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Abstract

While three deployed applications of game theory for securi-
ty have recently been reported, we as a community of agents
and Al researchers remain in the early stages of these de-
ployments; there is a continuing need to understand the core
principles for innovative security applications of game theo-
ry. Towards that end, this paper presents PROTECT, a game-
theoretic system deployed by the United States Coast Guard
(USCQG) in the Port of Boston for scheduling their patrols.
USCG has termed the deployment of PROTECT in Boston
a success; PROTECT is currently being tested in the Port of
New York, with the potential for nationwide deployment.
PROTECT is premised on an attacker-defender Stackelberg
game model and offers five key innovations. First, this sys-
tem is a departure from the assumption of perfect adversary
rationality noted in previous work, relying instead on a quan-
tal response (QR) model of the adversary’s behavior — to the
best of our knowledge, this is the first real-world deployment
of the QR model. Second, to improve PROTECT’s efficien-
cy, we generate a compact representation of the defender’s
strategy space, exploiting equivalence and dominance. Third,
we show how to practically model a real maritime patrolling
problem as a Stackelberg game. Fourth, our experimental re-
sults illustrate that PROTECT’s QR model more robustly han-
dles real-world uncertainties than a perfect rationality model.
Finally, in evaluating PROTECT, this paper for the first time
provides real-world data: (i) comparison of human-generated
vs PROTECT security schedules, and (ii) results from an Ad-
versarial Perspective Team’s (human mock attackers) analy-
sis.

Introduction

The last several years have witnessed the successful applica-
tion of game theory in allocating limited resources to protect
critical infrastructures. The real-world deployed systems in-
clude ARMOR, used by the Los Angeles International Air-
port (Jain et al. 2010) to randomize checkpoints of road-
ways and canine patrols; IRIS, which helps the US Feder-
al Air Marshal Service (Jain et al. 2010) in scheduling air
marshals on international flights; and GUARDS (Pita et al.
2011), which is under evaluation by the US Transportation
Security Administration to allocate the resources available
for airport protection. Yet we as a community of agents
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and Al researchers remain in the early stages of these de-
ployments, and must continue to develop core principles of
applying game theory for security.

To this end, this paper presents a new game-theoretic
security application to aid the United States Coast Guard
(USCQG), called Port Resilience Operational/Tactical En-
forcement to Combat Terrorism (PROTECT). The USCG’s
mission includes maritime security of the US coasts, port-
s, and inland waterways; a security domain that faces in-
creased risks in the context of threats such as terrorism
and drug trafficking. Given a particular port and the va-
riety of critical infrastructure that an adversary may at-
tack within the port, USCG conducts patrols to protec-
t this infrastructure; however, while the adversary has the
opportunity to observe patrol patterns, limited security re-
sources imply that USCG patrols cannot be at every loca-
tion 24/7. To assist the USCG in allocating its patrolling
resources, similar to previous applications (Jain et al. 2010;
Pita et al. 2011), PROTECT uses an attacker-defender S-
tackelberg game framework, with USCG as the defender
against terrorist adversaries that conduct surveillance be-
fore potentially launching an attack. PROTECT’s solution
is to provide a mixed strategy, i.e., randomized patrol pat-
terns taking into account the importance of different targets,
and the adversary’s surveillance and anticipated reaction to
USCQG patrols.

While PROTECT builds on previous work, this paper
highlights five key innovations. The first and most impor-
tant is PROTECT’s departure from the assumption of per-
fect rationality (which was embedded in previous applica-
tions) on the part of the human adversaries. The assump-
tion of perfect rationality is well-recognized as a limita-
tion of classical game theory, and a number of approach-
es have been proposed to model bounded rationality in be-
havioral game-theoretic approaches (Camerer 2003). Within
this behavioral framework, quantal response equilibrium has
emerged as a promising approach to model human bound-
ed rationality (Camerer 2003; McKelvey and Palfrey 1995;
Wright and Leyton-Brown 2010) including recent results il-
lustrating the benefits of the quantal response (QR) model in
security games contexts (Yang et al. 2011). Therefore, PRO-
TECT uses a novel algorithm called PASAQ (Yang, Tambe,
and Ordonez 2012) based on the QR model of a human ad-
versary. To the best of our knowledge, this is the first time



that the QR model has been used in a real-world security
application.

Second, PROTECT improves PASAQ’s efficiency via
a compact representation of defender strategies exploiting
dominance and equivalence analysis. Experimental result-
s show the significant benefits of this compact representa-
tion. Third, PROTECT addresses practical concerns (such
as grouping patrol points into areas) of modeling real-world
maritime patrolling application in a Stackelberg framework.
Fourth, this paper presents a detailed simulation analysis of
PROTECT’s robustness to uncertainty that may arise in the
real-world. For various cases of added uncertainty, the paper
shows that PROTECT’s quantal-response-based approach
leads to significantly improved robustness when compared
to an approach that assumes full attacker rationality.

PROTECT has been in use at the Port of Boston since
April 2011 and been evaluated by the USCG. This evalu-
ation brings forth our final key contribution: for the first
time, this paper provides real-world data comparing human-
generated and game-theoretic schedules. We also provide
results from an Adversarial Perspective Team’s (APT) anal-
ysis and comparison of patrols before and after the use of the
PROTECT system from a viewpoint of an attacker. Given
the success of PROTECT in Boston, PROTECT is currently
being tested in the Port of New York, and based on the out-
come there, it may potentially be extended to other ports in
the US.

(b) Extending PRO-
TECT to NY

(a) PROTECT is being used in Boston

Figure 1: USCG boats patrolling the ports of Boston and NY

USCG and PROTECT’s Goals

The USCG continues to face challenges from potential ter-
rorists within the maritime environment, which includes
both the Maritime Global Commons and the ports and wa-
terways that make up the United States Maritime Trans-
portation System. The former Director of National Intelli-
gence, Dennis Blair noted in 2010 a persistent threat “from
al-Qa’ida and potentially others who share its anti-Western
ideology. A major terrorist attack may emanate from ei-
ther outside or inside the United States” (Blair 2010). This
threat was reinforced in May of 2011 following the raid on
Osama Bin Laden’s home, where a large trove of materi-
al was uncovered, including plans to attack an oil tanker.
“There is an indication of intent, with operatives seeking the
size and construction of tankers, and concluding it’s best to

blow them up from the inside because of the strength of their
hulls” (Dozier 2011). These oil tankers transit the U.S. Mar-
itime Transportation System. The USCG plays a key role
in the security of this system and the protection of seaports
to support the economy, environment, and way of life in the
US (Young and Orchard 2011).

Coupled with challenging economic times, USCG must
operate as effectively as possible, achieving maximum ben-
efit from every hour spent on patrol. To that end, the goal of
PROTECT is to use game theory to assist the USCG in maxi-
mizing its effectiveness in the Ports, Waterways, and Coastal
Security (PWCS) Mission. The PROTECT system, focused
on the PWCS patrols, addresses how the USCG should op-
timally patrol critical infrastructure in a port to maximize
protection, knowing that the adversary may conduct surveil-
lance and then launch an attack.

PWCS patrols are focused on protecting critical infras-
tructure; without the resources to provide one hundred per-
cent on scene presence at any, let alone all of the critical
infrastructure, optimized use of security resources is crit-
ical. Towards that end, unpredictability creates situations
of uncertainty for an enemy and can be enough to deem a
target less appealing. While randomizing patrol patterns is
key, PROTECT also addresses the fact that the targets are of
unequal value, understanding that the adversary will adap-
t to whatever patrol patterns USCG conducts. The output
of PROTECT is a schedule of patrols which includes when
the patrols are to begin, what critical infrastructure to visit
for each patrol, and what activities to perform at each criti-
cal infrastructure. While initially pilot tested in the Port of
Boston, the solution technique is intended to be generaliz-
able and applicable to other ports.

Key Innovations in PROTECT

Stackelberg games have been well established in the litera-
ture (Conitzer and Sandholm 2006; Korzhyk, Conitzer, and
Parr 2011; Fudenberg and Tirole 1991) and PROTECT mod-
els the PWCS patrol problem as a Stackelberg game with
USCG as the leader (defender) and the terrorist adversaries
in the role of the follower. The choice of this framework
was also supported by prior successful applications of S-
tackelberg games (Jain et al. 2010; Paruchuri et al. 2008;
Pita et al. 2011). (For those unfamiliar with Stackelberg
games, the sidebar article provides an introduction.)

In this Stackelberg game framework, the defender com-
mits to a mixed (randomized) strategy of patrols, which is
known to the attacker. This is a reasonable approximation
of the practice since the attacker conducts surveillance to
learn the mixed strategies that the defender carries out, and
responds with a pure strategy of an attack on a target. The
optimization objective is to find the optimal mixed strategy
for the defender.

In the rest of this section, we begin by discussing how to
practically cast this real-world maritime patrolling problem
of PWCS patrols as a Stackelberg game. We also show how
to reduce the number of defender strategies before address-
ing the most important innovation in PROTECT: its use of
the quantal response model.



Game Modeling

To model the USCG patrolling domain as a Stackelberg
game, we need to define (i) the set of attacker strategies, (ii)
the set of defender strategies, and (iii) the payoff function.
These strategies and payoffs center on the targets in a port
— ports, such as the Port of Boston, have a significant num-
ber of potential targets (critical infrastructure). As discussed
above, our Stackelberg game formulation assumes that the
attacker learns the defender’s strategy through conducting
surveillance, and can then launch an attack. Thus, the at-
tacks an attacker can launch on different possible targets are
considered as his pure strategies.

However, the definition of defender strategies is not as s-
traightforward. Patrols last for some fixed duration during
the day as specified by USCG, e.g., 4 hours. Our first at-
tempt was to model each target as a node in a graph and al-
low patrol paths to go from each individual target to (almost
all) other targets in the port, generating an almost complete
graph on the targets. This method yields the most flexible set
of patrol routes that would fit within the maximum duration,
covering any permutation of targets within a single patrol.
This method unfortunately faced significant challenges: (i)
it required determining the travel time for a patrol boat for
each pair of targets, a daunting knowledge acquisition task
given the hundreds of pairs of targets; (ii) it did not maxi-
mize the use of port geography whereby boat crews could
observe multiple targets at once and; (iii) it was perceived
as micromanaging the activities of the USCG boat crews,
which was undesirable.

Our improved approach to generating defender strategies
therefore grouped nearby targets into patrol areas (in real
world scenarios such as the Port of Boston, some targets are
very close to each other and it is thus natural to group tar-
gets together according to their geographic locations). The
presence of patrol areas led the USCG to redefine the set of
defensive activities to be performed on patrol areas to pro-
vide a more accurate and expressive model of the patrol-
s. Activities that take a longer time provide the defender a
higher payoff compared to activities that take a shorter time
to complete. This impacts the final patrol schedule as one
patrol may visit fewer areas but conduct longer duration de-
fensive activities at the areas, while another patrol may have
more areas with shorter duration activities.

To generate all the permutations of patrol schedules, a
graph G = (V, £) is created with the patrol areas as vertices
V and adjacent patrol areas as edges £. Using the graph of
patrol areas, PROTECT generates all possible patrol sched-
ules, each of which is a closed walk of G that starts and
ends at the patrol area b € V), the base patrol area for the
USCG. Each patrol schedule is a sequence of patrol areas
and associated defensive activities at each patrol area in the
sequence, and are constrained by a maximum patrol time 7.
(Note that even when the defender just passes by a patrol
area, this is treated as an activity.) The defender may visit
a patrol area multiple times in a schedule due to geographic
constraints and the fact that each patrol is a closed walk. For
instance, the defender in each patrol should visit the base
patrol area at least twice since she needs to start the patrol
from the base and finally come back to the base to finish the

patrol.

The graph G along with the constraints b and 7 are used
to generate the defender strategies (patrol schedules). Given
each patrol schedule, the total patrol schedule time is calcu-
lated (this also includes traversal time between areas, but we
ignore it in the following for expository purposes); we then
verify that the total time is less than or equal to the maximum
patrol time 7. After generating all possible patrol schedules,
a game is formed where the set of defender strategies is com-
posed of patrol schedules and the set of attacker strategies is
the set of targets. The attacker’s strategy was based on tar-
gets instead of patrol areas because an attacker will choose
to attack a single target.

Table 1 gives an example, where the rows correspond to
the defender’s strategies and the columns correspond to the
attacker’s strategies. In this example, there are two possible
defensive activities, activity k; and ko, where ko provides
more effective protection (also takes more time) for the de-
fender than k;. Suppose that the time bound disallows more
than two ks activities (given the time required for k5) within
a patrol. Patrol area 1 has two targets (target 1 and 2) while
patrol areas 2 and 3 each have one target (target 3 and 4 re-
spectively). In the table, a patrol schedule is composed of
a sequence of patrol areas and a defensive activity in each
area. The patrol schedules are ordered so that the first patrol
area in the schedule denotes which patrol area the defend-
er needs to visit first. In this example, patrol area 1 is the
base patrol area, and all of the patrol schedules begin and
end at patrol area 1. For example, the patrol schedule in row
2 first visits patrol area 1 with activity ks, then travels to pa-
trol area 2 with activity k;, and returns back to patrol area
1 with activity k;. For the payoffs, if a target ¢ is the at-
tacker’s choice and the attack fails, then the defender would
gain a reward R¢ while the attacker would receive a penalty
P2, else the defender would receive a penalty P¢ and the at-
tacker would gain a reward R{. Furthermore, let ij be the
payoff for the defender if the defender chooses patrol j and
the attacker chooses to attack target ¢. G,‘fj can be represent-
ed as a linear combination of the defender reward/penalty on
target ¢ and A;;, the effectiveness probability of the defen-
sive activity performed on target 7 for patrol j, as described
by Equation 1. A;; depends on the most effective activity
on target 4 in patrol j. The value of A;; is O if target 4 is not
in patrol j. If patrol j only includes one activity in a patrol
area that covers target 7, then we determine its payoff using
the following equation (any additional activity may provide
an additional incremental benefit in that area and we discuss
this in the following section).

Gy, = AR} + (1 — Ay) Py (1)

For instance, suppose target 1 is covered using k; in s-
trategy 5, and the value of A;5 is 0.5. If Ril = 150 and
P = —50, then G4 = 0.5(150) + (1 — 0.5)(—50) = 50.
(ng would be computed in a similar fashion.)

In the USCG problem, rewards and penalties are based on
an analysis completed by a contracted company of risk ana-
lysts that looked at the targets in the Port of Boston and as-

signed corresponding values for each one. The types of fac-



tors taken into consideration for generating these values in-
clude economic damage and injury/loss of life. Meanwhile,
the effectiveness probability, A;;, for different defensive ac-
tivities are decided based on the duration of the activities.
Longer activities lead to a higher possibility of capturing the
attackers.

While loss of life and property helps in assessing dam-
age in case of a successful attack, assessing payoffs requires
that we determine whether the loss is viewed symmetrically
by the defender and attacker. Similarly, whether the pay-
offs are viewed symmetrically for the attacker and defend-
er also holds for the scenario when there is a failed attack.
These questions to go the heart of determining whether se-
curity games should be modeled as zero-sum games (Tambe
2011). Past work in security games (e.g., ARMOR (Jain et
al. 2010), IRIS (Jain et al. 2010), GUARDS (Pita et al.
2011)) has used non-zero-sum game models, e.g., one as-
sumption made is that the attacker might view publicity of a
failed attack as a positive outcome. However, non-zero-sum
games require further knowledge acquisition efforts to mod-
el the asymmetry in payoffs. For simplicity, as the first step
PROTECT starts with the assumption of a zero-sum game.
However, the algorithm used in PROTECT is not restricted
to zero-sum games as in the future, USCG proposes to re-
lax this assumption. It is also important to note that while
Table 1 shows point estimates of payoffs, we recognize that
estimates may not be accurate. To that end, in the exper-
imental results section, we evaluated the robustness of our
approach when there is payoff noise, observation noise, and
execution error.

[Patrol Schedule [Target 1 [Target 2 [Target 3 [Target 4 |

(T:k1), k1), (L:k1) 50,50 | .. | 15,15

(T:k2), (2:k1), (1:k1) 60,60 | ..
(T:51), (2:F1), (1K) .| 20,20
(T:F1), (3:k1), (2:k1), (k1) 50,50 | ..
(T:k1), k), Biky), (Lk1) . - | 15-15

Table 1: Portion of a simplified example of a game matrix

Compact Representation

In our game, the number of defender strategies, i.e., pa-
trol schedules, grows combinatorially, generating a scale-up
challenge. To achieve scale-up, PROTECT uses a compact
representation of the patrol schedules using two ideas: (i)
combining equivalent patrol schedules and; (ii) removal of
dominated patrol schedules.

With respect to equivalence, different permutations of pa-
trol schedules provide identical payoff results. Furthermore,
if an area is visited multiple times with different activities in
a schedule, we only consider the activity that provides the
defender the highest payoff, not the incremental benefit due
to additional activities. This decision is made in considera-
tion of the tradeoff between modeling accuracy and efficien-
cy. On the one hand, the additional value of more activities
is small. Currently, the patrol time of each schedule is rela-
tively short (e.g., 1 hour) and the defender may visit a patrol
area more than once within the short period and will conduct

an activity each time. For instance, the defender may pass
by a patrol area 10 minutes after conducting a more effective
activity at the same patrol area. The additional value of the
pass by activity given the more effective activity is therefore
very small. On the other hand, it leads to significant com-
putational benefits which are described in this section if we
just consider the most effective activity in each patrol.

Therefore, many patrol schedules are equivalent if the set
of patrol areas visited and the most effective defensive activ-
ities in each patrol area in the schedules are the same even
if their order differs. Such equivalent patrol schedules are
combined into a single compact defender strategy, represent-
ed as a set of patrol areas and defensive activities (and minus
any ordering information). The idea of combining equiva-
lent actions is similar to action abstraction for solving large
scale dynamic games (Gilpin 2009). Table 2 presents a com-
pact version of Table 1, which shows how the game matrix
is simplified by using equivalence to form compact defend-
er strategies, e.g., the patrol schedules in the rows 2-3 from
Table 1 are represented as a compact strategy I's = {(1,k2),
(2,k1)} in Table 2.

[Compact Strategy [Target 1 [Target 2 [Target 3 [Target 4 |
T ={(1:k1), 2:k1)} 50,-50 | 30,-30 | 15,-15 | -20,20
Ty = {(1:k2), 2:k1)} 100,-100 60,-60 | 15,-15 | -20,20
s = {(1:k1), (2:k1), (3:k1)} 50,-50 | 30,-30 | 15,-15 | 10,-10

Table 2: Example compact strategies and game matrix

Next, the idea of dominance is illustrated using Table 2
and noting the difference between I'; and I's is the defen-
sive activity on patrol area 1. Since activity ko gives the
defender a higher payoff than k1, I'; can be removed from
the set of defender strategies because I'y covers the same pa-
trol areas while giving a higher payoff for patrol area 1. To
generate the set of compact defender strategies, a naive ap-
proach would be to first generate the full set of patrol sched-
ules and then prune the dominated and equivalent schedules.
Instead, PROTECT generates compact strategies in the fol-
lowing manner: we start with patrols that visit the most pa-
trol areas with the least effective activities within the patrol
time limit; these activities take a shorter amount of time but
we can cover more areas within the given time limit. Then
we gradually consider patrols visiting less patrol areas but
with increasingly effective activities. This process will stop
when we have considered all patrols in which all patrol ar-
eas are covered with the most effective activities and cannot
include any additional patrol area.

Figure 2 shows a high level view of the steps of the al-
gorithm using the compact representation. The compact s-
trategies are used instead of full patrol schedules to generate
the game matrix. Once the optimal probability distribution
is calculated for the compact strategies, the strategies with a
probability greater than O are expanded to a complete set of
patrol schedules.

In this expansion from a compact strategy to a full set
of patrol schedules, we need to determine the probability of
choosing each patrol schedule, since a compact strategy may
correspond to multiple patrol schedules. The focus here is
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Figure 2: Flow chart of the PROTECT system

to increase the difficulty for the attacker to conduct surveil-
lance by increasing unpredictability', which we achieve by
randomizing uniformly over all expansions of the compact
defender strategies. The uniform distribution provides the
maximum entropy (greatest unpredictability). Thus, all the
patrol schedules generated from a single compact strategy
are assigned a probability of v;/w; where v; is the proba-
bility of choosing a compact strategy I'; and w; is the total
number of expanded patrol schedules for I';. The complete
set of patrol schedules and the associated probabilities are
then sampled and provided to the USCG, along with the start
time of the patrol generated via uniform random sampling.

Human Adversary Modeling

While previous game-theoretic security applications have
assumed a perfectly rational attacker, PROTECT takes a step
forward by addressing this limitation of classical game the-
ory. Instead, PROTECT uses a model of a boundedly ra-
tional adversary by using a quantal response (QR) model
of an adversary, which has shown to be a promising mod-
el of human decision making (McKelvey and Palfrey 1995;
Rogers, Palfrey, and Camerer 2009; Yang et al. 2011). A
recent study demonstrated the use of QR as an effective pre-
diction model of humans (Wright and Leyton-Brown 2010).
An even more relevant study of the QR model was conduct-
ed by Yang et al. (Yang et al. 2011) in the context of security
games where this model was shown to outperform competi-
tors in modeling human subjects. Based on this evidence,
PROTECT uses a QR model of a human adversary, i.e., in
the Stackelberg game model, the attacker best-responds ac-
cording to a QR model and the defender computes her opti-
mal mixed patrolling strategy with this knowledge.

To apply the QR model in a Stackelberg framework,
PROTECT employs an algorithm known as PASAQ (Yang,
Tambe, and Ordonez 2012). PASAQ computes the optimal
defender strategy (within a guaranteed error bound) given
a QR model of the adversary by solving the following non-
linear and non-convex optimization problem P, with Table 3

!Creating optimal Stackelberg defender strategies that increase
the attacker’s difficulty of surveillance is an open research issue in
the literature; here we choose to maximize unpredictability as the
first step.

t; | Target+

R? | Defender reward on covering ¢, if it’s attacked

P? | Defender penalty on not covering ¢; if it’s attack

R¢ | Attacker reward on attacking ¢; if it’s not covered

P® | Attacker penalty on attacking ¢; if it’s covered

A;; | Effectiveness probability of compact strategy I'; on ¢;

a; | Probability of choosing compact strategy I';

J | Total number of compact strategies

x; | Marginal coverage on t;

Table 3: PASAQ notation as applied to PROTECT

listing the notation:

T
max Z QR(iM)((R? — Pid)xi + Pid)

i=1

J
Ty = E CLJ‘Aij, Vi
j=1

J
Zaj =1
j=1

0<a; <1, Vj

The first line of the problem corresponds to the computa-
tion of the defender’s expected utility resulting from a com-
bination of Equations 1 and 2 (in the sidebar). QR(i|\) is
the probability of that the attacker using the QR model will
attack target 7. Unlike previous application (Jain et al. 2010;
Kiekintveld, Marecki, and Tambe 2011; Paruchuri et al.
2008), x; in this case not just summarizes presence or ab-
sence on a target, but also the effectiveness probability A;;
on the target as well. That is, the second line computes the
marginal coverage on the targets based on the effectiveness
factor A;; and the probability of choosing compact strategy
I';, denoted as a;.

As with all QR models, a value for X is needed to repre-
sent the noise in the attacker’s strategy. Clearly, a A value of
0 (uniform random) and co (fully rational) are not reason-
able. Given the payoff data for Boston, an attacker’s strate-
gy with A = 4 starts approaching a fully rational attacker —
the probability of attack focuses on a single target. In addi-
tion, an attacker’s strategy with A = 0.5 is similar to a fully
random strategy that uniformly chooses a target to attack.
USCG experts (with expertise in terrorist behavior model-
ing) suggested that we could use a broad range for repre-
senting possible A values used by the attacker. Combining
the above observations, it was determined that the attacker’s
strategy is best modeled with a A\ value that is in the range
[0.5, 4], rather than a single point estimate. A discrete sam-
pling approach was used to determine a A value that gives
the highest average defender expected utility across attack-
er strategies within this range to get A\ = 1.5. Specifically,
the defender considers different assumptions of the attack-
er’s A value and for each assumption about the A value, the
defender computes her expected utility against the attacker
with different \ values within the range [0.5, 4]. We find



that when the defender assumes the attacker is using the QR
model with A = 1.5, the defender’s strategy leads to the
highest defender expected utility when the attacker follows
the QR model with a A value uniformly randomly chosen
from the range of [0.5, 4]. Selecting an appropriate value
for A remains a complex issue however, and it is a key agen-
da item for future work.

Evaluation

This section presents evaluations based on (i) experiments
completed via simulations and (ii) real-world patrol data a-
long with USCG analysis. All scenarios and experiments,
including the payoff values and graph (composed of 9 pa-
trol areas), were based off the Port of Boston. The defend-
er’s payoff values have a range of [-10,5] while the attack-
er’s payoff values have a range of [-5,10]. The game was
modeled as a zero-sum game in which the attacker’s loss or
gain is balanced precisely by the defender’s gain or loss. For
PASAQ, the defender’s strategy is computed assuming that
the attacker follows the QR model with A = 1.5 as justified
in the previous section. All experiments are run on a ma-
chine with an Intel Dual Core 1.4 GHz processor and 2 GB
of RAM.

Memory and Run-time Analysis

This section presents the results based on simulation to show
the efficiency in memory and run-time of the compact rep-
resentation versus the full representation. In Figure 3(a), the
x-axis is the maximum patrol time allowed and the y-axis
is the memory needed to run PROTECT. In Figure 3(b), the
x-axis is the maximum patrol time allowed and the y-axis
is the run-time of PROTECT. The maximum patrol time al-
lowed determines the number of combinations of patrol ar-
eas that can be visited — so the x-axis indicates a scale-up
in the number of defender strategies. When the maximum
patrol time is set to 90 minutes, the full representation takes
30 seconds and uses 540 MB of memory while the compact
representation takes 11 seconds to run and requires 20 MB
of memory. Due to the exponential increase in the memo-
ry and run-time that is needed for the full representation, it
cannot be scaled up beyond 90 minutes.
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Figure 3: Comparison of full vs. compact representation

Utility Analysis

It is useful to understand whether PROTECT using PASAQ
with A = 1.5 provides an advantage when compared to: (i)
a uniform random defender’s strategy; (ii) a mixed strategy

with the assumption of the attacker attacking any target uni-
formly at random (\ = 0) or; (iii) a mixed strategy assuming
a fully rational attacker (A = o0). The previously existing
DOBSS algorithm was used for A = oo (Paruchuri et al.
2008). Additionally, comparison with the A = oo approach
is important because of the extensive use of this assumption
in previous applications (for our zero-sum case, DOBSS is
equivalent to minimax but the utility does not change). Typ-
ically, we may not have an estimate of the exact value of the
attacker’s A value, only a possible range. Therefore, ideal-
ly we would wish to show that PROTECT (using A = 1.5
in computing the optimal defender strategy) provides an ad-
vantage over a range of \ values assumed for the attacker
(not just over a point estimate) in his best-response, justi-
fying our use of the PASAQ algorithm. In other words, we
are distinguishing between (i) the actual A value employed
by the attacker in best-responding, and (ii) the A assumed by
PASAQ in computing the defender’s optimal mixed strategy.
The point is to see how sensitive the choice of (ii) is, with
respect to prevailing uncertainty about (i).
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Figure 4: Defender’s Expected Utility when varying A for
attacker’s strategy(color)

To achieve this, we compute the average defender utility
of the four approaches above as the A\ value of the attack-
er’s strategy changes from [0, 6], which subsumes the range
[0.5, 4] of reasonable attacker strategies. In Figure 4, the y-
axis represents the defender’s expected utility and the x-axis
is the A value that is used for the attacker’s strategy. Both
uniform random strategies perform well when the attacker’s
strategy is based on A = 0. However, as )\ increases, both
strategies quickly drop to a very low defender expected util-
ity. In contrast, the PASAQ strategy with A = 1.5 provides
a higher expected utility than that assuming a fully rational
attacker over a range of attacker A\ values (and indeed over
the range of interest), not just at A\ = 1.5.

Robustness Analysis

In the real world, observation, execution, and payoffs, are
not always perfect due to the following: noise in the attack-
er’s surveillance of the defender’s patrols, the many tasks
and responsibilities of the USCG where the crew may be
pulled off a patrol, and limited knowledge of the attack-
er’s payoff values. Our hypothesis is that PASAQ with
A = 1.5 is more robust to such noise than a defender strategy
which assumes full rationality of the attacker such as DOB-
SS (Paruchuri et al. 2008), i.e., PASAQ’s expected defender



utility will not degrade as much as DOBSS over the range
of attacker \ of interest. This is illustrated by comparing
both PASAQ and DOBSS against observation, execution,
and payoff noise (Kiekintveld, Marecki, and Tambe 2011;
Korzhyk, Conitzer, and Parr 2011; Yin et al. 2011). Intu-
itively, the QR model is more robust than models assum-
ing perfect rationality since the QR model assumes that the
attacker may attack multiple targets with positive probabili-
ties, rather than attacking a single target in the model assum-
ing perfect rationality of the adversaries. Such intuition has
been verified in other contexts (Rogers, Palfrey, and Camer-
er 2009). (A comparison of the uniform random strategies
was not included due to its poor performance shown in Fig-
ure 4.) All experiments were run generating 200 samples
with added noise and averaging over all the samples.

Figure 5 shows the performance of different strategies
while considering execution noise. The y-axis represents the
defender’s expected utility and the x-axis is the attacker’s A
value. If the defender covered a target with probability p,
this probability now changes to be in [p — z, p + x] where
is the noise. The low execution error corresponds to x = 0.1
whereas high error corresponds to « = 0.2. In the experi-
ments, the attacker best-responds to the mixed strategy with
added noise. The key takeaway here is that execution error
leads to PASAQ dominating DOBSS over all tested values of
A, further strengthening the reason to use PASAQ rather than
a full-rationality model. For both algorithms, the defender’s
expected utility decreases as more execution error is added
because the defender’s strategy is impacted by the addition-
al error. When execution error is added, PASAQ dominates
DOBSS because the latter seeks to maximize the minimum
defender’s expected utility so multiple targets will have the
same minimum defender utility. For DOBSS, when execu-
tion error is added, there is a greater probability that one of
these targets will have less coverage, resulting in a lower de-
fender’s expected utility. For PASAQ, typically only one tar-
get has the minimum defender expected utility. As a result
changes in coverage do not impact it as much as DOBSS.
As execution error increases, the advantage in the defend-
er’s expected utility of PASAQ over DOBSS increases even
more. This section only shows the execution noise results;
the details of the observation and payoff noise results can be
found in (Shieh et al. 2012).
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USCG Real-World Evaluation

In addition to the data made available from simulations,
the USCG conducted its own real-world evaluation of PRO-
TECT. With permission, some aspects of the evaluation are
presented in this paper.

Real-world scheduling data: Unlike prior publication-
s of real-world applications of game theory for security, a
key novelty of this paper is the inclusion of actual data from
USCG patrols before and after the deployment of PROTEC-
T at the Port of Boston. Figure 6 and Figure 7 show the
frequency of visits by USCG to different patrol areas over a
number of weeks. Figure 6 shows pre-PROTECT patrol vis-
its per day by area and Figure 7 shows post-PROTECT pa-
trol visits per day by area. The x-axis is the day of the week,
and the y-axis is the number of times a patrol area is visit-
ed for a given day of the week. The y-axis is intentionally
blurred for security reasons as this is real data from Boston.
There are more lines in Figure 6 than in Figure 7 because
during the implementation of PROTECT, new patrol areas
were formed which contained more targets and thus fewer
patrol areas in the post-PROTECT figure. Figure 6 depict-
s a definite pattern in the patrols. While there is a spike in
patrols executed on Day 5, there is a dearth of patrols on
Day 2. Besides this pattern, the lines in Figure 6 intersect,
indicating that some days, a higher value target was visit-
ed more often while on other days it was visited less often.
This means that there was not a consistently high frequency
of coverage of higher value targets before PROTECT.

In Figure 7, we notice that the pattern of low patrols on
Day 2 (from Figure 6) disappears. Furthermore, lines do
not frequently intersect, i.e., higher valued targets are visited
consistently across the week. The top line in Figure 7 is the
base patrol area and is visited at a higher rate than all other
patrol areas.

Count

Dayl Day2 Day3 Day4 Day5 Day6 Day?7

Figure 6:  Patrol visits per day by area - pre-
PROTECT(Color), one line per area

Adversary Perspective Teams(APT): To obtain a bet-
ter understanding of how the adversary views the potential
targets in the port, the USCG created the Adversarial Per-
spective Team (APT), a mock attacker team. The APT pro-
vides assessments from the terrorist perspective and as a sec-
ondary function, assesses the effectiveness of the patrol ac-
tivities before and after deployment of PROTECT. In their
evaluation, the APT incorporates the adversary’s known in-
tent, capabilities, skills, commitment, resources, and cul-
tural influences. In addition, it screens attack possibilities
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Figure 7: Patrol visits per day by area - post-

PROTECT(Color), one line per area

and assists in identifying the level of deterrence projected at
and perceived by the adversary. For the purposes of this re-
search, the adversary is defined as an individual(s) with ties
to al-Qa’ida or its affiliates.

The APT conducted a pre- and post-PROTECT assess-
ment of the system’s impact on an adversary’s deterrence at
the Port of Boston. This analysis uncovered a positive trend
where the effectiveness of deterrence increased from the pre-
to post- PROTECT observations.

Additional Real-world Indicators: The use of PRO-
TECT and APT’s improved guidance given to boat crews
on how to conduct the patrol jointly provided a noticeable
increase in the quality and effectiveness of the patrols. Prior
to implementing PROTECT, there were no documented re-
ports of illicit activity. After implementation, USCG crews,
reported more illicit activities within the port (therefore jus-
tify the effectiveness of the PROTECT model) and provid-
ed a noticeable “on the water” presence with industry port
partners commenting, “the Coast Guard seems to be every-
where, all the time.” With no actual increase in the number
of resources applied, and therefore no increase in capital or
operating costs, these outcomes support the practical appli-
cation of game theory in the maritime security environment.

Outcomes after Boston Implementation

After evaluating the performance and impact of PROTECT
at Boston, the USCG viewed this system as a success. As
a result, PROTECT is now getting deployed in the Port of
New York. We were presented an award for the work on
the PROTECT system for the Boston Harbor which reflects
USCG’s recognition of the impact and value of PROTECT.

Lessons Learned: Putting Theory into Practice

Developing the PROTECT model was a collaborative effort
involving university researchers and USCG personnel repre-
senting decision makers, planners and operators. Building
on the lessons reported in (Pita et al. 2011) for working
with security organizations, we informed the USCG of (i)
the assumptions underlying the game-theoretic approaches,
e.g., full adversary rationality, and strengths and limitations
of different algorithms — rather than pre-selecting a simple
heuristic approach; (ii) the need to define and collect correct
inputs for model development and; (iii) a fundamental un-
derstanding of how the inputs affect the results. We gained

three new insights involving real-world applied research; (i)
unforeseen positive benefits because security agencies were
compelled to reexamine their assumptions; (ii) requiremen-
t to work with multiple teams in a security organization at
multiple levels of their hierarchy and; (iii) need to prepare
answers to end-user practical questions not always directly
related to the “meaty” research problems.

The first insight came about when USCG was compelled
to reassess their operational assumptions as a result of work-
ing through the research problem. A positive result of this
reexamination prompted USCG to develop new PWCS mis-
sion tactics, techniques and procedures. Through the iter-
ative development process, USCG reassessed the reason-
s why boat crews performed certain activities and whether
they were sufficient. For example, instead of “covered” vs
“not covered” as the only two possibilities at a patrol point,
there are now multiple sets of activities at each patrol point.

The second insight is that applied research requires the
research team to collaborate with planners and operators on
the multiple levels of a security organization to ensure the
model accounts for all aspects of a complex real world envi-
ronment. Initially when we started working on PROTECT,
the focus was on patrolling each individual target. This ap-
peared to micromanage the activities of boat crews, and it
was through their input that individual targets were grouped
into patrol areas associated with a PWCS patrol. On the oth-
er hand, input from USCG headquarters and the APT men-
tioned earlier, led to other changes in PROTECT, e.g., de-
parting from a fully rational model of an adversary to a QR
model.

The third insight is the need to develop answers to end-
user questions which are not always related to the “meaty”
research question but are related to the larger knowledge do-
main on which the research depends. One example of the
need to explain results involved the user citing that one pa-
trol area was being repeated and hence, randomization did
not seem to occur. After assessing this concern, we deter-
mined that the cause for the repeated visits to a patrol area
was its high reward — order of magnitude greater than the
rarely visited patrol areas. PROTECT correctly assigned pa-
trol schedules that covered the more “important” patrol ar-
eas more frequently. In another example, the user noted that
PROTECT did not assign any patrols to start at 4:00 AM or
4:00 PM over a 60 day test period. They expected patrols
would be scheduled to start at any hour of the day, leading
them to ask if there was a problem with the program. This
required us to develop a layman’s briefing on probabilities,
randomness, and sampling. With 60 patrol schedules, a few
start hours may not be chosen given our uniform random
sampling of the start time. These practitioner-based issues
demonstrate the need for researchers to not only be conver-
sant in the algorithms and math behind the research, but also
be able to explain from a user’s perspective how solution-
s are accurate. An inability to address these issues would
result in a lack of real-world user confidence in the model.

Summary and Related Work

This paper reports on PROTECT, a game-theoretic system
deployed by the USCG in the Port of Boston since April



2011 for scheduling their patrols. USCG has deemed the
deployment of PROTECT in Boston a success and efforts
are underway to deploy PROTECT in the Port of New Y-
ork, and to other ports in the United States. PROTECT uses
an attacker-defender Stackelberg game model, and includes
five key innovations.

First, PROTECT moves away from the assumption of per-
fect adversary rationality seen in previous work, relying in-
stead on a quantal response (QR) model of the adversary’s
behavior. While the QR model has been extensively stud-
ied in the realm of behavioral game theory, to the best of
our knowledge, this is its first real-world deployment. Sec-
ond, to improve PROTECT’s efficiency, we generate a novel
compact representation of the defender’s strategy space, ex-
ploiting equivalence and dominance. Third, the paper shows
how to practically model a real-world (maritime) patrolling
problem as a Stackelberg game. Fourth, we provide experi-
mental results illustrating that PROTECT’s QR model of the
adversary is better able to handle real-world uncertainties
than a perfect rationality model. Finally, for the first time
in a security application evaluation, we use real-world da-
ta: (i) providing a comparison of human-generated security
schedules versus those generated via a game-theoretic algo-
rithm and; (ii) results from an APT’s analysis of the impact
of the PROTECT system. The paper also outlined the in-
sights from the project which include the ancillary benefits
due to a review of assumptions made by security agencies,
and the need for knowledge to answer questions not directly
related to the research problem.

As a result, PROTECT has advanced the state of the art
beyond previous applications of game theory for security.
Prior applications mentioned earlier, including ARMOR,
IRIS or GUARDS (Jain et al. 2010; Pita et al. 2011),
have each provided unique contributions in applying nov-
el game-theoretic algorithms and techniques. Interesting-
ly, these applications have revolved around airport and air-
transportation security. PROTECT’s novelty is not only its
application domain in maritime patrolling, but also in the
five key innovations mentioned above, particularly its em-
phasis on moving away from the assumption of perfect ra-
tionality by using the QR model.

In addition to game-theoretic applications, the issue of pa-
trolling has received significant attention in the multiagent
systems literature. These include patrol work done by robot-
s primarily for perimeter patrols that have been addressed
in arbitrary topologies (Basilico, Gatti, and Amigoni 2009),
maritime patrols in simulations for deterring pirate attack-
s (Vanek et al. 2011), and in research looking at the impact
of uncertainty in adversarial behavior (Agmon et al. 2009).
PROTECT differs from these approaches in its use of a QR
model of a human adversary in a game theoretic setting, and
in being a deployed application. Building on this initial suc-
cess of PROTECT, we hope to deploy it at more and much
larger-sized ports. In so doing, in the future, we will consid-
er significantly more complex attacker strategies, including
potential real-time surveillance and coordinated attacks.
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Appendices — Mini-tutorials in Separate Boxes
Stackelberg Game

A generic Stackelberg game has two players, a leader, and
a follower (Fudenberg and Tirole 1991). A leader commits
to a strategy first, and then a follower optimizes her reward,
considering the action chosen by the leader (von Stengel and
Zamir 2004). The two players in a Stackelberg game need
not represent individuals, but could also be groups that co-
operate to execute a joint strategy, such as a police force or a
terrorist organization. Each player has a set of possible pure
strategies, or the actions that they can execute. A mixed s-
trategy allows a player to play a probability distribution over
pure strategies. Payoffs for each player are defined over all
possible pure-strategy outcomes for both the players. The
payoff functions are extended to mixed strategies by taking
the expectation over pure-strategy outcomes. The follower
can observe the leader’s strategy, and then act in a way to
optimize his own payoffs.

To see the advantage of being the leader in a Stackelberg
game, consider the game with the payoff as shown in Ta-
ble 4. The leader is the row player and the follower is the
column player. The only pure-strategy Nash equilibrium for
this game is when the leader plays a and the follower plays
c which gives the leader a payoff of 3; in fact, for the leader,
playing b is strictly dominated.

However, in the simultaneous game if the leader can com-
mit to playing b before the follower chooses his strategy,
then the leader will obtain a payoff of 4, since the follower
would then play d to ensure a higher payoff for himself. If
the leader commits to a mixed strategy of playing a and b
with equal (0.5) probability, then the follower will play d,
leading to a higher expected payoff for the leader of 4.5. As
we can see from this example, the equilibrium strategy in
the Stackelberg game can be in fact different from the Nash
equilibria.

c d
a|31]50
b|20]| 42

Table 4: Payoff table for example Stackelberg game.

Stackelberg games are used to model the attacker-
defender strategic interaction in security domains and this
class of Stackelberg games (with certain restrictions on pay-
offs (Yin et al. 2010)) is called Stackelberg security games.
In the Stackelberg security game framework, the security
force (defender) is modeled as the leader and the terrorist
adversary (attacker) is in the role of the follower. The de-
fender commits to a mixed (randomized) strategy, whereas
the attacker conducts surveillance of these mixed strategies
and responds with a pure strategy of an attack on a target.
Thus, the Stackelberg game framework is a natural approxi-
mation of the real-world security scenarios. In contrast, the
surveillance activity of the attacker cannot be modeled in the
simultaneous move games with the Nash equilibrium solu-
tion concept. The objective is to find the optimal mixed strat-
egy for the defender. See (Tambe 2011) for a more detailed
introduction to research on Stackelberg security games.

Quantal Response

Quantal Response Equilibrium is an important model in be-
havior game theory that has received widespread support in
the literature in terms of its superior ability to model human
behavior in simultaneous-move games (McKelvey and Pal-
frey 1995) and is the baseline model of many studies (Wright
and Leyton-Brown 2010). It suggests that instead of strict-
ly maximizing utility, individuals respond stochastically in
games: the chance of selecting a non-optimal strategy in-
creases as the cost of such an error decreases. However, the
applicability of these models to Stackelberg security games
had not been explored previously. In Stackelberg security
games, we assume that the attacker acts with bounded ra-
tionality; the defender is assisted by software and thus we
compute the defender’s optimal rational strategy (Yang et
al. 2011).

Given the strategy of the defender, the Quantal Best Re-
sponse of the attacker is defined as

NG ()
RS @

The parameter X represents the amount of noise in the at-
tacker’s strategy. A can range from O to oo with a value of 0
representing a uniform random probability over attacker s-
trategies while a value of co representing a perfectly rational
attacker. g; corresponds to the probability that the attacker
chooses a target i; G¢(x;) corresponds to the attacker’s ex-
pected utility of attacking target ¢ given x;, the probability
that the defender covers target ¢; and T is the total number
of targets.

Consider the Stackelberg game with the payoffs shown in
Table 4. Assume that the leader commits to playing b. The
follower obtains a payoff of 0 by playing ¢ and obtains a
payoff of 2 by playing d. A rational attacker will play d to
maximize his payoff. However, the quantal best response of
the attacker would be playing ¢ with probability eoj% and

e

playing d with probability 5.
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