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Abstract

There is a growing consensus that the brain makes simple choices, such as choosing between an apple and an orange, by
assigning value to the options under consideration, and comparing those values to make a choice. There is also a consensus
that value signals computed in orbitofrontal cortex (OFC) and amygdala play a critical role in the choice process. However,
the nature of the flow of information between OFC and amygdala at the time of decision is still unknown. In order to study
this question, simultaneous local field potentials were recorded from OFC and amygdala in human patients while they
performed a simple food choice task. Although the interaction of these circuits has been studied in animals, this study
examines the effective connectivity directly in the human brain on a moment-by-moment basis. A spectral conditional
Granger causality analysis was performed in order to test if the modulation of activity goes mainly from OFC-to-amygdala,
from amygdala-to-OFC, or if it is bi-directional. Influence from amygdala-to-OFC was dominant prior to the revealed choice,
with a small but significant OFC influence on the amygdala earlier in the trial. Alpha oscillation amplitudes analyzed with the
Hilbert-Huang transform revealed differences in choice valence coincident with temporally specific amygdala influence on
the OFC.
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Introduction

There is a growing consensus that the brain makes simple

choices by assigning value to the options under consideration, and

comparing those values to make a choice. Converging evidence

from human fMRI [1–14], single unit recordings in non-human

primates [15–20], and lesion studies [21,22], suggest that the

orbitofrontal cortex (OFC) encodes stimulus value signals at the

time of decision that guide choices. Stimulus value signals have

also been found in amygdala neurons during simple choices

[23,24], as well as in Pavlovian conditioning paradigms [25–27].

However, much less is known about the contribution of the

amygdala to the process of making simple choices, or about its

interaction with the areas of OFC that compute stimulus values at

the time of choice. Neural connections between the amygdala and

prefrontal cortex are reciprocal, but the connection density varies

considerably [28–31]. Connection density based on neural tracers

shows that the OFC compared to other areas of the prefrontal

cortex receives massive terminations of projections from the

amygdala within the superficial cortical layers [29]. Projections

from the OFC to the amygdala primarily originate in layer 5,

which may pass along information to the amygdala from executive

functions in lateral prefrontal cortices that terminate in OFC [32].

Several competing models of the role of amygdala-OFC

interactions in simple choice have been proposed. One model

states that OFC drives simple choices by computing the values

used to identify the best options, and then enhances or inhibits

activity in the amygdala associated with compatible or competing

Pavlovian responses [33]. In this schema, the stimulus values that

drive choices are computed by OFC, and the value related activity

in amygdala is tied to competing behavioral controllers. This

model predicts that OFC influences amygdala activity at the time

of choice, but not the other way around. A second influential view

states that amygdala influences the stimulus values computed in

OFC [34–37]. In this model, amygdala represents the valence and

saliency of the stimuli, and modulates value computation activity

in OFC, perhaps by increasing attention towards more salient

options [38,39]. This model predicts that amygdala primarily

influences OFC activity at the time of choice, but not the other

way around. A third view states that amygdala and OFC compute

the stimulus values in parallel, with comparable information

exchange between amygdala and OFC [24,40–43].

In order to evaluate these competing models, simultaneous local

field potentials were recorded from OFC and amygdala in human

patients while they performed a simple food choice task. A

conditional Granger causality (CGC) analysis was performed to

directly test the direction and magnitude of influence. Importantly,
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Figure 1. Experimental procedure and behavioral analysis. (A) Task summary. On every trial subjects were shown an image of a snack food
for 1 s, at which time they were prompted to indicate whether or not they would be willing to eat the food using a four-item response scale (Strong-
Yes, Yes, No, Strong-No). At the end of the experiment one trial was selected at random and the subject’s choice was implemented using the actual
food. Snacks could be appetitive or aversive, as measured by independent continuous liking-ratings provided by each subject. (B) Scatter plots
(jittered) showing the association between prior continuous liking-ratings and choices for each food and subject. Lines correspond to least square
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evidence for value encoding at the time of decision in OFC has

been observed using this specific task, using fMRI [44] and EEG

[45], and in amygdala, using single unit recordings [23]. Thus, the

task provides an ideal setting to study amygdala-OFC interactions

during simple choice. Granger causality [46,47] has become a

prominent technique for inferring the direction of information

flow in brain networks from recorded time-series. The basic idea is

that if the prediction of a time-series at an instant in time can be

improved by the past history of a second time-series, the second

time-series is considered to be Granger causal of the first. The

time-series can then be swapped to analyze the influence in the

opposite direction. Advances in this technology now generalize to

conditioning on the influence of all of the ensemble simultaneously

recorded time-series, not just pairwise influences, and also

generalize into the frequency domain to examine possible

synchronous oscillations [48].

Results

The direction of influence between OFC and amygdala at the

time of decision-making using a simple food choice task was

investigated (Figure 1A). On every trial the subject saw a snack

food and had to decide whether they were willing to eat it at the

end of the experiment using a four-point scale (Strong-Yes, Weak-

Yes, Weak-No, Strong-No). This allowed us to simultaneously

measure subjects’ choices (yes/no) and the strength of their

preference (strong/weak). Foods could be appetitive or aversive, as

indicated by the responses in a separate liking-rating task, which

provided an independent measure of the value of the different

foods for each subject. At the end of the experiment, the choice

made in a randomly selected trial was implemented. Local field

potential data were recorded during the task simultaneously from

amygdala and OFC contacts in three human epileptic patients

(labeled PT180, PT206, PT258). See Methods for details.

Behavioral Analysis
For each subject, a linear regression of choices (1 = Strong-No

to 4 = Strong-Yes) on the continuous liking ratings (22 to +2) was

estimated in order to verify that subjects computed values with

sufficient consistency, and thus did not make choices randomly. As

shown in Figure 1B, subjects’ choices were highly responsive to the

underlying value of the stimuli, with correlation coefficients

PT258: 0.73, p,10227; PT206: 0.91, p,10263, PT180: 0.58,

p,10215.

A subjects’ current choice could be based on choices made in

the past, so that the choice made in trial n might be influenced by

the response on trial n-1 [49–52]. Therefore the question whether

subjects exhibited so-called choice inertia was also investigated.

Specifically, an ordinal multinomial generalized linear model

(GLM) of the current choice that allowed for an influence of the

previous choice (see Methods for details) was fit. As shown in

Figure 1C, PT180 exhibited significant choice inertia (p = 0.01),

however the other two subjects did not. How this previous trial

effect manifests itself in the effective connectivity of the amygdala-

OFC network under a simple choice task is unknown, but

considered in the electrophysiological results shown below.

Electrode contact localization
Figure 2A–C depicts the intracranial location of the contacts for

each subject that were localized based on pre- and post-operative

high-resolution anatomical scans. All subjects had contacts in or

near the lateral nucleus (LA) and basolateral nucleus (BLA). The

LA and BLA contacts for PT258 bordered the hippocampus, and

consequently all three orthogonal planes are shown for the

purpose of localization. For OFC, contacts were associated with

cytoarchitectonic areas based on the taxonomies proposed by

Ongur and Price [53] and Wallis [54], and spanned Brodmann

areas 10, 13, 14 and 47/12.

Spectral conditional Granger causality analysis
Spectral CGC for each amygdala-OFC pair of electrodes over

the broad interval 21 to +1 s relative to stimulus onset were

computed separately for each contact pair and shown in

Figure 3A–C. Spectral CGC for amygdala-to-OFC is shown in

red, and OFC-to-amygdala is shown in black. Strong asymmetry

on the direction of influence was found: whereas there was sizable

influence from either LA or BLA to various regions of OFC, the

influence in the other direction was significantly smaller. All

contact time-series were explicitly factored into the analysis as a

function of the conditional nature of the CGC measure [55]. A

two-sided cluster-based (contact-pair, frequency dimensions) per-

mutation test was performed for each subject by random

rearrangement of trials for each contact (see Methods). Contact

pairs yielding a statistically significant net CGC (given by the CGC

from amygdala-to-OFC minus the CGC from OFC-to-amygdala)

were identified, with the maximum contact-pair frequency band

highlighted in gray. The interplay between amygdala and OFC

was primarily in the alpha range (8–15 Hz) for all subjects, but it

extended to higher frequencies in some cases.

Time-frequency Coherence analysis
Next, the local field potential data were analyzed by computing

the pairwise spectral coherence (between 0 and 40 Hz) for all pairs

of contacts. This provides a necessary initial measure of interaction

because, if two areas interact with sufficient strength, we would

expect their activity to exhibit some degree of synchronization.

Note, however, that the coherence measure is symmetric and non-

directional, and thus does not provide information about the

direction of information flow. A natural question is whether

coherent oscillations fluctuate over the course of a decision trial.

To investigate this, coherence on short moving windows over the

interval 21 to +2 s relative to stimulus onset was computed

together with appropriate significance thresholds and FWER

control (see Methods). The pair-wise coherence was analyzed

between each of the amygdala-OFC pairs, and then aggregated

over all of the amygdala-OFC pairs for each subject. Note that this

last step eliminates any bias in choosing a particular contact-pair

to analyze, and allows a general assessment of the broader

influence between the two areas. As shown in Figure 4 (A, B, C),

coherent oscillations between amygdala and OFC in all three

subjects were observed, predominantly in the alpha range (8–

15 Hz) and localized to specific intervals of time during the task.

Figure 4 (D, E, F) show the same time-frequency map with time-

frequency clusters masked that failed to reach statistically

fits. Correlation coefficients and p-values were: PT258: 0.73, p,10227; PT206: 0.91, p,10263, PT180: 0.58, p,10215 (C) Estimated cumulative transition
probabilities P̂P YtDYt{1ð Þ from an ordinal multinomial GLM that conditions choices in trial t on the response on the previous trial t -1. Dotted lines
correspond to the best estimates from a restricted model without the autoregressive (i.e., history independent) component.
doi:10.1371/journal.pone.0109689.g001
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significant levels, as determined by the cluster-based permutation

test.

Time-frequency Granger causality analysis
In order to investigate the fluctuation of net information flow

over the course of a decision trial, net spectral CGC (amygdala-

OFC minus OFC-amygdala) was also computed using short

moving time windows in a fashion analogous to time-frequency

coherence analysis. The contact-pair net direction of influence was

analyzed between each of the amygdala-OFC pairs, and then

aggregated over all of the amygdala-OFC contacts for each

subject, together with appropriate significance thresholds and

FWER control (see Methods). Figure 5 (A, B, C) shows the net

time-frequency CGC from 21 to +2 s relative to stimulus onset.

Figure 5 (D, E, F) again shows the same time-frequency maps but

with time-frequency clusters that failed to reach statistical

significance masked as determined by the cluster-based permuta-

tion test. For all subjects there were significant clusters in the time-

frequency grid that revealed a dominant net influence of the

amygdala-to-OFC (i.e., with a positive net frequency CGC).

However, there was individual variability observed in terms of the

timing of influence. PT206 and PT258 had similar patterns of

amygdala-to-OFC influence in both timing and frequency range

following the onset of the stimulus, prior to the response cue and

following the response cue. Furthermore, these patterns were

aligned with the coherence results shown in Figure 4, however

the timing of amygdala-to-OFC directional influence was

noticeably more localized in time compared to coherence

measures.

In addition to the computation and two-sided testing of net

spectral CGC, the single-sided cluster-permutation was also

computed for the OFC-to-amygdala to test whether it was

contributing a significant Granger causal effect in this direction.

Maintaining FWER control to a.01 level revealed a small, but

statistically significant OFC-to-amygdala flow of information

localized to specific areas of frequency and time that began prior

to the larger flow from amygdala-to-OFC for PT258 and PT206.

The significant clusters in time-frequency are identified as red

contours in Figure 5 (D, E). This timing suggests that the OFC

Figure. 2. Electrode contact localization. Placements of macrocontacts (gray) relative to amygdala subnuclei and ventral surface of the frontal
lobe for each subject (color coded). Coronal plane drawings of the medial temporal lobe (MTL) (anterior [A], posterior [P], left [L] and right [R]) are
shown for all three subjects. All three orthogonal planes are shown for PT258.
doi:10.1371/journal.pone.0109689.g002
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Figure. 3. Spectral conditional Granger causality comparisons. (A–C) Spectral CGC between amygdala and OFC contacts, computed over all
trials for the interval 21 s to +1 s relative to stimulus onset. The CGC magnitudes as a function of frequency were computed using all contacts shown
in Figure 2. Amygdala-to-OFC is shown in red, and OFC-to-amygdala is shown in black. A two-sided cluster-based permutation test for net CGC was
performed for each subject by random rearrangement of trials for each contact. For each subject, the null permutation distribution was used to
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may activate the amygdala to begin stronger communication

toward the OFC, and possibly other regions as well.

Unexpectedly for both coherence and net CGC, evidence for

similar direction of information flow was found during the inter-

trial period in PT180, and to a lesser degree in PT206 and PT258.

determine the largest-to-smallest net CGC statistic with FWER controlled at.05. Net CGC is given by the CGC from amygdala-to-OFC (red) minus the
CGC from OFC-to-amygdala (black). Significant (p,.05) clusters are denoted by *. The maximum cluster (joint contact-pair and frequency) was
identified for each subject and is depicted by the gray bar.
doi:10.1371/journal.pone.0109689.g003

Figure. 4. Time-frequency coherence. (A, B, C) Spectral coherence, computed on the interval 21 s to +2 s from stimulus onset and 5 Hz to 40 Hz
for each subject. The spectral density used to compute time-frequency coherence was calculated using a sliding 300 ms window and a multitaper
technique with a step size of 10 ms. Spectral coherence is only pairwise and is not conditioned on all other contact time series. (D, E, F) A one-sided
cluster-based permutation test was performed for each subject by random rearrangement of trials for each contact. The cluster suprathreshold
maximum was identified over a (time, frequency) grid composed of 280 ms by 2.5 Hz tiles for a total of 154 frequency-time clusters. The contact-pair
direction was analyzed between each of the amygdala-OFC pairs and then aggregated over all of the contact pairs for each subject. The FWER was
controlled at.01, and the corresponding critical values were used to mask any clusters that fell within the central region determined by the single null
permutation distribution and consequently non-significant.
doi:10.1371/journal.pone.0109689.g004
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As described above, PT180 also exhibited sizable behavioral

choice inertia. Neural activity related to previous choices has been

observed in a number of brain areas in various species [51,56–58].

A possible explanation for these inter-trial period effects is that, to

the extent that the choices must be guided by OFC value signals,

the inter-trial modulation from amygdala-to-OFC could provide a

mechanism for the behavioral inertia. The amygdala may also be

communicating anticipation of a probable value to the OFC that

Figure. 5. Time-frequency spectral conditional Granger causality. (A, B, C) Net CGC, computed on the interval 21 s to +2 s from stimulus
onset and 5 Hz to 40 Hz for each subject. Net CGC is given by the CGC from amygdala-to-OFC minus the CGC from OFC-to-amygdala. The spectral
density used to compute CGC was calculated using a sliding 300 ms window and a multitaper technique with a step size of 10 ms. (D, E, F) The
contact-pair net direction of influence was analyzed between each of the amygdala-OFC pairs, and then aggregated over all of the amygdala-OFC
contacts for each subject. A two-sided cluster-based permutation test was performed for each subject by random rearrangement of trials for each
contact. The cluster suprathreshold maximum was identified over a (time, frequency) grid composed of 280 ms by 2.5 Hz tiles for a total of 154
frequency-time clusters. The FWER was controlled using the same method as described for time-frequency coherence, and non-significant clusters
masked in an equivalent fashion. A one-sided cluster-based permutation test was also performed on the absolute OFC-to-amygdala CGC to establish
its contribution to the net CGC. The red contours define the borders of the clusters, internal to which represents the areas statistically significantly
greater than zero, with an internal maximum CGC of 0.010, 0.006, and 0.010 for panels D, E, and F respectively.
doi:10.1371/journal.pone.0109689.g005
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might influence the pending choice. Again, a small but statistically

significant time-frequency event was observed for OFC-to-

amygdala CGC (Figure 5F), but for this subject it occurred later

relative to the start of the large net CGC. This may reflect

communication from the OFC to desynchronize activity between

these two regions (as shown in Figure 4C).

Hilbert-Huang Transform Analysis
To identify the presence of any information intrinsic to coherent

oscillations between amygdala and OFC at the time of decision-

making, LFPs were analyzed using the amplitude of instantaneous

frequencies derived from the Hilbert-Huang Transform (HHT)

[59]. HHT has recently proven useful in animal and human

electrophysiology. For example, Liang and colleagues [60] used

this method to show that when a monkey attended to a visual

stimulus the amplitude of time-varying gamma oscillations was

enhanced compared to when it was not attending to the same

stimulus. It was also used in conjunction with Granger causality to

examine long-range coupling. The approach was used in the

present study to identify any differences between positive (willing

to eat) and negative (not willing to eat) valence at the time of

decision-making.

The Hilbert-Huang transform was applied to the recorded LFPs

from all contacts previously submitted to spectral coherence and

CGC analysis. Intrinsic oscillatory mode functions (see Methods)

with energy localized to alpha frequency regions were Hilbert

transformed to obtain the so-called analytic signal. The analytic

signal can be decomposed into instantaneous amplitudes a tð Þ and

frequencies f tð Þ as described in the Methods section. Figure 6 (A)

shows a typical Hilbert-Huang transformed single trial with pure,

instantaneous dynamic oscillations f tð Þ resident in the alpha band.

The color represents the instantaneous amplitude a tð Þ over the

course of a single trial. Figure 6 (B, C, D) shows the mean

amplitudes aggregated across all amygdala and OFC contacts and

collapsed across trials conditioned on the choice valence of each

trial. The localized intervals of time where the positive and

negative valence means differ significantly (p,.05 FDR corrected)

are shown as horizontal green bars. Importantly, the intervals of

significant differences occur roughly during those intervals of time

when the net CGC is significantly positive and implying amygdala-

to-OFC directional influence.

Amplitude differences conditioned on valence were also

observed during the inter-trial period leading up to the stimulus

onset in PT180. Although mindful that this is a single subject

observation, it suggests this directional influence may be more

than a non-specific attentional signal, and that these oscillations

may indeed bear information for choice in advance of the stimulus

onset. One recent human study has shown similar choice bias

when no feedback is given and there exists some ambiguity in a

sensory stimulus [51]. Model-based fMRI further revealed

activation in the frontal eye field associated with increased

probability of a repeated choice in the next trial.

Discussion

A sizable body of previous work has shown that OFC encodes

value signals at the time of simple choices (see [61–66] for reviews).

Previous work by our group has also found value signals in single

amygdala units at the time of simple choice [23]. The current

study was designed to examine where in time and frequency the

OFC and amygdala interact with each other during simple

choices. A conditional Granger causality analysis of simultaneous

local field potential recordings in OFC and amygdala revealed a

stronger direction of influence from amygdala-to-OFC than OFC-

to-amygdala. These results suggest that the amygdala modulates

the synchrony between itself and the OFC at times coincident with

the coding of valence as determined by the Hilbert-Huang

transform. Although the direction of information flow was

Figure. 6. Hilbert-Huang Transform analysis. (A) Illustration of a
typical single trial of instantaneous frequency in the alpha range and its
amplitude derived from the Hilbert-Huang transform of a recorded LFP
on the interval 21 to +2 s from stimulus onset. (B, C, D) Instantaneous
amplitude averaged over OFC and amygdala contacts conditioned on
valence of choice. Colored lines show mean (+/2 s.e.). Green horizontal
line denotes significant differences at p,.05 FDR corrected.
doi:10.1371/journal.pone.0109689.g006
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significantly greater for the amygdala-to-OFC, a small but

statistically significant flow from the OFC was observed, generally

initiated prior to the larger flow of information from the amygdala.

This timing could indicate a point of information exchange. One

interpretation is that the OFC could be signaling the amygdala to

increase its flow of information toward the OFC, as well as to

other areas of the brain participating in the computation of value

signals. The interplay between amygdala and OFC was primarily

in the alpha range (8–15 Hz) for all subjects, but it extended to

higher frequencies in some cases. Alpha phase interactions

between brain regions have been shown to reflect underlying

higher-level attentional, executive, and task-relevant neural

processing [67,68].

A number of competing schemas of the role of amygdala-OFC

interactions in simple choice have been proposed. Unfortunately,

very little data is available to arbitrate among these models

because single unit responses or local field potentials have rarely

been recorded simultaneously during a simple choice task

independent of training. Furthermore, it is difficult to extrapolate

from data collected in other decision-making contexts [33,69],

because an important lesson from these studies is that the nature of

the interaction between amygdala and OFC is highly context and

task dependent.

The role of amygdala-OFC interactions has received consider-

able attention in decision contexts other than simple choice.

Several lines of previous evidence are consistent with the present

study. First, the direction of updating from amygdala-to-OFC is

supported by lesion rat studies, which have shown that the

amygdala is necessary for learning stimulus-food associations, but

not at the time of choice, whereas OFC is necessary at both times

[70]. Second, a human fMRI decision-making study showed that

patients with amygdala damage exhibit impaired value processing

in OFC [71]. Finally, a recent study of amygdala influence on the

coding of value in primate OFC showed a decrease in value coding

in the OFC upon removal of the amygdala [37]. This primate

study is particularly relevant to the current simple choice study in

that the association between stimuli and rewards were well

established during and following training, and remained constant

throughout the study.

However, it is important to emphasize that there is also

evidence for the opposite direction of influence in other types of

tasks. For example, the present results can be compared with those

in [43] that studied OFC-amygdala interactions in a Pavlovian

reversal-learning task with both appetitive and aversive uncondi-

tioned stimuli. Morrison and colleagues found that after learning

stabilized, there were bi-directional influences between amygdala

and OFC at the time of the presentation of the conditional

stimulus, with a stronger effect on the OFC-to-amygdala direction.

This contrasts with the current study, in which the direction of

information flow was significantly greater in the amygdala-to-OFC

direction than in the reverse. However, early interplay between

the OFC and amygdala was observed in the present study, which

is consistent with the timing of information flow described in [43].

More generally, electrophysiology studies have shown that both

amygdala and OFC encode the value of stimuli during Pavlovian

appetitive and aversive conditioning tasks [25–27,38,72–74], and

that performance depends on the connectivity between both

regions [42]. The amygdala also plays a critical role in updating

the value of conditioned stimuli during reversal learning

paradigms [75,76]. In the snake test, where animals have to reach

over a plastic snake in order to get a desired food, amygdala and

OFC lesions both decrease the force of the associated Pavlovian

withdrawal response [77].

A key question for future research is to understand what is the

precise computational nature of the amygdala-to-OFC modulato-

ry activity during simple choice. Two alternative (but not

necessarily incompatible) models are obvious candidates. First,

given that OFC value signals during the course of decision-making

are modulated by attention [78], the amygdala might act as a

‘saliency modulator’, inducing OFC to ramp up its processing for

stimuli that are particularly relevant [38,39]. This would improve

choices by ensuring that options associated with stronger reward

consequences receive more careful processing. Second, amygdala

signals might contain specialized information about the value of

the stimuli that is passed to OFC to be integrated into the overall

stimulus values that guide choices, such as information about their

familiarity or history of reward [79,80]. Evidence from the

Hilbert-Huang analysis revealed significant differences between

positive and negative valence that coincided with directed

influence from the amygdala-to-OFC. It remains to be determined

whether these differentially modulated oscillations serve as a value

code.

Several limitations of the study are highlighted. First, due to the

difficulties, ethics, and limitations of carrying out electrophysio-

logical recordings in human patients, the number of trials is

limited. Second, it is clearly not possible to record all relevant

processes and pathways that may be driving the amygdala and

OFC, which is a fundamental limitation of causality inference

from observed data. Thus, the present findings do not speak to

other brain areas participating in value computations, or their

interactions with the amygdala and OFC. However, given that the

available coverage from this study is fully considered in a

conditional fashion, the descriptive relations between the mea-

sured contacts are provisionally valid [81]. Ongoing studies in our

lab that include electrical micro-stimulation of the amygdala and

OFC will provide the opportunity to further validate these results

by including interventions of the network in the analysis. Granger

causality is a well-established statistical method that examines the

influence of one or more time-series on another time series, but

does not imply cause and effect. Integration of exogenous inputs

into these models, such as micro-stimulation or reversible cooling,

may bring us closer to a truer causal calculus [82]. Finally, this

study focused on a particularly common type of simple choices:

approach/avoidance choices over familiar foods. Given that

previous studies have shown that OFC encodes stimulus values

for a wide class of stimuli (from foods [4] to financial decisions

[83,84] to social exchange [9,85]), future studies should investigate

if the amygdala-OFC interactions identified here also hold for

choices involving more complex and/or less familiar stimuli.

Materials and Methods

Ethics Statement
The University of Iowa and University of Wisconsin-Madison

Institutional Review Boards (IRB) approved the study over the

course of data collection and analysis. Informed consent was

obtained from each patient after the nature and possible

consequences of the studies were explained to them. Patients

provided their written informed consent to participate in this

study. The original IRB approved signed Informed Consent

Document was placed in our research files. A copy of the signed

Informed Consent Document was given to the patient, and a copy

of the signed Record of Consent form was placed in the patient’s

electronic medical record. Patients did not incur additional risks by

participating in this study. The decision to implant the electrodes,

as well as their location, was driven solely by medical consider-

ations.
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Subjects. Three patients with pharmacologically intractable

epilepsy participated in the study (PT180, age 36, female, left-

handed; PT206, age 48, male, right-handed; PT258, age 38, male,

right-handed;). As part of a surgical treatment for their condition,

patients had multi-contact depth electrodes implanted targeting

the amygdala, either unilaterally or bilaterally, in addition to

subdural low impedance contacts covering the OFC.

Task. Subjects participated in two behavioral tasks, always

performed in the same order. Both trials involved 81 different

snack food items (e.g., chips or candy) widely available at

convenience stores throughout the United States. In both tasks

the subjects viewed a fixation cross for a variable 750–1250 ms

period after which an image of the food item was presented. After

a post-image interval of 1000 ms, the subjects were cued to make a

response.

In the first task, subjects were shown one of the items on every

trial and were asked to provide a liking rating on a continuous

sliding scale (anchor: ‘‘How much would you like to eat this item at

the end of the experiment?’’: 22 = dislike very much to +2 = like

very much). Each item was shown once, in random order, for a

total of 81 trials. The stimulus set contained both appetitive and

aversive items, as demonstrated by the liking ratings. This part of

the task provided independent measures of the value of each food,

and allowed subjects to become familiar with the experimental set-

up and stimuli.

In the second task, subjects were shown one of the items on

every trial and had to decide whether or not they would be willing

to eat it at the end of the experiment using a discrete four-point

scale (Strong-Yes, Weak-Yes, Weak-No, Strong-No). This allowed

us to simultaneously measure their choice (yes/no) and their

strength of preference (weak/strong). At the end of the experiment

one of the 2nd task trials was selected at random and the choice

was implemented (i.e., the subject was given the actual item shown

in the trial if he responded Strong-Yes/Weak-Yes, and nothing

otherwise). The task consisted of two blocks of 81 trials each.

Foods were not repeated within a block (see Figure 1A).

Behavioral test of choice interdependence
The goal of this analysis was to investigate if choice at time t

(denoted by Yt) was influenced by the response at time t-1, and

contributing to the value of the stimuli. For each subject, the

following ordinal multinomial generalized linear model (GLM)

was fit:

log
p1z � � �zpj

pjz1z � � �zpJ

� �
~b0jzb1Yt{1 ð1Þ

where J is the number of response categories (four in this case), b0j

is the intercept for the jth response category, and b1Yt{1 is the

autoregressive component corresponding to the subject’s choice on

the previous trial. The response category probabilities are denoted

pj , with p1z � � �zpJ~1. In order to test the null hypothesis of no

interdependence, two versions of the model were fitted: one with

the autoregressive component and one without it (i.e., with b1~0).

The hypothesis was tested using the difference-of-deviance

statistic, which is given by

DD~2 l b̂bAR; y
� �

{l b̂bnoAR; y
� �h i

ð2Þ

and distributed as x2
df ~1. In this formula, y is the vector of

observed responses, l b̂bAR; y
� �

is the maximum likelihood of the

estimates of the full model with the autoregressive term, and

l b̂bnoAR; y
� �

is the maximum likelihood of the estimates of the

restricted model.

Neurophysiological recordings
The recording arrays consisted of 4 platinum-iridium disc

electrodes (2.3-mm exposed diameter, 5-mm inter-electrode

distance) embedded in a silicon membrane. A subgaleal contact

was used as a reference. Simultaneous recordings were obtained

from multi-contact hybrid-depth electrodes, stereotactically im-

planted bilaterally into the medial temporal lobe and amygdala.

Recording electrodes remained in place up to 2 weeks under the

direction of clinical epileptologists.

Electrode contact site localization
For each subject a whole brain, high-resolution, T1-weighted

structural MRIs (resolution = 0.78 mm, slice thickness = 1.0 mm,

average of two scans) were acquired, before and after electrode

implantation, to determine recording contact locations relative to

preoperative brain images. The data were acquired in a Siemens

3T scanner. We also acquired thin-sliced volumetric computed

tomography (CT) scans (in-plane resolution = 0.51 mm, slice

thickness = 1.0 mm) pre- and post implantation. The CT and

fMRI data were co-registered using a three-dimensional (3D)

linear registration algorithm [86]. Coordinates for each electrode

contact obtained from post-implantation CT volumes were

transferred to pre-implantation MRI volumes. Results were

compared with intraoperative photographs to ensure reconstruc-

tion accuracy [86]. OFC contacts were mapped to cytoarchitec-

tonic areas 10 (anterior), 13 (posterior), 14 (medial) and 47/12

(lateral), based on the classification proposed in [53,54].

LFP data preprocessing. Local field potential data were

filtered (1.6 to 1,000-Hz band-pass, 12 dB/octave rolloff),

amplified, and digitally recorded (original sampling rate

2,034.5 Hz) from low-impedance multicontact subdural grid

electrodes (Ad-Tech Medical Instrument, Racine, WI) placed

over ventral prefrontal cortex, and from depth electrodes in the

amygdala. All recordings were then digitally downsampled to

500 Hz.

Spectral coherence analysis
The spectral coherence was computed for every pair of

electrodes over all trials for a chosen interval. The coherence

between simultaneously recorded electrodes r and c is given by

Crc fð Þ~ DSrc fð ÞD2

Srr fð ÞScc fð Þ ð3Þ

where the cross-spectrum is

Src fð Þ~SXr fð ÞX �c fð ÞT: ð4Þ

Xr fð Þ denotes the Fourier transform of the time-series from the

rth electrode contact and Xc fð Þ from the cth electrode contact. The

auto-spectrum is obtained when r = c. Although the cross-

spectrum can be estimated directly using the Fourier transform,

some form of tapered smoothing is necessary to reduce estimation

bias due to the finite length of the dataset. A multitaper technique,

in which a set of orthogonal tapers is used to average within data

segments, has been proven useful in analyzing non-stationary

neural time series [87]. Based on earlier work [88,89], a system of
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four orthogonal tapers with prolate spheroidal functions was

employed. The spectral and cross-spectral estimates included both

averaging over trials as well as tapers, which provides a better

(unbiased) method for computing Fourier based spectral Granger

causality.

Spectral conditional Granger causality analysis
In order to investigate the directionality of influence between

the amygdala and OFC, a spectral Conditional Granger Causality

(CGC) [46,90–96] measure was computed between all pairs of

amygdala-OFC electrodes. Intuitively, the CGC tests if activity in

a source area can be used to predict subsequent activity on a target

area, as should be the case if the source area modulates activity in

the recipient area. Importantly, CGC takes into account the

predictive effect of all other contacts, which allows us to distinguish

between direct influences of interest, and artifactual indirect

influences. Note also that CGC need not be symmetric, and thus it

allows for identification of directional influences.

A non-parametric spectral approach developed by Dhamala

and colleagues [92,93] was used to compute spectral CGC over a

given interval of time. This method has several advantages over

more conventional multivariate autoregressive (MVAR) models.

First, it permits the direct computation of spectral CGC measures,

without having to estimate first the associated MVAR models.

This is advantageous because misspecification of the associated

MVAR models can lead to spurious findings of CGC, and

identifying the correct model order is difficult, particularly under

conditions of non-stationarity [97]. Second, the method is

multivariate and conditional, in the sense that the simultaneous

time series from all electrodes are included in in order to account

for direct and indirect influences between contacts. Third,

estimates of CGC based on spectral transforms of MVAR models

of recorded LFPs are likely to violate key statistical assumptions

[94]. In contrast, the Dhamala non-parametric approach sidesteps

several of these problems.

As noted above, the cross-spectrum Src fð Þ can be estimated

directly using the Fourier transform Xr fð Þ of each time series.

Here, trials as well as tapers were averaged, which provided a

better (unbiased) method for computing spectral based CGC. The

Fourier transform was calculated from 0 to 40 Hz. Inclusion of

higher frequencies had no qualitative effect on the results. For the

example case of two electrodes, the spectral density matrix is given

by

S fð Þ~
S11 fð Þ S12 fð Þ
S21 fð Þ S22 fð Þ

� �
: ð5Þ

The diagonal of the matrix contains the auto-spectra and the

off-diagonals contain the cross-spectra. This formula can be

expanded to include more terms in the case of more than two

electrodes.

The spectral density matrix was factored into minimum-phase

spectral factors that subserve the intrinsic and causal components

of the total power spectrum [98].

S(f )~yy� ð6Þ

where y is the minimum-phase spectral density matrix factor and

* denotes the conjugate transpose. An expansion of y

y ei2pf
� 	

~
X?
k~0

Akei2pfk, ð7Þ

was then used to compute the covariance matrix

S~A0AT
0 ð8Þ

and the transfer function matrix

H(f )~yA{1
0 : ð9Þ

In the unconditional example of two electrodes, the spectral

CGC from the rth to the cth electrode is given by

Ir?c fð Þ~ log
Scc fð Þ

Scc fð Þ{ Srr{
S2

cr
Scc


 �
DHcr fð ÞD2

0
BB@

1
CCA, ð10Þ

which is the log ratio of total power to intrinsic power [46]. It

should be emphasized that in this study the full spectral

Conditional GC was computed taking into account the contribu-

tion of mediated causality of all electrodes, and is based on a

generalization of the expression in Eq. 10.

Routines from the Fieldtrip Toolbox were used for spectral

analysis and to factor the spectral matrix [99]. Normal parametric

statistical tests for this spectral CGC measure are not available;

therefore nonparametric permutation tests are required to

compute the necessary null distributions for hypothesis testing.

Contact-Frequency Cluster Permutation Test
LFP data across trials were randomly rearranged independently

for each contact, which destroys the systematic causal relationship

between contacts leaving only chance occurrence [94,96]. The

permutation test affords complete freedom in choosing the test

statistic, which makes the approach particularly useful for testing

differences in directional flow between contacts (net CGC) with no

known asymptotic sampling distributions.

The net CGC test statistic was constructed in the following way.

First, CGC was computed for all amygdala-to-OFC and OFC-to-

amygdala contact pairs, and the net CGC was computed as the

simple difference.

The hypothesis that information flows in a dominant directional

manner between amygdala and OFC was tested based on spectral

CGC computed across contact pairs and frequencies up to 40 Hz.

Depending on the available contacts this would result in the

neighborhood of a combination of 960 contact-pair by frequency

comparisons. Due to the large number of statistical comparisons

the family-wise error rate (FWER) inflates, which leads to the

multiple comparisons problem. Bonferroni correction is overly

conservative and false-discovery-rate correction only weakly

controls FWER. To address this problem, a nonparametric

strategy originally proposed by Bullmore et al. [100] was followed,

and more recently described for testing hypotheses related to

spatiotemporal (contact, time) and spectrotemporal (frequency,

time) grids by Maris and Oostenveld [101]. The approach is

known as cluster-level statistical testing, which uses clusters of
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neighboring coordinated regions of the analysis grid to reduce the

number of independent comparisons. Trials were permuted and

the net CGC statistic was calculated, and then the sum of

suprathreshold statistics within each cluster were used to generate

the mass of the cluster. Finally, the maximum cluster-level statistic

over the entire contact-frequency grid was stored as a single null

statistic for each permutation step. Because the trials were shuffled,

any suprathreshold maximum sum would find itself located in any

particular cluster in the grid by chance alone. The p-value of the

test statistic is then derived from comparing the resulting null

permutation distribution to the single test statistic computed in the

same fashion on the original non-permuted data. Note that this

approach addresses the multiple comparisons problem by reducing

the statistical inference to a single comparison. The cluster-based

statistic does to some degree depend on the threshold used to

determine which samples on the grid are used to compute the sum

in each cluster. The threshold for computing the mass on each

cluster of the contact-frequency grid was 2 standard deviations

computed from the full set of permuted net CGC values. The

threshold choice does not affect the FWER, but it does minimally

affect the sensitivity of the test [101].

The spatiospectral (contact-pair, frequency) grid of net CGC

values was formed using single contact-pairs by 5 Hz tiles to form

either 96 (PT180 and PT206) or 112 clusters (PT258). Net CGC

values that exceeded the set threshold were then summed to create

the cluster mass [100]. Finally, the single largest cluster mass

across the spatiospectral grid was selected as the test statistic to be

evaluated against the null permutation distribution. The location

of the maximum cluster (contact-pair, frequency) was also

recorded.

The permuted distribution was constructed from 1000 steps of

random rearrangement and subsequent spectral CGC computa-

tion. We were interested in testing information flow in both

directions, so a two-sided test was performed using the maximum

absolute value as the test statistic. The clustering step was

performed separately for positive and negative net CGC

permutation samples to test in both tails. The permutation p-

value was determined by computing the probability of observing

the test statistic value or more extreme based on the null

permutation distribution. A p-value for each amygdala-OFC

contact-pair was computed for each successive order of clusters

(second most extreme, third most extreme, etc.) over all contact-

pairs and frequency with FWER controlled at .05 [101,102].

Time-frequency spectral coherence analysis
In order to capture changes in coherence within trials, spectral

analysis was computed on short moving windows from 21 to 2 s

from the stimulus onset. For this application, a 300 ms (containing

150 time points) multitaper moving window was used in time steps

of 10 ms. The time series data for all trials were treated as

realizations from a common stochastic process. Consequently, the

spectral density was averaged over trials and tapers. Prior to time-

frequency spectral analysis, the mean at individual time points

across trials was subtracted from the single trial LFP and then

scaled by the standard deviation. Frequencies ranged from 5 to

40 Hz in one Hz steps.

Time-frequency spectral CGC analysis
In order to capture changes in directed information flow within

trials, the non-parametric spectral analysis was repeated on short

moving windows from 21 to 2 s from the stimulus onset. The

spectral density matrix was factored into minimum-phase spectral

factors for each window. Although very short windows are known

to lead to biased estimates [95], the combination of multitaper

windowing and non-parametric estimation of the spectral density

matrix, have been shown to rapidly diminish the problem as the

window length is lengthened [92]. Single trial LFPs were

preprocessed in a similar manner to that of spectral coherence

Time-frequency and spanned the equivalent space specified for

spectral coherence.

Time-Frequency Cluster Permutation Test
A cluster permutation test was performed for each subject by

random rearrangement of trials as described above, then time-

frequency coherence or net CGC over 1000 permutation steps was

calculated. The same cluster-permutation approach as described

above was used with the following exceptions: (1) the cluster

suprathreshold maximum was identified over a (time, frequency)

grid of coherence or net CGC values in 280 ms by 2.5 Hz tiles for

a total of 154 time-frequency clusters, and (2) the contact-pair net

direction was analyzed between each of the amygdala-OFC pairs

and then aggregated over all of the amygdala and OFC contacts

for each subject. The FWER was controlled at 0.01, and the

corresponding critical values were used to mask any clusters that

fell within the central region determined by the single null

permutation distribution. The frequency-time clusters that ex-

ceeded the 99th percentile were left unmasked. It is important to

note that the mask was determined by a single null permutation

distribution of maximum (extreme) suprathreshold sums. Cluster-

permutation tests are generally more powerful, taking advantage

of correlations within clusters, consequently elemental time-

frequency samples within the cluster cannot be tested individually

[103]. One-tailed time-frequency permutation tests were also

performed on the directional spectral CGC on OFC-to-amygdala

and amygdala-to-OFC, in addition to the net spectral CGC, in

order to test whether the directional magnitudes differ significantly

from 0.

Note that unlike spectral CGC, spectral coherence is exclusively

pairwise and not conditioned on all other time series. The total

dependence between two time-series, which is directly related to

spectral coherence, can be decomposed into measures of Granger

causality for each direction plus a term that measures the

instantaneous interaction, perhaps due to a common driving

input [46,48,91,104]. Generally speaking, when the two Granger

terms reduce to zero, the total dependence is composed primarily

of this instantaneous interaction or correlation. This can explain

differences between spectral coherence and Granger causality

measures, such as how regions of time-frequency that demonstrate

strong coherence can have near zero magnitudes of Granger

causality.

Hilbert-Huang Transform Analysis
This method uses a sifting process to first decompose a time-

series into a set of intrinsic oscillatory mode functions (IMFs)

having well-defined instantaneous frequencies by empirically

identifying the physical time scales intrinsic to the time-series

[59]. A signal is considered to be an IMF if the number of its local

extrema and the number of its zero crossings is either the same or

differ by one. The IMFs were then Hilbert transformed to obtain a

meaningful instantaneous frequency and amplitude as a function

of time. This method allows for the analysis of non-stationary time-

series and provides a better temporal and frequency resolution

compared to band-pass filtering followed by a Hilbert transform.

Band-pass filtering of the time-series, and then application of the

Hilbert transform to extract the instantaneous frequency and

amplitude for each passband of interest is not optimal, given that

the resulting instantaneous frequencies and amplitudes may not be

interpretable, particularly for wider bandwidths [105]. The
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instantaneous frequency and amplitude are obtained by means of

the analytic signal of the jth IMF:

a tð Þe{ih tð Þ~IMFj tð ÞziH IMFj tð Þ
� 


ð11Þ

where the Hilbert transform is

H IMFj tð Þ
� 


~
1

p
PV

ð?
{?

IMFj uð Þ
t{u

du ð12Þ

where PV is the principal value of the singular integral [106]. The

instantaneous frequency is obtained from the phase as

f tð Þ~ 1

2p

dh tð Þ
dt

ð13Þ

and the instantaneous amplitude is a tð Þ, which is the focus of the

next section.

A set of IMF signals was step-wise sifted across the frequency

range from 0 to 40 Hz and the IMFs spanning the alpha band

range were subjected to further analysis. The Hilbert-Huang

transform for all samples of a tð Þ across trials and contacts where

collected at each time step t and were conditioned on whether the

choice valance was positive (willing to eat) or negative (not willing

to eat). The mean and standard deviations were computed at each

time point and subjected to a standard two-tailed t-test FDR

corrected to identify when in time the two labeled amplitude

distributions differ.
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