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ABSTRACT Fluctuations about the native conformation of proteins have proven to be suitably reproduced with a simple
elastic network model, which has shown excellent agreement with a number of different properties for a wide variety of
proteins. This scalar model simply investigates the magnitudes of motion of individual residues in the structure. To use the
elastic model approach further for developing the details of protein mechanisms, it becomes essential to expand this model
to include the added details of the directions of individual residue fluctuations. In this paper a new tool is presented for this
purpose and applied to the retinol-binding protein, which indicates enhanced flexibility in the region of entry to the ligand
binding site and for the portion of the protein binding to its carrier protein.

INTRODUCTION

It is well known that proteins in the folded state are not
rigid, but instead can sample numerous conformations in the
neighborhood of their native conformation (Frauenfelder et
al., 1991). These can generally be viewed as fluctuations
near equilibrium positions, called hereequilibrium fluctua-
tions. These fluctuations occur in addition to two other more
specific classes of conformational transitions: 1) local con-
formational isomeric jumps occasionally occurring near na-
tive state coordinates, particularly for side chains having
rotatable bonds; and 2) large-scale changes: some proteins
can also have two or more equilibrium states relevant to
their function (Damaschun et al., 1999; Frauenfelder and
McMahon, 1998). Nevertheless, apart from these two cate-
gories, the most characteristic general fluctuations are usu-
ally small in magnitude, not exceeding several Ångstroms,
and lie in the subnanosecond frequency range.

Details of molecular motions in the folded state can, in
principle, be elucidated by molecular dynamics (MD) sim-
ulations and normal mode analyses (NMA) using all-atom
empirical potentials developed for proteins (McCammon
and Harvey, 1987; Brooks et al., 1988; Kitao and Go, 1999).
However, the use of atomic approaches becomes computa-
tionally inefficient with increasing size of the system and
can even obscure the larger scale changes. However, recent
studies reveal the success of coarse-grained protein models
and simplified force fields for describing the vibrational
dynamics of simple models; these are particularly appropri-
ate for describing the collective motions of complex sys-
tems or of the largest proteins (Bahar et al., 1999; Bahar and
Jernigan, 1999; Hinsen et al., 1999), composed of more than

several thousand residues. Such systems cannot usually be
investigated using conventional atomic models and poten-
tials. Simple models and efficient computational methods
(Amadei et al., 1993; van Aalten et al., 1997a) become
increasingly important with the pressing need to systemat-
ically elucidate the dynamics of large numbers of proteins
and their complexes within the scope of structural and
functional genomics.

In a series of recent papers (Bahar et al., 1997, 1998a,
1999; Haliloglu et al., 1997; Bahar and Jernigan, 1998), we
have shown that the fluctuation dynamics of proteins can be
modeled as those of elastic networks; the nodes are the
residues, and the linkers are the inter-residue potentials
stabilizing the folded conformation (Fig. 1). In this model,
shortly referred to as the Gaussian network model (GNM)
of proteins, residues are assumed to undergo Gaussian-
distributed fluctuations about their mean positions, being
coupled by harmonic potentials. No distinction is made
between different types of amino acids, so that a generic
force constantg is adopted for the interaction potential
between all pairs of residues sufficiently close. Experimen-
tal values of such generic force constants may become
available soon from new neutron scattering experiments
(Zaccai, 2000), which would permit a more direct way to
evaluate these constants.

Results from GNM calculations were found to be in
excellent agreement with x-ray crystallographic temperature
factors (also called Debye-Waller or B-factors) (Bahar et
al., 1997, 1998a, 1999; Haliloglu et al., 1997; Bahar and
Jernigan, 1998, 1999; Demirel et al., 1998; Jernigan et al.,
1999; Keskin et al., 2000), the H/D exchange free energies
of amide protons with solvent for various proteins near
native state conditions (Bahar et al., 1998b), and the order
parameters from NMR-relaxation measurements (Haliloglu
and Bahar, 1999). The success of the GNM has been attrib-
uted to the following features: 1) on a coarse-grained scale
molecular motions can be approximated by normal fluctu-
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ations with rescaled force constants, in conformity with the
central limit theorem applied to superimposed probability
density functions, even if the motions of individual atoms
depart from harmonicity; and 2) GNM yields an analytical
solution, devoid of sampling inaccuracies found in most
other types of simulations.

Although the above-listed experimental data and theoret-
ical results all relate only to the magnitude of the fluctua-
tions, the directions are also important. GNM has been
amply verified to provide information on the magnitudes of
fluctuations. All fluctuations are implicitly assumed to be
isotropic in the GNM; no directional preferences or 3-D
character of motion is accounted for. The molecule is
viewed as a collection ofN sites, one for each residue,
resulting in an ensemble ofN 2 1 independent modes,
instead of the 3N 2 6 modes that would be obtained in a
3-D description. However, in reality the fluctuations are in
general anisotropic (Kuriyan et al., 1986; Ichiye and Kar-
plus, 1987), and it is important to assess the directions of
collective motions, as these can be directly relevant to
biological function and mechanisms. It is not indeed possi-
ble to acquire an understanding of the mechanism of motion
unless the fluctuation vectors, in addition to their magni-
tudes, are elucidated. An extension of the GNM, called the
anisotropic network model (ANM), is presented herein to
address this issue. A recent comparison of the results from
MD simulations with the GNM and its extension for treating
the anisotropy of fluctuations lends support to the develop-
ment of the ANM (Doruker et al., 2000).

For self-consistency and development in context, a reca-
pitulation of the GNM is presented first. This will be fol-
lowed by two formulations of the ANM, based on different
approaches, which will be shown to be mathematically
equivalent. An application to ab-barrel protein, retinol
binding protein (RBP), will be illustrated in Results and
Discussion. A discussion of the utility and limitations of the
ANM will be presented in the Conclusion.

THEORY

Kirchhoff matrix of contacts

The GNM description of proteins bears a close resemblance to the Rouse
chain model (Rouse, 1953; Doi and Edwards, 1986) of polymers in which
the molecule is represented as a collection of beads and springs. But,
whereas in the Rouse chain only sequentially adjacent beads are connected
by springs, in the GNM sequentially distant pairs in close contact in
addition to neighbors along the sequence are coupled. The classical Rouse
matrix

G 5 3
1 21

21 2 21
21 2 21

· · · · · ·
21 2 21

21 1
4 (1)

is therefore replaced by a Kirchhoff matrix of contacts,

Gij 5 H 21 sij # rc

0 sij . rc
Gii 5 2 O

k,kÞi

N

Gik (2)

FIGURE 1 Representation of protein structure as an elastic network in
the GNM. The backbone trace is shown in dark lines in (A) and (B). The
gray rods in (b) connect the pairs ofa-carbons located within a distance
sij # rc. The figure displays the model for retinol-binding protein (RBP)
crystal structure (Zanotti et al., 1998). A network structure with the spring
connections is shown for a relatively short cutoff distance (rc 5 6 Å).
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where the non-zero off-diagonal elements refer to residue pairsi andj that
are connected via springs—their separationsij being shorter than a cutoff
valuerc for inter-residue interactions—and the diagonal elements are found
from the negative sum of the off-diagonal terms in the same row (or
column). The diagonal terms thus represent the coordination number, i.e.,
the number of individual residues found within a coordination sphere of
radiusrc. See Fig. 2 for a schematic representation of the equilibrium (Ri

0)
and instantaneous (Ri) position vectors of the residues, and the correspond-
ing separation vectorssij andsij

0.

Potentials and forces in the GNM

The Kirchhoff matrix is conveniently used in Flory (1976)

V 5 ~g/2!DRTGDR (3)

for evaluating the overall conformational potential of the structure. Here
DR is theN-dimensional vector whose elements are the fluctuation vectors
DRi of the individual residues (1# i # N). Note that the above matrix
multiplication yields a summation over all fluctuations squared (Dsij )

2 1
(sij 2 sij

0)2 5 (DRi 2 DRj)
2 for all pairssij # rc, multiplied by (g/2). This

summation represents the overall potential of the system. It can also be
viewed as the Hamiltonian whose integration yields the configurational
partition functionZN.

Let M represent the total number of springs composing the network.
Clearly, M is found from the summation of the coordination number of
individual residues divided by 2, i.e.,

M 5 1
2 O

i

Gii (4)

where 1# i # N. In the GNM, theM-dimensional vector [Ds]M31 of the
instantaneous fluctuations of the individual springs is associated withM
forces, which may be arranged in anM-dimensional array as

@f#M31 5 g@I #M3M@Ds#M31 (5)

Here [I ]M3M is the identity matrix of orderM. The subscripts denote the
size of the matrices (or vectors) enclosed in brackets. Note that the forces
and fluctuations in Eq. 5 are along the directions of the corresponding
springs, hence their representation as arrays of dimensionM. At equilib-

rium, the force on each residue must be zero, so that

gGDR 5 0 (6)

Here again, we recall thatDR is theN-dimensional array of the individual
fluctuation vectors in the positions of theN residues. Clearly, the constant
g can be eliminated from Eq. 6, to obtainGDR 5 0.

Fluctuations

The cross-correlations between residue fluctuations are found from

^DRi z DRj& 5 ~1/ZN!E~DRi z DRj!exp$2V/kBT%d$DR%

5 ~3kBT/g!@G21#ij (7)

where [G21]ij represents theij th element of the inverse ofG. The mean-
square (ms) fluctuations of individual residues can be readily found from
Eq. 7, takingi 5 j, i.e.,

^DRi z DRi& 5 ^~DRi!
2& 5 ~3kBT/g!@G21#ii (8)

^DRi z DRj& can be expressed as a sum over the contributions [DRi z DRj]k

of the individual modes, in an expansion using the eigenvalueslk and
eigenvectorsuk of G in

^DRi z DRj& 5 O
k

@DRi z DRj#k 5 ~3kBT/g!O
k

@lk
21 ukuk

T#ij

(9)

Here, the summation is performed over all (1# k # N 2 1) non-zero
eigenvalues ofG. It is clear that Eqs. 7–9 permit us to calculate the
amplitudes of fluctuations for individual residues without providing infor-
mation regarding their absolute orientations or directions. Directional pref-
erences, which are important for molecular behavior and can affect the
molecular mechanisms of biological processes, are elucidated by the new
ANM introduced next.

Anisotropic motions from force balance

Let us consider a central residuei, subject to interactions withm neighbors
located within rc. Under native state conditions, the sum of forces on
residuei along theX-, Y-, andZ-directions must each be equal to zero, i.e.,

O
j

fij cosaij
X 5 O

j

fij~Xj 2 Xi!/sij 5 0

O
j

fij cosaij
Y 5 O

j

fij~Yj 2 Yi!/sij 5 0

O
j

fij cosaij
Z 5 O

j

fij~Zj 2 Zi!/sij 5 0 (10)

where the summations are performed over all near neighbors of residuei
(Gii of them),fij is the force on sitei due to its interaction with sitej, aij

X

is the angle between the X axis and the line of action offij , which also
coincides with the direction of the spring between sitesi and j. Xi, Yi, and
Zi are the components ofRi. These three equations can be cast in a matrix
form asB z f i 5 0, whereB is the 33 Gii matrix of cosines, andf i is the
Gii -dimensional vector of the magnitudes of the forces exerted on sitei.
This force balance can be generalized to the complete set ofN sites andM
interactions as

@B#3N3M@f#M31 5 @0#3N31 (11)

FIGURE 2 Schematic representation of the fluctuationsDRi andDRj in
the position vectors of residue sitesi and j. The equilibrium position
vectors with respect to the frame XYZ are denoted asRi

0 andRj
0, and their

instantaneous values areRi and Rj. sij
0 and sij are the equilibrium and

instantaneous separation vectors between sitesi and j. The change in the
separation with respect to the equilibrium coordinates issij 2 sij

0 5 DRj 2
DRi.
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We note thatM, the total number of springs in the network, is given by
M 5 zN/2 on the average, wherez is the mean coordination number of
residues. Forrc 5 7.0 Å, z # 7.5, such that the 3N equalities given in Eq.
11 are fewer than the number of unknowns (M). This set of equations is
thus underdetermined.

Determination of the unknowns (forces) requires invoking two addi-
tional properties (Demirel et al., 1999): 1) the constitutive equation, relat-
ing the forces to deformationsDs, and 2) the kinematics or geometry of
deformation relating the fluctuations of the springs to those of the nodes.
In the linear approximation, the former is given by

@f#M31 5 @K #M3M@Ds#M31 (12)

where [K ]M3M is a diagonal matrix whoseith element represents the force
constant referring to theith residue pair. In the GNM, [K ]M3M is simply
given by [K ]M3M 5 g [I ]M3M (see Eq. 7).

The kinematics relationships between the individual deformations and
the positions of the residues are, however, given by

@B#M33N
T @DR#3N31 5 @Ds#M31 (13)

where [B]T is the transpose ofB. Substituting Eqs. 12 and 13 into Eq. 11,
we obtain

@B#3N3M@K #M3M@B#M33N
T @DR#3N31 5 @0#3N31 (14)

For the simple case [K ]M3M 5 g[I ]M3M, Eq. 14 reduces to

g@B#3N3M@B#M33N
T @DR#3N31 5 @0#3N31 (15)

which upon comparison with Eq. 6 stipulates the equivalence of the
N-dimensional Kirchhoff matrixG of GNM to the 3N-dimensional matrix
[B][B]T of the ANM.

Anisotropic fluctuations from the second
derivative of harmonic potentials

The 3N-dimensional counterpart [B][B]T of G can be alternatively derived
from the second derivative of the overall potential (Eq. 3) using conven-
tional methods of NMA (Go et al., 1983; Brooks and Karplus, 1983). To
this aim, let us first consider a single spring between residuesi and j,
subject to the harmonic potential

V 5 ~1/2!g~sij 2 sij
0!2

5 ~1/2!g~@~Xj 2 Xi!
2 1 ~Yj 2 Yi!

2

1 ~Zj 2 Zi!
2#1/2 2 sij

0!2 (16)

The first and second derivatives ofV with respect to the components ofRi

are

­V/­Xi 5 2­V/­Xj

5 2g~Xj 2 Xi!~1 2 sij
0/sij! (17)

­2V/­Xi
2 5 ­2V/­Xj

2

5 g~1 1 sij
0~Xj 2 Xi!

2/sij
3 2 sij

0/sij! (18)

Similar expressions hold for theY- andZ-components ofRi, such that in
compact notation¹iV 5 2g[sij (1 2 sij

0/sij )] and¹i
2V 5 3g. At equilibrium,

sij 5 sij
0, and Eqs. 17 and 18 reduce to

­V/­Xi 5 0 (19)

­2V/­Xi
2 5 g~Xj 2 Xi!

2/sij
2 (20)

Likewise, the second cross-derivatives become

­2V/­Xi­Yj 5 2­2V/­Xj­Yi

5 2g~Xj 2 Xi!~Yj 2 Yi!/sij
2 (21)

In the case ofGii neighbors surrounding residuei, Eqs. 20 and 21 are
replaced by

­2V/­Xi
2 5 g O

j

~Xj 2 Xi!
2/sij

2 (22)

­2V/­Xi­Yi 5 g O
j

~Xj 2 Xi!~Yj 2 Yi!/sij
2 (23)

where the summations are carried out over all neighbors (j 5 1, Gii ) of
residuei.

In the general case ofN residues connected byM linkers, the second
derivatives of the overall potential are organized in the 3N 3 3N Hessian
matrix *. * is composed ofN 3 N super-elements of size 33 3, i.e.,

* 5 3
H11 H12 · · · H1N

H21 H2N···
···

HN1 HNN

4 (24)

The ij th super-element (i Þ j) H ij of * is

H ij 5 F ­2V/­Xi­Xj ­2V/­Xi­Yj ­2V/­Xi­Zj

­2V/­Yi­Xj ­2V/­Yi­Yj ­2V/­Yi­Zj

­2V/­Zi­Xj ­2V/­Zi­Yj ­2V/­Zi­Zj

G (25)

Equation 21 gives the elements ofH ij for the ANM. The elements of the
diagonal super-elementsH ii , however, are given by Eqs. 22 (diagonal) and
23 (off-diagonal). The elements of* are conveniently calculated for the
ANM using thea-carbon position vectors of databank structures.

We note that* and g[B][B]T are equal to each other. As a simple
verification consider, for example, the first diagonal elementH11 of *. H11

should be equal to the “11” element [gBBT]11 of g[B][B]T, which can be
found from Eq. 10 as

@gBBT#11 5 g O
j

cos2a1j
X 5 g O

j

~Xj 2 X1!
2/s1j

2 (26)

This is identical to the first diagonal element of* (see Eq. 22). It can be
similarly shown that all elements ofgBBT and* are identical. Therefore,
the counterpart of the Kirchhoff matrixG of the GNM is simply (1/g)* in
the ANM. Its decomposition yields 3N 2 6 non-zero eigenvalues, and
3N 2 6 eigenvectors that reflect the respective frequencies and shapes of
the individual modes.

The inverse of* is composed ofN 3 N super-elements, each of which
scales with the 33 3 matrix of correlations between the components of
pairs of fluctuation vectors. Theij th off-diagonal super-element ofH21, for
example, refers to the cross-correlations between the three different com-
ponents ofDRi andDRj; whereas theith super-element ofH21 describes
the self-correlations between the components ofDRi.
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RESULTS AND DISCUSSION

Calculations were performed for a retinol binding protein
(pig plasma retinol binding protein, referred to here as RBP)
whose crystal structure has been determined at 1.65 Å
resolution (Zanotti et al., 1998) (PDB code: 1aqb). RBP is
a b-barrel protein of 183 residues. It is composed of eight
antiparallelb-strands and ana-helix near the C-terminus. It
belongs to the super-family of lipocalins,b-class proteins
that bind hydrophobic ligands in their interior (Murzin et al.,
1995). RBP transports lipid alcohol vitamin A (retinol).

Cutoff distance and force constant for
inter-residue interactions in the ANM

There is a single parameter in the theory, the force constant
g. This parameter is a measure of the strength of intramo-
lecular potentials that stabilize the native fold. In the GNM
studies,g has been estimated for each protein by comparing
the theoretically predicted mean-square fluctuations of
a-carbons with those indicated by the x-ray crystallographic
B-factors, usinĝ (DRi)

2& 5 3Bi/(8p2). A force constant of
1.06 0.5 kcal/(molz Å2) has been obtained in several (.50
residues) proteins, assuming an interaction cutoff distance
of rc 5 7 Å. A force constant of this strength may indeed be
viewed as a generic property of proteins modeled as elastic
networks. Note that the absolute value ofg does not affect
the distribution (or relative size) of residue fluctuations, but
only rescales (uniformly) their size.

The cutoff distance ofrc 5 7.0 Å includes all pairs
located within a first coordination shell in the neighborhood
of a central residue (Bahar and Jernigan, 1997). Clearly,
larger rc values give rise to an increase in the number of
interacting pairs, and consequently would cause a decrease
in the amplitudes of fluctuations. A fit to experimental data
would then require adopting a weaker force constant for
pairwise interactions. Fig. 3 illustrates the dependence ofg
on rc. The dashed and solid curves refer to the results from
GNM and ANM theories, respectively, applied to RBP.

Also for relatively short cutoff (rc) values, the ANM
analysis yields more than six zero eigenvalues, and there are
extremely large amplitude fluctuations along particular di-
rections for particular residues. To remove such physically
unrealistic behavior, we thought we should adopt larger
cutoff distances. This reduces the extreme differences
among the numbers of neighbors of different residues in
different directions and actually gives six zero eigenvalues,
as expected. In addition, adoption of the largerrc values has
an additional advantage of yielding spring constants (which
were automatically found from the normalization of the
results against the experimental B-factors) comparable to
those found by the GNM, as illustrated in Fig. 3. Compar-
ison of the results from the two theories indicates that the
typical force constant of 1.06 0.5 kcal/(mol z Å2) is

reproduced in the ANM by adopting a longer interaction
range, mainly 12–15 Å.

Vibrational frequencies

Further support for the adoption ofrc values of 12–15 Å in
the ANM is provided by the histograms of vibrational
frequencies. Fig. 4 illustrates the distributions of vibrational
frequencies forrc 5 10, 13, and 20 Å. In the ANM (or
GNM), vibrational frequencies are readily found fromvi 5
(gli)

1/2, whereli is the ith eigenvalue ofg21* (or G), for
1 # i # 3N 2 6 (or N 2 1). We note that the relatively low
frequency motions are overemphasized in parta of Fig. 4,
whereas partc is biased toward higher frequency modes. A
more realistic Gaussian-like distribution is observed for
rc 5 13 Å (partb), conforming in shape with the densities
of vibrational states previously calculated for globular pro-
teins (Elber and Karplus, 1986; Haliloglu et al., 1997). We
note that the histogram in partb also bears a close resem-
blance to the one obtained by NMA for TIM barrels (Halilo-
glu et al., 1997; Kobayashi et al., 1997).

X-ray crystallographic temperature factors

A first test of the validity of the ANM is to compare the
predicted ms fluctuations of residues with those observed in
experiments. Fig. 5 illustrates the results for RBP. Experi-
mental B-factors, shown by the dashed curve, refer to the
crystallographic measurements of Zanotti et al. (1998). The-
oretical (solid curve) results are obtained with the ANM by
usingrc 5 13 Å. These are found directly from the diagonal
elements of*21, after summing up the three diagonal terms
of theN 3 N super-elements corresponding to each residue.
The agreement between experiments and theory is excel-

FIGURE 3 Comparison of the force constant for inter-residue potentials
in the GNM (filled circles) and ANM (open circles) representations of
RBP, as a function of the cutoff distancerc. Adoption of a largerrc and
thereby a higher number of interacting pairs is required for the ANM in
order to reduce the interaction strength (force constant) and match the
experimentally observed fluctuation behavior.
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lent, lending support to the use of ANM for further inves-
tigation of the dynamics of RBP. Calculations performed
with rc varying in the range 12# rc # 15 Å were found to
yield almost indistinguishable results, whereasrc 5 7.0
yields excessively large (one or more) componentsDXi,
DYi, and DZi of DRi for a number of surface-exposed
residues (that have few neighbors along particular direc-
tions). For the other extreme case ofrc $ 20 Å, the distri-
butions of fluctuations among residues gradually become
more diffuse, in general.

Fig. 6 displays the RBP structure, color-coded according
to the sizes of fluctuations ofa-carbons in the folded state.
The most severely constrained regions (minima in Fig. 5)
are colored red, and the most flexible ones (peaks in Fig. 5)
are blue. The retinol molecule is shown in white. In the
same figure are shown the two principal axesX andY of the
molecule, found by singular value decomposition of the 33
N matrix of the a-carbon positions of RBP, constructed
using the crystal structure coordinates. TheZ axis, not

shown, lies along the radial direction of theb-barrel. TheX
axis, which would be expected to be along the axial direc-
tion in the case of a perfectly symmetrical structure, is
slightly tilted due to the presence of asymmetric structural
units flanking theb-barrel. This molecule-embedded prin-
cipal axis system is used below as the basis for describing
the preferred directions of equilibrium fluctuations.

Anisotropy of motion

In the particular case of isotropic motion the fluctuations in
all directions are equal and given by

^~DXi!
2& 5 ^~DYi!

2& 5 ^~DZi!
2& 5 ^~DRi!

2&/3 (27)

for each residuei. The above equality holds for the GNM.
The ANM, by contrast, yields distinctly different fluctua-
tions along each direction. The departure of the above ms
components from their expected isotropic values^(DRi)

2&/3
provides a measure of the anisotropy of fluctuations. Fig. 7
illustrates these differences for RBP. In the lower part of the
figure, rms total fluctuations of individual residues are dis-
played (left ordinate), and the upper part displays the de-
partures of each ms component^(DXi)

2&, ^(DYi)
2&, and

^(DZi)
2&, from the isotropic value [^(DXi)

2& 1 ^(DYi)
2& 1

^(DZi)
2&]/3.

Using the molecule-embedded principal axes could give
an indication of preferential fluctuations along the axial and
lateral directions of theb-barrel. However, no such prefer-
ence is discerned here. The local packing density apparently
dominates the observed behavior, in that the strongest de-
partures from isotropy occur in the most loosely packed
regions of the structure, which enjoy the highest mobilities.
The anisotropy manifested at these regions is actually a
consequence of the fact that any tendency to undergo aniso-
tropic fluctuations is not suppressed at these regions. Re-
sults obtained after normalization with respect to^(DRi)

2&
indeed showed that the normalized departures are, instead,
almost equally large at either interior or solvent-exposed
regions.

Mechanism of dominant global motion

Fig. 8 displays the distributions of fluctuations driven by the
global mode of RBP. The curves refer to the X-, Y- and
Z-components of the residue displacement vectors driven by
the second slowest mode. The first slowest mode was found
to involve a large amplitude displacement of the N-termi-
nus, accompanied by an overall rotation of theb-barrel,
which emerged as the slowest mode apparently due to the
low frequency/large amplitude movement of the tail. The
second mode, referred to here as the global mode, however,
drives cooperative structural fluctuations relevant to func-
tion, as is explained below.

FIGURE 4 Histograms of frequencies of normal modes in the ANM of
retinol binding protein (RBP) for three different interaction cutoff dis-
tances: (top) rc 5 70 Å, (middle) 13 Å, and (bottom) 20 Å.
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The largest size displacements in the global mode (Fig. 8)
are found to be performed by the loop 94–99, at the opening
of theb-barrel, displayed in green in Fig. 9. The amplitude
of these fluctuations reaches up to 8.7 Å, as calculated from
the weighted (1/li) contribution of the fluctuation vector
driven by the global mode. The motion of this loop is
accompanied by that of the loop 63–68, shown in yellow in
Fig. 9. See also Fig. 10a for the fluctuating conformations
associated with this mode. It is interesting to note that the
other parts of the molecule undergo fluctuations shorter than
1.0 Å in general, while these two loops move by 7–8 Å.

The coupled motions of these two loops suggest that
these structural elements cooperate for opening/closing the
entrance of the cavity for ligand binding. The ligand (reti-
nol) is shown in red in Fig. 9. Interestingly, these loops
contain two aromatic side chains, Phe-97 and Trp-67, which
appear to play the role of a gate at the opening of the
b-barrel. Residues Gly-92 and Gly-100, whose small size
and less restricted dihedral angles are suitable for forming
kinks and making conformational transitions, probably en-
sure the enhanced flexibility of residues 94–99. Two other
regions emerging here as the most flexible in the collective
modes are residues 48–52 and 120–127, shown in blue and
cyan, respectively, in Fig. 9. The amplitudes of fluctuations
in these regions were calculated to be around 2.0 Å.

We note that a conserved glycine (Gly-67) of cellular
RBP has been pointed out to play a functional role—
effectively allowing for hinge bending motions to occur
near the entrance of theb-barrel transporter protein—to
control retinol intake and release. This was inferred both
from biochemical studies (reduced retinol binding of the
G67S mutant) and essential dynamics analysis of cellular
RBP MD trajectories (van Aalten et al., 1997b). In the
presently analyzed plasma RBP, there is another residue
(Trp-67) at the same position, and the hinge-bending center
is apparently shifted a few residues along the sequence, yet
the two RBPs and the bovine serum binding RBP (Chau et
al., 1999) are all found to exhibit the same type of collective
motion in the slowest, dominant (or essential) modes,
mainly hinge-bending motions opening and closing the ret-
inol entry site. The implication of glycine residues being
near hinge-bending sites appears to be a common behavior.
Remarkably, the loops around residues 35, 65, and 95 were
pointed out to move together in the slowest two modes of
serum RBPs, controlling the diameter of the tunnel toward
the center of theb-barrel (Chau et al., 1999), in agreement

FIGURE 5 Comparison of experi-
mental (Zanotti et al., 1998) and the-
oretical (ANM) temperature factors
obtained for RBPa-carbons, as a
function of residue index.

FIGURE 6 Ribbon diagram of RBP color-coded for the degree of flex-
ibility of the individual residues, as indicated by their B-factors (see Fig. 5).
The most severely constrained regions are shown in red, and the most
flexible parts are in blue. The molecule-embedded principal axesX andY
are displayed. TheZ axis (not shown) lies along the radial direction and
completes a right-handed coordinate system.
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with the present results for the plasma RBP. This essential
motion was deduced from the structural variations found in
a cluster of crystal structures for the same protein and from
the essential dynamics of the Ca atoms positions visited
during full atomic MD trajectories. Notably, ANM indicates
the same mechanism of motion in the slowest modes, de-
spite the neglect of atomic details and specific energetics.

CONCLUSIONS

A simple analytical approach (ANM) for estimating the
mechanism of collective motions in proteins has been pre-
sented here. Both this ANM and the previous GNM are
based on an elastic network model. The GNM has proven
itself to accurately describe the vibrational dynamics of
proteins and their complexes in numerous studies. Whereas
the GNM is limited to the evaluation of the mean-square
displacements and cross-correlations between fluctuations,
the motion being projected to a mode space ofN dimen-
sions, the ANM approach permits us to evaluate directional

preferences and thus provides 3-D descriptions of the 3N 2
6 internal modes.

In principle, the ANM may be viewed as a simplified
form of NMA, in which inter-residue interactions are as-
sumed to be nonspecific. A harmonic potential with a ge-
neric force constantg is assigned to all pairs located within
rc, similar to the distance-dependent generic force constant
adopted by Hinsen (Hinsen et al., 1999; Hinsen and Kneller,
1999; Hinsen, 1998). The nonspecificity of inter-residue
interactions might seem unrealistic at first sight. However,
the main point is that residue specificity, which can play a
major role in selecting a fold for a given sequence, is of
relatively secondary importance in maintaining the stability
of the folded state, once the folded structure has already
been formed. At this stage, the molecule has rather solid-
like properties, and an elastic network model that incorpo-
rates the geometry and distributions of inter-residue con-
tacts as in the model displayed in Fig. 1 can yield an entirely
satisfactory description of the molecular machinery im-
printed by the particular architecture, even though the pro-

FIGURE 7 In the top part is shown
the anisotropy of fluctuations of each
residue as measured by the departures
of the three components of the ms fluc-
tuations^(DXi)

2&, ^(DYi)
2&, and^(DZi)

2&,
from the isotropic valuê(DRi)

2&/3. The
lower part of the figure displays the
total rms fluctuations of each residue
^(DRi)

2&1/2. Notably the largest depar-
tures from isotropy coincide precisely
with the regions enjoying the highest
total flexibility.

FIGURE 8 Shapes of the slowest collective modes,
using rc 5 13 Å. The curves display theX-, Y-, and
Z-components of the displacement vectors driven by
the global mode. Four regions are distinguished by their
high mobilities: the loops at the opening end of the
b-barrel, shown in green (residues 94–99) and yellow
(residues 63–68) in Fig. 9, and residues 48–52 and
120–127, shown in blue and cyan in the same figure.
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tein’s surface can exhibit more liquid-like characteristics
(Zhou et al., 1999).

It is worth recalling that a knowledge-based study has
also shown that a single generic potential typifying inter-
residue interactions in folded structures plays the major role
in determining the total free energy (or stability) of folded
structures, with the contributions from specific interactions
being far less important (Bahar and Jernigan, 1997).

Direct comparison of the fluctuation dynamics predicted
by such single-parameter harmonic potentials and results
from detailed NMA have shown that the dynamics predicted
by the simplified models closely conform to those found
from more detailed treatments. For example, Tirion showed
that the residue fluctuations predicted for G-actin with a
single-parameter model are almost indistinguishable from

those obtained with a classical NMA using an elaborate
force field (Tirion, 1996). Likewise, Hinsen pointed out that
a harmonic model taking into account the chemical bond
structure and a generic mid-range deformation energy yields
a description of protein dynamics around an equilibrium
state that is as good as one obtained from detailed molecular
mechanics force fields (Hinsen and Kneller, 1999). The
density of states obtained from the harmonic potentials in
NMA was shown to be as close to the experimental data as
was a density of states calculation from a MD simulation
with a standard atomic force field (Hinsen and Kneller,
1999). Finally, our recent comparison of full-atomic MD
results with those from the coarse-grained GNM and ANM

FIGURE 9 Ribbon diagrams of RBP displaying the regions active in the
collective slowest modes 1 and 2. (a) Side view and (b) top view of the
b-barrel structure displaying the ligand (red), and the regions of the
structure exhibiting the largest displacements in the slowest modes: resi-
dues 63–68 (yellow) and 94–99 (green), 48–52 (blue) and 120–127
(cyan). Side chains of residues 63–68 and 94–99 are displayed. Note the
presence of two highly flexible aromatic residues, Phe-96 (green) and
Trp-67 (yellow) at the entrance of the cavity accommodating the substrate.

FIGURE 10 (a) RBP conformations visited by the action of the slowest
mode (2), illustrating the large amplitude fluctuations of the loops at the
entrance of theb-barrel. The fluctuation sizes refer to those of residues 65
(left) and 95 (right) on the loops. (b) Complexation of RBP (green) with its
carrier protein transthyretin (purple), as observed in the complex crystal-
lized by Naylor and Newcomer (1999). Note that the most flexible parts in
(a) are involved in the recognition of the transthyretin, along with the
C-terminus. Arrows indicate protein-protein close contacts. Vitamin A is
shown inmagenta.
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demonstrated that the collective modes are rather insensitive
to the details of the model (Doruker et al., 2000). The
robustness of the global modes has indeed been emphasized
in previous work (Kitao and Go, 1999).

However, MD simulations include another effect, the
anharmonicity of inter-residue interactions, which is present
neither in the present linear approach nor in conventional
NMA. The absence of anharmonic effects, often claimed to
be a serious defect of linear models, was recently shown
(Hinsen et al., 1999; Hinsen and Kneller, 1999) to have a
negligible influence on the frequency spectrum of small
motions around a stable conformation. A more direct ex-
amination of the contribution of anharmonic or multimodal
fluctuations to protein dynamics has been performed by Go
and collaborators (Hayward et al., 1994, 1995). They pro-
jected their 200 ps MD trajectories for BPTI onto a space of
principal components, and compared the motion associated
with each mode to those indicated from NMA. The first
principal mode observed in MD was found to deviate from
the NMA first mode, the corresponding distribution of fluc-
tuations being bimodal, as opposed to the Gaussian distri-
butions observed in both MD and NMA for the higher
modes. Bimodal or multimodal distributions were observed
for the slowest mode(s) in other studies, as well (Amadei et
al., 1993; Garcia and Harman, 1996), including our recent
comparison of MD and GNM/ANM modes (Doruker et al.,
2000). However, individual MD trajectories often exhibit
different time evolutions, and multiple runs are usually
needed to capture a reproducible pattern (Caves et al.,
1998), especially when examining the large-amplitude, col-
lective motions. The mode shapes associated with the slow-
est modes, which exhibit bimodal distributions, may there-
fore be biased by sampling inefficiencies, which would be
overcome by the multiple runs; thus requiring averaging. It
is likely that such averaging techniques would result in an
overall broadening and smoothing of the energy minimum
near the native conformation, and an apparent harmonic
behavior; a relatively weak force constant could yield a
reasonable first approximation for the average behavior.
Not surprisingly, the net effect of neglecting anharmonic
modes in NMA appears to be an overall underestimation of
the fluctuation amplitudes (with little distortion of the res-
idue distribution of fluctuations). This effect could indeed
be removed to a large extent by properly rescaling ampli-
tudes of fluctuations (or the effective force constant). See
Fig. 3 in Hayward et al. (1994).

It is worth noting that in a crystal environment large-scale
motions are severely restricted. Evidence of this effect
comes from a comparison of the solution and crystal struc-
tures of the calcium-binding protein calmodulin, for exam-
ple. NMR experiments show that calmodulin experiences
extremely large hinge-bending at the central helix connect-
ing its two lobes (Barbato et al., 1992). This helix is,
however, found to be fixed in the x-ray structure. More
evidence is offered by the crystal structure of myoglobin,

which does not reveal the cooperative flexibility required
for oxygen binding (Mozarelli et al., 1991). Simulations of
proteins in noncrystalline environments show large-ampli-
tude nonlinear motions (Garcia, 1992), such as subunit
transitions between closed and open forms (Garcia and
Harman, 1996). Go and co-workers proposed that the larg-
est scale concerted motions represented by the anharmonic
modes are frozen when a protein is in its crystal environ-
ment (Hayward et al., 1994). The good agreement between
crystallographic temperature factors and the ms fluctuations
predicted by ANM calculations likely is partly due to the
constraints imposed on large-scale structural changes in the
tightly packed environment of crystals.

It remains to be seen whether the regions indicated by the
GNM or ANM calculations to act as hinges in the collective
modes can be used as pivots about which a global rotational
motion could be developed. The directional vectors re-
vealed by the ANM for the slowest mode can be used to this
aim. Application to RBP clearly indicates the high mobility
of the two loops near the entrance of the cavity, in agree-
ment with the essential dynamics derived from MD simu-
lations (van Aalten et al., 1997b; Chau et al., 1999). Inter-
estingly, the same regions are involved in another function,
that of recognition of the carrier protein transthyretin (also
referred to as prealbumin) in plasma (Naylor and New-
comer, 1999), suggesting that the high mobility of these
regions in the global mode is required not only for the
gating action of the vitamin A binding cavity, but also for
recognizing its carrier protein. The involvement of the most
flexible regions emerging in the slowest, most cooperative
collective modes for the recognition of substrates is a phe-
nomenon already revealed in several GNM studies of the
equilibrium dynamics of other proteins and their complexes.
The flexibility in the collective modes indeed emerges as a
prerequisite for the effective functioning of the recognition
sites.

Partial support by Bogazici University Research Funds Project 99HA503 is
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