnetic field

strength, geometry, and angle of inclination. Accomplishing this will require significant computing resources,

but as the logical next step in our research, we look forward to analyzing the results of such a study.
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FIGURES

Figure 1: Visualization of the spherical mesh used in the simulation. Units for each axis are normalized by
R.
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Figure 2: Comparison between our polytropic profile and that of [7] for the core of a 15 M� progenitor. The
dotted line denotes the outer radius of the core in our simulation. Our profile ends slightly before stellar
radius because we have imposed a minimum density throughout simulation.
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Figure 3: Vector field visualization of our tilted magnetic field. Colors represent increasing magnetic field
strength from dark to light, and units on the axes are given in terms of R. The rotation axis is aligned with
the z-axis, and the magnetic dipole moment is tilted at an angle π/4 from the rotation axis. The circular
outline represents the approximate boundary of the initial stellar core. The unusual density of vectors along
the z-axis merely arises from the increased density of mesh zones in that region—a byproduct of our spherical
mesh—and is not reflective of a singularity in our magnetic field.
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