
A Mechanised Proof of Gödel’s Incompleteness Theorems

using Nominal Isabelle

Lawrence C. Paulson

Abstract An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is

presented. The work follows Świerczkowski’s detailed proof of the theorems using hered-

itarily finite (HF) set theory [32]. Avoiding the usual arithmetical encodings of syntax

eliminates the necessity to formalise elementary number theory within an embedded

logical calculus. The Isabelle formalisation uses two separate treatments of variable

binding: the nominal package [34] is shown to scale to a development of this complex-

ity, while de Bruijn indices [3] turn out to be ideal for coding syntax. Critical details of

the Isabelle proof are described, in particular gaps and errors found in the literature.

1 Introduction

This paper describes mechanised proofs of Gödel’s incompleteness theorems [8], includ-

ing the first mechanised proof of the second incompleteness theorem. Very informally,

these results can be stated as follows:

Theorem 1 (First Incompleteness Theorem) If L is a consistent theory capable

of formalising a sufficient amount of elementary mathematics, then there is a sentence

δ such that neither δ nor ¬δ is a theorem of L, and moreover, δ is true.1

Theorem 2 (Second Incompleteness Theorem) If L is as above and Con(L) is

a sentence stating that L is consistent, then Con(L) is not a theorem of L.

Both of these will be presented formally below. Let us start to examine what these

theorems actually assert. They concern a consistent formal system, say L, based on first-

order logic with some additional axioms: Gödel chose Peano arithmetic (PA) [7], but

hereditarily finite (HF) set theory is an alternative [32], used here. The first theorem

states that any such axiomatic system must be incomplete, in the sense that some

sentence can neither be proved nor disproved. The expedient of adding that sentence as

an axiom merely creates a new axiomatic system, for which there is another undecidable

sentence. The theorem can be strengthened to allow infinitely many additional axioms,

Computer Laboratory, University of Cambridge, England
E-mail: lp15@cl.cam.ac.uk

1 Meaning, δ (which has no free variables) is true in the standard model for L.

2

provided there is an effective procedure to recognise whether a given formula is an

axiom or not.

The second incompleteness theorem asserts that the consistency of L cannot be

proved in L itself. Even to state this theorem rigorously requires first defining the

concept of provability in L; the necessary series of definitions amounts to a computer

program that occupies many pages. Although the same definitions are used to prove the

first incompleteness theorem, they are at least not needed to state that theorem. The

original rationale for this project was a logician’s suggestion that the second incom-

pleteness theorem had never been proved rigorously. Having completed this project,

I sympathise with his view; most published proofs contain substantial gaps and use

cryptic notation.

Both incompleteness theorems are widely misinterpreted, both in popular culture

and even by some mathematicians. The first incompleteness theorem is often taken

to imply that mathematics cannot be formalised, when evidently it has been, this

paper being one of numerous instances. It has also been used to assert that human

intelligence can perceive truths (in particular, the truth of δ, the undecidable sentence)

that no computer will ever understand. Franzén [5] surveys and demolishes many of

these fallacies. The second incompleteness theorem destroyed Hilbert’s hope that the

consistency of quite strong theories might be proved even in Peano arithmetic. It also

tells us, for example, that the axioms of set theory do not imply the existence of an

inaccessible cardinal, as that would yield a model for set theory itself.

The first incompleteness theorem has been proved with machine assistance at least

three times before. The first time (surprisingly early: 1986) was by Shankar [29, 30],

using Nqthm. Then in 2004, O’Connor [22] (using Coq) and Harrison (using HOL

Light)2 each proved versions of the theorem. The present proof, conducted using Isa-

belle/HOL, is novel in adopting nominal syntax [34] for formalising variable binding

in the syntax of L, while using de Bruijn notation [3] for coding those formulas. De-

spite using two different treatments of variable binding, the necessary representation

theorem for formulas is not difficult to prove. It is not clear that other treatments

of higher-order abstract syntax could make this claim. These proofs can be seen as

an extended demonstration of the power of nominal syntax, while at the same time

vindicating de Bruijn indexing in some situations.

The machine proofs are fairly concise at under 12,400 lines for both theorems.3 The

paper presents highlights of the proof, commenting on the advantages and disadvan-

tages of the nominal framework and HF set theory. An overview of the project from

a logician’s perspective has appeared elsewhere [27]. The proof reported here closely

follows a detailed exposition by Świerczkowski [32]. His careful and detailed proofs were

indispensable, despite some errors and omissions, which are reported below. For the

first time, we have complete, formal proofs of both theorems. They take the form of

structured Isar proof scripts [26] that can be examined interactively.

The remainder of the paper presents background material (Sect. 2) before outlining

the development itself: the proof calculus (Sect. 3), the coding of the calculus within

itself (Sect. 4) and finally the first theorem (Sect. 5). Technical material relating to the

second theorem are developed (Sect. 6) then the theorem is presented and discussed

(Sect. 7). Finally, the paper concludes (Sect. 8).

2 Proof files at http://code.google.com/p/hol-light/, directory Arithmetic
3 This is approximately as long as Isabelle’s theory of Kurzweil-Henstock gauge integration.

3

2 Background

Isabelle/HOL [20] is an interactive theorem prover for higher-order logic. This formal-

ism can be seen as extending a polymorphic typed first-order logic with a functional

language in which recursive datatypes and functions can be defined. Extensive docu-

mentation is available.4

For interpreting the theorem statements presented below, it is important to note

that a theorem that concludes ψ from the premises φ1, . . . , φn may be expressed in a

variety of equivalent forms. The following denote precisely the same theorem:

[[φ1; ...; φn]] =⇒ ψ

φ1 =⇒ · · · =⇒ φn =⇒ ψ

assumes φ1 and ... and φn shows ψ

If the conclusion of a theorem involves the keyword obtains, then there is an implicit

existential quantification. The following two theorems are logically equivalent.

φ =⇒ ∃x. ψ1 ∧ . . . ∧ ψn

assumes φ obtains x where ψ1 ... ψn

Other background material for this paper includes an outline of Gödel’s proof, an

introduction to hereditarily finite set theory and some examples of Nominal Isabelle.

2.1 Gödel’s Proof

Much of Gödel’s proof may be known to many readers, but it will be useful to list the

milestones here, for reference.

1. A first-order deductive calculus is formalised, including the syntax of terms and

formulas, substitution, and semantics (evaluation). The calculus includes axioms

to define Peano arithmetic or some alternative, such as the HF set theory used

here. There are inference rules for propositional and quantifier reasoning. We write

H ⊢ A to mean that A can be proved from H (a set of formulas) in the calculus.

2. Meta-theory is developed to relate truth and provability. The need for tedious proof

constructions in the deductive calculus is minimised through a meta-theorem stat-

ing that a class of true formulas are theorems of that calculus. One way to do this

is through the notion of Σ formulas, which are built up from atomic formulas using

∨, ∧, ∃ and bounded universal quantification. Then the key result is

If α is a true Σ sentence, then ⊢ α. (1)

3. A system of coding is set up within the formalised first-order theory. The code of

a formula α is written pαq and is a term of the calculus itself.

4. In order to formalise the calculus within itself, predicates to recognise codes are

defined, including terms and formulas, and syntactic operations on them. Next,

predicates are defined to recognise individual axioms and inference rules, then a

sequence of such logical steps. We obtain a predicate Pf , where ⊢ Pf pαq expresses

that the formula α has a proof. The key result is

⊢ α ⇐⇒ ⊢ Pf pαq. (2)

4 http://isabelle.in.tum.de/documentation.html

4

All of these developments must be completed before the second incompleteness

theorem can even be stated.

5. Gödel’s first incompleteness theorem is obtained by constructing a formula δ that

is provably equivalent (within the calculus) to the formal statement that δ is not

provable. It follows (provided the calculus is consistent) that neither δ nor its

negation can be proved, although δ is true in the semantics.

6. Gödel’s second incompleteness theorem requires the following crucial lemma:

If α is a Σ sentence, then ⊢ α→ Pf pαq.

This is an internalisation of theorem (1) above. It is proved by induction over the

construction of α as a Σ formula. This requires generalising the statement above to

allow the formula α to contain free variables. The technical details are complicated,

and lengthy deductions in the calculus seem to be essential.

The proof sketched above incorporates numerous improvements over Gödel’s original

version. Gödel proved only the left-to-right direction of the equivalence (2) and required

a stronger assumption than consistency, namely ω-consistency.

2.2 Hereditarily Finite Set Theory

Gödel first proved his incompleteness theorems in a first-order theory of Peano arith-

metic [7]. O’Connor and Harrison do the same, while Shankar and I have both chosen a

formalisation of the hereditarily finite (HF) sets. Although each theory can be formally

interpreted in the other, meaning that they are of equivalent strength, the HF theory

is more convenient, as it can express all set-theoretic constructions that do not require

infinite sets. An HF set is a finite set of HF sets, and this recursive definition can be

captured by the following three axioms:

z = 0 ↔ ∀x [x 6∈ z] (HF1)

z = x⊳ y ↔ ∀u [u ∈ z ↔ u ∈ x ∨ u = y] (HF2)

φ(0) ∧ ∀xy [φ(x) ∧ φ(y) → φ(x⊳ y)] → ∀x [φ(x)] (HF3)

The first axiom states that 0 denotes the empty set. The second axiom defines the

binary operation symbol ⊳ (pronounced “eats”) to denote insertion into a set, so that

x⊳ y = x ∪ {y}. The third axiom is an induction scheme, and states that every set is

created by a finite number of applications of 0 and ⊳.

The machine proofs of the incompleteness theorems rest on an Isabelle theory of

the hereditarily finite sets. To illustrate the syntax, here are the three basic axioms as

formalised in Isabelle. The type of such sets is called hf, and is constructed such that

the axioms above can be proved.

lemma hempty iff: "z=0 ←→ (∀ x. ¬ x ∈ z)"

lemma hinsert iff: "z = x ⊳ y ←→ (∀ u. u ∈ z ←→ u ∈ x | u = y)"

lemma hf induct ax: " [[P 0; ∀ x. P x −→ (∀ y. P y −→ P (x ⊳ y))]] =⇒ P x"

The same three axioms, formalised within Isabelle as a deep embedding, form the

basis for the incompleteness proofs. Type hf and its associated operators serve as the

standard model for the embedded HF set theory.

HF set theory is equivalent to Zermelo-Frankel (ZF) set theory with the axiom of

infinity negated. Many of the Isabelle definitions and theorems were taken, with minor

5

modifications, from Isabelle/ZF [24]. Familiar concepts such as union, intersection, set

difference, power set, replacement, ordered pairing and foundation can be derived in

terms of the axioms shown above [32]. A few of these derivations need to be repeated—

with infinitely greater effort—in the internal calculus.

Ordinals in HF are simply natural numbers, where n = {0, 1, . . . , n − 1}. Their

typical properties (for example, that they are linearly ordered) have the same proofs as

in ZF set theory. Świerczkowski’s proofs [32] are sometimes more elegant, and addition

on ordinals is obtained through a general notion of addition of sets [15]. Finally, there

are about 400 lines of material concerned with relations, functions and finite sequences.

This is needed to reason about the coding of syntax for the incompleteness theorem.

2.3 Isabelle’s Nominal Package

For the incompleteness theorems, we are concerned with formalising the syntax of first-

order logic. Variable binding is a particular issue: it is well known that technicalities

relating to bound variables and substitution have caused errors in published proofs and

complicate formal treatments. O’Connor [23] reports severe difficulties in his proofs.

The nominal approach [6, 28] to formalising variable binding (and other sophis-

ticated uses of variable names) is based on a theory of permutations over names. A

primitive concept is support : supp(x) has a rather technical definition involving per-

mutations, but is equivalent in typical situations to the set of free names in x. We

also write a ♯ x for a 6∈ supp(x), saying “a is fresh for x”. Isabelle’s nominal package

[33, 34] supports these concepts through commands such as nominal datatype to

introduce types, nominal primrec to declare primitive recursive functions and nom-

inal induct to perform structural induction. Syntactic constructions involving vari-

able binding are identified up to α-conversion, using a quotient construction. These

mechanisms generally succeed at emulating informal standard conventions for variable

names. In particular, we can usually assume that the bound variables we encounter

never clash with other variables.

The best way to illustrate these ideas is by examples. The following datatype defines

the syntax of terms in the HF theory:

nominal datatype tm = Zero | Var name | Eats tm tm

The type name (of variable names) has been created using the nominal framework. The

members of this type constitute a countable set of uninterpreted atoms. The function

nat of name is a bijection between this type and the type of natural numbers.

Here is the syntax of HF formulas, which are t ∈ u, t = u, φ ∨ ψ, ¬φ or ∃x [φ]:

nominal datatype fm =

Mem tm tm (infixr "IN" 150)

| Eq tm tm (infixr "EQ" 150)
| Disj fm fm (infixr "OR" 130)

| Neg fm

| Ex x::name f::fm binds x in f

In most respects, this nominal datatype behaves exactly like a standard algebraic

datatype. However, the bound variable name designated by x above is not significant:

no function can be defined to return the name of a variable bound using Ex.

Substitution of a term x for a variable i is defined as follows:

6

nominal primrec subst :: "name ⇒ tm ⇒ tm ⇒ tm"

where

"subst i x Zero = Zero"

| "subst i x (Var k) = (if i=k then x else Var k)"

| "subst i x (Eats t u) = Eats (subst i x t) (subst i x u)"

Unfortunately, most recursive definitions involving nominal primrec must be fol-

lowed by a series of proof steps, verifying that the function uses names legitimately.

Occasionally, these proofs (omitted here) require subtle reasoning involving nominal

primitives.

Substituting the term x for the variable i in the formula A is written A(i::=x).

nominal primrec subst fm :: "fm ⇒ name ⇒ tm ⇒ fm"

where

Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"

| Eq: "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"

| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"

| Neg: "(Neg A)(i::=x) = Neg (A(i::=x))"

| Ex: "atom j ♯ (i, x) =⇒ (Ex j A)(i::=x) = Ex j (A(i::=x))"

Note that the first seven cases (considering the two substitution functions collectively)

are straightforward structural recursion. In the final case, we see a precondition, atom j

♯ (i, x), to ensure that the substitution is legitimate within the formula Ex j A . There

is no way to define the contrary case, where the bound variable clashes. We would have

to eliminate any such clash, renaming the bound variable by applying an appropriate

permutation to the formula. Thanks to the nominal framework, such explicit renaming

steps are rare.

This style of formalisation is more elegant than traditional textbook definitions

that do include the variable-clashing case. It is much more elegant than including

renaming of the bound variable as part of the definition itself. Such “definitions” are

really implementations, and greatly complicate proofs.

The commutativity of substitution (two distinct variables, each fresh for the oppo-

site term) is easily proved.

lemma subst fm commute2 [simp]:

" [[atom j ♯ t; atom i ♯ u; i 6= j]] =⇒ (A(i::=t))(j::=u) = (A(j::=u))(i::=t)"

by (nominal induct A avoiding: i j t u rule: fm.strong induct) auto

The proof is by nominal induction on the formula A : the proof method for structural

induction over a nominal datatype. Compared with ordinary induction, nominal induct

takes account of the freshness of bound variable names. The phrase avoiding: i j

t u is the formal equivalent of the convention that when we consider the case of the

existential formula Ex k A, the bound variable k can be assumed to be fresh with respect

to the terms mentioned. This convention is formalised by four additional assumptions

atom k ♯ i, atom k ♯ j, etc.; they ensure that substitution will be well-defined over this

existential quantifier, making the proof easy.

This and many similar facts have two-step proofs, nominal induct followed by auto.

In contrast, O’Connor needed to combine three substitution lemmas (including the

one above) in a giant mutual induction involving 1,900 lines of Coq. He blames the

renaming step in substitution and suggests that a form of simultaneous substitution

might have avoided these difficulties [23§4.3]. An alternative, using traditional bound

variable names, is to treat substitution not as a function but as a relation that holds

only when no renaming is necessary. Bound variable renaming is then an independent

operation. I briefly tried this idea, which allowed reasonably straightforward proofs of

substitution properties, but ultimately nominal looked like a better option.

7

3 Theorems, Σ Formulas, Provability

The first milestone in the proof of the incompleteness theorems is the development of a

first-order logical calculus equipped with enough meta-theory to guarantee that some

true formulas are theorems. The previous section has already presented the definitions

of the terms and formulas of this calculus. The terms are for HF set theory, and the

formulas are defined via a minimal set of connectives from which others can be defined.

3.1 A Sequent Calculus for HF Set Theory

Compared with a textbook presentation, a machine development must include an ef-

fective proof system, one that can actually be used to prove non-trivial theorems.

3.1.1 Semantics

The semantics of terms and formulas are given by the obvious recursive function def-

initions, which yield sets and Booleans, respectively. These functions accept an envi-

ronment mapping variables to values. The null environment maps all variables to 0,

and is written e0. It involves the types finfun (for finite functions) [17] and hf (for HF

sets).

definition e0 :: "(name, hf) finfun" — the null environment
where "e0 ≡ finfun const 0"

nominal primrec eval tm :: "(name, hf) finfun ⇒ tm ⇒ hf"

where

"eval tm e Zero = 0"

| "eval tm e (Var k) = finfun apply e k"

| "eval tm e (Eats t u) = eval tm e t ⊳ eval tm e u"

There are two things to note in the semantics of formulas. First, the special syntax

[[t]]e abbreviates eval tm e t. Second, in the semantics of the quantifier Ex, note how

the formula atom k ♯ e asserts that the bound variable, k, is not currently given a value

by the environment, e.

nominal primrec eval fm :: "(name, hf) finfun ⇒ fm ⇒ bool"

where

"eval fm e (t IN u) ←→ [[t]]e ∈ [[u]]e"
| "eval fm e (t EQ u) ←→ [[t]]e = [[u]]e"
| "eval fm e (A OR B) ←→ eval fm e A ∨ eval fm e B"
| "eval fm e (Neg A) ←→ (~ eval fm e A)"

| "atom k ♯ e =⇒ eval fm e (Ex k A) ←→ (∃ x. eval fm (finfun update e k x) A)"

This yields the Tarski truth definition for the standard model of HF set theory. In

particular, eval fm e0 A denotes the truth of the sentence A.

3.1.2 Axioms

Świerczkowski [32] specifies a standard Hilbert-style calculus, with two rules of inference

and several axioms or axiom schemes. The latter include sentential axioms, defining

the behaviour of disjunction and negation:

8

inductive set boolean axioms :: "fm set"

where

Ident: "A IMP A ∈ boolean axioms"

| DisjI1: "A IMP (A OR B) ∈ boolean axioms"

| DisjCont: "(A OR A) IMP A ∈ boolean axioms"
| DisjAssoc: "(A OR (B OR C)) IMP ((A OR B) OR C) ∈ boolean axioms"

| DisjConj: "(C OR A) IMP (((Neg C) OR B) IMP (A OR B)) ∈ boolean axioms"

Here Świerczkowski makes a tiny error, expressing the last axiom scheme as

(φ ∨ ψ) ∧ (¬φ ∨ µ) → ψ ∨ µ.

Because ∧ is defined in terms of ∨, while this axiom helps to define ∨, this formulation

is unlikely to work. The Isabelle version eliminates ∧ in favour of nested implication.

There are four primitive equality axioms, shown below in mathematical notation.

They express reflexivity as well as substitutivity for equality, membership and the eats

operator. They are not schemes but single formulas containing specific free variables.

Creating an instance of an axiom for specific terms (which might involve the same

variables) requires many renaming steps to insert fresh variables, before substituting

for them one term at a time.

x1 = x1

(x1 = x2) ∧ (x3 = x4) → [(x1 = x3) → (x2 = x4)]

(x1 = x2) ∧ (x3 = x4) → [(x1 ∈ x3) → (x2 ∈ x4)]

(x1 = x2) ∧ (x3 = x4) → [x1 ⊳ x3 = x2 ⊳ x4]

There is also a specialisation axiom scheme, of the form φ(t/x) → ∃xφ:

inductive set special axioms :: "fm set" where

I: "A(i::=x) IMP (Ex i A) ∈ special axioms"

There are the axioms HF1 and HF2 for the set theory, while HF3 (induction) is

formalised as an axiom scheme:

inductive set induction axioms :: "fm set" where

ind:
"atom (j::name) ♯ (i,A)

=⇒ A(i::=Zero)

IMP ((All i (All j (A IMP (A(i::= Var j) IMP A(i::= Eats(Var i)(Var j))))))

IMP (All i A))

∈ induction axioms"

Axiom schemes are conveniently introduced using inductive set, simply to express

set comprehensions, even though there is no actual induction.

3.1.3 Inference System

The axiom schemes shown above, along with inference rules for modus ponens and

existential instantiation,5 are combined to form the following inductive definition of

theorems:

5 From A→ B infer ∃xA→ B, for x not free in B.

9

inductive hfthm :: "fm set ⇒ fm ⇒ bool" (infixl "⊢" 55)

where

Hyp: "A ∈ H =⇒ H ⊢ A"

| Extra: "H ⊢ extra axiom"

| Bool: "A ∈ boolean axioms =⇒ H ⊢ A"
| Eq: "A ∈ equality axioms =⇒ H ⊢ A"

| Spec: "A ∈ special axioms =⇒ H ⊢ A"

| HF: "A ∈ HF axioms =⇒ H ⊢ A"

| Ind: "A ∈ induction axioms =⇒ H ⊢ A"

| MP: "H ⊢ A IMP B =⇒ H’ ⊢ A =⇒ H ∪ H’ ⊢ B"
| Exists: "H ⊢ A IMP B =⇒ atom i♯B =⇒ ∀ C∈H. atom i♯C =⇒ H ⊢ (Ex i A) IMP B"

A minor deviation from Świerczkowski is extra axiom, which is abstractly specified

to be an arbitrary true formula. This means that the proofs will be conducted with

respect to an arbitrary finite extension of the HF theory. The first major deviation from

Świerczkowski is the introduction of rule Hyp, with a set of assumptions. It would be

virtually impossible to prove anything in his Hilbert-style proof system, and it was clear

from the outset that lengthy proofs within the calculus might be necessary. Introducing

Hyp generalises the notion of provability, allowing the development of a sort of sequent

calculus, in which long but tolerably natural proofs can be constructed.

It is worth mentioning that Świerczkowski’s definitions and proofs fit together very

tightly, deviations often being a cause for later regret. One example, concerning an

inference rule for substitution, is mentioned at the end of Sect. 4.4. Another example

is that some tricks that simplify the proof of the first incompleteness theorem turn out

to complicate the proof of the second.

The soundness of the calculus above is trivial to prove by induction. The deduction

theorem is also straightforward, the only non-trivial case being the one for the Exists

inference rule. The induction formula is stated as follows:

lemma deduction Diff: assumes "H ⊢ B" shows "H - {C} ⊢ C IMP B"

This directly yields the standard formulation of the deduction theorem:

theorem deduction: assumes "insert A H ⊢ B" shows "H ⊢ A IMP B"

And this is a sequent rule for implication.

Setting up a usable sequent calculus requires much work. The corresponding Isabelle

theory file, which starts with the definitions of terms and formulas and ends with a

sequent formulation of the HF induction rule, is nearly 1,600 lines long. Deriving natural

sequent calculus rules from the sentential and equality axioms requires lengthy chains

of steps. Even in the final derived sequent calculus, equalities can only be applied one

step at a time.

For another example of difficulty, consider the following definition:

definition Fls where "Fls ≡ Zero IN Zero"

Proving that Fls has the properties of falsehood is surprisingly tricky. The relevant

axiom, HF1, is formulated using universal quantifiers, which are defined as negated ex-

istentials; deriving the expected properties of universal quantification seems to require

something like Fls itself.

The derived sequent calculus has specialised rules to operate on conjunctions, dis-

junctions, etc., in the hypothesis part of a sequent. They are crude, but good enough.

Used with Isabelle’s automatic tactics, they ease somewhat the task of constructing

formal HF proofs. Users can extend Isabelle with proof procedures coded in ML, and

better automation for the calculus might thereby be achieved. At the time, such a

side-project did not seem to be worth the effort.

10

3.2 A Formal Theory of Functions

Recursion is not available in HF set theory, and recursive functions must be constructed

explicitly. Each recursive computation is expressed in terms of the existence of a se-

quence (si)i≤k such that si is related to sm and sn for m, n < i. Moreover, a sequence

is formally a relation rather than a function. In the metalanguage, we write app s k

for sk, governed by the theorem

lemma app equality: "hfunction s =⇒ 〈x,y〉 ∈ s =⇒ app s x = y"

The following two functions express the recursive definition of sequences, as needed

for the Gödel development:

"Builds B C s l ≡ B(app s l) ∨ (∃ m∈l. ∃ n∈l. C(app s l) (app s m) (app s n))"

"BuildSeq B C s k y ≡ LstSeq s k y ∧ (∀ l∈succ k. Builds B C s l)"

The statement Builds B C s l constrains element l of sequence s, namely app s l. We

have either B(app s l), or C (app s l) (app s m) (app s n)) where m∈l and n∈l. For

the natural numbers, set membership coincides with the less-than relation. Therefore,

we are referring to a sequence s and element sl where either the base case B(sl) holds,

or else the recursive step C(sl, sm, sn) for m, n < l. The statement BuildSeq B C s k y

states that the sequence s has been constructed in this way right up to the value app

s k, or in other words, sk, where y = sk.

To formalise the basis for this approach requires a series of definitions in the HF

calculus, introducing the subset relation, ordinals (which are simply natural numbers),

ordered pairs, relations with a given domain, etc. Foundation (the well-foundedness

of the membership relation) must also be proved, which in turn requires additional

definitions. A few highlights are shown below.

The subset relation is defined, with infix syntax SUBS, with the help of All2, the

bounded universal quantifier.

nominal primrec Subset :: "tm ⇒ tm ⇒ fm" (infixr "SUBS" 150)

where "atom z ♯ (t, u) =⇒ t SUBS u = All2 z t ((Var z) IN u)"

In standard notation, this says t ⊆ u = (∀z ∈ t)[z ∈ u]. The definition uses nomi-

nal primrec, even though it is not recursive, because it requires z to be fresh with

respect to the terms t and u, among other nominal-related technicalities.

Extensionality is taken as an axiom in traditional set theories, but in HF it can be

proved by induction. However, many straightforward properties of the subset relation

must first be derived.

lemma Extensionality: "H ⊢ x EQ y IFF x SUBS y AND y SUBS x"

Ordinals will be familiar to set theorists. The definition is the usual one, and shown

below mainly as an example of a slightly more complicated HF formula. Two variables,

y and z, must be fresh for each other and x.

nominal primrec OrdP :: "tm ⇒ fm"
where " [[atom y ♯ (x, z); atom z ♯ x]] =⇒
OrdP x = All2 y x ((Var y) SUBS x AND

All2 z (Var y) ((Var z) SUBS (Var y)))"

The formal definition of a function (as a single-valued set of pairs) is subject to

several complications. As we shall see in Sect. 3.3 below, all definitions must use Σ

formulas, which requires certain non-standard formulations. In particular, x 6= y is not

a Σ formula in general, but it can be expressed as x < y∨y < x if x and y are ordinals.

The following primitive is used extensively when coding the syntax of HF within itself.

11

nominal primrec LstSeqP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where

"LstSeqP s k y = OrdP k AND HDomain Incl s (SUCC k) AND

HFun Sigma s AND HPair k y IN s"

Informally, LstSeqP s k y means that s is a non-empty sequence whose domain includes

the set {0, . . . , k} (which is the ordinal k + 1: the sequence is at least that long).

Moreover, y = sk; that would be written 〈k,y〉 ∈ s in the metalanguage, but becomes

HPair k y IN s in the HF calculus, as seen above.

Świerczkowski [32] prefers slightly different definitions, specifying the domain to

be exactly k, where k > 0 and y = sk−1. The definition shown above simplifies the

proof of the first incompleteness theorem, but complicates the proof of the second, in

particular because they allow a sequence to be longer than necessary.

This part of the development consists mainly of proofs in the HF calculus, and is

nearly 1,300 lines long.

3.3 Σ Formulas and Provability

Gödel had the foresight to recognise the value of minimising the need to write explicit

formal proofs, without relying on the assumption that certain proofs could “obviously”

be formalised. Instead, he developed enough meta-theory to prove that these proofs

existed. One approach for this [2, 32] relies on the concept of Σ formulas. These are

inductively defined to include all formulas of the form t ∈ u, t = u, α ∨ β, α ∧ β,

∃xα and (∀x ∈ t)α. (These are closely related to the Σ1 formulas of the arithmetical

hierarchy.) It follows by induction on this construction that every true Σ sentence has

a formal proof. Intuitively, the reasoning is that the atomic cases can be calculated,

the Boolean cases can be done recursively, and the bounded universal quantifier can

be replaced by a finite conjunction. The existential case holds because the semantics

of ∃xα yields a specific witnessing value, again allowing an appeal to the induction

hypothesis.

The Σ formula approach is a good fit to the sort of formulas used in the coding

of syntax. In these formulas, universal quantifiers have simple upper bounds, typically

a variable giving the length of a sequence, while existential variables are unbounded.

Gödel’s original proofs required all quantifiers to be bounded. Existential quantifiers

were bounded by complicated expressions requiring deep and difficult arithmetic jus-

tifications. Boolos presents similar material in a more modern form [2, p. 41]. Relying

exclusively on Σ formulas avoids these complications, but instead some straightforward

properties have to be proven formally in the HF calculus.

A complication is that proving the second incompleteness theorem requires another

induction over Σ formulas. To minimise that proof effort, it helps to use as restrictive

a definition as possible. The strict Σ formulas consist of all formulas of the form x ∈ y,

α ∨ β, α ∧ β, ∃xα and (∀x ∈ y)α. Here, x and y are not general terms, but variables.

We further stipulate y not free in α in (∀x ∈ y)α; then in the main induction leading

to the second incompleteness theorem, Case 2 of Lemma 9.7 [32] can be omitted.

inductive ss fm :: "fm ⇒ bool" where

MemI: "ss fm (Var i IN Var j)"

| DisjI: "ss fm A =⇒ ss fm B =⇒ ss fm (A OR B)"

| ConjI: "ss fm A =⇒ ss fm B =⇒ ss fm (A AND B)"

| ExI: "ss fm A =⇒ ss fm (Ex i A)"

| All2I: "ss fm A =⇒ atom j ♯ (i,A) =⇒ ss fm (All2 i (Var j) A)"

12

Now, a Σ formula is by definition one that is provably equivalent (in HF) to some

strict Σ formula containing no additional free variables. In another minor oversight,

Świerczkowski omits the free variable condition, but it is necessary.

definition Sigma fm :: "fm ⇒ bool"

where "Sigma fm A ←→ (∃ B. ss fm B ∧ supp B ⊆ supp A ∧ {} ⊢ A IFF B)"

As always, Świerczkowski’s exposition is valuable, but far from complete. Showing

that Σ formulas include t ∈ u, t = u and (∀x ∈ t)α for all terms t and u (and not only

for variables) is far from obvious. These necessary facts are not even stated clearly. A

crucial insight is to focus on proving that t ∈ u and t ⊆ u are Σ formulas. Consideration

of the cases t ∈ 0, t ∈ u1 ⊳ u2, 0 ⊆ u, t1 ⊳ t2 ⊆ u shows that each reduces to false,

true or a combination of simpler uses of ∈ or ⊆. This observation suggests proving that

t ∈ u and t ⊆ u are Σ formulas by mutual induction on the combined sizes of t and u.

lemma Subset Mem sf lemma:
"size t + size u < n =⇒ Sigma fm (t SUBS u) ∧ Sigma fm (t IN u)"

The identical argument turns out to be needed for the second incompleteness theorem

itself, formalised this time within the HF calculus. This coincidence should not be that

surprising, as it is known that the second theorem could in principle be shown by

formalising the first theorem within its own calculus.

Now that we have taken care of t ⊆ u, proving that t = u is a Σ formula is trivial

by extensionality, and the one remaining objective is (∀x ∈ t)α. But with equality

available, we can reduce this case to the strict Σ formula (∀x ∈ y)α with the help of

a lemma:

lemma All2 term Iff: "atom i ♯ t =⇒ atom j ♯ (i,t,A) =⇒
{} ⊢ (All2 i t A) IFF Ex j (Var j EQ t AND All2 i (Var j) A)"

This is simply (∀x ∈ t)A↔ ∃y [y = t∧(∀x ∈ y)A] expressed in the HF calculus, where

it is easily proved. We could prove that (∀x ∈ t)α is a Σ formula by induction on t,

but this approach leads to complications.

Virtually all predicates defined for the Gödel development are carefully designed

to take the form of Σ formulas. Here are two examples; most such lemmas hold imme-

diately by the construction of the given formula.

lemma Subset sf: "Sigma fm (t SUBS u)"

lemma LstSeqP sf: "Sigma fm (LstSeqP t u v)"

The next milestone asserts that if α is a groundΣ formula (and therefore a sentence)

and α evaluates to true, then α is a theorem. The proof is by induction on the size

of the formula, and then by case analysis on its outer form. The case t ∈ u falls to a

mutual induction with t ⊆ u resembling the one shown above. The case (∀x ∈ t)α is

effectively expanded to a conjunction.

theorem Sigma fm imp thm: " [[Sigma fm α; ground fm α; eval fm e0 α]] =⇒ {} ⊢ α"

Every true Σ sentence is a theorem. This crucial meta-theoretic result is used eight

times in the development. Without it, gigantic explicit HF proofs would be necessary.

4 Coding Provability in HF Within Itself

The key insight leading to the proof of Gödel’s theorem is that a sufficiently strong

logical calculus can represent its syntax within itself, and in particular, the property of

a given formula being provable. This task divides into three parts: coding the syntax,

defining predicates to describe the coding and finally, defining predicates to describe

the inference system.

13

4.1 Coding Terms, Formulas, Abstraction and Substitution

In advocating the use of HF over PA, Świerczkowski begins by emphasising the ease of

coding syntax:

It is at hand to code the variables x1, x2, . . . simply by the ordinals 1, 2,

The constant 0 can be coded as 0, and the remaining 6 symbols as n-tuples of

0s, say ∈ as 〈0, 0〉, etc. And here ends the arbitrariness of coding, which is so

unpleasant when languages are arithmetized. [32, p. 5]

The adequacy of these definitions is easy to prove in HF itself. The full list is as

follows: p0q = 0, pxiq = i + 1, p∈q = 〈0, 0〉, p⊳q = 〈0, 0, 0〉, p=q = 〈0, 0, 0, 0〉,

p∨q = 〈0, 0, 0, 0, 0〉, p¬q = 〈0, 0, 0, 0, 0, 0〉, p∃q = 〈0, 0, 0, 0, 0, 0, 0〉. We have a few

differences from Świerczkowski: pxiq = i + 1 because our variables start at zero, and

for the kth de Bruijn index we use 〈〈0, 0, 0, 0, 0, 0, 0, 0〉, k〉. Obviously ∈ means nothing

by itself, so p∈q = 〈0, 0〉 really means pt ∈ uq = 〈〈0, 0〉, ptq, puq〉, etc. Note that nests

of n-tuples terminated by ordinals can be decomposed uniquely.

De Bruijn equivalents of terms and formulas are then declared. To repeat: de Bruijn

syntax is used for coding, for which it is ideal, allowing the simplest possible defini-

tions of abstraction and substitution. Although it destroys readability, encodings are

never readable anyway. Using nominal here is out of the question. The entire theory

of nominal Isabelle would need to be formalised within the embedded calculus. Quite

apart from the work involved, the necessary equivalence classes would be infinite sets,

which are not available in HF.

The strongest argument for HF is that the mathematical basis of its coding scheme

is simply ordered pairs defined in the standard set-theoretic way. An elementary formal

argument justifies this. In contrast, the usual arithmetic encoding relies on either the

Chinese remainder theorem or unique prime factorisation. This fragment of number

theory would have to be formalised within the embedded calculus in order to reason

about encoded formulas, which is necessary to prove the second incompleteness theo-

rem. It must be emphasised that proving anything in the calculus (where such luxuries

as a simplifier, recursion and even function symbols are not available) is much more

difficult than proving the same result in a proof assistant.

4.1.1 Introducing de Bruijn Terms and Formulas

De Bruijn terms resemble the type tm declared in Sect. 2.3, but include the DBInd

constructor for bound variable indices as well as the DBVar constructor for free variables.

nominal datatype dbtm = DBZero | DBVar name | DBInd nat | DBEats dbtm dbtm

De Bruijn formula contructors involve no explicit variable binding, creating an apparent

similarity between DBNeg and DBEx, although the latter creates an implicit variable

binding scope.

nominal datatype dbfm =
DBMem dbtm dbtm

| DBEq dbtm dbtm

| DBDisj dbfm dbfm

| DBNeg dbfm

| DBEx dbfm

14

How this works should become clear as we consider how terms and formulas are trans-

lated into their de Bruijn equivalents. To begin with, we need a lookup function taking

a list of names (representing variables bound in the current context, innermost first)

and a name to be looked up. The integer n, initially 0, is the index to substitute if the

name is next in the list.

fun lookup :: "name list ⇒ nat ⇒ name ⇒ dbtm"

where

"lookup [] n x = DBVar x"

| "lookup (y # ys) n x = (if x = y then DBInd n else (lookup ys (Suc n) x))"

To translate a term into de Bruijn format, the key step is to resolve name references

using lookup. Names bound in the local environment are replaced by the corresponding

indices, while other names are left as they were.

nominal primrec trans tm :: "name list ⇒ tm ⇒ dbtm"

where

"trans tm e Zero = DBZero"

| "trans tm e (Var k) = lookup e 0 k"

| "trans tm e (Eats t u) = DBEats (trans tm e t) (trans tm e u)"

Noteworthy is the final case of trans fm, which requires the bound variable k in

the quantified formula Ex k A to be fresh with respect to e, our list of previously-

encountered bound variables. In the recursive call, k is added to the list, which therefore

consists of distinct names.

nominal primrec trans fm :: "name list ⇒ fm ⇒ dbfm"

where

"trans fm e (Mem t u) = DBMem (trans tm e t) (trans tm e u)"

| "trans fm e (Eq t u) = DBEq (trans tm e t) (trans tm e u)"
| "trans fm e (Disj A B) = DBDisj (trans fm e A) (trans fm e B)"

| "trans fm e (Neg A) = DBNeg (trans fm e A)"

| "atom k ♯ e =⇒ trans fm e (Ex k A) = DBEx (trans fm (k#e) A)"

Syntactic operations for de Bruijn notation tend to be straightforward, as there are

no bound variable names that might clash. Comparisons with previous formalisations

of the λ-calculus may be illuminating, but the usual lifting operation [18, 21] is unnec-

essary. That is because the HF calculus does not allow reductions anywhere, as in the

λ-calculus. Substitutions only happen at the top level and never within deeper bound

variable contexts. For us, substitution is the usual operation of replacing a variable by

a term, which contains no bound variables. (Substitution can alternatively be defined

to replace a de Bruijn index by a term.)

The special de Bruijn operation is abstraction. This replaces every occurrence of a

given free variable in a term or formula by a de Bruijn index, in preparation for binding.

For example, abstracting the formula DBMem (DBVar x) (DBVar y) over the variable y

yields DBMem (DBVar x) (DBInd 0). This is actually ill-formed, but attaching a quantifier

yields the de Bruijn formula

DBEx (DBMem (DBVar x) (DBInd 0)),

representing ∃y [x ∈ y]. Abstracting this over the free variable x and attaching another

quantifier yields

DBEx (DBEx (DBMem (DBInd 1) (DBInd 0))),

which is the formula ∃xy [x ∈ y]. An index of 1 has been substituted in order to skip

over the inner binder.

15

4.1.2 Well-Formed de Bruijn Terms and Formulas

With the de Bruijn approach, an index of 0 designates the innermost enclosing binder,

while an index of 1 designates the next-innermost binder, etc. (Here, the only binder

is DBEx.) If every index has a matching binder (the index i must be nested within at

least i + 1 binders), then the term or formula is well-formed. Recall the examples of

abstraction above, where a binder must be attached afterwards.

In particular, as our terms do not contain any binding constructs, a well-formed

term may contain no de Bruijn indices. In contrast to more traditional notions of logical

syntax, if you take a well-formed formula and view one of its subformulas or subterms in

isolation, it will not necessarily be well-formed. The situation is analogous to extracting

a fragment of a program, removing it from necessary enclosing declarations.

The property of being a well-formed de Bruijn term or formula is defined induc-

tively. The syntactic predicates defined below recognise such well-formed formulas. A

well-formed de Bruijn term has no indices (DBInd) at all:

inductive wf dbtm :: "dbtm ⇒ bool"

where

Zero: "wf dbtm DBZero"

| Var: "wf dbtm (DBVar name)"
| Eats: "wf dbtm t1 =⇒ wf dbtm t2 =⇒ wf dbtm (DBEats t1 t2)"

A trivial induction shows that for every well-founded de Bruijn term there is an

equivalent standard term. The only cases to be considered (as per the definition above)

are Zero, Var and Eats.

lemma wf dbtm imp is tm:

assumes "wf dbtm x"
shows "∃ t::tm. x = trans tm [] t"

A well-formed de Bruijn formula is constructed from other well-formed terms and

formulas, and indices can only be introduced by applying abstraction (abst dbfm) over

a given name to another well-formed formula, in the existential case. Specifically, the Ex

clause below states that, starting with a well-formed formula A, abstracting over some

name and applying DBEx to the result yields another well-formed formula.

inductive wf dbfm :: "dbfm ⇒ bool"

where

Mem: "wf dbtm t1 =⇒ wf dbtm t2 =⇒ wf dbfm (DBMem t1 t2)"

| Eq: "wf dbtm t1 =⇒ wf dbtm t2 =⇒ wf dbfm (DBEq t1 t2)"

| Disj: "wf dbfm A1 =⇒ wf dbfm A2 =⇒ wf dbfm (DBDisj A1 A2)"

| Neg: "wf dbfm A =⇒ wf dbfm (DBNeg A)"

| Ex: "wf dbfm A =⇒ wf dbfm (DBEx (abst dbfm name 0 A))"

This definition formalises the allowed forms of construction, rather than stating explic-

itly that every index must have a matching binder.

A refinement must be mentioned. Strong nominal induction (already seen above,

Sect. 2.3) formalises the assumption that bound variables revealed by induction can be

assumed not to clash with other variables. This is set up automatically for nominal

datatypes, but here requires a manual step. The command nominal inductive sets

up strong induction for name in the Ex case of the inductive definition above; we must

prove that name is not significant according to the nominal theory, and then get to

assume that name will not clash. This step (details omitted) seems to be necessary in

order to complete some inductive proofs about wf dbfm.

16

4.1.3 Quoting Terms and Formulas

It is essential to remember that Gödel encodings are terms (having type tm), not sets

or numbers. Textbook presentations identify terms with their denotations for the sake

of clarity, but this can be confusing. The undecidable formula contains an encoding

of itself in the form of a term. First, we must define codes for de Bruijn terms and

formulas.

function quot dbtm :: "dbtm ⇒ tm"

where

"quot dbtm DBZero = Zero"

| "quot dbtm (DBVar name) = ORD OF (Suc (nat of name name))"

| "quot dbtm (DBInd k) = HPair (HTuple 6) (ORD OF k)"
| "quot dbtm (DBEats t u) = HPair (HTuple 1) (HPair (quot dbtm t) (quot dbtm u))"

The codes of real terms and formulas (for which we set up the overloaded ⌈· · ·⌉

syntax) are obtained by first translating them to their de Bruijn equivalents and then

encoding. We finally obtain facts such as the following:

lemma quot Zero: "⌈Zero⌉ = Zero"

lemma quot Var: "⌈Var x⌉ = SUCC (ORD OF (nat of name x))"

lemma quot Eats: "⌈Eats x y⌉ = HPair (HTuple 1) (HPair ⌈x⌉ ⌈y⌉)"
lemma quot Eq: "⌈x EQ y⌉ = HPair (HTuple 2) (HPair (⌈x⌉) (⌈y⌉))"
lemma quot Disj: "⌈A OR B⌉ = HPair (HTuple 3) (HPair (⌈A⌉) (⌈B⌉))"
lemma quot Ex: "⌈Ex i A⌉ = HPair (HTuple 5) (quot dbfm (trans fm [i] A))"

Note that HPair constructs an HF term denoting a pair, while HTuple n constructs an

(n+2)-tuple of zeros. Proofs often refer to the denotations of terms rather than to the

terms themselves, so the functions q Eats, q Mem, q Eq, q Neg, q Disj, q Ex are defined to

express these codes. Here are some examples:

"q Var i ≡ succ (ord of (nat of name i))"
"q Eats x y ≡ 〈htuple 1, x, y〉"
"q Disj x y ≡ 〈htuple 3, x, y〉"
"q Ex x ≡ 〈htuple 5, x〉"

Note that 〈x,y〉 denotes the pair of x and y as sets, in other words, of type hf.

4.2 Predicates for the Coding of Syntax

The next and most arduous step is to define logical predicates corresponding to each

of the syntactic concepts (terms, formulas, abstraction, substitution) mentioned above.

Textbooks and articles describe each predicate at varying levels of detail. Gödel [8] gives

full definitions, as does Świerczkowski. Boolos [2] gives many details of how coding is

set up, and gives the predicates for terms and formulas, but not for any operations

upon them. Hodel [13], like many textbook authors, relies heavily on “algorithms”

written in English. The definitions indeed amount to pages of computer code. Authors

typically conclude with a “theorem” asserting the correctness of this code. For example,

Świerczkowski [32, Sect. 3–4] presents 34 highly technical definitions, justified by seven

lines of proof.

Proving the correctness of this lengthy series of definitions requires a substantial

effort, and the proofs (being syntactically oriented) are tiresome. It is helpful to intro-

duce shadow versions of all predicates in Isabelle/HOL’s native logic, as well as in HF.

Having two versions of each predicate simplifies the task of relating the HF version of

17

the predicate to the syntactic concept that it is intended to represent; the first step is to

prove that the HF formula is equivalent to the syntactically similar definition written

in Isabelle’s higher-order logic, which then is proved to satisfy deeper properties. The

shadow predicates also give an easy way to refer to the truth of the corresponding HF

predicate; because each is defined to be a Σ formula, that gives a quick way (using

theorem Sigma fm imp thm above) to show that some ground instance of the predicate

can be proved formally in HF. Also, one way to arrive at the correct definition of an

HF predicate is to define its shadow equivalent first, since proving that it implies the

required properties is much easier in Isabelle/HOL’s native logic than in HF.

Świerczkowski [32] defines a full set of syntactic predicates, leaving nothing as an

exercise. Unfortunately, the introduction of de Bruijn syntax necessitates rewriting

many of these definitions. Some predicates (such as the variable occurrence test) are

replaced by others (abstraction over a variable occurrence). The final list includes

predicates to recognise the following items:

– the codes of well-formed terms (and constant terms, without variables)

– correct instances of abstraction (of a term or formula) over a variable

– correct instances of substitution (in a term or formula) for a variable

– the codes of well-formed formulas

As explained below, abstraction over a formula needs to be defined before the notion

of a formula itself. We also need the property of variable non-occurrence, “x does not

occur in A”, which can be expressed directly as “substituting 0 for x in A yields A”.

This little trick eliminates the need for a full definition.

Each operation is first defined in its sequence form (expressing that sequence s is

built up in an appropriate way and that sk is a specific value); existential quantification

over s and k then yields the final predicate. Formalising the sequence of steps is a

primitive way to express recursion. Moreover, it tends to yield Σ formulas.

The simplest example is the predicate for constants. The shadow predicate can

be defined with the help of BuildSeq, mentioned in Sect. 3.2 above. Note that shadow

predicates are written in ordinary higher-order logic, and refer to syntactic codes using

set values. We see below that in the sequence buildup, each element is either 0 (which

is the code of the constant zero) or else has the form q Eats v w, which is the code

for v ⊳ w.

definition SeqConst :: "hf ⇒ hf ⇒ hf ⇒ bool"
where "SeqConst s k t ≡ BuildSeq (λu. u=0) (λu v w. u = q Eats v w) s k t"

Thus a constant expression is built up from 0 using the ⊳ operator. The idea is that

every element of the sequence is either 0 or has the form px⊳ yq, where x and y occur

earlier in the sequence. Most of the other syntactic predicates fit exactly the same

pattern, but with different base cases and constructors. A function must be coded as

a relation, and a typical base case might be 〈0, 0〉, other sequence elements having

the form 〈px ⊳ yq, px′ ⊳ y′q〉, where 〈x, x′〉 and 〈y, y′〉 occur earlier in the sequence.

Substitution is codified in this manner. A function taking two arguments is coded as a

sequence of triples, etc.

The discussion above relates to shadow predicates, which define formulas of Isa-

belle/HOL relating HF sets. The real predicates, which denote formulas of the HF

calculus, are based on exactly the same ideas except that the various set constructions

must be expressed using the HF term language. Note that the real predicates typically

have names ending with P.

18

The following formula again specifies the notion of a constant term. It is simply the

result of expressing the definition of SeqConst using HF syntax, expanding the definition

of BuildSeq. The syntactic sugar for a reference to a sequence element sm within some

formula φ must now be expanded to its true form: φ(sm) becomes ∃y [〈m, y〉 ∈ s∧φ(y)].

nominal primrec SeqConstP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where " [[atom l ♯ (s,k,sl,m,n,sm,sn); atom sl ♯ (s,m,n,sm,sn);

atom m ♯ (s,n,sm,sn); atom n ♯ (s,sm,sn);

atom sm ♯ (s,sn); atom sn ♯ (s)]] =⇒
SeqConstP s k t =

LstSeqP s k t AND

All2 l (SUCC k) (Ex sl (HPair (Var l) (Var sl) IN s AND (Var sl EQ Zero OR

Ex m (Ex n (Ex sm (Ex sn (Var m IN Var l AND Var n IN Var l AND

HPair (Var m) (Var sm) IN s AND HPair (Var n) (Var sn) IN s AND
Var sl EQ Q Eats (Var sm) (Var sn))))))))"

We have five bound variables, namely l, sl, m, sm, n, sn, which must be constrained

to be distinct from one another using the freshness conditions shown. This nominal

boilerplate may seem excessive. However, to define this predicate without nominal

syntax, bound variable names might have to be calculated, perhaps by taking the

maximum of the bound variables in s, k and t and continuing from there. Nominal

constrains the variables more abstractly and flexibly.

As mentioned above, sometimes we deal with sequences of pairs or triples, with

correspondingly more complicated formulas. Where a predicate describes a function

such as substitution, the sequence being built up consists of ordered pairs of arguments

and results, and there are typically nine bound variables. To perform abstraction over

a formula requires keeping track of the depth of quantifier nesting during recursion.

This is a two-argument function, so the sequence being built up consists of ordered

triples and there are 12 bound variables. Although the nominal system copes with

these complicated expressions, the processing time can be measured in tens of seconds.

Now that we have defined the buildup of a sequence of constants, a constant itself

is trivial. The existence of any properly formed sequence s of length k culminating

with some term t guarantees that t is a constant term. Here are both the shadow and

HF calculus versions of the predicate.

definition Const :: "hf ⇒ bool"

where "Const t ≡ (∃ s k. SeqConst s k t)"

nominal primrec ConstP :: "tm ⇒ fm"

where " [[atom k ♯ (s,t); atom s ♯ t]] =⇒
ConstP t = Ex s (Ex k (SeqConstP (Var s) (Var k) t))"

Why don’t we define the HF predicate BuildSeqP analogously to BuildSeq, which

expresses the definition of SeqConst so succinctly? Then we might expect to avoid the

mess above, defining a predicate such as SeqConstP in a single line. This was actually

attempted, but the nominal system is not really suitable for formalising higher-order

definitions. Complicated auxiliary definitions and proofs are required. It is easier sim-

ply to write out the definitions, especially as their very repetitiveness allows proof

development by cut and paste.

One tiny consolidation has been done. We need to define the predicates Term and

TermP analogously to Const and ConstP above but allowing variables. The question of

whether variables are allowed in a term or not can be governed by a Boolean. The proof

development therefore introduces the predicate SeqCTermP, taking a Boolean argument,

from which SeqTermP and SeqConstP are trivially obtained.

19

abbreviation SeqTermP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where "SeqTermP ≡ SeqCTermP True"

abbreviation SeqConstP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where "SeqConstP ≡ SeqCTermP False"

In this way, we can define the very similar predicates TermP and ConstP with a minimum

of repeated material.

Many other predicates must be defined. Abstraction and substitution must be de-

fined separately for terms, atomic formulas and formulas. Here are the shadow defini-

tions of abstraction and substitution for terms. They are similar enough (both involve

replacing a variable) that a single function, SeqStTerm, can express both. BuildSeq2 is

similar to BuildSeq above, but constructs a sequence of pairs.

definition SeqStTerm :: "hf ⇒ hf ⇒ hf ⇒ hf ⇒ hf ⇒ hf ⇒ bool"

where "SeqStTerm v u x x’ s k ≡
is Var v ∧ BuildSeq2 (λy y’. (is Ind y ∨ Ord y) ∧ y’ = (if y=v then u else y))

(λu u’ v v’ w w’. u = q Eats v w ∧ u’ = q Eats v’ w’) s k x x’"

definition AbstTerm :: "hf ⇒ hf ⇒ hf ⇒ hf ⇒ bool"

where "AbstTerm v i x x’ ≡ Ord i ∧ (∃ s k. SeqStTerm v (q Ind i) x x’ s k)"

definition SubstTerm :: "hf ⇒ hf ⇒ hf ⇒ hf ⇒ bool"

where "SubstTerm v u x x’ ≡ Term u ∧ (∃ s k. SeqStTerm v u x x’ s k)"

Abstraction over formulas (AbstForm/AbstFormP) must be defined before formulas

themselves, in order to formalise existential quantification. There is no circularity here:

the abstraction operation can be defined independently of the notion of a well-formed

formula, and is not restricted to them. The definition involves sequences of triples and

is too complicated to present here.

With abstraction over formulas defined, we can finally define the concept of a

formula itself. An Atomic formula involves two terms, combined using the relations EQ

or IN . Then MakeForm combines one or two existing formulas to build more complex

ones. It constrains y to be the code of a formula constructed from existing formulas u

and v by the disjunction u∨ v, the negation ¬u or the existential formula ∃(u’), where

u’ has been obtained by abstracting u over some variable, v via the predicate AbstForm.

definition MakeForm :: "hf ⇒ hf ⇒ hf ⇒ bool"

where "MakeForm y u w ≡
y = q Disj u w ∨ y = q Neg u ∨
(∃ v u’. AbstForm v 0 u u’ ∧ y = q Ex u’)"

nominal primrec MakeFormP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where " [[atom v ♯ (y,u,w,au); atom au ♯ (y,u,w)]] =⇒
MakeFormP y u w =

y EQ Q Disj u w OR y EQ Q Neg u OR

Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q Ex (Var au)))"

Now, the sequence buildup of a formula can be defined with Atomic covering the base

case and MakeForm expressing one level of the construction. Using similar methods to

those illustrated above for constant terms, we arrive at the shadow predicate Form and

the corresponding HF predicate FormP.

4.3 Verifying the Coding Predicates

Most textbook presentations take the correctness of such definitions as obvious, and

indeed many properties are not difficult to prove. To show that the predicate Term

20

accepts all coded terms, a necessary lemma is to show the analogous property for

well-formed de Bruijn terms:

lemma wf Term quot dbtm:

assumes "wf dbtm u" shows "Term [[quot dbtm u]]e"

The proof is by induction on the construction of u (in other words, on the inductive

definition of wf dbtm u), and is routine by the definitions of the predicates Term and

SeqTerm. This implies the desired result for terms, by the (overloaded) definition of ⌈t⌉.

corollary Term quot tm: fixes t::tm shows "Term [[⌈t⌉]]e"

Note that both results concern the shadow predicate Term, not the HF predicate TermP .

The argument of Term is a set, denoted using the evaluation operator, [[...]]e. Direct

proofs about HF predicates are long and tiresome. Fortunately, many such questions

can be reduced to the corresponding questions involving shadow predicates, because

codes are ground terms; then the theorem Sigma fm imp thm guarantees the existence of

a proof, sparing us the need to construct one.

The converse correctness property must also be proved, namely that everything

accepted by Term actually is the code of some term. The proof requires a lemma about

the predicate SeqTerm. The reasoning is simply that constants and variables are well-

formed, and that combining two well-formed terms preserves this property. Such proofs

are streamlined through the use of BuildSeq induct, a derived rule for reasoning about

sequence construction by induction on the length of the sequence.

lemma Term imp wf dbtm:
assumes "Term x" obtains t::dbtm where "wf dbtm t" "x = [[quot dbtm t]]e"

By the meaning of obtains, we see that if Term x then there exists some well-formed

de Bruijn term t whose code evaluates to x. Since for every well-formed de Bruijn

term there exists an equivalent standard term of type tm, we can conclude that Term x

implies that x is the code of some term.

corollary Term imp is tm:
assumes "Term x" obtains t::tm where "x = [[⌈t⌉]] e"

Similar theorems—with similar proofs—are necessary for each of the syntactic pred-

icates. For example, the following result expresses that SubstForm correctly models the

result A(i::=t) of substituting t for i in the formula A.

lemma SubstForm quot unique:

"SubstForm (q Var i) [[⌈t⌉]]e [[⌈A⌉]]e x’ ←→ x’ = [[⌈A(i::=t)⌉]]e"

4.4 Predicates for the Coding of Deduction

On the whole, the formalisation of deduction is quite different from the formalisation

of syntactic operations, which mostly involve simulated recursion over terms or for-

mulas. A proof step in the HF calculus is an axiom, an axiom scheme or an inference

rule. Axioms and propositional inference rules are straightforward to recognise using

the existing syntactic primitives. Simply x EQ ⌈refl ax⌉ tests whether x denotes the

reflexivity axiom. More complicated are inference rules involving quantification, where

several syntactic conditions including abstraction and substitution need to be checked

in sequence. For example, consider specialisation axioms of the form φ(t/x) → ∃xφ.

21

nominal primrec Special axP :: "tm ⇒ fm" where

" [[atom v ♯ (p,sx,y,ax,x); atom x ♯ (p,sx,y,ax);

atom ax ♯ (p,sx,y); atom y ♯ (p,sx); atom sx ♯ p]] =⇒
Special axP p = Ex v (Ex x (Ex ax (Ex y (Ex sx

(FormP (Var x) AND VarP (Var v) AND TermP (Var y) AND
AbstFormP (Var v) Zero (Var x) (Var ax) AND

SubstFormP (Var v) (Var y) (Var x) (Var sx) AND

p EQ Q Imp (Var sx) (Q Ex (Var ax)))))))"

This definition states that a specialisation axiom is created from a formula x, a variable

v and a term y, combined by appropriate abstraction and substitution operations.

Correctness means proving that this predicate exactly characterises the elements of the

set special axioms, which was used to define the HF calculus. The most complicated

such scheme is the induction axiom HF3 (defined in Sect. 2.2), with its three quantifiers.

The treatment of the induction axiom requires nearly 180 lines, of which 120 are devoted

to proving correctness with respect to the HF calculus.

A proof of a theorem y is a sequence s of axioms and inference rules, ending with y :

definition Prf :: "hf ⇒ hf ⇒ hf ⇒ bool"

where "Prf s k y ≡ BuildSeq (λx. x ∈ Axiom)

(λu v w. ModPon v w u ∨ Exists v u ∨ Subst v u) s k

Finally, y codes a theorem provided it has a proof:

definition Pf :: "hf ⇒ bool"

where "Pf y ≡ (∃ s k. Prf s k y)"

Having proved the correctness of the predicates formalising the axioms and rules,

the correctness of Pf follows easily. (Świerczkowski’s seven lines of proof start here.)

One direction is proved by induction on the proof of {} ⊢ α.

lemma proved imp Pf: assumes "H ⊢ α" "H={}" shows "Pf [[⌈α⌉]]e"

Here, we use the shadow predicates and work directly in Isabelle/HOL. The corre-

sponding HF predicate, PfP, is (crucially) a Σ formula. Moreover, codes are ground

terms. Therefore PfP ⌈α⌉ is a Σ sentence and is formally provable. This is the main

use of the theorem Sigma fm imp thm.

corollary proved imp proved PfP: "{} ⊢ α =⇒ {} ⊢ PfP ⌈α⌉"

The reverse implication, despite its usefulness, is not always proved. Again using the

rule BuildSeq induct, it holds by induction on the length of the coded proof of ⌈α⌉. The

groundwork for this result involves proving, for each coded axiom and inference rule,

that there exists a corresponding proof step in the HF calculus. We continue to work

at the level of shadow predicates.

lemma Prf imp proved: assumes "Prf s k x" shows "∃ A. x = [[⌈A⌉]]e ∧ {} ⊢ A"

The corresponding result for Pf is immediate:

corollary Pf quot imp is proved: "Pf [[⌈α⌉]]e =⇒ {} ⊢ α"

Now {} ⊢ PfP ⌈α⌉ implies Pf [[⌈α⌉]]e simply by the soundness of the calculus. It is

now easy to show that the predicate PfP corresponds exactly to deduction in the HF

calculus. Świerczkowski calls this result the proof formalisation condition.

theorem proved iff proved PfP: "{} ⊢ α ←→ {} ⊢ PfP ⌈α⌉"

22

Remark : PfP includes an additional primitive inference, substitution:

H ⊢ α

H ⊢ α(t/x)

This inference is derivable in the HF calculus, but the second incompleteness theorem

requires performing substitution inferences, and reconstructing the derivation of sub-

stitution within PfP would be infeasible. Including substitution in the definition of PfP

makes such steps immediate without complicating other proofs. Świerczkowski avoids

this complication: his HF calculus [32] includes a substitution rule alongside a simpler

specialisation axiom.

4.5 Pseudo-Functions

The HF calculus contains no function symbols other than ⊳. All other “functions”

must be declared as predicates, which are mere abbreviations of formulas. This abuse

of notation is understood in a standard way. The formula φ(f(x)) can be taken as an

abbreviation for ∃y [F (x, y) ∧ φ(y)] where F is the relation representing the function

f and provided that F can be proved to be single valued: F (x, y), F (x, y′) ⊢ y′ = y.

Then f is called a pseudo-function and something like f(x) is called a pseudo-term.

Pseudo-terms do not actually exist, which will cause problems later.

Gödel formalised all syntactic operations as primitive recursive functions, while

Boolos [2] used ∆ formulas. With both approaches, much effort is necessary to admit

a function definition in the first place. But then, it is known to be a function. Here we

see a drawback of Świerczkowski’s decision to base the formalisation on the notion of

Σ formulas: they do not cover the property of being single valued. A predicate that

corresponds to a function must be proved to be single valued within the HF calculus

itself. Gödel’s proof uses substitution as a function. The proof that substitution (on

terms and formulas) is single valued requires nearly 500 lines in Isabelle/HOL, not

counting considerable preparatory material (such as the partial ordering properties of

<) mentioned in Sect. 3.2 above.

Fortunately, these proofs are conceptually simple and highly repetitious, and again

much of the proof development can be done by cut and paste. The first step is to prove

an unfolding lemma about the sequence buildup: if the predicate holds, then either

the base case holds, or else there exist values earlier in the sequence for which one of

the recursive cases can be applied. The single valued theorem is proved by complete

induction on the length of the sequence, with a fully quantified induction formula

(analogous to ∀xyy′ [F (x, y) → F (x, y′) → y′ = y]) so that the induction hypothesis

says that all shorter sequences are single valued for all possible arguments. All that is

left is to apply the unfolding lemma to both instances of the relation F , and then to

consider all combinations of cases. Most will be trivially contradictory, and in those few

cases where the result has the same outer form, an appeal to the induction hypothesis

for the operands will complete the proof.

Overall, the Gödel development proves single valued theorems for 12 predicates.

Five of the theorems are proved by induction as sketched above. Here is an example:

lemma SeqSubstFormP unique:

"{SeqSubstFormP v a x y s u, SeqSubstFormP v a x y’ s’ u’} ⊢ y’ EQ y"

The remaining results are straightforward corollaries of those inductions:

23

theorem SubstFormP unique:

"{SubstFormP v tm x y, SubstFormP v tm x y’} ⊢ y’ EQ y"

It is worth repeating that these proofs are formally conducted within the HF calculus,

essentially by single-step inferences. Meta-theory is no help here.

5 Gödel’s First Incompleteness Theorem

Discussions involving encodings frequently need a way to refer to syntactic objects. We

often see the convention where if x is a natural number, then a boldface x stands for

the corresponding numeral. Then in expressions like x = y → Pf px = yq, we see that

the boldface convention actually abbreviates the function x 7→ x, which needs to be

formalisable in the HF calculus.

Thus, we need to define a function Q such that Q(x) = pxq, in other words, Q(x)

yields some term t whose denotation is x. This is trivial if x ranges over the natural

numbers, by primitive recursion. It is problematical when x ranges over sets, because

it requires a canonical ordering over the universe of sets. We don’t need to solve this

problem just yet: the first incompleteness theorem needs only a function H such that

H(pAq) = ppAqq for all A. Possible arguments of H are not arbitrary sets, but only

nested tuples of ordinals; these have a canonical form, so a functional relationship is

easy to define [32]. A certain amount of effort establishes the required property:6

lemma prove HRP: fixes A::fm shows "{} ⊢ HRP ⌈A⌉ ⌈⌈A⌉⌉"

Note that the function H has been formalised as the relation HRP ; it is defined using

sequence operators, LstSeqP, etc., as we have seen already.

In order to prove Gödel’s diagonal lemma, we need a function Ki to substitute the

code of a formula into itself, replacing the variable xi. This function, again, is realised

as a relation, combining HRP with SubstFormP.

nominal primrec KRP :: "tm ⇒ tm ⇒ tm ⇒ fm"

where "atom y ♯ (v,x,x’) =⇒
KRP v x x’ = Ex y (HRP x (Var y) AND SubstFormP v (Var y) x x’)"

We easily obtain a key result: Ki (pαq) = pα(i := pαq)q.

lemma prove KRP: "{} ⊢ KRP ⌈Var i⌉ ⌈α⌉ ⌈α(i::=⌈α⌉)⌉"

However, it is essential to prove that KRP behaves like a function. The predicates KRP

and HRP can be proved to be single valued using the techniques discussed in the previous

section. Then an appeal to prove KRP uniquely characterises Ki as a function:

lemma KRP subst fm: "{KRP ⌈Var i⌉ ⌈α⌉ (Var j)} ⊢ Var j EQ ⌈α(i::=⌈α⌉)⌉"

Twenty five lines of tricky reasoning are needed to reach the next milestone: the

diagonal lemma. Świerczkowski writes

We replace the variable xi in α by the [pseudo-term Ki(xi)], and we denote by

β the resulting formula. [32, p. 22]

The elimination of the pseudo-function Ki in favour of an existential quantifier involv-

ing KRP yields the following not-entirely-obvious Isabelle definition:

6 Here fixes A::fm declares A to be a formula in the overloaded notation ⌈A⌉. Świerczkowski
uses α, β, . . . to denote formulas, but I’ve frequently used the traditional A, B,

24

theorem Goedel I:
assumes "¬ {} ⊢ Fls"

obtains δ where "{} ⊢ δ IFF Neg (PfP ⌈δ⌉)" "¬ {} ⊢ δ" "¬ {} ⊢ Neg δ"
"eval fm e δ" "ground fm δ"

proof -

fix i::name
obtain δ where "{} ⊢ δ IFF Neg ((PfP (Var i))(i::=⌈δ⌉))"

and suppd: "supp δ = supp (Neg (PfP (Var i))) - {atom i}"

by (metis SyntaxN.Neg diagonal)

then have diag: "{} ⊢ δ IFF Neg (PfP ⌈δ⌉)"
by simp

then have np: "¬ {} ⊢ δ ∧ ¬ {} ⊢ Neg δ"
by (metis Iff MP same NegNeg D Neg D Neg cong assms proved iff proved PfP)

then have "eval fm e δ" using hfthm sound [where e=e, OF diag]

by simp (metis Pf quot imp is proved)
moreover have "ground fm δ" using suppd

by (simp add: supp conv fresh ground fm aux def subset eq)

(metis fresh ineq at base)

ultimately show ?thesis

by (metis diag np that)
qed

Fig. 1 Gödel’s First Incompleteness Theorem

def β ≡ "Ex j (KRP ⌈Var i⌉ (Var i) (Var j) AND α(i ::= Var j))"

Note that one occurrence of Var i is quoted and the other is not. The development is

full of pitfalls such as these.

The statement of the diagonal lemma is as follows. The second assertion states

that the free variables of δ, the diagonal formula, are those of α, the original formula,

minus i.

lemma diagonal:

obtains δ where "{} ⊢ δ IFF α(i::=⌈δ⌉)" "supp δ = supp α - {atom i}"

Figure 1 presents the proof of the first incompleteness theorem itself. The top level

argument is quite simple, given the diagonal lemma. The key steps of the proof should

be visible even to somebody who is not an Isabelle expert, thanks to the structured

Isar language. Note that if {} ⊢ Neg δ, then {} ⊢ PfP ⌈δ⌉ and therefore {} ⊢ δ by the

proof formalisation condition, violating the assumption of consistency.

6 Towards the Second Theorem: Pseudo-Coding and Quotations

The second incompleteness theorem [1] has always been more mysterious than the first.

Gödel’s original paper [8] was designated “Part I” in anticipation of a subsequent “Part

II” proving the second theorem, but no second paper appeared. Logicians recognised

that the second theorem followed from the first, assuming that the first could itself be

formalised in the internal calculus. While this assumption seems to be widely accepted,

conducting such a formalisation explicitly remains difficult, even given today’s theorem-

proving technology.

25

A simpler route to the theorem involves the Hilbert-Bernays derivability conditions

[2, p. 15][9, p. 73].

If ⊢ α, then ⊢ Pf (pαq) (D1)

If ⊢ Pf (pα→ βq) and ⊢ Pf (pαq), then ⊢ Pf (pβq) (D2)

If α is a strict Σ sentence, then ⊢ α→ Pf (pαq) (D3)

(Where there is no ambiguity, we identify Pf with the formalised predicate PfP ; the

latter is the actual HF predicate, but the notation Pf is widely used in the literature,

along with Gödel’s original Bew.)

Condition (D1) is none other than the theorem proved iff proved PfP mentioned

in Sect. 4.4 above. Condition (D2) seems clear by the definition of the predicate Pf,

although all details of the workings of this predicate must be proved using low-level

inferences in the HF calculus. Condition (D3) can be regarded as a version of the

theorem Sigma fm imp thm (“true Σ sentences are theorems”) internalised as a theorem

of the internal calculus. So while we avoid having to formalise the whole of Gödel’s

theorem within the calculus, we end up formalising a key part of it.

Condition (D3) is stated in a general form, but we only need one specific instance:

⊢ Pf (pαq) → Pf (pPf (pαq)q).

Despite a superficial resemblance, (D3) does not follow from (D1), which holds by

induction on the proof of ⊢ α. As Świerczkowski explains [32, p. 23], condition (D3) is

not general enough to prove by induction. In the sequel, we generalise and prove it.

6.1 Pseudo-Coding

Condition (D3) can be proved by induction on α if the assertion is generalised so that

α can have free variables, say x1, . . . , xn:

⊢ α(x1, . . . , xn) → Pf (pα(x1, . . . ,xn)q)

The syntactic constructions used in this formula have to be formalised, and the neces-

sary transformations have to be justified within the HF calculus. As mentioned above

(Sect. 5), the boldface convention needs to be made rigorous. In particular, codings are

always ground HF terms, and yet pα(x1, . . . ,xn)q has a functional dependence (as an

HF term) on x1, . . . , xn.

The first step in this process is to generalise coding to allow certain variables to

be preserved as variables in the coded term. Recall that with normal quotations, every

occurrence of a variable is replaced by the code of the variable name, ultimately a

positive integer:7

function quot dbtm :: "dbtm ⇒ tm"

where

"quot dbtm DBZero = Zero"

| "quot dbtm (DBVar name) = ORD OF (Suc (nat of name name))"
| ...

Now let us define the V -code of a term or formula, where V is a set of variables to be

preserved in the code:

7 ORD OF (Suc n) denotes an HF term that denotes a positive integer, even if n is a variable.

26

function vquot dbtm :: "name set ⇒ dbtm ⇒ tm"

where

"vquot dbtm V DBZero = Zero"

| "vquot dbtm V (DBVar name) = (if name ∈ V then Var name

else ORD OF (Suc (nat of name name)))"
| ...

V -coding is otherwise identical to standard coding, with the overloaded syntax ⌊A⌋V.

The parameter V is necessary because not all variables should be preserved; it will be

necessary to consider a series of V -codes for V = ∅, {x1} . . . , {x1, . . . , xn}.

6.2 Simultaneous Substitution

In order to formalise the notation pα(x1, . . . ,xn)q, it is convenient to introduce a

function for simultaneous substitution. Here Świerczkowski’s presentation is a little

hard to follow:

Suppose β is a theorem, i.e., ⊢ β. If we replace each of the variables at each of

its free occurrences in β by some constant term then the formula so obtained

is also a theorem (by the Substitution Rule. . .). This just described situation

in the meta-theory admits description in HF. [32, p. 24]

It took me weeks of failed attempts to grasp the meaning of the phrase “constant term”.

It does not mean a term containing no variables, but a term satisfying the predicate

ConstP and thus denoting the code of a constant. Formalising this process seems to

require replacing each variable xi by a new variable, x′i, intended to denote xi. Later,

it will be constrained to do so by a suitable HF predicate. And so we need a function

to perform simultaneous substitutions in a term for all variables in a set V . Using a

“fold” operator over finite sets [19] eliminates the need to consider the variables in any

particular order.

definition ssubst :: "tm ⇒ name set ⇒ (name ⇒ tm) ⇒ tm"

where "ssubst t V F = Finite Set.fold (λi. subst i (F i)) t V"

The renaming of xi to x′i could be done using arithmetic on variable subscripts, but

the formalisation instead follows an abstract approach, using nominal primitives. An

Isabelle locale defines a proof context containing a permutation p (mapping all variable

names to new ones), a finite set Vs of variable names and finally the actual renaming

function F, which simply applies the permutation to any variable in Vs.8

locale quote perm =

fixes p :: perm and Vs :: "name set" and F :: "name ⇒ tm"

assumes p: "atom ‘ (p · Vs) ♯* Vs"
and pinv: "-p = p"

and Vs: "finite Vs"

defines "F ≡ make F Vs p"

Most proofs about ssubst are done within the context of this locale, because it pro-

vides sufficient conditions for the simultaneous substitution to be meaningful. The first

condition states that p maps all the variables in Vs to variables outside of that set,

while second condition states that p is its own inverse.

This abstract approach is a little unwieldy at times, but its benefits can be seen

in the simple fact below, which states the effect of the simultaneous substitution on a

single variable.

8 make F Vs p i = Var (p · i) provided i ∈ Vs.

27

lemma ssubst Var if:

assumes "finite V"

shows "ssubst (Var i) V F = (if i ∈ V then F i else Var i)"

We need to show that the variables in the set Vs can be renamed, one at a time,

in a pseudo-coded de Bruijn term. Let V ⊆ Vs and suppose that the variables in V

have already been renamed, and choose one of the remaining variables, w. It will be

replaced by a new variable, computed by F w. And something very subtle is happening:

the variable w is represented in the term by its code, ⌈Var w⌉. Its replacement, F w, is

Var (p · w) and a variable.

lemma SubstTermP vquot dbtm:

assumes w: "w ∈ Vs - V" and V: "V ⊆ Vs" "V’ = p · V"
and s: "supp dbtm ⊆ atom ‘ Vs"

shows

"insert (ConstP (F w)) {ConstP (F i) | i. i ∈ V}

⊢ SubstTermP ⌈Var w⌉ (F w)

(ssubst (vquot dbtm V dbtm) V F)
(subst w (F w) (ssubst (vquot dbtm (insert w V) dbtm) V F))"

This theorem is proved by structural induction on dbtm, the de Bruijn term. The condi-

tion supp dbtm ⊆ atom ‘ Vs states that the free variables of dbtm all belong to Vs. The

variable case of the induction is tricky (and is the crux of the entire proof). We are

working with a coded term that contains both coded variables and real ones (of the

form F i); it is necessary to show that the real variables are preserved by the substi-

tution, because they are the xi that we are trying to introduce. The F i are preserved

under the assumption that they denote constants, which is the point of including the

formulas ConstP (F i) for all i ∈ V on the left side of the turnstile. These assumptions

will have to be justified later.

Under virtually the same assumptions (omitted), the analogous result holds for

pseudo-coded de Bruijn formulas.

lemma SubstFormP vquot dbfm:
"insert (ConstP (F w)) {ConstP (F i) | i. i ∈ V}

⊢ SubstFormP ⌈Var w⌉ (F w)

(ssubst (vquot dbfm V dbfm) V F)

(subst w (F w) (ssubst (vquot dbfm (insert w V) dbfm) V F))"

The proof is an easy structural induction on dbfm. Every case holds immediately by

properties of substitution and the induction hypotheses or by the previous theorem, for

terms. The only difficult case in these two proofs is the variable case discussed above.

Using the notation for V -coding, we can see that the substitution predicate SubstFormP

can transform the term ssubst ⌊A⌋V V F into

ssubst ⌊A⌋(insert w V) (insert w V) F.

Repeating this step, we can replace any finite set of variables in a coded formula by

real ones, realising Świerczkowski’s remark quoted at the top of this section, and in

particular his last sentence. That is, if β is a theorem in HF (if ⊢ Pf β holds) then the

result of substituting constants for its variables is also an HF theorem. More precisely

still, we are replacing some subset V of the variables by fresh variables (the F i),

constrained by the predicate ConstP.

theorem PfP implies PfP ssubst:
fixes β::fm
assumes β: "{} ⊢ PfP ⌈β⌉"

and V: "V ⊆ Vs"

and s: "supp β ⊆ atom ‘ Vs"

shows "{ConstP (F i) | i. i ∈ V} ⊢ PfP (ssubst ⌊β⌋V V F)"

28

The effort needed to formalise the results outlined above is relatively modest, at

330 lines of Isabelle/HOL, but this excludes the effort needed to prove some essential

lemmas, which state that the various syntactic predicates work correctly. Because these

proofs concern non-ground HF formulas, theorem Sigma fm imp thm does not help. Re-

quired is an HF formalisation of operations on sequences, such as concatenation. That

in turn requires formalising further operations such as addition and set union. These

proofs (which are conducted largely in the HF calculus) total over 2,800 lines. This

total includes a library of results for truncating and concatenating sequences. Here is

a selection of the results proved.

Substitution preserves the value Zero :

theorem SubstTermP Zero: "{TermP t} ⊢ SubstTermP ⌈Var v⌉ t Zero Zero"

On terms constructed using Eats (recall that Q Eats constructs the code of an Eats

term), substitution performs the natural recursion.

theorem SubstTermP Eats:

"{SubstTermP v i t1 u1, SubstTermP v i t2 u2}

⊢ SubstTermP v i (Q Eats t1 t2) (Q Eats u1 u2)"

This seemingly obvious result takes nearly 150 lines to prove. The sequences for both

substitution computations are combined to form a new sequence, which must be ex-

tended to yield the claimed result and shown to be properly constructed.

Substitution preserves constants. This fact is proved by induction on the sequence

buildup of the constant c, using the previous two facts about SubstTermP .

theorem SubstTermP Const: "{ConstP c, TermP t} ⊢ SubstTermP ⌈Var w⌉ t c c"

Each recursive case of a syntactic predicate must be verified using the techniques

outlined above for SubstTermP Eats. Even when there is only a single operand, as in the

following case for negation, the proof is around 100 lines.

theorem SubstFormP Neg: "{SubstFormP v i x y} ⊢ SubstFormP v i (Q Neg x) (Q Neg y)"

A complication is that LstSeqP accepts sequences that are longer than necessary, and

these must be truncated to a given length before they can be extended. These lengthy

arguments must be repeated for each similar proof. So, for the third time, one of our

chief tools is cut and paste.

Exactly the same sort of reasoning can be used to show that proofs can be combined

as expected in order to apply inference rules. The following theorem expresses the

Hilbert-Bernays derivability condition (D2):

theorem PfP implies ModPon PfP: " [[H ⊢ PfP (Q Imp x y); H ⊢ PfP x]] =⇒ H ⊢ PfP y"

Now only one task remains: to show condition (D3).

6.3 Making Sense of Quoted Values

As mentioned in Sect. 5, making sense of expressions like x = y → Pf px = yq requires

a function Q such that Q(x) = pxq:

Q(0) = p0q = 0

Q(x⊳ y) = 〈p⊳q, Q(x),Q(y)〉

29

Trying to make this definition unambiguous, Świerczkowski [32] sketches a total order-

ing on sets, but the technical details are complicated and incomplete. The same ordering

can be defined via the function f : HF → N such that f(x) =
∑

{2f(y) | y ∈ x}. It

is intuitively clear, but formalising the required theory in HF would be laborious. It

turns out that we do not need a canonical term x or a function Q. We only need a

relation: QuoteP relates a set x to (the codes of) the terms that denote x.

The relation QuoteP can be defined using precisely the same methods as we have

seen above for recursive functions, via a sequence buildup. The following facts can be

proved using the methods described in the previous sections.

lemma QuoteP Zero: "{} ⊢ QuoteP Zero Zero"

lemma QuoteP Eats:
"{QuoteP t1 u1, QuoteP t2 u2} ⊢ QuoteP (Eats t1 t2) (Q Eats u1 u2)"

It is also necessary to prove (by induction within the HF calculus) that for every x

there exists some term x.

lemma exists QuoteP:

assumes j: "atom j ♯ x" shows "{} ⊢ Ex j (QuoteP x (Var j))"

We need similar results for all of the predicates involved in concatenating two sequences.

They essentially prove that the corresponding pseudo-functions are total.

Now we need to start connecting these results with those of the previous section,

which (following Świerczkowski) are proved for constants in general, although they are

needed only for the outputs of QuoteP . An induction in HF on the sequence buildup

proves that these outputs satisfy ConstP .

lemma QuoteP imp ConstP: "{ QuoteP x y } ⊢ ConstP y"

This is obvious, because QuoteP involves only Zero and Q Eats, which construct quoted

sets. Unfortunately, the proof requires the usual reasoning about sequences in order to

show basic facts about ConstP, which takes hundreds of lines.

The main theorem from the previous section included the set of formulas

{ConstP (F i) | i. i ∈ V}

on the left of the turnstile, representing the assumption that all introduced variables

denoted constants. Now we can replace this assumption by one expressing that the

relation QuoteP holds between each pair of old and new variables.

definition quote all :: "[perm, name set] ⇒ fm set"
where "quote all p V = {QuoteP (Var i) (Var (p · i)) | i. i ∈ V}

The relation QuoteP (Var i) (Var (p · i) holds between the variable i and the

renamed variable p · i, for all i ∈ V . Recall that p is a permutation on variable names.

By virtue of the theorem QuoteP imp ConstP, we obtain a key result, which will be used

heavily in subsequent proofs for reasoning about coded formulas and the Pf predicate.

theorem quote all PfP ssubst:
assumes β: "{} ⊢ β"

and V: "V ⊆ Vs"

and s: "supp β ⊆ atom ‘ Vs"

shows "quote all p V ⊢ PfP (ssubst ⌊β⌋V V F)"

In English: Let ⊢ β be a theorem of HF whose free variables belong to the set Vs. Take

the code of this theorem, ⌊β⌋, and replace some subset V ⊆ Vs of its free variables by

30

new variables constrained by the QuoteP relation. The result, ssubst ⌊β⌋V V F, satisfies

the provability predicate.

The reader of even a very careful presentation of Gödel’s second incompleteness

theorem, such as Grandy [9], will look in vain for a clear and rigorous treatment of the

x (or x) convention. Boolos [2] comes very close with his Bew[F] notation, but he is

quite wrong to state “notice that Bew[F] has the same variables free as [the formula] F”

[2, p. 45] when in fact they have no variables in common. Even Świerczkowski’s highly

detailed account is at best ambiguous. He consistently uses function notation, but his

carefully-stated guidelines for replacing occurrences of pseudo-functions by quantified

formulas [32, Sect. 5] are not relevant here. (This problem only became clear after a

time-consuming attempt at a formalisation on that basis.) My companion paper [27],

which is aimed at logicians, provides a more detailed discussion of these points. It

concludes that these various notations obscure not only the formal details of the proof

but also the very intuitions they are intended to highlight.

6.4 Proving ⊢ α→ Pf (pαq)

We now have everything necessary to prove condition (D3):

If α is a strict Σ sentence, then ⊢ α→ Pf (pαq)

The proof will be by induction on the structure of α. As stated in Sect. 3.3 above,

a strict Σ formula has the form x ∈ y, α∨ β, α∧ β, ∃xα or (∀x ∈ y)α. Therefore, the

induction will include one single base case,

x ∈ y → Pf px ∈ yq, (3)

along with inductive steps for disjunction, conjunction, etc.

6.4.1 The Propositional Cases

The propositional cases are not difficult, but are worth examining as a warmup exercise.

From the induction hypotheses ⊢ α→ Pf (pαq) and ⊢ β → Pf (pβq), we must show

⊢ α ∨ β → Pf (pα ∨ βq) and

⊢ α ∧ β → Pf (pα ∧ βq).

Both of these cases are trivial by propositional logic, given the lemmas ⊢ Pf (pαq) →
Pf (pα ∨ βq), ⊢ Pf (pβq) → Pf (pα ∨ βq) and

⊢ Pf (pαq) → Pf (pβq) → Pf (pα ∧ βq) (4)

Proving (4) directly from the definitions would need colossal efforts, but there is a

quick proof. The automation of the HF calculus is good enough to prove tautologies,

and from ⊢ α→ β → α ∧ β, the proof formalisation condition9 yields

⊢ Pf (pα→ β → α ∧ βq)

Finally, the Hilbert-Bernays derivability condition (D2) yields the desired lemma, (4).

This trick is needed whenever we need to do propositional reasoning with Pf .

9 Of Sect. 4.4, but via the substitution theorem quote all PfP ssubst proved above. The
induction concerns generalised formulas involving pseudo-coding: PfP (ssubst ⌊α⌋V V F).

31

6.4.2 The Equality and Membership Cases

Now comes one of the most critical parts of the formalisation. Many published proofs

[2, 32] of the second completeness theorem use the following lemma:

x = y → Pf px = yq (5)

This in turn is proved using a lemma stating that x = y implies x = y, which is

false here: we have defined QuoteP only as a relation, and even {0, 1} can be written

in two different ways. Nevertheless, the statement (5) is clearly true: if x and y are

constant terms denoting x and y, respectively, where x = y, then Pf px = yq holds. The

equivalence of two different ways of writing a finite set should obviously be provable.

This problem recalls the situation described in 3.3 above, and the induction used to

prove Subset Mem sf lemma. The solution, once again, is to prove the conjunction

(x ∈ y → Pf px ∈ yq) ∧ (x ⊆ y → Pf px ⊆ yq)

by induction (in HF) on the sum of the sizes of x and y. The proof is huge (nearly 340

lines), with eight universal quantifiers in the induction formula, each of which must be

individually instantiated in order to apply an induction hypothesis.

⊢ All i (All i’ (All si (All li (All j (All j’ (All sj (All lj

(SeqQuoteP (Var i) (Var i’) (Var si) (Var li) IMP

SeqQuoteP (Var j) (Var j’) (Var sj) (Var lj) IMP
HaddP (Var li) (Var lj) (Var k) IMP

((Var i IN Var j IMP PfP (Q Mem (Var i’) (Var j’))) AND

(Var i SUBS Var j IMP PfP (Q Subset (Var i’) (Var j’))))))))))))"

Using SeqQuoteP (which describes the sequence computation of QuoteP) gives access to

a size measure for the two terms, which are here designated i and j. Their sizes, li

and lj, are added using HaddP, which is simply addition as defined in the HF calculus.

(This formalisation of addition is also needed for reasoning about sequences.) Their

sum, k, is used as the induction variable.

Although the second half of the conjunction suffices to prove (5), it is never needed

outside of the induction, and neither is (5) itself. All we need is (3). And so we reach

the next milestone.

lemma

assumes "atom i ♯ (j,j’,i’)" "atom i’ ♯ (j,j’)" "atom j ♯ (j’)"

shows QuoteP Mem imp QMem:

"{QuoteP (Var i) (Var i’), QuoteP (Var j) (Var j’), Var i IN Var j}
⊢ PfP (Q Mem (Var i’) (Var j’))"

and QuoteP Mem imp QSubset:

"{QuoteP (Var i) (Var i’), QuoteP (Var j) (Var j’), Var i SUBS Var j}

⊢ PfP (Q Subset (Var i’) (Var j’))"

Turning to the main induction on α, the notoriously “delicate” [2, p. 48] case is

bounded universal quantification. Many of the delicate points here are connected with

the way the nominal approach is used. We need to maintain and extend a permutation

relating old and new variable names. Such complexities are evident in mathematical

texts, in their treatment of variable names [32, Lemma 9.7].

lemma (in quote perm) quote all Mem imp All2:

assumes IH: "insert (QuoteP (Var i) (Var i’)) (quote all p Vs)

⊢ α IMP PfP (ssubst ⌊α⌋(insert i Vs) (insert i Vs) Fi)"

and "supp (All2 i (Var j) α) ⊆ atom ‘ Vs"

32

and j: "atom j ♯ (i,α)" and i: "atom i ♯ p" and i’: "atom i’ ♯ (i,p,α)"
shows "insert (All2 i (Var j) α) (quote all p Vs)

⊢ PfP (ssubst ⌊All2 i (Var j) α⌋Vs Vs F)"

The final case, for the existential quantifier, is also somewhat complicated to for-

malise. The details are again mostly connected with managing free and bound variable

names using nominal methods, and are therefore omitted. We can conclude our discus-

sion of the inductive argument by viewing the final result:

lemma star:

assumes "ss fm α" "finite V" "supp α ⊆ atom ‘ V"

shows "insert α (quote all p V) ⊢ PfP (ssubst ⌊α⌋V V F)"

Condition (D3) now follows easily, since the formula α is then a sentence. Although

some technical conditions (involving variable names and permutations) have been omit-

ted from the previous two theorems, our main result below appears exactly as it was

proved. Of course, α ⊢ Pf pαq is equivalent to ⊢ α→ Pf pαq.

theorem Provability:

assumes "Sigma fm α" "ground fm α"
shows "{α} ⊢ PfP ⌈α⌉"

7 Gödel’s Second Incompleteness Theorem

The final steps of the second incompleteness theorem can be seen in Fig. 2. The diago-

nal formula, δ, is obtained via the first incompleteness theorem. Then we can quickly

establish both Pf pδq ⊢ Pf (pPf pδqq) and Pf pδq ⊢ Pf (p¬Pf pδqq). These together

imply Pf pδq ⊢ Pf (p⊥q) using a variant of condition (D2). It follows that if the sys-

tem proves its own consistency, then it also proves ⊢ ¬Pf pδq and therefore ⊢ δ, a

contradiction.

Świerczkowski [32] presents a few other results which have not been formalised here.

These include a refinement of the incompleteness theorem (credited to Reinhardt) and

a theory of a linear order on the HF sets, but recall that claim (5) can be proved

without using any such ordering. The approach adopted here undoubtedly involves

less effort than formalising the ordering in the HF calculus.

The total proof length of nearly 12,400 lines comprises around 4,600 lines for the

second theorem and 7,700 lines for the first.10 (One could also include 2,700 lines for

HF set theory itself, but we would not count the standard libraries of natural numbers

if they were used as the basis of the proof.) O’Connor’s proof comprises 47,000 lines of

Coq, while Shankar’s takes 20,000 lines [30, p. 139] and Harrison’s [10] is a miniscule

4,400 lines of HOL Light. Recall that none of these other proofs include the second

incompleteness theorem.

But comparisons are almost meaningless because of the enormous differences among

the formalisations. Shankar wrote (and proved to be representable) a LISP interpreter

for coding up the metatheory [30]; this was a huge effort, but then the various coding

functions could then be written in LISP without further justification. He also used

HF for coding, presumably because of its similarity to LISP S-expressions. O’Connor

formalised a very general syntax for first-order logic [22]. He introduced a general

inductive definition of the primitive recursive functions, but proving specific functions

to be primitive recursive turned out to be extremely difficult [23, Sect. 5.3]. Harrison has

10 Prior to polishing and removing unused material, the proof totalled 17,000 lines.

33

theorem Goedel II:
assumes "¬ {} ⊢ Fls"

shows "¬ {} ⊢ Neg (PfP ⌈Fls⌉)"
proof -

from assms Goedel I obtain δ
where diag: "{} ⊢ δ IFF Neg (PfP ⌈δ⌉)" "¬ {} ⊢ δ"

and gnd: "ground fm δ"
by metis

have "{PfP ⌈δ⌉} ⊢ PfP ⌈PfP ⌈δ⌉⌉"
by (auto simp: Provability ground fm aux def supp conv fresh)

moreover have "{PfP ⌈δ⌉} ⊢ PfP ⌈Neg (PfP ⌈δ⌉)⌉"
apply (rule MonPon PfP implies PfP [OF gnd])

apply (metis Conj E2 Iff def Iff sym diag(1))

apply (auto simp: ground fm aux def supp conv fresh)

done

moreover have "ground fm (PfP ⌈δ⌉)"
by (auto simp: ground fm aux def supp conv fresh)

ultimately have "{PfP ⌈δ⌉} ⊢ PfP ⌈Fls⌉" using PfP quot contra

by (metis (no types) anti deduction cut2)

thus "¬ {} ⊢ Neg (PfP ⌈Fls⌉)"
by (metis Iff MP2 same Neg mono cut1 diag)

qed

Fig. 2 Gödel’s Second Incompleteness Theorem

not published a paper describing his formalisation, but devotes a few pages to Gödel’s

theorems in his Handbook of Practical Logic [12, p. 546–555], including extracts of HOL

Light proofs. He defines Σ1 and Π1 formulas and quotes some meta-theoretical results

relating truth and provability.

This project took approximately one year, in time left available after fulfilling

teaching and administrative duties. The underlying set theory took only two weeks to

formalise. The Gödel development up to the proof formalisation condition took an-

other five months. From there to the first incompleteness theorem took a further two

months, mostly devoted to proving single valued properties. Then the second incom-

pleteness theorem took a further four months, including much time wasted due to

misunderstanding this perplexing material. Some material has since been consolidated

or streamlined. The final version is available online [26].

7.1 The Lengths of Proofs

Figure 3 depicts the sizes of the Isabelle/HOL theories making up various sections of

the proof development. The first theorem takes up the bulk of the effort. Apart from

the massive HF proofs about predicates, which are mostly of obvious properties, the

second theorem appears to be a fairly easy step given the first. Why then has it not been

formalised until now? A reasonable guess is that previous researchers were not aware of

Świerczkowski’s [32] elaborate development. The most detailed of the previous proofs

[2, 9] left too much to the imagination, and even Świerczkowski makes some errors. He

devotes much of his Sect. 7 to proofs concerning substitution for (non-existent) pseudo-

terms analogous to x. Recall that pseudo-terms are merely a notational shorthand to

allow function syntax, and are not actual terms. Finally, there was the critical issue of

the ordering on the HF sets. Solving these mysteries required much thought, and the

34

first completed formalisation included thousands of lines of proofs belonging to aborted

attempts.

A discussion of the de Bruijn coefficient (the expansion in size entailed by the

process of formalisation) is always interesting, but difficult to do rigorously. In this case,

the formalisation required proving a great many theorems that were not even hinted

at in the source text, for example, setting up a usable sequent calculus (Świerczkowski

merely gives the rudiments of a Hilbert system), or proving that the various codings

of syntax actually work (virtually all authors take this for granted), or proving that

“functions” are functions. The hundreds of lines of single-step HF calculus proofs are

the single largest contributor to the size of this development, and such things never

appear in standard presentations of the incompleteness theorems.

A crude calculation yields 30 pages at 35 lines per page or 1050 lines for Świer-

czkowski’s proof, compared with 12,400 lines of Isabelle, for a de Bruijn factor of 12.

Focusing on just the proof of the first incompleteness theorem (after the preliminary

developments), we have about 80 lines of informal text and 671 lines of Isabelle, giving

a factor of 8.4; that includes 150 lines in the Isabelle script to prove that functions are

single valued.

A further issue is the heavy use of cut and paste in the HF calculus proofs. Better

automation for HF could help, but spending time to develop a tactic that will only

be called a few times is hard to justify. An alternative idea is to define higher-order

operators for the sequence constructions, which could be proved to be functional once

and for all. However, higher-order operators are difficult to define using nominal syntax.

Perhaps it could be attempted using naive variables.

Fig. 3 Sizes of Constituent Theories

7.2 The Formalisation of Variable Binding

The role of bound variable syntax remains unclear. Shankar [30, 31] used de Bruijn

variables to formalise the Church-Rosser theorem but not the incompleteness theo-

rem. Harrison did not use them either. O’Connor also used traditional syntactic bound

variables, but complained about huge complications concerning substitution (recall

Sect. 2.3). The present development uses the nominal package, easing many proofs, but

at a price: over 900 lines involve freshness specifications, and around 70 lemmas involv-

ing freshness are proved. Moreover, many proof steps are slow. While the project was

35

underway, proof times taking minutes were not unusual. Even after recent improve-

ments to the nominal package, they can take tens of seconds. Additional performance

improvements would be welcome, as well as a more concise notation for freshness con-

ditions when many new names are needed.

In fairness to the nominal approach, explicit variable names would also have to

be fresh and analogous assertions would be necessary, along with some procedure for

calculating new names numerically and proving them to be fresh. The effort may be

similar either way, but the nominal approach is more abstract and natural: who after

all refers to specific, calculated variable names in textbook proofs?

My first attempt to formalise the incompleteness theorems used explicit names.

Then, substitution on formulas was only available as a relation, and many proofs

required numerical operations on variable names. This effort would have multiplied

considerably for the second incompleteness theorem. Using de Bruijn indices for HF

syntax was not attractive: I had previously formalised Gödel’s definition of the con-

structible sets and his proof of the relative consistency of the axiom of choice [25]. Here

it was also necessary to define a great many predicates within an encoding of first-order

logic. This work was done in Isabelle/ZF, a version of Isabelle for axiomatic set theory.

I used de Bruijn indices in these definitions, but the loss of readability was a severe

impediment to progress.

It is worth investigating how this formalisation would be affected by the change to

another treatment of variable binding. As regards the Gödel numbering of formulas,

the use of de Bruijn variables can be called an unqualified success. It was easy to set

up and all necessary properties were proved without great difficulties.

7.3 On Verifying Proof Assistants

In a paper entitled “Towards Self-verification of HOL Light”, Harrison says,

Gödel’s second incompleteness theorem tells us that [a logical system] cannot

prove its own consistency in any way at all So, regardless of implementation

details, if we want to prove the consistency of a proof checker, we need to use

a logic that in at least some respects goes beyond the logic the checker itself

supports. [11, p. 179]

This statement is potentially misleading, and has given rise to the mistaken view that

it is impossible to verify a proof checker in its own logic.

Harrison’s aim is to prove that HOL Light cannot prove the theorem FALSE, and

this indeed requires proving the consistency of higher-order logic itself. Unfortunately,

most consistency proofs are unsatisfactory because they more or less assume the desired

conclusion: they are thinly disguised versions of the tautology Con(L) ∧ L→ Con(L).

This is a consequence of the second incompleteness theorem, since the consistency of L

can only be proved in a strictly stronger formal system.

Mathematicians accept strong formal systems, such as ZF set theory, with little

justification other than intuition and experience. Moreover, they examine very strong

further axioms. The axiom of constructibility is an instructive case: it is known to be

relatively consistent with respect to the axioms of set theory, but it is not generally

accepted as true [16, p. 170]. The standard ZF axioms are generally regarded as true,

although they cannot even be proved to be consistent. Thus we have no good way of

proving consistency, and yet consistency does not guarantee truth.

36

This situation calls for a separation of concerns. The builders of verification tools

should be concerned with the correctness of their code, but the correctness of the

underlying formal calculus is the concern of logicians. Harrison notes that “almost all

implementation bugs in HOL Light and other versions of HOL have involved variable

renaming” [11, p. 179], and this type of issue should be our focus. Verifying a proof

assistant involves verifying that it implements a data structure for the assertions of

the formal calculus and that it satisfies a commuting diagram relating deductions on

the implemented assertions with the corresponding deductions in the calculus. Gödel’s

theorems have no relevance here.

8 Conclusions

The main finding is simply that Gödel’s second incompleteness theorem can be proved

with a relatively modest effort, in only a few months starting with a proof of the

first incompleteness theorem. While the nominal approach to syntax is clearly not

indispensable, it copes convincingly with a development of this size and complexity.

The use of HF set theory as an alternative to Peano arithmetic is clearly justified,

eliminating the need to formalise basic number theory within the embedded calculus;

the necessary effort to do that would greatly exceed the difficulties (mentioned in

Sect. 6.4 above) caused by the lack of a simple canonical ordering on HF sets.

Many published proofs of the incompleteness theorems replace technical proofs by

vague appeals to Church’s thesis. Boolos [2] presents a more detailed and careful exposi-

tion, but still leaves substantial gaps. Even the source text [32] for this project, although

written with great care, had problems: a significant gap (concerning the canonical or-

dering of HF sets), a few minor ones (concerning Σ formulas, for example), and pages

of material that are, at the very least, misleading. These remarks are not intended as

criticism but as objective observations of the complexity of this material, with its cod-

ings of codings. A complete formal proof, written in a fairly readable notation, should

greatly clarify the issues involved in these crucially important theorems.

Acknowledgment

Jesse Alama drew my attention to Świerczkowski [32], the source material for this

project. Christian Urban assisted with nominal aspects of some of the proofs, even

writing code. Brian Huffman provided the core formalisation of type hf. Dana Scott

offered advice and drew my attention to Kirby [15]. Matt Kaufmann and the referees

made many insightful comments.

References

[1] Joan Bagaria. A short guide to Gödel’s second incompleteness theorem. Teorema,
22(3):5–15, 2003.

[2] George Stephen Boolos. The Logic of Provability. Cambridge University Press, 1993.
[3] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser Theorem.
Indagationes Mathematicae, 34:381–392, 1972.

[4] S. Feferman, editor. Kurt Gödel: Collected Works, volume I. Oxford University Press,
1986.

37

[5] Torkel Franzén. Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, 2005.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

[7] Kurt Gödel. On completeness and consistency. In Feferman [4], pages 234–236.
[8] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and

related systems. In Feferman [4], pages 144–195. First published in 1931 in the
Monatshefte für Mathematik und Physik.

[9] Richard E Grandy. Advanced Logic for Applications. Reidel, 1977.
[10] John Harrison. Re: Re: Gödel’s incompleteness theorem. Email dated 15 January 2014.
[11] John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and

Natarajan Shankar, editors, Automated Reasoning — Third International Joint
Conference, IJCAR 2006, LNAI 4130, pages 177–191. Springer, 2006.

[12] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

[13] Richard E Hodel. An Introduction to Mathematical Logic. PWS Publishing Company,
1995.

[14] Joe Hurd and Tom Melham, editors. Theorem Proving in Higher Order Logics:
TPHOLs 2005, LNCS 3603. Springer, 2005.

[15] Laurence Kirby. Addition and multiplication of sets. Mathematical Logic Quarterly,
53(1):52–65, 2007.

[16] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland,
1980.

[17] Andreas Lochbihler. Formalising finfuns — generating code for functions as data from
Isabelle/HOL. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in Computer Science, pages
310–326. Springer, 2009.

[18] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning, 26:51–66, 2001.

[19] Tobias Nipkow and Lawrence C. Paulson. Proof pearl: Defining functions over finite
sets. In Hurd and Melham [14], pages 385–396.

[20] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2002. An up-to-date version is distributed
with Isabelle.

[21] Michael Norrish and René Vestergaard. Proof pearl: de Bruijn terms really do work. In
Klaus Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics:
TPHOLs 2007, LNCS 4732, pages 207–222. Springer, 2007.

[22] Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In Hurd and
Melham [14], pages 245–260.

[23] Russell S. S. O’Connor. Incompleteness & Completeness: Formalizing Logic and
Analysis in Type Theory. PhD thesis, Radboud University Nijmegen, 2009.

[24] Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
Journal of Automated Reasoning, 11(3):353–389, 1993.

[25] Lawrence C. Paulson. The relative consistency of the axiom of choice — mechanized
using Isabelle/ZF. LMS Journal of Computation and Mathematics, 6:198–248, 2003.
http://www.lms.ac.uk/jcm/6/lms2003-001/.

[26] Lawrence C. Paulson. Gödel’s incompleteness theorems. Archive of Formal Proofs,
November 2013. http://afp.sf.net/entries/Incompleteness.shtml, Formal proof
development.

[27] Lawrence C. Paulson. A machine-assisted proof of Gödel’s incompleteness theorems for
the theory of hereditarily finite sets. Review of Symbolic Logic, 7(3):484–498, September
2014.

[28] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, 2013.

[29] Natarajan Shankar. Proof-checking Metamathematics. PhD thesis, University of Texas
at Austin, 1986.

[30] Natarajan Shankar. Metamathematics, Machines, and Gödel’s Proof. Cambridge
University Press, 1994.

[31] Natarajan Shankar. Shankar, Boyer, Church-Rosser and de Bruijn indices. E-mail, 2013.

38

[32] S. Świerczkowski. Finite sets and Gödel’s incompleteness theorems. Dissertationes
Mathematicae, 422:1–58, 2003. http://journals.impan.gov.pl/dm/Inf/422-0-1.html.

[33] Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated
Reasoning, 40(4):327–356, 2008.

[34] Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in
Nominal Isabelle. Logical Methods in Computer Science, 8(2:14):1–35, 2012.

