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1. Introduction 
Stochastic partial differential equations (SPDEs) appear 

naturally as models for dynamical systems abided by 
random influences. The SPDEs have a wide range of 
applications outside mathematics. For instance, biology, 
chemistry, epidemiology, economics, microelectronics, 
mechanics, and finance. 

For some applications the noise not affects only inside 
the medium, but on its physical boundary, too. This 
happens for heat transfer in a solid in contact with afield 
[6], the air-sea interactions on the ocean surface [8] and 
chemical reactor theory [7]. Thus, this topic has a rapidly 
developing as a fascinating research field with many 
interesting unanswered questions. 

To approximate the SPDEs near a change of stability, 
we use a rigorous technique, so it is important to make the 
reduction of the dynamics of SPDEs to obtain simpler 
equations that are the amplitude or the modulation 
equations. 

In this paper we deal with a parabolic equation 
(typically, the heat equation) perturbed by a Neumann 
boundary noise involve additive degenerate noise. More 
specifically, consider for t ≥ 0; 
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where A is a non-positive self-adjoint operator with finite 
dimensional kernel, ( )2vu tε  is a small deterministic 

perturbation, the constant [ ]1,1v∈ − , F is a cubic 

nonlinearity, W is a Wiener process, B is a real valued 
Brownian motion and σ  is the positive noise intensity 
parameter. 

In the case of no homogenous boundary conditions (i.e., 
0σ ≠ ). Sowers [9] investigated general reaction diffusion 

equation with Neumann boundary conditions. Da Prato 
and Zabczyk [4,5] explained the difference between the 
problems with Dirichlet and Neumann boundary noises. 
Recently, Cerrai and Freidlin [2] have considered a 
nonlinear stochastic parabolic equation with Neumann 
boundary noise. The Ginzburg-Landau equation with 
random Neumann boundary conditions is solved 
numerically by Xu and Duan [10]. 

The paper is organized as follows. In the next section 
we state some definitions, notation and assumptions that 
we need for our result. In Section 3 we give a formal 
derivation for the amplitude equation, also we state and 
prove the main result of this paper. Finally, we give 
applications to the nonlinear heat equation. 

2. Preliminaries 
Let H = L2(D) be a Hilbert space with L2-norm denoted 

by ||.|| and inner product by <.,.>, where D is a bounded 
domain with smooth boundary D∂ . 

The linear operator 2
xA = ∂  generates an analytic 

semigroup { }
0

tA
T

e
≥

 on H. Moreover, denote by { } 0k ke ∞
= , 

which forms a complete orthonormal basis in H; a family 
of eigenfunctions of A and k k kAe eλ= −  for the 

eigenvalues { } 0k ke ∞
=  with limk kλ→∞ = ∞ . If we take 

{ } 0k ke ∞
=  in the form  
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then 2 2
k kλ π= . Define N: = ker A = {1}, and S N⊥=  

the orthogonal component of N in H. Also, define the 
projection :cp H N→  and :s cP I P= − . Let the 
projections Pc and Ps are commute with A. 

Definition 1. For α ∈ ; we define the space Hα  as 
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where { }
0k ke ∈  is an orthonormal basis of H and 

{ }
0k kγ ∈  are real numbers. 

Lemma 2. For all t > 0 and β α≤ , there are constants 

M > 0 and 0ω ≥  such that for all u H β∈  

 2 .tA te u Mt e u
α β

ω
βα

−
− −≤  (2) 

Definition 3. (Stopping time) For the N × S- valued 
stochastic process (a,ψ) defined in the next section. We 

define, for some T0 > 0 and 10,
5

κ  ∈ 
 

, the stopping time 

*τ  as 

 ( ){ }*
0: inf 0 : .T T u T κ

α
τ ε −= ∧ > >  (3) 

Also we have the following hypotheses. 

H1: Assume that the nonlinearity ( )3:F H Hα α β−→  

with β  is trilinear, symmetric and satisfies the following 
conditions, for some C > 0, 
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and 

 ( ), , , 0 , .cF u u w w u w N≤ ∀ ∈  

We use F(u) = F(u,u,u) and Fc = PcF for short. 
H2: Let W be a cylindrical Wiener process on H. 

Suppose for t ≥ 0; 
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where the ( )
0k kβ ∈  are independent, standard Brownian 

motions in   and the ( )
0k kα ∈  are real numbers for all k. 

Also, we assume that 
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3. Amplitude Equation and Main Result 
In this section we state and prove the main theorem 

after we derive the amplitude equation of the Equation (1). 
First, let us derive the Amplitude equation with error term. 
According to [3] the mild solution of Equation (1) is 
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where Dγ  is the Neumann map and it is defined for any 
γ ∈  by the solution of 

 ( ) ( ) ( )1 0, 0 0 1 .x xA D D and Dγ γ γ γ− = ∂ = ∂ =  

Fortunately, we have an explicit expression for the 
Neumann map Dγ  as follows: 
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e eγ γ

−

−
+

=
−

 

Define Z(t) as 

 ( ) ( ) ( )
0

1 .
t t s AZ t A e DdB−= − ∫  

In the following, we write Z as explicit formula in 
terms of Fourier series 
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By substituting from (6) into (5) we have 
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Now, we can rewrite the mild solution (4) in the 
following form 
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where ( ) ( ) ( )
0

t t s AW t e dW s−= ∫  and Z(t) is defined in (7). 

Thus 
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In order to rescale (9) to the slow time-scale, we 
consider the following ansatz 

 2T tε=  (10) 
to obtain 
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with ( ) ( )2B T B Tε ε −= . To get the amplitude equation 

with error term, let 

 ( ) ( ) ( ) ,T a T Tϑ εψ= +  (12) 

where a N∈  and Sψ ∈  Substituting from (12) into (11) 
to have 
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Taking projection onto Pc for (13) we obtain 
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Taking projection onto Ps for (13) we obtain 
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In the next lemma, we can easy to show that the non-
dominant modes ψ  are not too large as asserted in 
Definition 3 for *T τ≤ . 

Lemma 4. Assume the hypothesis H1 and H2 hold. 
Then for all p ≥  1 there is a constant C > 0 such that 
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Proof. See the proof of the Corollary 4.3 in [1].  
Lemma 5. Under the hypothesis H1 and ( )0E CΨ ≤  
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Proof. We have from the previous lemma that 
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We can find that the bound of R is ( )1 3O κε −  when we 

use equation (17). 
Lemma 6. Let the hypotheses H1 and H2 hold. De.ne 

the stochastic process b(T) in N with ( )0E b C≤  as the 
solution of 
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Then for T0 > 0 there exists a constant C > 0 such that 
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Proof. We define X as 

 ( ) ( ) ( ).cX T b T Q T= −  (19) 

Substituting into (18), we obtain 

 ( ) ( ).T c c cX X Q F X Qν∂ = + + +  (20) 

Taking the scalar product h:;XiR on both sides of (20) 
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Using Cauchy-Schwartz and Young inequalities and the 
hypothesis H1 we have 

 ( )42 21
2 T cX C X Q δ∂ ≤ + −  

By integrating the above equation from 0 to T .we 
obtain 
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Taking 2
p  -th power and using Gronwall's lemma, then 

the supremum and expectation, we obtain 
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Definition 3: Define the set ∗Ω ⊂ Ω  such that all 
these estimates 
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hold on .∗Ω   
Theorem 1: Assume that the hypotheses H1 and H2 

hold. Let a  be the solution of (16) and b  be the solution 
of (18). If the initial condition satisfies (0) (0)a b= , then 
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Proof: Define ( )Tϕ  as 

 ( ) : ( ) ( ).T a T R Tϕ = −  
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Subtracting (25) from (18) and defining 
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Thus, 
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Taking the scalar product .,h  on both sides of (26), 
we have 
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Using Cauchy-Schwartz and Young inequalities, we 
obtain the following linear ordinary differential inequality 

 2 2 2 2 4 4[1 ] [1 ],T h C h h C R R b∂ ≤ + + + +  (27) 

holds on ∗Ω  By substituting from (23) and (24) into (27). 
As long as 1h ≤ ,  

Integrating from 0 to T and using Gronwall's lemma, 
we obtain 
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triangle inequality, we have  
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Theorem 2. (Approximation theorem): Under 
hypotheses H1 and H2, let u  be the solution of (1) defined 
in (10) and (12) with the initial conditions 

2(0) (0) (0)u aε ε ψ= +  where (0)a N∈  and (0) Sψ ∈ , 
b is the solution of  (18) with (0) (0).b a=  Then for 

0 0T >  and for k 1
5(0, )∈ , there exists 0C >  such that  

Proof: First we note that by using triangle inequality, 
we obtain 

 

2

0,

2

2 20, 0,

3
1 4 2 2 42

sup ( ) ( )

sup sup

, on ,

T

u T b T

a b

C C C

α
τ

α α
ε τ ε τ

κκ κ

ε ε

ε ε ψ

ε ε ε ε ε

−

∗ ∈  

− ∗ − ∗   
      

−− − ∗

−

≤ − +

≤ + ≤ Ω

 

and 

[ ]
2 2

0, 0 0,

sup ( ) ( ) sup ( ) ( ) ,

on .

T T T

u T b T u T b T
α α

τ

ε ε ε ε− −

∗∈  ∈  
∗

− = −

Ω

 

For the probability of ∗Ω we have, 

 
( )

[ ]

[ ] [ ]

3
* 2

0, *

1
1 4 2

0, * 0, *

1 sup

sup sup

a

a a

P P

P R P b

κ

τ

κκ

τ τ

ψ ε

ε ε

−

−−

  Ω ≥ − ≥ 
  

     − ≥ − ≥   
      

 

Hence, 

 

( )
3

1 42

0, 0,

1 1 1
2 2 2

0,

1
2

1

sup sup

sup

,

q qq

q

P

P P R

P b C C C

C

κ κ
α α

τ τ

κ κ κκ
α

τ

κ

ψ ε ε

ε ε ε ε

ε

∗

− −

∗ ∗   
      

−

∗ 
  

− Ω

   
   ≤ ≥ + ≥   
   
   
 
 + ≥ ≤ + + 
 
 

≤

 (28) 

we used Chebychev's inequality. Thus 
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4. Application 
We apply our results to heat equation. The heat 

equation is a partial differential equation that describe the 
distribution of heat in a given area in a given time interval. 
Generally, given a certain area in space, because of heat 
movement from warmer are ask to colder ones, the warm 
spots will cool down and the colder spots will begin to 
warm up. Solutions for which there is no heat moving are 
called "equilibrium solutions". 

Also, we can set boundary conditions for this PDE. For 
instance, if we have a rod with one end on a block of ice 
and the other end attached to a heater. Here we find that 
the interior point on the rod will not excede the 
temperature of the heater and will not drop below the 
temperature of the ice. Therefore we can apply our work 
on this kind (heat equation) with Neumman boundary 
condition which has the form 
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Now, we can satisfy the conditions of stability: 
For 1 ,u γ=  and 2 ,w Nγ= ∈   

 4
1( ), 0,cF u u Cγ≤ − ≤  

and 
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The main theorem states that the solution of the heat 
Equation (29) is approximated by 

 2( ) ( ),u t tεϑ ε=  

and 

 1( ) ( ) ( ),T b T Oϑ ε −= +  

where b  is the solution of the amplitude equation that 
takes the form 

 3 .T T Tb b b Bν α β σ∂ = − + ∂ + ∂   
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