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Abstract — A preliminary report on our investigations
into the existence of spherical t-designs on the unit sphere
Ω4 in 4-dimensional Euclidean space. Tables are given of
the putatively best t-designs with up to 100 points. Some
general constructions are proposed and explicit construc-
tions are given for N -point strength t designs with N = 4p
and t = min{p− 1, 5}, N = 6p and t = min{p− 1, 7}, and
N = 12p and t = min{p− 1, 11}, for all p ≥ 1.

I. INTRODUCTION

Spherical t-designs have received a great deal of attention
in recent years. They were the subject of a conference at the
University of Geneva in October 2002, organized by Pierre
de la Harpe, and there was a special session on spherical codes
and designs at the annual meeting of the American Mathemat-
ical Society in Baltimore in January 2003, organized by Béla
Bajnok and N.J.A.S.

Beginning in the early 1990’s, the first two authors carried
out a systematic search for solutions to many versions of the
problem of finding the “best” way to place N points on the
unit sphere Ωn in n-dimensional Euclidean space, concentrat-
ing on up to about 100 points in three, four and sometimes
five dimensions. We originally considered just the packing
problem, but the algorithm seemed to perform well on other
problems, so we also tackled the covering, minimal energy
and maximal volume problems, the spherical t-design problem
and the problem of constructing optimal experimental designs.
We also modified the algorithm to compute clusters of spheres
with minimal second moment about their centroid, isometric
embeddings and packings in Grassmannian spaces.

Some parts of this work have been described in [14], [15],
[16], [17], [18], [28], and tables containing many of the results
can be found on N.J.A.S.’s homepage [27]. The algorithm we
used was a modification of the “pattern search” of Hooke and
Jeeves [20]. It has been described in our earlier papers and we
will say no more about it here.

Of course our computer program just produces numerical
coordinates for the points P1, . . . , PN , typically specified to
12 decimal places. If we want to prove theorems about the
results (rather than just to use them), we must show (for exam-
ple) that there is a spherical t-design in the neighborhood of
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the numerical points. We will say more about this “beautifica-
tion” process later.

The purpose of the present paper is to give a preliminary re-
port (in Section III) on the search for spherical designs in four
dimensions. In Section IV we present some new constructions
for four-dimensional designs that emerged from the beautifi-
cation process. Full details will be published elsewhere.

II. SPHERICAL t-DESIGNS

We give five equivalent definitions.

(D1) A set of N points {P1, . . . , PN} on the unit sphere
Ωn = Sn−1 = {x = (x1, . . . , xn) ∈

� n : x · x = 1} forms a
spherical t-design if the identity

∫

Ωn

f(x)dµ(x) =
1

N

N
∑

i=1

f(Pi) (1)

holds for all polynomials f of degree ≤ t, where µ is uni-
form measure on the sphere normalized to have total measure
1 ([10]; [12]; [9, §3.2]).

Of course a t-design is also a t′-design for all t′ ≤ t. The
largest t for which the points form a t-design is called the
strength of the design.

It is known that if N is large enough then a t-design in Ωn
always exists ([25]). The problem is to find the smallest value
of N for a given strength and dimension, or equivalently to
find the largest strength t that can be achieved with N points
in Ωn.

(D2) P1, . . . , PN is a spherical t-design if and only if

N
∑

i=1

f(Pi) = 0 (2)

for all harmonic polynomials f of degrees from 1 to t. (f is
harmonic if the Laplacian

∆f =

n
∑

j=1

∂2f

∂x2j

vanishes.)
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(D3) P1, . . . , PN is a spherical t-design if and only if

N
∑

i=1

f(P Ti ) =

N
∑

i=1

f(Pi) (3)

for all polynomials f of degrees from 1 to t and all orthogonal
transformations T ∈ O(n, �

).

(D4) For α ∈ [−1, 1], let Aα be the number of ordered pairs
(i, j) such that Pi · Pj = α. The numbers {Aα} are the dis-
tance distribution of the design. Then the Gegenbauer trans-
form

∑

α

AαQk(α) ≥ 0 for all k, (4)

and P1, . . . , PN is a spherical t-design if and only if equality
holds in (4) for all k = 1, . . . , t. The Qk(x) are Gegenbauer
or ultraspherical polynomials defined by the recurrence

Q0 = 1, Q1 = nx,

λk+1Qk+1 = xQk − (1− λk−1)Qk−1 ,
where λk = k/(n+ 2k − 2).

The inequalities (4) are the basis for the linear programming
bound for spherical designs.

(D5) P1, . . . , PN forms a spherical t-design if and only if the
polynomial identities

1

N

N
∑

i=1

(Pi · x)2s =





s−1
∏

j=0

2j + 1

2j + n



 (x · x)s , (5)

and
1

N

N
∑

i=1

(Pi · x)2s+1 = 0 ,

hold, where s and s are defined by {2s, 2s+ 1} = {t− 1, t}
([12]; [23, p. 114], [24]).

Spherical t-designs from groups. Let G be a finite sub-
group of O(n,

�
). Consider the ring R of polynomials in

x1, . . . , xn that are invariant under G, ignoring the trivial in-
variant x21 + · · · + x2n. If Rj is the linear subspace of R con-
sisting of homogeneous invariants of degree j, then the dimen-
sions dj = dimRj are given by the Molien series

ΦG(λ) =
1

|G|
∑

T∈G

1− λ2
det(I − λT ) =

∞
∑

j=0

djλ
j . (6)

Let P = {P1, . . . , PN} be a union ofm orbits underG (not
necessarily all of the same size). There are m(n− 1) degrees
of freedom in choosing P .

Then P is a spherical t-design if and only if the average
of f over P is equal to the average of f over Ωn for all f ∈
R1 ∪ R2 ∪ · · · ∪ Rt [11], [13], [19]. This imposes a total of
et = d1 + · · ·+ dt conditions on P . So if m(n− 1) ≥ et, we
may hope that we can choose the orbits to form a t-design.

In particular, suppose that d1 = · · · = dt = 0 for some t.
Then there are no conditions to be satisfied, and so every orbit

underG is a t-design. (This result seems to be due to Sobolev
[29], cf. [9].)

Furthermore, if dt+1 = 1, and ψ is the unique (up to
scalars) invariant of degree m, then the orbit of any real zero
of ψ is at least a (t+ 1)-design.

III. FOUR DIMENSIONS

Table 1 gives our lower bounds for τ4(N). The third col-
umn gives the order of the largest symmetry group we have
found for a design with the specified strength. Bold entries
indicate where τ4(N) appears to exceed τ4(k) for all k < N .

Notes on Table 1. (i) For each entry in the table we have
a numerical approximation to the claimed design; that is, nu-
merical coordinates for points such that the magnitude of the
difference between the left and right sides of (5) is less than
10−8. These designs will be placed on N.J.A.S.’s home page
[27].

(ii) The entries with N ≤ 20, 24, 48 and 120 were previ-
ously known to exist (Mimura [21], Bajnok [2], [3], Hardin
and Sloane [14], Delsarte, Goethals and Seidel [10]); and the
entries with N = 21− 23 and 25, 26, 27, 31 were previously
conjectured to exist [14].

(iii) In the present investigation the entries with N = 21,
26, 28, 32, 36, 39, 40, 42, 44, 52, 54, 60, 65, 66, 72, 78, 84, 90
have been beautified (and so shown to exist).

(iv) Many entries still have not yet been beautified, for ex-
ample those with N = 22, 23, . . . , 30, . . . points, and espe-
cially the putative 8-design with N = 96 points. (The biggest
group we have found for such a design has order only 6, with
16 orbits, which leaves too many unknown parameters for our
present beautification methods to handle.)

(v) For definitions of orthoplex, diplo-simplex, etc., see [8].
(vi) This is only a preliminary version of the table. It is

possible that some entries — especially the group orders —
may change in the final version.

The data in Table 1 can be summarized as follows. It ap-
pears that spherical designs in four dimensions with strength t
and N points exist if and only if:

t N
2 ≥ 5
3 8,≥ 10
4 ≥ 20
5 24, 28, 30,≥ 32
6 42, 48,≥ 50
7 48, 54, 56, 60, 62, 64, 66,≥ 68
8 ≥ 96
· · · · · ·

For t = 2 this is known to be true from the work of Mimura
[21], and for t = 3 from Bajnok [2], [3] and Boyvalenkov,
Danev and Nikova [4]. For t ≥ 4 these are only conjectures.

Examples. Our beautification technique begins by comput-
ing the distance distribution of the points, their apparent auto-
morphism group and its orbits on the points.

For small numbers of points this is often enough to reveal
the structure immediately.



7 points, strength 2. The group has order 14 and acts tran-
sitively on the points. By a suitable change of coordinates we
can make the generators for the group look like









cos θ1 sin θ1 0 0
− sin θ1 cos θ1 0 0
0 0 cos θ2 sin θ2
0 0 − sin θ2 cos θ2









(7)

and diag{1,−1, 1,−1}, where θ1 = 2π/7, θ2 = 4π/7. This
transformation also beautifies the points, which become

1√
2
(cos jθ, sin jθ, cos 2jθ, sin 2jθ)

(j = 0, . . . , 6). We may specify this design more simply as
{(ωj , ω2j), j = 0, . . . , 6}, where ω = e2πi/7, which is how it
is listed in Table 1. Once we have these simple coordinates it
is straightforward to use a symbolic algebra package such as
Maple [6] to verify that the strength is as claimed.

Of course this design has been known for a long time, but
we have described the process in detail to illustrate the beauti-
fication technique.

The designs for N = 9 and 13 are of the same type.

20 points, strength 4. This was already beautified in [14].
The points consist of the orbit of a single point (a, b, c, d) un-
der a certain group of order 20. The equations that a, b, c, d
must satisfy are given in [14]. At that time we found that
a, b, c, d were roots of integral polynomials of degree 72. We
have now found that these polynomials can be factored, and
so a simpler description is possible. It turns out that c =
−0.4594335 . . . is a root of the following polynomial of de-
gree 20 overQ[

√
3]:

1019215872x20− 2548039680x18
+849346560x18

√
3 + 3609722880x16

−1804861440x16
√
3− 3185049600x14

+1769472000x14
√
3 + 1761177600x12

−1006387200x12
√
3− 608587776x10

+350631936x10
√
3 + 128240640x8

−74108160x8
√
3− 15465600x6

+8950080x6
√
3 + 930300x4

−538800x4
√
3− 20100x2

+11650x2
√
3− 63 + 36

√
3 ,

and a, b and d are roots of similar polynomials of the same
degree.

A different 20-point 4-design will be given in Section V.

21 points, strength 4. The group of this design is the
same as the group of the above 7-point design. The 21
points fall into two orbits, with representatives (u, v, w, x) and
(y, 0, z, 0) (say), whose approximate values are

(0.01210 . . . ,−0.83898 . . . ,−0.04657 . . . ,−0.54202 . . .)

and
(0.30292 . . . , 0,−0.95301 . . . , 0) .

After a considerable amount of simplification we find that the
following equations must be satisfied for this to be a 4-design:

u2 + v2 + w2 + x2 = y2 + z2 = 1 ,

u2 + v2 =
1

4
(3− 2y2) ,

(u2 + v2)2 =
1

2
(1− y4) ,

(u2 + v2)(w2 + x2) =
1

4
(1− 2y2z2) ,

(w2 + x2)2 =
1

2
(1− z4) ,

2w(u2 − v2) + 4uvx = −y2z ,
6wx(ux+ vw) − 2uw3 − 2vx3 = −yz3 .

These imply
12y4 − 12y2 + 1 = 0 ,

u2 + v2 =
1

2
+
1

2
√
6
,

and finally that u is a root of the irreducible polynomial

370064301985047250503374330658816000000u56

−2590450113895330753523620314611712000000u54
+8499914436219054034999379157319680000000u52

−17391094775057715319228888466325504000000u50
+24899387662279537368324714887380992000000u48

−26538129846554061588093258386374656000000u46
+21869812340899414041740569007357952000000u44

−14288148063124617412183158428054467903488u42
+7528498207750245383367572061822929338368u40

−3237480950055173571219844766822842761216u38
+1145499747167940743157516608475821506560u36

−335215964942931989772955061161455255552u34
+81357491663702586946618517659406303232u32

−16386240716737992044502246170623475712u30
+2734899456377829726261221866315186176u28

−376908341370344979393267774145953792u26
+42638421653218179958830238871322624u24

−3925374570079154331047708023848960u22
+290546738656133501034283042603008u20

−17003134241759862086722092269568u18
+768504591189193729587321765888u16

−25936049223509962319342862336u14
+620859209067240422756843520u12

−9680230988740463748710400u10
+83470588537572204192000u8

−264480246652176979200u6
+139741070071159200u4

−24494390617200u2
+1383468025 .

IV. A NEW CONSTRUCTION

The most interesting example that we beautified was the 6-
design in Ω4 with 42 points. This turned out to consist of six
heptagons, each in a different plane, with a group of order 42
acting transitively on the 42 points. Or, to put it another way:
the computer-produced design was suggesting to us that we



should choose six planes in
�
4 , i.e. six points in the Grass-

mann manifold G(4, 2), and draw a heptagon in each plane.
This was an appealing idea, in view of the recent work on

finding packings and designs in Grassmann manifolds (cf. [1],
[5], [7], [26])! It immediately suggested a general construc-
tion.

Informally stated, we take a “nice” set of M planes in
�
4 ,

draw a regular p-gon in each plane for a given value of p, ob-
taining a set of N = Mp points that will form a spherical
t-design for some t (possibly 0).

The following are two more precise versions.

Construction 1. Fix integers M and p, and let θ = 2π/p.
Let Πi (i = 1, . . . ,M) be a plane in

�
4 spanned by a pair

of orthogonal vectors ui, vi, and let φ1, . . . , φM ∈ [0, 2π) be
phase angles. Then the design consists of the N =Mp points

{cos(jθ+ φi)ui +sin(jθ+ φi)vi : 0 ≤ j < p, 1 ≤ i ≤M} .
(8)

Construction 2. Fix integers M and p, and let θ = 2π/p.
For i = 1, . . . ,M let Πi = 〈ui, vi〉, Π′i = 〈wi, xi〉 be a pair
of perpendicular planes in

�
4 , where {ui, vi, wi, xi} is a co-

ordinate frame, let φ1, . . . , φM ∈ [0, 2π) be phase angles, and
let k1, . . . , kM be integers. Then the design consists of the
N =Mp points

{cos(jθ + φi)ui + sin(jθ + φi)vi
+cos(jkiθ + φi)wi + sin(jkiθ + φi)xi :

0 ≤ j < p, 1 ≤ i ≤M} . (9)

The first construction generalizes the 42-point design and
the second construction generalizes the 7-, 9- and 13-point de-
signs (and others).

We are far from completing our investigations of these con-
structions. At present three concrete examples have emerged,
applications of Construction 1 with all phase angles φi set to 0.
(There are also simpler applications of Construction 1 using a
pair of planes to obtain 3-designs, which we will not describe
here.)

Theorem 1 Let Π1, . . . ,Π4 be the planes with generator ma-
trices

[

1 0 0 0
0 s s s

]

,

[

0 1 0 0
s 0 s −s

]

,

[

0 0 1 0
s −s 0 s

]

,

[

0 0 0 1
s s −s 0

]

,

where s = 1/
√
3. Then (8) (with all φi = 0) forms a 4p-point

spherical t-design with t = min{p− 1, 5}.

Theorem 1 yields the following t-designs:

p 2 3 4 5 6 7 8 9 10 11 12 · · ·
N 8 12 16 20 24 28 32 36 40 44 48 · · ·
t 3 2 3 4 5 5 5 5 5 5 5 · · ·
group 384 18 96 15 1152 21 192 27 240 33 288 · · ·

Notes. (i) p = 2 gives the orthoplex, which has higher
strength than was guaranteed by the theorem. (ii) p = 5 gives
a simpler construction for a 20-point 4-design than the one in
[14]. (iii) p = 6 gives the 24-cell. (iv) The designs are antipo-
dal if and only if p is even, and this is reflected in the fact that
the designs with p odd have much smaller groups.

Theorem 2 Let Π1, . . . ,Π6 be the planes with generator ma-
trices

[

1 0 0 0
0 1 0 0

]

,

[

0 0 1 0
0 0 0 1

]

,

[

s 0 −h h
0 s −h −h

]

,

[

−h h s 0
−h −h 0 s

]

,

[

−s 0 −h −h
0 −s h −h

]

,

[

−h −h −s 0
h −h 0 −s

]

,

where now s = 1/
√
2, h = 1/2. Then (8) (with all φi = 0)

forms a 6p-point t-design with t = min{p− 1, 7}.

Theorem 2 yields the following t-designs:

p 2 3 4 5 6 7 8 9 10 11 12 · · ·
N 12 18 24 30 36 42 48 54 60 66 72 · · ·
t 1 2 3 4 5 6 7 7 7 7 7 · · ·

group 24 36∗ 128∗ 30 144∗ 42 230454 12066 192∗ · · ·

Notes. (i) The starred group orders were obtained using a
slightly different set of six planes. (ii) p = 6 is the 42-point
design that the computer found. (iii) p = 8 gives the 48-point
design formed from two copies of the 24-cell. Its group is the
Clifford group C(2) from [22].

We remind the reader that there is a canonical way to spec-
ify a plane Π in

�
4 by a pair of points (l, r) ∈ Ω3 × Ω3 (see

[7], Theorem 1). A set of M planes is described by a “binoc-
ular spherical code” {(li, ri) ∈ Ω3 × Ω3 : i = 1, . . . ,M}.
The sets of planes used in Theorems 1 and 2 correspond to the
binocular spherical codes {point× tetrahedron} and {point×
octahedron}. The third theorem is a natural continuation:

Theorem 3 By using the M = 12 planes described by {point
× icosahedron} we obtain from (8) a 12p-point spherical t-
design with t = min{p− 1, 11}.

Theorem 3 yields the following t-designs:

p 6 7 8 9 10 11 12 13 14 15 · · ·
N 72 84 96 108120 132144 156168180 · · ·
t 5 6 7 8 9 10 11 11 11 11 · · ·

group 24 28 32 36 40 44 48 52 56 60 · · ·

Theorems 1–3 are established by computing the distance
distribution of the design and working out its Gegenbauer
transform (cf. (4)). This is simplified by the fact that the planes
in the three theorems form isoclinic sets (cf. [7]). Details are
postponed to the full version of this paper.
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Table 1: Conjectured values of τ4(N), the largest t for which an N -point configuration on the sphere in 4 dimensions forms a
spherical t-design.

N τ4(N) Group Remarks
1 0 ∞ single point
2 1 ∞ two antipodal points
3 1 ∞ equilateral triangle
4 1 48 tetrahedron
5 2 120 regular simplex
6 2 72 join of 2 triangles
7 2 14 {(ωj , ω2j)}
8 3 384 orthoplex
9 2 72 {(ωj , ωk)}
10 3 240 diplo-simplex
11 3 22
12 3 288 join of 2 hexagons
13 3 52 {(ωj , ω5j)}
14 3 392
15 3 60
16 3 512 join of 2 octagons
17 3 68
18 3 648
19 3 48
20 4 20 Theorem 1; [14]
21 4 14
22 4 6
23 4 6
24 5 1152 24-cell
25 4 20
26 4 52
27 4 18
28 5 28 Theorem 1
29 4 8
30 5 40
31 4 12
32 5 192 Theorem 1
33 5 6
34 5 12
35 5 10
36 5 144 Theorem 1
37 5 12
38 5 48
39 5 26
40 5 240 Theorem 1
41 5 12
42 6 42 Theorem 2
43 5 12
44 5 96 Theorem 1
45 5 30
46 5 96
47 5 12
48 7 2304 two 24-cells
49 5 4
50 6 100
51 6 4

N τ4(N) Group Remarks
52 6 52
53 6 6
54 7 54 Theorem 2
55 6 20
56 7 16
57 6 9
58 6 116
59 6 12
60 7 240 Theorem 2
61 6 8
62 7 8
63 6 18
64 7 256
65 6 52
66 7 66 Theorem 2
67 6 12
68 7 136
69 7 3
70 7 40
71 7 6
72 7 576 Theorem 2
73 7 6
74 7 16
75 7 6
76 7 38
77 7 22
78 7 52
79 7 8
80 7 256
81 7 36
82 7 164
83 7 12
84 7 144
85 7 34
86 7 24
87 7 18
88 7 128
89 7 12
90 7 180
91 7 52
92 7 48
93 7 36
94 7 96
95 7 38
96 8 6
97 8 1
98 8 4
99 8 11
100 8 20
· · · · · ·
120 11 14400 600-cell [10]


