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Abstract—This paper presents a heuristic to solve large size 0-1
Multi constrained Knapsack problem (01MKP) which is NP-hard.
Many researchers are used heuristic operator to identify the redun-
dant constraints of Linear Programming Problem before applying
the regular procedure to solve it. We use the intercept matrix to
identify the zero valued variables of 01MKP which is known as
redundant variables. In this heuristic, first the dominance property
of the intercept matrix of constraints is exploited to reduce the
search space to find the optimal or near optimal solutions of 01MKP,
second, we improve the solution by using the pseudo-utility ratio
based on surrogate constraint of 01MKP. This heuristic is tested
for benchmark problems of sizes upto 2500, taken from literature
and the results are compared with optimum solutions. Space and
computational complexity of solving 01MKP using this approach are
also presented. The encouraging results especially for relatively large
size test problems indicate that this heuristic can successfully be used
for finding good solutions for highly constrained NP-hard problems.

Keywords—0-1 Multi constrained Knapsack problem, heuristic,
computational complexity, NP-Hard problems.

I. INTRODUCTION

The multi constraints 0-1 knapsack problem (01MKP) has
varied applications in various fields, e.g. economy: Consider
a set of projects (variables) (j = 1, 2, 3..., n) and a set of
resources (constraints) (i = 1, 2, 3, ..., m). Each project has
assigned a profit cj and resource consumption values aij . The
problem is to find a subset of all projects leading to the highest
possible profit and not exceeding given resource limits b i

The 0-1 multi-constrained knapsack problem (01MKP) is a
well known NP-Hard combinatorial optimization problem [10]
which can be formulated as follows

Maximize

f(x1, x2, ..., xn) =
n∑

j=1

cjxj (1)

subject to the constraints
n∑

j=1

aijxj ≤ bj , i = 1, 2, ..., m (2)

xj ∈ {0, 1} , j = 1, 2, 3, ..., n (3)

cj > 0, aij ≥ 0, bj ≥ 0 (4)
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The objective function f(x1, x2, ..., xn) should be maximized
subject to the constraints given by (2) . For 01MKP problems
the variablexj can take only two values 0 and 1. Here in a
01MKP, it is necessary that aij are positive. This necessary
condition paves a way for better heuristics to obtain optimal
or near optimal solutions.

The popularity of knapsack problems stems from the fact
that it has attracted researchers from both camps: the Theo-
reticians as wells as the Practicians [23] enjoy the fact that
these simple structured problems can be used as sub problems
to solve more complicated ones. Practicians on the other
hand, enjoy the fact that these problems can model many
industrial opportunities such as cutting stock, cargo loading,
and processor allocation in distributed systems. The special
case of 01MKP with m = 1 is the classical knapsack problem
(01KP) , whose usual statement is the following. Given a
knapsack of capacity b and n objects, each being associated a
profit a volume occupation , one wants to select k (k <= n
and k not fixed ) objects such that the total profit is maximized
and the capacity of the knapsack is not exceeded . It is
well known that 01KP is strongly NP-Hard because there
are polynomial approximation algorithms to solve it. This is
not the case for the general 01MKP. Various algorithms to
obtain exact solutions of such problems were designed and
well documented in literature [2,6,11,12,16,30,35].

This paper is organized as follows: A brief survey of various
researchers work pertaining to this problem is elucidated
in section 2. The dominant principle of intercept matrix,
Dominance principle based Heuristic (DPHEU) approach for
solving 01MKP; surrogate constraint, pseudo-utility operator,
and computational complexity of DPHEU are explained in
section 3. We have furnished the results obtained by DPHEU
for all the benchmark problems in section 4. This section
also includes the extensive comparative study of results of our
heuristic with known optimum or best solutions of 01MKP.
Salient features of this algorithm are also enumerated in
section 4, and concluding remarks and future direction are
also given in section 5.

II. PREVIOUS WORK

Exact and heuristic algorithms have been developed for
the 01MKP, like many NP-Hard combinatorial optimization
problems.

A. Exact algorithms

Existing exact algorithms are essentially based on branch
and bound method, dynamic programming, systematic ap-
proach and 01MKP relaxation techniques such as Lagrangian,
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surrogate and composite relaxations.[ 2,6,11,12,16,30,35]. The
Balas’s [2] algorithm is a systematically designed one that
begins with a null solution which assigns successively certain
variables to 1 in such way that after testing part of all the 2n

combinations, we obtain either an optimal solution or a proof
that no feasible solution exists. The algorithms by Gilmore
and Gomory [12], Weingartner and Ness[35] use dynamic
programming approach. The dynamic programming method
solved two problems of size (n=28,m=2) and (n=105,m=2)
in a forward and backward approach. Shih [30] proposed a
branch and bound algorithm. In this method, an upper bound
is obtained by computing the linear relaxation upper bound of
each of the m single constraint knapsack problems separately
and selecting the minimum objective function value among
those as the upper bound. Computational results showed that
this algorithm performed better than the general zero-one
additive algorithm of Balas[2]. Better algorithms have been
proposed by using tighter upper bounds, obtained with other
01MKP relaxation techniques such as Lagrangian, Surrogate
and composite relaxations were developed by Gavish and
Pirkul[11] . This algorithm was compared with the Shih’s
method [30] and was found to be faster by at least one order
of magnitude. Osorio et al[26] used surrogate analysis and
Constraint Pairing to assign some variables to zero and to
separate the rest of the variables into groups(those that tend
to zero and those that tend to one ) They use an initial feasible
integer solution to generate logical cuts based on their analysis
at the root of a branch and bound tree. Due to their exponential
time complexity, exact algorithms are limited to small size
instances (n = 200 and m = 5).

B. Heuristic algorithms

Heuristic algorithms are designed to produce near-optimal
solutions for larger problem instances. The first heuristic
approach for the 01MKP concerns for a large part greedy
methods. These algorithms construct a solution by adding,
according to a greedy criterion, one object each time into a
current solution without constraint violation.

The second heuristic is based on linear programming by
solving various relaxations of the 01MKP. Balas and Martin
[3] introduced a heuristic algorithm for the 01MKP which
utilizes linear programming (LP) by relaxing the integrality
constraints xj = 0 or 1 to xj= 0 to 1. Linear programming
problems are not NP-hard and can be solved efficiently,e.g.
with the well known Simplex algorithm. The fractional x j are
then set to 0 or 1 according to a heuristic which maintains
feasibility. In last decade, several algorithms based on meta-
heuristics have been developed, including simulated annealing
[9], tabu search [13,17] and genetic algorithms [8,20]. More
examples of heuristic algorithms for the 01MKP can be found
in [22,23,28,34]. Sartaj sahini[29] presented a sequence of ε
approximate algorithm and time estimates of such algorithm
were also presented. A comprehensive review on exact and
heuristic algorithms is given in [1,7,8],

This paper, we propose a heuristic algorithm based on
dominance principle of intercept matrix to solve 01MKP.
The main principle of the algorithm is twofold. (i) to find

the optimal or near optimal solution of 01MKP by using
dominance principle of intercept matrix (ii) to improve the
near optimal solution by using surrogate pseudo-utility ratio
of 01MKP.

III. DOMINANCE PRINCIPLE (DP)

Linear programming (LP) is one of the most important
techniques used in modeling and solving practical optimization
problems that arise in industry, commerce and management.
Linear programming problems are mathematical models used
to represent real life situations in the form of linear objective
function and constraints various methods are available to
solve linear programming problems. When formulating an
LP model, systems analyst and researchers often include all
possible constraints and variables although some of them
may not be binding at the optimal solution. The presence
of redundant constraints and variables does not alter the
optimum solution(s), but may consume extra computational
effort. Many researchers have proposed algorithms for iden-
tifying the redundant constraints and variables in LP models
[5,16,18,19,21,24,25,31,32,33]. Paulraj[27] used the intercept
matrix of the constraints to identify redundant constraints prior
to the start of the solution process in his heuristic approach.
01MKP is a well known 0-1 integer programming problem and
many variables have zero values called redundant variables.
We use the intercept matrix of the constraints (2) to identify
the variables of value 1 and 0.

Surrogate constraints were first introduced by Glover[14,15]
to provide choice rule evaluations and bonds for integer
programming problems in [14] and to transform infeasible so-
lutions into feasible solutions in the context of an evolutionary
procedure in [15]. The surrogate constraint can be defined as:

n∑
j=1

(
m∑

i=1

wiaij )xj ≤
n∑

i=1

wibi (5)

where w = w1, w2, ..., wm is a set of surrogate multipliers( or
weights ) of some positive real numbers. We use this constraint
as an additional constraint to the given problem. Pseudo-utility
ratio can be defined for each variable, based on the surrogate
constraint (5), is

uj = cj/

n∑
i=1

wiaij (6)

We use this ratio(6) to improve the solution obtained from
the dominance principle approach. First, we add an additional
constraint to the given problem by using surrogate constraint
technique.Second, we construct the intercept matrix by divid-
ing bk values by coefficients of (2).The elements of intercept
matrix are arranged in decreasing order, the leading element is
the dominant variable. This process of identifying the leading
element from intercept matrix is known as dominant principle.
We use this dominant variable to improve the current feasible
solution and this procedure provides optimum or near optimum
solution of 01MKP. The dominant principle focuses at the
resource matrix with lower requirement come forward to
maximize the profit. The intercept matrix of the constraints
(2) plays a vital role in achieving the goal, in a heuristic
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manner.Next we use the pseudo-utility ratio for each variable
to improve the solution quality.

The algorithm is as follows. Step-(a) initialize the solution
vector with zero value for all the unknowns. Next we constrcut
surrogate constarint and pseudo ratio operator( step-(b) and
step-(c)). In step-(d) we construct the intercept matrix and
identify redundant variables through step-(e) and (f). The
Values corresponding to column minimum (e ij) are multiplied
with corresponding cost coefficients (cj) and the maximum
among this product is chosen ie., max︸︷︷︸

k

eikck.

The corresponding xk assumes the value 1 . Next we update
the availability ( right hand side column vector ) by using
the relations bi = bi − aik for all i and the coefficients of
constraints by replacing aik by 0 for all i . This process
is repeated till coefficient matrix becomes null matrix. The
values of updated variables xk are substituted in the objective
function to obtain the value. This process is repeated n times
(step-(d) to step-(i) in DPHEU algorithm)

Pseudo-utility ratio is used to improve the objective
function value. The process by examining each variable in
decreasing orders of uj and changes the variable from one
to zero and zero to one as long as feasibility is not violated.
We present below, the heuristic algorithm for solving 01MKP
using the dominance principle approach.

(a) Initialize the solution by assigning 0 to all xj .
(b) Surrogate constraint

∑n
j=1(

∑m
i=1 wiaij )xj ≤∑n

i=1 wibi (m+1)th constraint.
(c) Pseudo utility ratio operator uj = cj/ sumn

i=1 wiaij .
(d) Intercept matrix D djj = bi/aij , if aij > 0,
djj = M, a large value ; otherwise.
(e) Identify 0 value variables( redundant): If any column

has <1 entry in D, then the corresponding variable identified
as a redundant variable.

(f) Dominant variable: Identify the smallest
element(dominant variable) in each column of D.

(g) Multiply the smallest elements with the corresponding
cost coefficients. If the product is Maximum in kth column,
then set xk = 1 and update the objective function value
f(x1, x2, ..., xn).

(h) Update the constraint matrix: bi = bi − aij for all i and
set aik = 0 fo all i.

(i) If aij = 0 for all i and j, then go to step-(j) . Otherwise
go to step-(d)

(j) Pseudo utility operator( to improve the current solution)
Let Ri = the accumulated resources of constraint i in the
solution set. For each j*(1 to n), identify j such that xj∗ = 1
and satisfies both cj > cj∗, uj > uj∗, and Ri- aij + aij∗ ≤ bi,
i = 1 to m. If such an j can be found, then set xj=1 and xj∗=0.

Theorem 1. DPHEU can be solved in O(mn2) time, poly-
nomial in the number of item types and constraints.

Proof. The Worst -case complexity of finding the solutions
of an 01MKP using DPHEU can be obtained as follows.
Assume that there are n variables and m+1 constraints. The
procedure initialization (step-(a)), requires O(n) running time.
Construction of surogate constraint(step-(b)) and pseudo ration
operator(step-(c)) requires O(mn) and O(n) respectively. The

Formation of D matrix iterates n times, identification of less
than one entry in each column , finding smallest intercept
in each column ,identification rows which consists of more
than one smallest intercept and updating of constraint matrix
A . Since there are m constraints, step-(d), step-(e), step-
(f), step-(i) respectively, O((m+1)n)time. step-(g) and step-(h)
requires O(n) operations to multiply cost with corresponding
smallest intercept and updating the corresponding row of the
constraint matrix. The maximum number of iterations required
for DPHEU is n. So the overall running time of the procedure
DPHEU can be deduced as O (mn2)
An example of 01MKP solution by DPHEU Consider Max
5000x1 +5550x2+1000x3+1500x4
Subject to
5x1 + 7x2 + 2x3 ≤ 9
3x1 + 2x2 ≤ 3
425 x1 + 300 x2 +50 x3 + 100 x4 ≤ 500

In the above example of 01MKP have 4 variables and 3
constraints. We add 4th constraint (surrogate constraint) by
using (4) with weights 2, 3, 4.
719x1 + 1220x2 + 204x3 + 400x4 ≤ 2027. The algorithm
begins with the initial feasible solution, thus the solution
vector can be written as (0, 0, 0, 0), and objective value
is 0. We update this solution by using DPHEU algorithm
iteratively. This heuristic updates the solution vector and
objective function value. Step - (d) to step - (i)
Iteration 1: The variable x2 dominates the other variables and
improves the objective function value from 0 to 5550. Thus
the new solution vector is (0, 1, 0, 0) and objective function
value is 5550.
Iteration 2: The variable x4 dominates the other variables( x1
and x3 ) and improves the objective function value from 5500
to 7050. The solution vector is (0, 1, 0, 1).
Iteration 3: The variable x3 dominates the other variable (x1)
and improves the objective function value from 7050 to 8050.
The solution vector is (0, 1, 1, 1). we assign 0 to x2, the
x2 variable column has < 1 entry. Step -10 There is no
improvement in the objective function value for this problem
at this step. The final solution is x1=0, x2 = 1, x3 = 1, x4 =
1. objective function value is 8050 which is optimum.

IV. COMPUTATIONAL RESULTS

Our DPHEU was initially tested on 55
standard problems (divided into six different
sets) which are available from OR- Library
(http://mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html)[4].
The size of these problems varies from n = 5 to 105 items
and from m =2 to 50 constraints. We solved these problems-
, using both the general-purpose CPLEX mixed-integer
programming solver, and our DPHEU which was coded
in MATLAP7. The results are shown in Table 1. The first
two columns in Table 2 indicate the problem set name and
the number of problems in that problem set. The next two
columns report for CPLEX the average execution time, and
average number of nodes required for CPLEX. The last three
columns report that DPHEU algorithms average solution
time, average percentage deviation from optimum solution,
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and total number of optimum solution found by DPHEU for
each problem set.
It is clear that from Table 1 that our DPHEU finds the optimal
or near optimal in all 55 test problems. CPLEX required 1.13
seconds to solve all the problems shown in Table 1. Our
DPHEU required 0.64 seconds only.
The application of HEU algorithm for Weing7 is presented
in figure 1. The maximum number of iterations is 105 (n)
fixed. HEU reaches the solution 1094806 at 90 th iterations
which is best but not optimum (from step - 1 to step - 9).
Next we apply pseudo-utility ratio operator to improve the
solution (step 10), it takes only three iterations to improve
the solution quality, 1095445, which is optimum one. The
second set of tested instances is constituted of (also the
largest ones with n = 100 to 2500 items m =15 to 100
constraints) 11 benchmarks (MK-GK problems) proposed
very recently by Glover and Kochenberger (available at:
http://hces.bus.olemiss.edu/tools.html ). Table 2 compares our
results and the best known results taken from the above web
site.

Fig. 1. Iteration wise Objective function value for Weing7

TABLE I
COMPUTATIONAL RESULTS FOR CPLEX AND THE DPHEU FOR SMALL

SIZE PROBLEMS

Problem Number of CPLEX DPHEU
set name Problems

Average Average A.P.O.D N.O.P.T
Solution Solution

time time
HP 2 0.3 0.2 0.0 2
PB 6 2.8 1.8 0.04 5

PETERSON 7 0.2 0.2 0.0 7
SENTO 2 12.0 3.8 0.0 2
WEING 8 0.6 0.4 0.0 8
WEISH 30 0.5 0.4 0.03 28
average 1.13 0.64

A.P.O.D = Average percentage of deviation
N.O.P.T = Number of problems for which the DPHEU finds the optimal

solution

The first two columns in Table 2 indicate the sizes (m
and n), third column CPLEX solution of problems; the last
two columns report the DPHEU solution and percentage of
deviation from the best solutions of the problems. It can
be seen from Table 2 that DPHEU is found to be better

TABLE II
COMPUTATIONAL RESULTS FOR CPLEX AND THE DPHEU FOR LARGE

SIZE PROBLEMS

n m CPLEX DPHEU Percentage
Best Solution of

Feasible deviation
Solution

100 15 3766 3766 0
100 25 3958 3958 0
150 25 5650 5656 0.26(improved)
150 50 5764 5767 0.05(improved)
200 25 7557 7557 0.0
200 50 7672 7672 0
500 25 19215 19215 0
500 50 18801 18806 0.03(improved)
1500 25 58085 58085 0.0
1500 50 57292 57294 0.003(improved)
2500 100 95231 95231 0.0

in 4 out of 11 problems than CPLEX. As both tables and
figure clearly demonstrate, the DPHEU is able to localize the
global optimum or near optimal point for all the test problems
in quick time. Our approach is used to reduce the search
space to find the near-optimal solutions of the 01MKP. The
computational complexity is cubic and the space complexity
is O(mn) . DPHEU reaches the optimum or near optimum
point in less number of iterations where the maximum number
of iterations is the size of projects (variables). Our heuristic
algorithm identifies the zero value variables quickly.

V. CONCLUSION

In this paper, we have presented the dominance principle
based approach for tackling the NP-Hard 0-1 Multi constrained
knapsack problem (01MKP). This approach has been tested
on 66 state-of-art benchmark instances and has led to given
near optimal solutions for most of the tested instances. Our
approach is heuristic with O(mn2) complexity and it requires
maximum of n iterations to solve the 01MKP. The experimen-
tal data show that the optimality achieved by this heuristic lies
between 98 and 100 percentage. The basic idea behind the
proposed approach may be explored to tackle other NP-Hard
Problem.
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