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Abstract

In this work we investigate the notion of built-in fault-
tolerant (i.e. self-stabilizing) computations on a syn-

chronous uniform unidirectional ring network. Our main
result is a protocol-compiler that transforms any self-
stabilizing protocol P for a (synchronous or asynchronous)
bidirectional ring to a self-stabilizing protocol P 0 which
runs on the synchronous unidirectional ring. P 0 requires
O(SLE (n)+S(n)) space and has expected stabilization time
O(TLE (n) + n

2 + nT (n)), where S(n) (T (n)) is the space
(time) performance of P and SLE(n) (TLE(n)) is the space
(time) performance of a self-stabilizing leader-election pro-
tocol on a bidirectional ring. As subroutines, we also solve
the problems of leader election and round-robin token man-
agement in our setting.

1 Introduction

The design of e�cient distributed algorithms for uni-
directional networks has proven to be a di�cult task.
There are only a few known protocols, e.g., [15, 31, 2,
25, 16, 28] and most of them do not consider the issue of
fault-tolerance or that of symmetry breaking (they as-
sume a given leader). Here, we are taking the �rst step
in investigating simultaneously strong fault-tolerance
(self-stabilization) and uniformity.
The notion of self-stabilizing protocols, suggested

as early as [12], has been extensively studied in re-
cent years. Such protocols have a very strong fault-
tolerance property: starting from an arbitrary state
they automatically recover into (and further maintain)
a legal state. Most of the work in self-stabilization has
dealt with bidirectional networks, e.g. [20, 3, 13, 24, 18,
34, 9, 10, 7, 5, 27, 1, 35, 30, 8, 23]. Many of the tech-
niques and algorithms developed in the above papers
rely heavily on repeated communication of each node
with all of its neighbors using bidirectional links. Ex-
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amples include: randomwalks (allowingmove of tokens
to any neighbor), local checking where neighbors ex-
change state information, a hand-shake between neigh-
bors, and other bidirectional data-link mechanisms.

Motivation:

In this work we study self-stabilizing protocols for
uniform unidirectional rings. Many basic issues in
distributed computing arise from restricted commu-
nication (locality), faults and uniformity. In partic-
ular, rings are the basic ground for investigating the
fundamentals of symmetry in distributed computing
([6, 21, 17, 31, 15, 11, 26, 22]) to mention just a few
examples).
From a practical point of view, various 
avors of

token rings (see [33]) are popular examples of unidi-
rectional ring structures. Our network model is moti-
vated by the FDDI (Fiber Distributed Data Interface),
a high-performance 100 Mbps �ber optic token ring
(see [33] pages 166-168, [32], [4]).
The FDDI architecture, (which has available im-

plementations and which is ANSI X3T9.5 standard),
is centered around two unidirectional counter-rotating
�ber-optic rings which operate independently. A sta-
tion may be connected to both or just to one ring.
The FDDI is synchronous (clocks are required to be
stable up to 0.005 percent, assuring minimal drift and
preventing bu�er over
ows). As part of the protocol,
stations count time and may time out if control signals
do not propagate fast enough. Messages include con-
trol bits for uniform processing at a low layer of the
architecture.
Much care has been taken to assure fault tolerance

in FDDI. Nodes must have optical bypasses, so that
in case of failures the network operates. Also, the low
layers of Physical and MAC (Media Access Control)
have fault tolerance mechanisms for recovery of tokens
and other control messages. The processings at that
level is via �nite state machines. Each node has an
\elasticity bu�er" which is used to receive messages
into and send messages from. Concurrent transmis-
sions are allowed and are synchronized (we employ con-
stant size messages and their concurrent transmissions
in our model). We note that in a unidirectional archi-
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tectures with limited intermediate bu�ers at the nodes,
it makes sense to operate in a synchronous mode since
otherwise frequent message losses (due to overwriting
message bu�ers) may occur and reduce the network uti-
lization. Our results can be viewed in light of the FDDI
architectural model, as uni�ed control algorithms em-
ploying small space and short time and possessing a
built-in e�cient fault tolerance capabilities which are
superior to the standard fault tolerance mechanisms
in time, space, and uniformity (see, for comparison,
the recovery protocols described in [4], e.g. the token
recovery, re-synchronization \Beacon" procedure, and
election procedures).

Our Results:

In this work we provide a general tool for designing
self-stabilizing protocols, by way of reduction. Namely,
we give a (space and time e�cient) protocol compiler
which translates any self-stabilizing protocol for a bidi-
rectional ring into a self-stabilizing protocol running
on a uniform, synchronous, unidirectional ring. Hence
we enable the protocol-designer to study the di�cult
aspects of fault-tolerance on the conceptually simpler
mode of a bidirectional ring.
While developing the general solution, we also give

speci�c and more e�cient solutions to the tasks of to-
ken management (assuring that one token is circulating
in a round-robin fashion in the ring) and to leader elec-
tion (which assures that one and only one processor
gets marked as a leader). Both procedures are basic
tasks on ring networks; both are crucial parts in the
general compiler.
To obtain the above results, we reduce from self-

stabilizing leader-election on a bidirectional ring (with
SLE(n) and TLE(n) being its space and stabilization
time) as a black box.
Another procedure we need is an e�cient simulation

of a bidirectional round of concurrent communication
when each processor on the ring sends messages to both
its neighbors. Given a leader, we show how to achieve
this global task optimally in time and space. We em-
ploy a reduction from the \Firing Squad" problem (see,
for example, [28]).
Combining these techniques, we get as our main re-

sult: A compiler which transforms any self-stabilizing
bidirectional protocol P with space S(n) and stabiliza-
tion time and T (n) into a unidirectional protocol P 0

with O(SLE (n) + S(n)) space and expected stabiliza-
tion time of O(TLE(n) + n2 + nT (n)). (Hence, using
the results of [23], any protocol for bi-directional ring
which takes O(1) space per processor (i.e. ring of au-
tomata) and polynomial stabilization time can be run
with O(1) space (i.e., by automata) and polynomial
stabilization time on a unidirectional ring as well.)

Our solution, in fact, shows that in our target archi-
tecture, the limited access to neighbors does not reduce
the set of problems that have a self-stabilizing solution
(as one could have assumed based on the developments
and techniques which were available till now). Further-
more, performance is not impaired by much since the
penalty in space is minimal and since our model re-
quires 
(n) time units just to simulate the simple pro-
cedure of passing a single message to a direct neighbor.
(After stabilization, the overhead is O(1) in space and
O(n) in time).

2 The Model

We consider unidirectional rings of uniform processors,
(the most restrictive topology from symmetry and con-
nectivity perspectives). The processors are uniform
since they run exactly the same code and are not ac-
cessing their unique IDs. Processors communicate by
synchronous message passing, a node can send a mes-
sage to its (unique downstream) neighbor and at the
start of the next step that neighbor can read this mes-
sage from an input bu�er. The processor has an input
register, an output register and a state register. It has
a unique message bu�er. It can read the (control and
data) information at each time unit o� the message
bu�er and process it.
We remark that in all our algorithms, it will read

a constant portion o� the message to decide what to
compute (our control information is constant), and the
data portion is used as a \black-box" left by the control
to the node application algorithm.
We consider randomized solutions (otherwise, token

management and leader election{ and thus other gen-
eral tasks, are impossible as was already shown in [12]).
Thus, each processor can 
ip (uniformly random) in-
dependent coins at any computation step. We con-
centrate on small-memory solutions and if a proces-
sor needs to remember an outcome of the coin-
ip we
require additional registers for this. (Note that with
small memory processing typical in hardware process-
ing at a switch/coupler, it makes good sense that pro-
cessors do not access their unique ID's which size is
of course logarithmic in the network size). The ring is
synchronous: all processors of the network simultane-
ously agree on an identical clock-tick signals and the
computation is naturally divided into time-steps, ac-
cording to the clock-ticks. In each clock tick the pro-
cessor, based on its local state and the message received
from its neighbor, makes a transition into a new state
and may generate and send a message to its unique
neighbor (which will receive it at the next clock tick).
Maintaining tight clock synchronization is typical in
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local area networks (e.g. FDDI).
The fault model assumes that any processor's mem-

ory can be put into an arbitrary initial state, while
the processor's program code is protected (e.g. hard-
wired).
This is the model for self-stabilizing protocols

[12], which captures the issue of automatic recovery
from spurious memory initializations, transitions and
changes. (Parenthetically, we remark that strengthen-
ing the fault model to include program code failure in
distributed environments is possible but is more com-
plicated and requires redundancy and other constraints
[29]).
The global state of the system is de�ned as the cross-

product of the states of the processors and the contents
of the message bu�ers on links. A set of legal global
states is de�ned for each problem.
An algorithm is said to be self-stabilizing if start-

ing in an arbitrary global state (which models the net-
work's state after the initial memory faults and topol-
ogy changes), the algorithm guarantees that (i) eventu-
ally a legal state is reached and (ii) every further state
is legal.
For example for the problem of token management,

the goal is to have a single token circulating in the ring
in a round-robin fashion (for network control). The
initial state of the ring may contain many tokens or
zero tokens. Naturally, a global state in which there is
exactly one token (in a message bu�er) at a node, and
the state of this node correctly re
ects that the token
was last passed to that node, and will be next passed
to its (active) neighbor is a legal global state.

3 Problems Considered and a

Road-map

Our general protocol is constructed by a chain of re-
ductions among building block protocols.

First we show how to generate a \binary clock", by
having every node agree to call each clock pulse a zero-
pulse or a one-pulse. Disagreement in the initial state is
resolved via coin-
ips (randomization). This protocol
stabilizes in expected O(n2) time.

Using the binary clock we consider how to simulate a
moving ring on top of the stationary ring as follows:
On zero-pulses messages are transmitted downstream
and on one-pulses the messages are left behind and the
state of the nodes is transmitted downstream. Thus we
have a bidirectional ring in motion with respect to the
stationary unidirectional ring. We then can use a self-
stabilizing leader election protocol on the bidirectional

ring to obtain a unique moving leader. This leader is
equivalent to a rotating token.

Token Management:
The goal of a token management scheme is to obtain
a unique token circulating around the ring. We show
that:

Theorem 3.1 There exists a token management
scheme for unidirectional rings with space O(SLE(n)) and
expected stabilization time O(TLE (n) + n2).

Our next step is to reduce stationary leader elec-
tion from \moving ring leader election": By operating
on two bits on the token the nodes elect a stationary
leader. One bit is used to detect the absence of a leader,
the other to detect the presence of multiple leaders.

Leader Election:
Every processor has a \leader"-bit. If a processor has
set this bit, we say that it is chosen as a \leader".
In a self-stabilizing leader election protocol, regardless
of the initial state, after a given (stabilization) time,
exactly one processor has set its leader-bit.

Theorem 3.2 There exists a leader election protocol for
unidirectional rings, with space O(SLE(n)) and expected
stabilization time O(TLE(n) + n2).

Communication Round Simulation

We assume that a leader is given. Given a com-
munication round in a bidirectional protocol over a
ring of �xed size bu�ers (which may be de�ned asyn-
chronously), we can e�ciently simulates this round. In
particular, we are interested in the concurrent mes-
sage transmission of 2n messages (namely when each
node sends a message to its downstream and upstream
neighbors in the protocol). For the concurrent trans-
mission or when the bidirectional algorithm requires
that in each round some processor sends a message to
its upstream neighbor, our simulation is time optimal.
Our simulation is also space optimal. The problem
is reduced from �ring squad which generates a global
synchrony in message passing on the ring.

Theorem 3.3 There is a message transmission proto-
col whereby a round of message transmission in a bidirec-
tional ring protocol, can be simulated on a unidirectional
ring with an additional O(1) space and in O(n) time units
(in fact smaller than 5n). Further, the concurrent mes-
sage transmission problem (where each processor sends
to both its neighbors) is in 
(1)-space and 
(n)-time on
unidirectional ring with a leader.
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The above theorem, in fact, is a general e�cient sim-
ulation (perhaps of an independent interest). It also
implies the next result. Using the stabilized leader
and the round simulation, we show how to e�ciently
simulate a bidirectional protocol on our unidirectional
rings by employing the leader and a linear-time con-
stant space \�ring-squad protocol". (Note that the
original simulated bidirectional protocol can be syn-
chronous or asynchronous).

Bidirectional Ring Simulation:
We assume that a self-stabilizing protocol for a bidi-
rectional ring is given. Also given are the above pro-
cedures. We show how to simulate the bidirectional
algorithm on a unidirectional ring maintaining self-
stabilization. By simulation we mean that there is an
algorithm that uses the variables of the bidirectional al-
gorithm, and auxiliary control state and message vari-
ables that are part of the compiler that \runs" the
bidirectional protocol. The compiler, using the auxil-
iary control, \simulates" the steps of the bidirectional
algorithm on the unidirectional architecture.
More formally, given a bidirectional algorithm there

is a de�nition of global legal state in the bidirectional
algorithm and transition function (that by the correct-
ness of the bidirectional algorithm moves after stabi-
lization from one legal state to another). Thus, in the
simulation, there is a unidirectional phase that will em-
ulate any bidirectional transition (in the sense that it
a�ects identically the same processors and variables
that are a�ected by the transition in the bidirectional
algorithm), and after expected �nite time (small poly-
nomial in our case) the transition will be completed.
Also, there is a de�nition of a global legal state of
the simulation that will correspond to a legal state of
the bidirectional algorithm when taking the simulation
global state and projecting it over the variables that
correspond to the bidirectional algorithm. We give this
(main) result:

Theorem 3.4 There exists a protocol-compiler that
transforms any self-stabilizing protocol P for a bidirec-
tional ring into a self-stabilizing protocol P 0 which runs on
a synchronous, uniform, unidirectional ring. P 0 requires
O(SLE(n) + S(n)) space and has expected stabilization
time O(TLE(n) + n2 + nT (n)), where S(n) ( T (n) ) is
the stabilizing space (time) of P . After stabilization, P 0

takes additional O(S(n)) space, and O(nT (n)) time to
perform its (sub)-task(s).

4 The Basic Protocols

We show the proof of our main theorem in four steps.
In the �rst three steps we show a leader election proto-

col on a ring, and then show how given a self-stabilizing
leader election, a simulation of bidirectional communi-
cation can be carried out in a self-stabilizing fashion.

4.1 Binary clock

Recall that our setting is synchronous. That is, all
processors simultaneously hear clock-ticks. However,
all the clock-ticks are \identical". That is, a clock-tick
that every processor receives can be interpreted as a
\unary" message, say a 1. In our solution, we need a
larger degree of synchrony. Towards this goal, we in-
troduce a binary clock de�ned as follows: binary clock
is a clock which emits an alternating 0; 1 sequence, and
all processors simultaneously receive this sequence (i.e.
there is never a case where one processor receives a 0
while some other processor receives a 1,, etc. It is al-
ways the case the all processors simultaneously receive
a 0, then a 1, then a 0, etc.). We stress that we do
not have a binary clock, but rather, show how our syn-
chronous system (i.e. the system with a \unary" clock)
can self-stabilize to a \binary clock".

It is easy to see that given proper initialization, \bi-
nary clock" is easy to implement. Every processor
keeps a single bit variable B, which is initialized to
zero at each processor. With each clock-tick, every
processor toggles the bit. Since all the processors are
in agreement when their bit is zero and when it is a
one, this constitutes a good binary clock.

In case when there is no proper initialization, pro-
cessors might be in disagreement about the value of the
binary clock. Our objective is to make then all agree
which unary clock-tick corresponds to zero and which
to one. Below we describe the algorithm that performs
this task.

Self-stabilizing binary clock algorithm:

Our algorithm is as follows: every processor keeps a
single bit variable which indicates whether the unary
clock (the tick) should be interpreted as a 0 or as a 1
of a binary clock. At each clock-tick every processor
toggles its binary-clock variable. In addition, every
processor sends its variable value at each step to its
(unique downstream) neighbor. If a processor is in
disagreement with the binary clock of its up-stream
neighbor, it 
ips a coin, and with probability 1

2
does

not toggle its variable in the next step (i.e. sends the
same bit twice), and with probability 1

2
toggles its bit

as usual:
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Protocol on each node for \binary clock"
state:
boolean B; /* value representing the clock */
boolean U ; /* clock from up-stream neighbor */
boolean �; /* outcome of the coin-
ip */

receive U from up-stream neighbor;
set � := coin-
ip;
if (U = B or � = 0) then

B := 1�B;
send (new) B to its down-stream neighbor;

else
send (old) B to its down-stream neighbor

Lemma 4.1 The binary clock algorithm stabilizes to a
binary clock in expected O(n2) steps.

Proof:
First, note that if all processors are in agreement, they
will never get out of the agreement.
Suppose processors are not in agreement. Divide

the processors into segments, where in each segment
processors are in agreement. Consider boundaries of
this segments (their active dynamic head processor).
Clearly, there are even number of them (as the seg-
ments form a two-coloring on a cycle of length equals
number of segments, thus it must be even), and they
move (downstream) with probability half. Moreover, if
two boundaries meet, they disappear (i.e., they meet
by chewing one segment and the two segments around
it unite into one segments{ reducing the total num-
ber of boundaries by two). Thus, we can reduce the
binary-clock stabilization to the following combinato-
rial problem:
There is a ring of n processors, on which even num-

ber of \tokens" (representing borders) are placed. At
each step each token moves in the same (say, clockwise)
direction with probability half. If two tokens meet, they
disappear. We are interested in the expected number of
steps before all tokens disappear.
Standard random walk analysis, similar to Israeli

and Jalfon [20], gives O(n2) expected time before all
the tokens disappear.

4.2 Simulation of a Bidirectional
\Moving Ring"

Our next simple step is to show how any protocol for a
bidirectional ring can be executed on a \virtual bidirec-
tional ring" which moves on top of the unidirectional
ring. This natural idea is known in the folklore and
was used implicitly earlier. Nevertheless, it is useful
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Figure 1: Merry-go-round algorithm

to point this out explicitly, and claim that it is usable
even in our context of self-stabilization where the mov-
ing ring has to move forever! (as we will see).

The Merry-Go-Round (Carrousel) Algorithm:
Consider a ring of \virtual" processors which sits on

top of the unidirectional ring. The \virtual" ring of
processors is moving at half-speed: at each zero-pulse
of the binary clock it stays in its place, at one-pulse
the entire ring moves one-step downstream (in relation
to the stationary ring of processors). Stationary pro-
cessors simulate the computation of moving processors
and when the ring moves they send the description of
the �nite-state-control of the processor to their respec-
tive downstream neighbors.
The moving ring can simulate the bidirectional com-

munication: \virtual processors" on a moving ring can
send messages down-stream when the ring is stationary
(Step-0 in Figure 1), and can send messages to their
upstream neighbors by leaving the messages \behind"
when the ring moves (Step-1 in Figure 1).
In the description below, we show how an arbitrary

protocol P for a bidirectional ring can be executed on
the \moving ring".

Protocol on each node to simulate P on a
\moving ring":
state: S; S0; /* state-descriptor of P */
left-behind-msg; /* msg for upstr neigh */
boolean B; /* binary clock */
if B = 0 (stationary) then

Execute current step of P according to S;
left-behind-msg := current upstream message;

if B = 1 (moving) then
Send S to (downstream) neighbor;
receive S0 from upstream neighbor;
set current msg from downstream (in S0)

to left-behind-msg;

Lemma 4.2 Any self-stabilizing protocol P for a bidi-
rectional ring is synchronously and correctly executed on
the \moving ring" with a slowdown factor 2.
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4.3 Leader Election

Given the above simulation of a \moving ring", we
can execute a self-stabilizing leader election protocol
(such as described in [8, 23, 27]) for bidirectional rings
on the \moving ring". Hence, we obtain a \moving
leader" on the \moving ring" (or, equivalently, a unique
circulating token on the unidirectional ring). Thus, in
fact, this constitutes the proof of Theorem 3.1.

Next, we show how this can be used to get a station-
ary leader on the unidirectional ring, which completes
the proof of Theorem 3.2.

Stationary Leader Algorithm:

In the following we show how to elect, in a self-
stabilizing fashion, a leader among the nodes in the
ring, given that we have a unique, circulating token
(i.e., a moving leader).

The control-messages for our algorithm is just the
token which carries two additional bits; the L- and M -
bit. Also, every node has these two additional bits as
part of its state. The L-mechanism ensures that the
ring stabilizes to at Least one leader. The idea for
the L-mechanism is that the nearest upstream (with
respect to the token-movement) leader always guaran-
tees that a non-leader does not see the same L-bit twice
in a row on the passing token. That is, if a leader sees
the token with the same L-bit as its own L-value, it will

ip the bit on the token. If a non-leader sees the to-
ken with the same L-bit as itself (i.e., supposedly, it has
the same value as before) it will turn into a leader (and
also 
ip the L-bit on the token). The M -mechanism
ensures that the ring stabilizes to at Most one leader.
The idea of the M -mechanism is that if a leader sees
a di�erent M -bit on the token than it has itself, it
assumes that there is more than one leader and hence
turns into a non-leader; otherwise it will 
ip a coin and
store the outcome as its (and the token's) new M -bit.
This is the continued checking for non-uniqueness of
the leader.

Protocol for a node receiving a token T :
if :leader then

if LT = L then

LT := :LT ; leader := true; M :=MT

else fleader g
if LT = L then LT := :LT ;

L := LT ;
if leader then

if MT 6=M then leader := false
else MT := coin-
ip; M := MT

Lemma 4.3 Given a unique token, the (constant space)
algorithm stabilizes to a unique leader in expected
O(n logn) steps.

Proof: We �rst de�ne a predicate cover over the global
state of the ring as follows: cover(R) = (8i : Li =
Li�1 _ leaderi _ token between i� 1 and i, s.t. LT =
Li�1) ^ MT = Mj (where j is closest upstream leader
w.r.t. the token).

First note that cover(R) holds after one round of the
token: Every node receiving T will copy its L-value and
only if it is a leader it will change LT before copying
and every leader copies the value of MT .

So from now on we assume that cover(R) holds. A
node turns into a leader i� there is no leader: if there is
no leader then within one round L = LT must hold at
some node since only a leader changes the value of LT ;
if there is at least one leader then for every non-leader i
there is one upstream leader, such that when the token
passes through that leader and it has the same L-value
as i it will 
ip its value. A leader is removed only if
there is more than one leader and in every round of the
token the expected number of leaders is divided by two:
The token always carries the M -value of the leader it
saw last and thus a mismatch can only occur if there
are at least two leaders. Every time a token arrives at a
leader l and did not eliminate the last leader it passed
through, it carries an M -value which is random and
independent of l'sM -value, which implies the expected
time.

We can employ (for our simulation) concrete bidi-
rectional implementations of leader election protocols.
They are readily available and have various 
avors
(some are more practical and some are more theoretical
but economical in one measure or another). For exam-
ple, combining [27] and [8] we can get leader election

on unidirectional rings which takes time O(n log2 n)
and space O(log� n). (This is implied by the fact
that [27] assumes constant space and takes O(n logn)

time assuming a token exists, and [8] takes O(n log2 n)
and space O(log� n) and can reset the computation
by introducing a token in case no token exist; further
[27] transforms this into a bidirectional leader election
within the same time and space). A more space ef-
�cient procedure that takes constant space to elect a
leader bidirectionally can be performed using the con-
stant space computations of [23] (which will result in a
constant space protocol after compilation, thus we can
implement it as a cellular automata algorithm).
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5 The General Simulation of a

Bidirectional Ring

Next we give the general simulation. We show �rst how
to simulate a round of communication in which each
processor sends a message to its two neighbors when
a unique leader is present. We assume all processors
send a message (which may be the empty one).
The round simulation is presented in two stages: �rst

asynchronous mode, which demonstrates how in the
case of such mode of timing the message passing should
be carefully managed (to avoid overwriting of messages
in the single bu�ers at the nodes). Then, the second
stage is a synchronous simulation, which demonstrates
that with synchrony we have a larger bandwidth since
concurrent safe transmissions are assured.
Once we can simulate a round, we will proceed and

put all the subroutines together, showing how to per-
form a general self-stabilizing protocol compiler on uni-
form rings.

5.1 Asynchronous communication
round simulation

Given a leader node the leader sends a \start-the
next-round" message around, declaring the start of the
next round. With this message each node also sends
its forward message. Next, we will serve the ring for
O(n2) steps simulating the sending of backward mes-
sages to complete a single message sending round of
the bidirectional ring. The leader node sends a token
n times around. In the �rst round it marks itself as a
receiver and the node next to it gets the token marked
as sender, it takes the marker o� the token and appends
to it the message instead. Once the receiver gets the
(possibly empty) message, it reads the message and
forwards the token with the receiver marker forward
to the current sender, the current sender now forwards
the token with the sender marker to its neighbor which
becomes the new sender and a message is sent from the
sender to the receiver going around the ring. This pro-
cess continues untill the leader becomes the receiver
again, it �rst sends a \start-the next-round" message
with the token that goes around (which also takes care
of forward messages) and the round continues.

5.2 Synchronous communication round
simulation

Next we give our method which is based on constant-
space �ring-squad implementation on a synchronous

unidirectional ring and the time over-head is O(n)
which is optimal for certain global problems [19] (the
�ring squad procedure is also described in [16, 28]). We
note that similar marking techniques have been em-
ployed in [2] for the problem of marking the upstream
neighbor (but not for �ring squad or for concurrent
message transmissions).

Lemma 5.1 At the end of the protocol for round com-
munication any processor holds its both (upstream and
downstream) neighbors' messages. The protocol requires
O(1) space and 5n time units for concurrent transmission
of all round messages.

Proof: (sketch)
The idea is that we can exploit a �ring squad pro-

tocol that can be started by the leader. This protocol
ends up when all the nodes �re at the same time.
In fact the following steps are taken place

1. The leader sends a special token marked start-2
to move on the moving ring (circulating one step
forward each time). (If this is the starting round,
extra marking will be needed as will be explained).

2. One step later the leader starts a \�ring squad"
procedure.

3. When the �ring squad of step 2 �res, every pro-
cessor sends a message to its immediate neighbor
(which is received) and a message to be sent back-
wards which is put on the moving ring (i.e., to
circulate).

4. The task is now to stop the moving ring one-step
before its starting position; this assures us that
each message stops one step ahead of its origin,
namely at its destination. This is done by the
leader activating the �ring squad exactly when the
special token start-2 reaches it.

5. When the second �ring squad �res, each node
receives the circulating message (o� the moving
ring).

Note that when the �rst �ring squad started the spe-
cial token was at the neighbor one-step ahead of the
leader, at the moment of the �rst �ring messages are
put on the moving ring and the special token is at pro-
cessor number x. The second �ring squad starts when
the special token is at the leader itself (one step back-
wards). The time from activation till �ring is the same
in both �ring squad activations (it is a deterministic
procedure). Thus, the special token ends at the sec-
ond moment of �ring at processor number x�1, which
is the destination of the message of processor x. Since
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all messages are moving together (on the moving ring),
we conclude that for any message sent by any proces-
sor number y, that message ends up at processor y� 1
(i.e. at its destination).

5.3 The general compiler

We simulated a round of message transmission using
linear time. Theorem 3.4 can now be proved, putting
all the previous results together.
We assume that each processor keeps an initial-state

and a current-state. We assume that a leader when
just elected, has a bit \just-elected-leader" turned on;
when this bit is true it causes the leader to re-activate
the compiler. It does so by starting the �rst round
of simulation and by marking the special start-2 token
with a special marking of \restart", when the token
gets back to the leader �rst time, it removes this special
marking.
Note that the ability to re-activate a procedure is

necessary in a self-stabilizing setting. For example, in
our setting, only after the stabilization of the underly-
ing unique leader procedure, we are sure that the actual
procedure P is simulated uniquely (and thus correctly).
Given a code for a self-stabilizing bidirectional proto-

col P we now outline its unidirectional self-stabilizing
simulation P 0:

Processor keeps: initial-state and current-state
Simulation Protocol:

if just-elected-leader then
start the round simulation

marking \restart" on special-token.
just-elected-leader:= false.
current-state:= initial-state.

if \restart marked token" arrives then
if leader then remove \restart mark" o� token
otherwise: current-state:= initial-state.

repeat :
execute Protocol for a round of communication.
(starting from current state).
update local state and output registers

based on messages as in P.
ended� round:= true.

Note that by the above procedures we are assured
that eventually we have a leader that is elected the
last time. It will start the start-�ring-squad, that will

restart. From then on it manages message transmis-
sions that simulate rounds in P (which can be either a
synchronous protocol or an asynchronous one). Now,
since P is self-stabilizing and recovers from errors, per-
forms restarts, and continuously checks the legal state
maintenance{ we are sure that once the message trans-
mission phases are performed correctly, P 0 will stabi-
lize as well, which completes the proof of Theorem 3.4.
The performance claimed in the theorem is a result
of the performance of the components and simply the
linearity of expectation.
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