
Reducing Risks from Poorly Chosen Keys�T. Mark A. Lomas, Li Gong,Jerome H. Saltzery, Roger M. NeedhamUniversity of Cambridge Computer LaboratoryNew Museums Site, Pembroke StreetCambridge CB2 3QG, EnglandAugust 1989AbstractIt is well-known that, left to themselves, people willchoose passwords that can be rather readily guessed.If this is done, they are usually vulnerable to an attackbased on copying the content of messages forming partof an authentication protocol and experimenting, e.g.with a dictionary, o�ine. The most usual counter tothis threat is to require people to use passwords whichare obscure, or even to insist on the system choosingtheir passwords for them. In this paper we show alter-natively how to construct an authentication protocolin which o�ine experimentation is impracticable; anyattack based on experiment must involve the real au-thentication server and is thus open to detection by theserver noticing multiple attempts.1 IntroductionA common risk in authentication systems is passwordguessing. Although this risk is usually associated withstored-password systems such as UNIX 1, it also canapply to network authentication systems that utilizethe Needham and Schroeder [Needham] model of tem-porary key distribution from a server that knows a per-sonal key for each user. This risk arises because in or-der to make such a system convenient enough for user�Published in the Proceedings of the 12th ACM Symposiumon Operating System Principles, ACM Operating Systems Re-view, 23(5):14{18, December, 1989.yAt the time of writing this paper Professor Saltzer was vis-iting the University of Cambridge. His usual address is Mas-sachusetts Institute of Technology, Room NE43-513, 545 Tech-nology Square, Cambridge, MA 02139, USA.1UNIX is a trademark of AT&T.0

acceptability, the personal keys of individual users maybe derived from passwords, and the users may choosethose passwords. Self-chosen passwords are notoriouslyeasy to guess [Morris], especially if a large number ofdi�erent guesses (for example, all the words in an on-line dictionary) can be made mechanically and eachsuch guess veri�ed for correctness without raising analarm.For example, the Kerberos authentication system ofM.I.T. Project Athena [Steiner] exhibits this risk, be-cause the Kerberos Key Distribution Server enciphersits initial response packet using a key derived from theuser's password. An attacker could passively record aninitial response packet from a Kerberos server, and at-tempt to decrypt that packet using keys derived from aseries of guesses as to the password value. The attackercan immediately determine whether or not a guess iscorrect because for a correct guess the resulting deci-pherment of the packet will produce recognizable data,such as the name of a network service or the time ofday. Because the attacker can work privately, the onlycost of an incorrect guess is the time wasted doing adecipherment that produces unintelligible data.The common approach to reducing this risk is to en-courage, exhort, or force users to choose passwords thatare hard to guess. Since such passwords can also behard to remember, this approach sometimes encoun-ters user resistance.In this paper we explore a di�erent approach, assum-ing that poorly chosen passwords are a fact of life, andlook instead for ways to improve an authentication pro-tocol so that it doesn't matter. One inspiration forthis approach is the observation that automatic bankteller machines generally use 4-digit numerical pass-words, yet when properly designed they do not seem tobe particularly vulnerable to password guessing. Thereason is that although one could guess an ATM pass-word in something less than 9,999 tries, the system willgenerally con�scate the user's banking card after thethird wrong guess, and thereby terminate experimen-tation [MasterCard]. The key to the non-attackabilityof the small ATM password is that guesses cannot be1

© ACM, 1989. This is the authorsʼ version of the work, posted by permission of ACM. 
http://doi.acm.org/10.1145/74851.74853



veri�ed in isolation; each guess must be tried by in-voking a part of the system that is in a position tolog incorrect guesses and raise an alarm. Our protocolimprovements are intended similarly to insure that theonly way the correctness of a guess can be veri�ed in-volves some part of the system that is in a position tonotice wrong guesses, log them, and raise an alarm.A second inspiration for our approach is the observa-tion that if one enciphers a completely random stringof bits, an attacker has no way of verifying that he orshe has discovered the key. Thus one protection againstguessing of passwords is to formulate an authenticationprotocol in which keys derived from passwords encipheronly data that is unpredictable by the attacker.This paper describes a concept that we name veri�-able plaintext. Veri�able plaintext is a type of messageof which known plaintext forms a subset. We are notaware of previous works that emphasize the distinctionbetween these two concepts. We propose an authen-tication protocol that avoids encryption of veri�ableplaintext with easily-guessable keys. Since our primarypurpose is to introduce a new, somewhat orthogonal,protocol design consideration, the protocol describedhere has been chosen for ease of discussion, rather thanfor minimization of message tra�c or optimal protec-tion against more esoteric, e.g., slicing attacks2. Thesame techniques used here should be similarly applica-ble to protocols that give priority to those considera-tions.2 A Typical AttackThe following hypothetical example shows the kind ofattack that we believe it is possible to guard against.An eavesdropper has been monitoring network tra�cand recording copies of all messages that form partof an authentication. One day he hears the followingstatement: \This system forces me to change my pass-word so often that I just use the name of the day onwhich it last forced me to change it." If it is possiblefor the eavesdropper to determine the actual password,by testing in turn each of the seven possible values, us-ing only the messages that he has already recorded,then the protocol should be considered insecure. If, onthe other hand, the protocol has the property that theeavesdropper must reveal to an authentication serverhis knowledge (or lack thereof) for each guess then theeavesdropper risks discovery, and we consider the pro-tocol secure against guessing.2A slicing attack is possible when rearrangement of a pieceof ciphertext has known consequences on the plaintext which itrepresents. In this paper we have chosen not to analyse suchattacks.

3 Notation and TerminologyThe protocols introduced in this paper require the useof encryption to hide the contents of messages fromall but the intended recipient. In common with otherpapers on authentication we use the notation fmgk toindicate a message m encrypted using an encryptionkey k.The word \plaintext" refers to the unencrypted mes-sage m and the encrypted form of the message is the\ciphertext".To emphasize the risk and the techniques used to re-duce that risk, we use the term well chosen to de-scribe an encryption key chosen at random from a largekey space, and the term poorly chosen to describe anencryption key derived from a user-chosen password.The distinction is based entirely on the (presumablylow) probability of an attacker's successful guessing ofa randomly chosen key, compared with the (presum-ably higher) probability of successful guessing of a user-chosen password.4 Known PlaintextThe concept of known plaintext has historically beenone of major interest to both cryptographers and crypt-analysts [Kahn]. If a cryptanalyst is presented with apiece of ciphertext and can predict all or part of theplaintext before the message is decrypted then thatmessage is said to contain known plaintext. There aretwo ways by which this knowledge may be exploited: itmay be possible to determine the unpredicted part ofthe message; it might also be possible to discover thedecryption key that corresponds to that message.The following is an example of known plaintext and away by which it may be exploited:The recipient of a series of letters notes that they al-ways begin with a return address. One day he receivesan encrypted message not intended for him. It is a rea-sonable assumption that this message also begins withthe same return address; in fact somebody who hasseen none of the preceding messages might also makethe same assumption. The address is known plaintext.The concept applies to any such predictable informa-tion, even if the exact position of the information inthe message is not known.Let us assume that the person who encrypted the mes-sage is not very careful in the choosing of encryptionkeys. The previous three keys were \Angela", \Beryl",and \Christine"; if the unintended recipient of the mes-sage attempts to decrypt it with a series of women'snames, starting with the letter \D", then he or shemay �nd a key for which the decrypted message beginswith the expected return address. It is very likely thatthis result indicates discovery of the correct key.



5 Veri�able PlaintextThe concept of veri�able plaintext is very similar to, butsomewhat more general than, that of known plaintext.If a message contains information that is recognisablewhen decrypted, whether or not it was predictable inadvance, then we describe the plaintext as veri�able.Since this veri�ability is a characteristic of the plaintextrather than the key we choose to refer to the messagesas containing veri�able plaintext.As an example of a message that does not containknown plaintext, but does contain veri�able plaintext,consider a simple authentication protocol in which Al-ice attempts to convince Bob that Alice knows a privatekey that they have previously agreed upon, by choos-ing a 64-bit random number and sending Bob an en-ciphered message containing that random number andits complement. Bob can verify Alice's claim by deci-phering the message with the private key, and addingthe two random numbers to see if they total zero. Thismessage, though not containing known plaintext, con-tains veri�able plaintext, and an eavesdropper who isfamiliar with the protocol can attack it in a way simi-lar to that by which he would have attacked a knownplaintext message. By attempting to decrypt the mes-sage using a series of guessed keys he can note thosekeys for which the resulting plaintext sums to zero. Ifmore than one key satis�es this requirement then hemay have to monitor further transactions but he willsoon have su�cient information to verify his guess atthe key.We use the word \recognisable" in a very general sense.If one encrypts and sends a piece of veri�able plaintext,and in some other packet an intruder intercepts some-thing that might be the encryption key, the intrudercan verify that it is the key by trying it on the cipher-text and looking at the result. Such a key is recog-nisable and is also, therefore, veri�able. It is for thisreason that we should be wary of encrypting keys, evenstrong keys, under a weak key. Note that if this secondpacket is encrypted under another key then this secondkey is also veri�able.It should be noted that known plaintext forms a subsetof veri�able plaintext since information that is knownin advance is obviously veri�able. Any message thathas speci�c properties that the attacker might know inadvance, such as being an ASCII string, or being aninteger with a small range but stored in a large �eld, isalso veri�able. The most worrying aspect of veri�ableplaintext from the point of view of a protocol designeris that an eavesdropper can check the correctness ofa guess as to the encryption key without any on-linetransactions with some entity that would notice, andbe suspicious of, wrong guesses. This aspect makes itdi�cult for the system to recognise when someone isperforming such an attack.It is possible to be more relaxed about the use of poorlychosen passwords if we can remove veri�able plaintextfrom messages that are enciphered with predictablekeys.

If a public-key encryption system is used [Di�e] thenanother form of veri�able plaintext attack is possiblethat allows the attacker to determine the plaintextwithout discovering the decryption key. An eavesdrop-per monitors one or more transactions using a knownpublic key. For each possible value of the plaintext heor she computes the corresponding ciphertext and com-pares it with the ciphertext that was logged previously.A match indicates that the plaintext has been found.This form of attack may be defeated by introducing arandom number, which we call a confounder, into themessage. A confounder is distinct from a nonce, whichis a random number to be acted upon by the recipient,in that it has no purpose other than to confound suchan attack. The value of a confounder may be ignoredby the recipient of the message in which it appears.As will be shown in the following section it is possibleto construct a series of messages, no one of which is vul-nerable in itself, but which together contain veri�ableplaintext.6 A Two-Message ProtocolWe �rst exhibit a two-message transaction upon whichan authentication protocol might be based.Several existing private-key protocols[Needham, Voydock] contain a message pair that canbe cast in the form:i. A ! B: fngkii. B ! A: ff(n)gkAlice generates a random number n and encrypts itusing a pre-arranged private key k. Bob decrypts themessage, computes some agreed function of the numberand returns the encrypted form of the result to Alice.The function f() insures that the two messages aren'tidentical.Neither of these messages considered alone containsknown plaintext since both n and f(n) are randomnumbers. But assuming that f() is not a secret, thenthe pair of messages together contain veri�able plain-text and are subject to a guessing attack very similarto that described above.Consider, however, how this exchange is improved iftwo di�erent keys are used.i. A ! B: fngk1ii. B ! A: ff(n)gk2If a single transaction takes place then even an exhaus-tive search cannot determine the keys. If an eavesdrop-per records multiple transactions that use the same key



pair, then the eavesdropper could verify a correct guessof both keys. Thus the e�ort of guessing has increasedto require exploring the product of two key-spaces, andif either of the two keys is well chosen, guessing hasbeen inhibited. This product property is a very pow-erful way of hiding poorly chosen keys.7 A Mutual Authentication Pro-tocolIn the following protocol we observe the design conven-tion of requiring the authentication server to generatesession keys. There are at least two reasons for relyingon a server for this function: high quality randomnessis not easy for deterministic machines to implement;some encryption algorithms have the property that cer-tain classes of keys are weaker than others and shouldbe avoided. Even if a client is able to generate goodrandom numbers, that client should not be required torecognise weak keys. Ralph Merkle pointed out thatif this convention were relaxed on the assumption thatclients are capable of generating high quality sessionkeys, then the protocol might be simpli�ed. It is alsoconventional, rather than send a password, to send thevalue of a function that depends upon the password.This gives a slight increase in protection at little cost.We now present a protocol that allows a server S tomediate between two clients A and B to allow mutualauthentication. This protocol does not minimize thenumber of messages transmitted, but it is simple andsymmetric, and easier to explain than a minimal pro-tocol.i. A ! S: f A,B ; na1; na2; ca; ftagPagKsii. S ! B: A,Biii. B ! S: f B,A ; nb1; nb2; cb;ftbgPbgKsiv. S ! A: fna1; k� na2gPav. S ! B: fnb1; k� nb2gPbvi. B ! A: fragkvii. A ! B: ff1(ra); rbgkviii. B ! A: ff2(rb)gkWhere na1; na2; ca; ra; nb1; nb2; cb; and rb are randomnumbers generated by the originator of the �rst mes-sage in which they appear. The key Ks is the publickey (more on this in a moment) of the server. Pa andPb are the password-derived personal keys of the clientsA and B respectively. The server generates a sessionkey k used by A and B to communicate. The values taand tb are pieces of recognisable but non-repeating in-formation such as local time, recorded with a precisiongreater than the maximum allowed client-server clockskew.

Messages i and iii are similar enough that a single ex-planation can apply to both. Client Alice generatesthree random numbers na1; na2; and ca; produces apiece of timely information, which could have origi-nated only from Alice, namely the current time en-crypted under Alice's personal key, and announces thatshe is Alice and wishes to talk to Bob. For simplicity,we assume that Ks is the public key to a public-key en-cryption algorithm, used only for the purpose of send-ing initial requests to the key distribution server. Thissingle use of the public-key technique is interesting be-cause it is used only to communicate with a public ser-vice, so only a single such key is required for a system.The use of public-key encryption does not eliminatethe need to retain a secret because it is only possibleto prove the identity of somebody who holds some se-cret information. In our example protocol the server'ssecret is a decryption key; in the case of each client thesecret is a password.The server deciphers message i (iii) using its privatekey, and veri�es the claimed identity of Alice (Bob)by deciphering ftagPa (ftbgPb). If that deciphermentdoes not produce the current time (within the allowableclock skew) the server logs a failure; if it does producea current time, it responds with message iv (v).Message iv (v) contains na1 (nb1) as proof that mes-sage i (iii) was correctly decrypted. Note that if theserver cannot decrypt the �rst message then messageiv is not sent so key Pa is safe from attack. (A serverconcerned about minimizing information leakage mightsend back a dummy message iv (v) as a response to anerror; such a dummy would presumably have no valueto a guessing attacker.)Message iv (v) contains na2 (nb2) for two reasons. Thesimpler of the two is to protect Alice (Bob) against anattack by Bob (Alice) who already knows the value ofk; insider attacks are covered in the following section.The more important reason is to prevent messages viand vii or messages vii and viii to be exploited to verifyk, which in turn would allow Pa or Pb to be veri�ed.The messages vi and vii contain a challenge ra andresponse f(ra) and therefore allow key k, if guessed,to be veri�ed. Similarly messages vii and viii whentaken as a pair contain veri�able plaintext encipheredwith key k. Fortunately key k originated at the key-distribution server and can therefore be assumed tobe well chosen, so a veri�able plaintext attack is notfeasible.8 Insider AttacksThere is one remaining loose end. Although one wouldlike to assume that the communicating parties trusteach other, it does not seem appropriate to extend thattrust to sharing passwords, or even to trusting thatBob would not try to guess Alice's password with the



aid of the residue of a successful transaction. Sucha safeguard would also ensure that Bob cannot causeAlice's key to be compromised by compromising hisown.Confounders ca and cb serve the purpose of defendingAlice from Bob and vice-versa. As mentioned before,a confounder is simply random baggage that has nopurpose but to confound an attacker. In this case con-founders are of value because someone attempting toguess Pa or Pb could attempt to construct messagesi or iii without being able to decrypt them. Considermessage i0, a replacement for message i, which omitsthe confounder ca, and message iv, which is unchanged:i0. A ! S: f A,B,na1; na2; ftagPagKsiv. S ! A: fna1; k� na2gPaBob, knowing the value of k, guesses the value of Pa,decrypts message iv using this guess, computes the cor-responding ciphertext value for message i0, and com-pares it with the intercepted copy of message i0. If thetwo ciphertext versions are identical, Bob's guess of Pahas been veri�ed. The otherwise unused random num-ber ca confounds such an attack, under the assumptionthat all of the bits of enciphered message i depend onall of the plaintext bits of that message. Confoundercb similarly protects Bob's password from guessing byAlice.Note that the protocol includes a time-stamp. If theattacker does not know the time exactly, presumablythat lack of knowledge increases the number of exper-iments needed to verify a successful guess by only asmall amount. However, if the time-stamp is carried toa precision far greater than the attacker could know,then the low order bits of the time-stamp can also actas confounders.9 Summary and Suggestions ForFurther WorkThis paper has suggested a class of risk, guessing ofpoorly-chosen passwords, for which an authenticationprotocol may provide protection. It has also o�ered aconceptual framework based on veri�able plaintext todetermine whether or not a protocol is susceptible topassword guessing. Finally, it has demonstrated someexamples of techniques for avoiding veri�able plaintextin an authentication protocol.We have not investigated whether or not protectionagainst the risk of poorly chosen passwords inherentlymakes a protocol more expensive. >Froma quick glanceat the techniques, one might conjecture that the lengthof messages (and thus of the amount of material en-crypted) does increase. We do know, however, thatthe number of messages need not increase.

We have also not attempted to establish conclusivelythat it is necessary to use a public-key system for theinitial message from the client to the key distributionserver, although we conjecture that it is required, be-cause a private key system would seem to require thatthe client be able to keep a well-chosen secret, an abil-ity that we assume the client lacks.Finally, we suggest the possibility of developing an au-tomated checker that analyses a protocol and reportswhether or not it contains veri�able plaintext. Sucha checker would appear to be considerably simpler toconstruct than, say, an automatic proof that a protocolis complete and correct.References[Di�e] Di�e, W. and Hellman, M.E., \NewDirections in Cryptography", IEEETransactions on Information Theory,Vol. IT-22, No.6, November, 1976,pp.644-654.[Kahn] Kahn, D., The Codebreakers, MacMil-lan, New York, 1967.[MasterCard] \PIN Manual: A Guide to the Use ofPersonal Identi�cation Numbers in In-terchange", MasterCard International,Inc., September, 1980, Reprinted inCryptography: A New Dimension inComputer Data Security by Meyer,C.H. and Matyas, S.M., John Wileyand Sons., 1982, pp.429-444.[Morris] Morris, R. and Thompson, K., \Pass-word Security: A Case History",Communications of the ACM, Vol.22,No.11, November, 1979, pp.594-597.[Needham] Needham, R.M. and Schroeder, M.D.,\Using Encryption for Authenticationin Large Networks of Computers",Communications of the ACM, Vol.21,No.12, December, 1978, pp.993-999.[Steiner] Steiner, J.G., Neuman, C., andSchiller, J.I., \Kerberos: An Authenti-cation Service for Open Network Sys-tems", Proceedings of the USENIXWinter Conference, February, 1988,pp.191-202.[Voydock] Voydock, V.L. and Kent, S.T., \Se-curity Mechanisms in High-Level Net-work Protocols", Computing Surveys,Vol.15, No.2, June 1983, pp.135-171.




