© ACM, 1989. This is the authors’ version of the work, posted by permission of ACM.
http://doi.acm.org/10.1145/74851.74853

Reducing Risks from Poorly Chosen Keys*

T. Mark A. Lomas, Li Gong,
Jerome H. Saltzer! Roger M. Needham

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, England

August 1989

Abstract

It is well-known that, left to themselves, people will
choose passwords that can be rather readily guessed.
If this is done, they are usually vulnerable to an attack
based on copying the content of messages forming part
of an authentication protocol and experimenting, e.g.
with a dictionary, offline. The most usual counter to
this threat is to require people to use passwords which
are obscure, or even to insist on the system choosing
their passwords for them. In this paper we show alter-
natively how to construct an authentication protocol
in which offline experimentation is impracticable; any
attack based on experiment must involve the real au-
thentication server and is thus open to detection by the
server noticing multiple attempts.

1 Introduction

A common risk in authentication systems is password
guessing. Although this risk is usually associated with
stored-password systems such as UNIX !, it also can
apply to network authentication systems that utilize
the Needham and Schroeder [Needham] model of tem-
porary key distribution from a server that knows a per-
sonal key for each user. This risk arises because in or-
der to make such a system convenient enough for user

*Published in the Proceedings of the 12th ACM Symposium
on Operating System Principles, ACM Operating Systems Re-
view, 23(5):14-18, December, 1989.

t At the time of writing this paper Professor Saltzer was vis-
iting the University of Cambridge. His usual address is Mas-
sachusetts Institute of Technology, Room NE43-513, 545 Tech-
nology Square, Cambridge, MA 02139, USA.

1UNIX is a trademark of AT&T.

acceptability, the personal keys of individual users may
be derived from passwords, and the users may choose
those passwords. Self-chosen passwords are notoriously
easy to guess [Morris], especially if a large number of
different guesses (for example, all the words in an on-
line dictionary) can be made mechanically and each
such guess verified for correctness without raising an
alarm.

For example, the Kerberos authentication system of
M.I.T. Project Athena [Steiner] exhibits this risk, be-
cause the Kerberos Key Distribution Server enciphers
its initial response packet using a key derived from the
user’s password. An attacker could passively record an
initial response packet from a Kerberos server, and at-
tempt to decrypt that packet using keys derived from a
series of guesses as to the password value. The attacker
can immediately determine whether or not a guess is
correct because for a correct guess the resulting deci-
pherment of the packet will produce recognizable data,
such as the name of a network service or the time of
day. Because the attacker can work privately, the only
cost of an incorrect guess is the time wasted doing a
decipherment that produces unintelligible data.

The common approach to reducing this risk is to en-
courage, exhort, or force users to choose passwords that
are hard to guess. Since such passwords can also be
hard to remember, this approach sometimes encoun-
ters user resistance.

In this paper we explore a different approach, assum-
ing that poorly chosen passwords are a fact of life, and
look instead for ways to improve an authentication pro-
tocol so that it doesn’t matter. One inspiration for
this approach is the observation that automatic bank
teller machines generally use 4-digit numerical pass-
words, yet when properly designed they do not seem to
be particularly vulnerable to password guessing. The
reason 1s that although one could guess an ATM pass-
word in something less than 9,999 tries, the system will
generally confiscate the user’s banking card after the
third wrong guess, and thereby terminate experimen-
tation [MasterCard]. The key to the non-attackability
of the small ATM password is that guesses cannot be



verified in isolation; each guess must be tried by in-
voking a part of the system that is in a position to
log incorrect guesses and raise an alarm. Our protocol
improvements are intended similarly to insure that the
only way the correctness of a guess can be verified in-
volves some part of the system that is in a position to
notice wrong guesses, log them, and raise an alarm.

A second inspiration for our approach is the observa-
tion that if one enciphers a completely random string
of bits, an attacker has no way of verifying that he or
she has discovered the key. Thus one protection against
guessing of passwords is to formulate an authentication
protocol in which keys derived from passwords encipher
only data that 1s unpredictable by the attacker.

This paper describes a concept that we name wverifi-
able plaintext. Verifiable plaintext is a type of message
of which known plaintext forms a subset. We are not
aware of previous works that emphasize the distinction
between these two concepts. We propose an authen-
tication protocol that avoids encryption of verifiable
plaintext with easily-guessable keys. Since our primary
purpose is to introduce a new, somewhat orthogonal,
protocol design consideration, the protocol described
here has been chosen for ease of discussion, rather than
for minimization of message traffic or optimal protec-
tion against more esoteric, e.g., slicing attacks?. The
same techniques used here should be similarly applica-
ble to protocols that give priority to those considera-
tions.

2 A Typical Attack

The following hypothetical example shows the kind of
attack that we believe it is possible to guard against.

An eavesdropper has been monitoring network traffic
and recording copies of all messages that form part
of an authentication. One day he hears the following
statement: “This system forces me to change my pass-
word so often that I just use the name of the day on
which it last forced me to change it.” If it is possible
for the eavesdropper to determine the actual password,
by testing in turn each of the seven possible values, us-
ing only the messages that he has already recorded,
then the protocol should be considered insecure. If, on
the other hand, the protocol has the property that the
eavesdropper must reveal to an authentication server
his knowledge (or lack thereof) for each guess then the
eavesdropper risks discovery, and we consider the pro-
tocol secure against guessing.

2 A slicing attack is possible when rearrangement of a piece
of ciphertext has known consequences on the plaintext which it
represents. In this paper we have chosen not to analyse such
attacks.

3 Notation and Terminology

The protocols introduced in this paper require the use
of encryption to hide the contents of messages from
all but the intended recipient. In common with other
papers on authentication we use the notation {m}* to
indicate a message m encrypted using an encryption

key k.

The word “plaintext” refers to the unencrypted mes-
sage m and the encrypted form of the message is the
“ciphertext”.

To emphasize the risk and the techniques used to re-
duce that risk, we use the term well chosen to de-
scribe an encryption key chosen at random from a large
key space, and the term poorly chosen to describe an
encryption key derived from a user-chosen password.
The distinction is based entirely on the (presumably
low) probability of an attacker’s successful guessing of
a randomly chosen key, compared with the (presum-
ably higher) probability of successful guessing of a user-
chosen password.

4 Known Plaintext

The concept of known plaintext has historically been
one of major interest to both cryptographers and crypt-
analysts [KKahn]. If a cryptanalyst is presented with a
piece of ciphertext and can predict all or part of the
plaintext before the message is decrypted then that
message 1s sald to contain known plaintext. There are
two ways by which this knowledge may be exploited: it
may be possible to determine the unpredicted part of
the message; it might also be possible to discover the
decryption key that corresponds to that message.

The following is an example of known plaintext and a
way by which 1t may be exploited:

The recipient of a series of letters notes that they al-
ways begin with a return address. One day he receives
an encrypted message not intended for him. It is a rea-
sonable assumption that this message also begins with
the same return address; in fact somebody who has
seen none of the preceding messages might also make
the same assumption. The address 1s known plaintext.
The concept applies to any such predictable informa-
tion, even if the exact position of the information in
the message is not known.

Let us assume that the person who encrypted the mes-
sage 1s not very careful in the choosing of encryption
keys. The previous three keys were “Angela”, “Beryl”,
and “Christine”; if the unintended recipient of the mes-
sage attempts to decrypt it with a series of women’s
names, starting with the letter “D”, then he or she
may find a key for which the decrypted message begins
with the expected return address. It is very likely that
this result indicates discovery of the correct key.



5 Verifiable Plaintext

The concept of verifiable plaintextis very similar to, but
somewhat more general than, that of known plaintext.
If a message contains information that is recognisable
when decrypted, whether or not it was predictable in
advance, then we describe the plaintext as verifiable.
Since this verifiability is a characteristic of the plaintext
rather than the key we choose to refer to the messages
as containing verifiable plaintext.

As an example of a message that does not contain
known plaintext, but does contain verifiable plaintext,
consider a simple authentication protocol in which Al-
ice attempts to convince Bob that Alice knows a private
key that they have previously agreed upon, by choos-
ing a 64-bit random number and sending Bob an en-
ciphered message containing that random number and
its complement. Bob can verify Alice’s claim by deci-
phering the message with the private key, and adding
the two random numbers to see if they total zero. This
message, though not containing known plaintext, con-
tains verifiable plaintext, and an eavesdropper who is
familiar with the protocol can attack it in a way simi-
lar to that by which he would have attacked a known
plaintext message. By attempting to decrypt the mes-
sage using a series of guessed keys he can note those
keys for which the resulting plaintext sums to zero. If
more than one key satisfies this requirement then he
may have to monitor further transactions but he will
soon have sufficient information to verify his guess at
the key.

We use the word “recognisable” in a very general sense.
If one encrypts and sends a piece of verifiable plaintext,
and in some other packet an intruder intercepts some-
thing that might be the encryption key, the intruder
can verify that it is the key by trying it on the cipher-
text and looking at the result. Such a key is recog-
nisable and is also, therefore, verifiable. It is for this
reason that we should be wary of encrypting keys, even
strong keys, under a weak key. Note that if this second
packet is encrypted under another key then this second
key 1s also verifiable.

It should be noted that known plaintext forms a subset
of verifiable plaintext since information that is known
in advance is obviously verifiable. Any message that
has specific properties that the attacker might know in
advance, such as being an ASCII string, or being an
integer with a small range but stored in a large field, is
also verifiable. The most worrying aspect of verifiable
plaintext from the point of view of a protocol designer
is that an eavesdropper can check the correctness of
a guess as to the encryption key without any on-line
transactions with some entity that would notice, and
be suspicious of, wrong guesses. This aspect makes it
difficult for the system to recognise when someone is
performing such an attack.

It is possible to be more relaxed about the use of poorly
chosen passwords if we can remove verifiable plaintext
from messages that are enciphered with predictable
keys.

If a public-key encryption system is used [Diffie] then
another form of verifiable plaintext attack is possible
that allows the attacker to determine the plaintext
without discovering the decryption key. An eavesdrop-
per monitors one or more transactions using a known
public key. For each possible value of the plaintext he
or she computes the corresponding ciphertext and com-
pares it with the ciphertext that was logged previously.
A match indicates that the plaintext has been found.

This form of attack may be defeated by introducing a
random number, which we call a confounder, into the
message. A confounder is distinct from a nonce, which
i1s a random number to be acted upon by the recipient,
in that it has no purpose other than to confound such
an attack. The value of a confounder may be ignored
by the recipient of the message in which it appears.

As will be shown in the following section it is possible
to construct a series of messages, no one of which is vul-
nerable in itself, but which together contain verifiable
plaintext.

6 A Two-Message Protocol

We first exhibit a two-message transaction upon which
an authentication protocol might be based.

Several existing private-key protocols
[Needham, Voydock] contain a message pair that can
be cast in the form:

i. A—B: {n}
ii. B— A:{f(n)}*

Alice generates a random number n and encrypts it
using a pre-arranged private key k. Bob decrypts the
message, computes some agreed function of the number
and returns the encrypted form of the result to Alice.
The function f() insures that the two messages aren’t
identical.

Neither of these messages considered alone contains
known plaintext since both n and f(n) are random
numbers. But assuming that f() is not a secret, then
the pair of messages together contain verifiable plain-
text and are subject to a guessing attack very similar
to that described above.

Consider, however, how this exchange is improved if
two different keys are used.

i. A —B:{n}*
ii. B — A: {f(n)}*?

If a single transaction takes place then even an exhaus-
tive search cannot determine the keys. If an eavesdrop-
per records multiple transactions that use the same key



pair, then the eavesdropper could verify a correct guess
of both keys. Thus the effort of guessing has increased
to require exploring the product of two key-spaces, and
if either of the two keys is well chosen, guessing has
been inhibited. This product property is a very pow-
erful way of hiding poorly chosen keys.

7Y A Mutual Authentication Pro-
tocol

In the following protocol we observe the design conven-
tion of requiring the authentication server to generate
session keys. There are at least two reasons for relying
on a server for this function: high quality randomness
is not easy for deterministic machines to implement;
some encryption algorithms have the property that cer-
tain classes of keys are weaker than others and should
be avoided. Even if a client is able to generate good
random numbers, that client should not be required to
recognise weak keys. Ralph Merkle pointed out that
if this convention were relaxed on the assumption that
clients are capable of generating high quality session
keys, then the protocol might be simplified. It is also
conventional, rather than send a password, to send the
value of a function that depends upon the password.
This gives a slight increase in protection at little cost.

We now present a protocol that allows a server S to
mediate between two clients A and B to allow mutual
authentication. This protocol does not minimize the
number of messages transmitted, but it 1s simple and
symmetric, and easier to explain than a minimal pro-
tocol.

i A — S: { AB ,nal,na2,ca, {ta}’*} 5+
i, S—B:AB
iii. B —S:{B,A nbl,nb2 cb {th}F*}¥>

iv. S — A: {nal, k®na2}?e
V. S — B: {nbl, k@ nb2}F?

vi. B — A: {ra}*
vii. A — B: {fl(ra),rb}*
viii. B — A: {f2(rb)}*

Where nal, na2, ca,ra,nbl, nb2,cb, and rb are random
numbers generated by the originator of the first mes-
sage in which they appear. The key Ks is the public
key (more on this in a moment) of the server. Pa and
Pb are the password-derived personal keys of the clients
A and B respectively. The server generates a session
key k used by A and B to communicate. The values ta
and tb are pieces of recognisable but non-repeating in-
formation such as local time, recorded with a precision
greater than the maximum allowed client-server clock
skew.

Messages 1 and iii are similar enough that a single ex-
planation can apply to both. Client Alice generates
three random numbers nal, na2, and ca, produces a
piece of timely information, which could have origi-
nated only from Alice, namely the current time en-
crypted under Alice’s personal key, and announces that
she 1s Alice and wishes to talk to Bob. For simplicity,
we assume that K's is the public key to a public-key en-
cryption algorithm, used only for the purpose of send-
ing initial requests to the key distribution server. This
single use of the public-key technique is interesting be-
cause it 1s used only to communicate with a public ser-
vice, so only a single such key is required for a system.

The use of public-key encryption does not eliminate
the need to retain a secret because it is only possible
to prove the identity of somebody who holds some se-
cret information. In our example protocol the server’s
secret 1s a decryption key; in the case of each client the
secret 1s a password.

The server deciphers message i (iii) using its private
key, and verifies the claimed identity of Alice (Bob)

by deciphering {ta}f® ({tb}¥?). If that decipherment
does not produce the current time (within the allowable
clock skew) the server logs a failure; if it does produce
a current time, it responds with message iv (v).

Message iv (v) contains nal (nbl) as proof that mes-
sage 1 (iii) was correctly decrypted. Note that if the
server cannot decrypt the first message then message
iv is not sent so key Pa is safe from attack. (A server
concerned about minimizing information leakage might
send back a dummy message iv (v) as a response to an
error; such a dummy would presumably have no value
to a guessing attacker.)

Message iv (v) contains na2 (nb2) for two reasons. The
simpler of the two is to protect Alice (Bob) against an
attack by Bob (Alice) who already knows the value of
k; insider attacks are covered in the following section.
The more important reason is to prevent messages vi
and vii or messages vii and viii to be exploited to verify
k, which in turn would allow Pa or Pb to be verified.

The messages vi and vii contain a challenge ra and
response f(ra) and therefore allow key k, if guessed,
to be verified. Similarly messages vii and viii when
taken as a pair contain verifiable plaintext enciphered
with key k. Fortunately key k originated at the key-
distribution server and can therefore be assumed to
be well chosen, so a verifiable plaintext attack is not
feasible.

8 Insider Attacks

There is one remaining loose end. Although one would
like to assume that the communicating parties trust
each other, it does not seem appropriate to extend that
trust to sharing passwords, or even to trusting that
Bob would not try to guess Alice’s password with the



aid of the residue of a successful transaction. Such
a safeguard would also ensure that Bob cannot cause
Alice’s key to be compromised by compromising his
own.

Confounders ca and cb serve the purpose of defending
Alice from Bob and vice-versa. As mentioned before,
a confounder is simply random baggage that has no
purpose but to confound an attacker. In this case con-
founders are of value because someone attempting to
guess Pa or Pb could attempt to construct messages
1 or iii without being able to decrypt them. Consider
message 1’, a replacement for message i, which omits
the confounder ca, and message iv, which is unchanged:

i, A —S:{ABnal, na2, {ta}} s
iv. S — A:{nal, k® na2}’e

Bob, knowing the value of k, guesses the value of Pa,
decrypts message 1V using this guess, computes the cor-
responding ciphertext value for message i/, and com-
pares it with the intercepted copy of message 1. If the
two ciphertext versions are identical, Bob’s guess of Pa
has been verified. The otherwise unused random num-
ber ca confounds such an attack, under the assumption
that all of the bits of enciphered message 1 depend on
all of the plaintext bits of that message. Confounder
cb similarly protects Bob’s password from guessing by

Alice.

Note that the protocol includes a time-stamp. If the
attacker does not know the time exactly, presumably
that lack of knowledge increases the number of exper-
iments needed to verify a successful guess by only a
small amount. However, if the time-stamp 1s carried to
a precision far greater than the attacker could know,
then the low order bits of the time-stamp can also act
as confounders.

9 Summary and Suggestions For
Further Work

This paper has suggested a class of risk, guessing of
poorly-chosen passwords, for which an authentication
protocol may provide protection. It has also offered a
conceptual framework based on verifiable plaintext to
determine whether or not a protocol is susceptible to
password guessing. Finally, it has demonstrated some
examples of techniques for avoiding verifiable plaintext
in an authentication protocol.

We have not investigated whether or not protection
against the risk of poorly chosen passwords inherently
malkes a protocol more expensive. ;From a quick glance
at the techniques, one might conjecture that the length
of messages (and thus of the amount of material en-
crypted) does increase. We do know, however, that
the number of messages need not increase.

We have also not attempted to establish conclusively
that it is necessary to use a public-key system for the
initial message from the client to the key distribution
server, although we conjecture that it i1s required, be-
cause a private key system would seem to require that
the client be able to keep a well-chosen secret, an abil-
ity that we assume the client lacks.

Finally, we suggest the possibility of developing an au-
tomated checker that analyses a protocol and reports
whether or not it contains verifiable plaintext. Such
a checker would appear to be considerably simpler to
construct than, say, an automatic proof that a protocol
i1s complete and correct.

References

[Diffie] Diffie, W. and Hellman, M.E., “New
Directions in Cryptography”, IFEE
Transactions on Information Theory,
Vol. IT-22, No.6, November, 1976,
pp.644-654.

Kahn, D., The Codebreakers, MacMil-
lan, New York, 1967.

“PIN Manual: A Guide to the Use of
Personal Identification Numbers in In-
terchange”, MasterCard International,
Inc., September, 1980, Reprinted in
Cryptography: A New Dimension in
Computer Data Security by Meyer,
C.H. and Matyas, S.M., John Wiley
and Sons., 1982, pp.429-444.

Morris, R. and Thompson, K., “Pass-
word Security: A Case History”,
Communications of the ACM, Vol.22,
No.11, November, 1979, pp.594-597.

Needham, R.M. and Schroeder, M.D.,
“Using Encryption for Authentication
in Large Networks of Computers”,
Communications of the ACM, Vol.21,
No.12, December, 1978, pp.993-999.

Steiner, J.G., Neuman, C., and
Schiller, J.I., “Kerberos: An Authenti-
cation Service for Open Network Sys-
tems”, Proceedings of the USENIX
Winter Conference, February, 1988,
pp-191-202.

Voydock, V.L. and Kent, S.T., “Se-
curity Mechanisms in High-Level Net-
work Protocols”, Computing Surveys,

Vol.15, No.2, June 1983, pp.135-171.

[Kahn]

[MasterCard]

[Morris]

[Needham)]

[Steiner]

[Voydock]





