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Abstract: This paper provide a large-deviations approximation of the tail
distribution of total financial losses on a portfolio consisting of many posi-
tions. Applications include the total default losses on a bank portfolio, or
the total claims against an insurer. The results may be useful in allocat-
ing exposure limits, and in allocating risk capital across different lines of
business. Assuming that, for a given total loss, the distress caused by the
loss is larger if the loss occurs within a smaller time period, we provide a
large-deviations estimate of the likelihood that there will exist a sub-period
of the future planning period during which a total loss of the critical severity
occurs. Under conditions, this calculation is reduced to the calculation of
the likelihood of the same sized loss over a fixed initial time interval whose
length is a property of the portfolio and the critical loss level.

1 Introduction

We1 provide a large-deviations approximation of the tail distribution of total
financial losses on a portfolio consisting of many positions. Applications
include the total default losses on a bank portfolio, or the total claims against
an insurer. A key assumption is that, conditional on a common “correlating”
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factor Y , position losses are independent. For example, in the case of default
losses, Y could be the state of the business cycle. For the case of an insurance
portfolio, Y could include indicators of events causing multiple claims, such
as epidemics or natural catastrophes. Gordy [3] developed an asymptotic
estimate of the portfolio loss distribution that corrects for “granularity” in
presence of a one-dimensional source of default correlation.
The results include explicit calculations, conditional on a large portfolio

loss, of the probability of loss for each position, and the distribution of the size
of the position loss. This information may be useful in allocating exposure
limits for each type of position, and in allocating risk capital across different
lines of business.
We also address the fact that, for large losses, financial distress costs are

more severe if the losses occur over a relatively short period of time. Sudden
losses may cause extreme cash-flow stress, and investors may require more
favorable terms when offering new lines of financing over short time periods,
within which they may have a limited opportunity to gather information
about the credit quality and long-term prospects of a distressed financial
institution. Our results include conditions under which a large-deviations es-
timate of the likelihood of a failure-threatening loss during some sub-interval
of time during a given planning horizon can be calculated from the likelihood
of the same size loss in a certain fixed “key time horizon.” From this key
time horizon, one can then estimate the conditional distribution of losses on
each type of position given the large portfolio loss of concern. Again, this
information may be of assistance in structuring a large portfolio so as to
withstand severe losses.

2 Motivation

Consider, for example, an insurance company with a large portfolio of property-
damage policies, each generating a stream of premiums whose present mar-
ket value exceeds the present market value of the associated uncertain future
damage claims. (This should be the case, at least at origination, for any
policy that the insurance company is willing to offer.) In perfect capital
markets, the event that total damage claims, net of premiums, exceeds the
capital of the insurance firm would trigger a recapitalization of the insurance
company, say by selling equity. The alternative of bankruptcy would entail
losing the net positive market value of the remaining policies. Losses up to
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the current date are sunk costs, and therefore irrelevant to the decision to
re-capitalize. Likewise, the initial level of capital would be irrelevant in per-
fect markets, for re-capitalization could occur at any time. In the classical
ruin-theory insurance model (for example [5, 6, 9]), however, the insurance
company with a given initial capital faces “ruin” whenever the remaining
capital, net of gains and losses, reaches zero. We depart from this classical
ruin-theory approach, as it ignores the incentive to re-capitalize at low levels
of capital.
While classical ruin theory unrealistically ignores re-capitalization, it cor-

rectly focuses on the importance, given the reality of imperfect capital mar-
kets, of a level of capital that is likely to withstand unexpectedly large ag-
gregate losses. In the event of insufficient capital to cover losses, raising new
capital is, in practice, expensive. For example, in order to entice new equity
investors to offer a given amount of capital, a firm that is better informed
about its prospects than are new investors would generally need to offer in-
vestors equity whose value to the firm is worth more than the amount of
capital raised. (See, for example, [7].) In sufficiently severe cases, especially
when large unexpected losses occur over a relatively short period of time,
it may be impossible to raise enough capital to meet obligations, and the
ongoing franchise value of the firm may be severely impaired or lost.
This paper provides some analytical guidance on the dependence of large-

loss probabilities on the structure of a portfolio with a large number n of posi-
tions, and on the “most likely way” that a large loss can occur. For example,
given a large loss, we calculate, for each type of position, the conditional
likelihood of loss on each type of position as well as the conditional distribu-
tion of exposure in the event of loss. These conditional calculations are to be
interpreted in the asymptotic (large n) sense of the Gibbs conditioning prin-
ciple (see, for example, [1, Section 7.3]). For instance, suppose positions are
of two types. A given fraction, say high-quality borrowers who are granted
large amounts of credit, experience large losses with small probabilities. The
remainder, say low-quality borrowers granted less credit, experience smaller
losses with higher probabilities. We show how to estimate, under conditions,
the expected loss on a policy of each type in the event of large loss. For each
given position type, this depends on the size of the total loss considered, and
on the probability distributions of losses on all other positions.
Given the costs of raising capital in a distress scenario, this in turn leads

to an analytical estimate of the financial distress costs attributable to each
policy type, and allows for the structuring of the portfolio so as to balance the
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effects of each type of policy on the total financial distress costs. For example,
we estimate the sensitivity of the large-loss probability to the fraction of the
portfolio of any given type, and to the scale of the exposure on a given type
of position. With bank portfolios, for instance, we might be interested in how
the probability that total default losses exceed a given threshold is sensitive
to the exposure limit for counter-parties of a given credit rating.
These calculations could also be done by brute-force simulation, and un-

der less restrictive conditions, but the large-deviations approach offers in-
sights that might not be apparent from mere numerical results.
After considering a static setting, we turn in Section 4 to the estimation of

the probability that, during some sub-interval of time during a given planning
horizon, there will exist financial losses that exceed a threshold, allowing for
the fact that financial distress costs are larger when losses are concentrated
over a smaller period.

3 Portfolio Calculations

A probability space (Ω,F ,P) is fixed. For a portfolio with a finite number
n of positions, position i will, at the time of revaluation of the portfolio,
experience a loss of ZiUi, where Zi has outcomes 0 (for no loss) and 1 (for
non-zero loss), and Ui ≥ 0 is the “exposure” (the amount that would be lost
in the event there is a loss). For example, with a loan portfolio, {Zi = 1}
is the event that i defaults and also has a non-zero exposure, and Ui is
the market value of the exposure, net of default recoveries. For the case of
insurance claims, [10] analyses associated statistics for fire-insurance policies.
The total loss on the portfolio is thus Ln =

∑n
i=1 ZiUi. Our main objec-

tive is to characterize, for a given x, the loss probability P(Ln ≥ nx), and,
conditional on the event that Ln ≥ nx, the probability distributions of Ui
and Zi. These conditional distributions are relevant to the structuring of
the portfolio from the viewpoint of trading off the expected profit from each
position type against the benefits of mitigating large losses.
We suppose that a “macro-environmental” variable Y can be chosen so

that, conditional on Y , the loss variables Z1, U1, Z2, U2, . . . , Zn, Un are in-
dependent. For example, in modeling credit risk, Y could incorporate key
business-cycle or industry-performance variables. For insurance risk, Y could
incorporate the major events such as natural disasters that affect the like-
lihood of individual losses. For simplicity, we also suppose that, for all i,
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Ui and Y are independent and that Y is discretely-valued (merely to avoid
numerical integration approximations).
We assume that a portfolio contains k types of positions, in the sense that

the distribution of {Y, Ui, Zi} is the same for any position i of a given type α.
The types are fixed. We use the notation “Uα” to denote a generic Ui variable
of type α, and likewise use “Zα,” and so on. We let δα(Y ) = P(Zα = 1 | Y ),
the Y -conditional loss probability for type α.
For bank portfolios, one may think of a “type” as a credit rating. The

common distribution of the loss within a given rating is the distribution of
exposures for that rating. For purposes of this analysis, we ignore information
that might in practice distinguish among different positions of a given rating.
In this sense, the probability distribution of Ui is intended to capture, to
some reasonable extent, the effect of variation of exposure within rating. An
alternative is to distinguish types by both rating and exposure class.

3.1 Large Deviations

In order to calculate the effect of increasing the number n of positions, we
suppose that the number of positions of type α is a fixed fraction qα > 0 of
the total number n (in essence it is qα(n) that is closest to qα while nqα(n) is
an integer. To simplify notations we suppress this dependence of qα on n).
For computing the probability of an unexpectedly large loss, the impor-

tant object to study is the cumulant generating function L( · | Y ) defined
by

L(s | Y ) = 1

n
logE

(
esLn

∣∣ Y )
=
∑
α

qα log (1− δα(Y ) + δα(Y )Mα(s)) , (1)

where Mα(s) = E(e
sUα) is the moment generating function for loss exposure

of type α, assumed finite for small enough s > 0. For example, we might
suppose that Uα is distributed exponentially with parameter βα, in which
case

L(s | Y ) =
∑
α

qα log

(
1− δα(Y ) + δα(Y ) βα

βα − s
)
, (2)
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when s < s0 = minα βα, and L(s | Y ) = ∞ otherwise. One then introduces
the Legendre Fenchel transform L∗( · | Y ) of L( · | Y ), by

L∗(x | Y ) = sup
s
{sx− L(s | Y )}.

That is, one solves for s = s(x, Y ) the equation

x = L′(s | Y ), (3)

and sets
L∗(x | Y ) = s(x, Y )x− L(s(x, Y ) | Y ).

Let s0(Y ) = sup{s : L(s | Y ) < ∞}. If s0 < ∞, we assume that L′(s | Y ) is
unbounded for s ↑ s0 (for example, as is true when Uα has an exponential
distribution for each α). Under this mild regularity condition, equation (3)
has a unique positive solution s(x, Y ) provided x1(Y ) < x < x∗(Y ), where

x1(Y ) = L
′(0 | Y ) = 1

n
E(Ln | Y ) =

∑
α

qαδα(Y )E(Uα), (4)

the mean loss per position given Y , and where

x∗(Y ) =
∑

{α: δα(Y )> 0}
qα ess sup{Uα} (5)

is the maximal value of the average loss per position. For example, for the
case above of exponentially distributed Ui, we have a unique positive solution
for any x > x1(Y ) =

∑
α qαδα(Y )/βα. (Here, x∗ = ∞ assuming δα(Y ) > 0

for some α.) Then, the probability of a “large” loss given Y is given by the
precise large-deviations (LD) approximation

P(Ln > nx | Y ) = pn(Y )(1 + o(1)), (6)

where, for x < x∗(Y ),

pn(Y ) = (2πns
2L′′(s))−1/2e−nL

∗(s | Y ), (7)

using for s = s(x, Y ) the solution of (3), and pn(Y ) = 0, for x > x∗(Y ). To
adapt the derivation of such approximations in [1, Theorem 3.7.4] to our set-
ting, one just shows that the distribution function of (Ln−nx)/

√
nL′′(s | Y )

is uniformly within o(n−1/2) of Φ(u)+n−1/2ε(u), where Φ( · ) is the standard
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Normal distribution function and ε′( · ) is some uniformly bounded, absolutely
integrable function, such that |ε(u)| → 0 as |u| → ∞. Using the indepen-
dence of {ZiUi}, it is not hard to establish the latter estimate, starting from
the Berry-Esseen bound for the contribution of each fixed type α.
If x < x1(Y ), then, for large n, we have by the law of large numbers

(LLN), that (6) holds for pn(Y ) = 1, while, obviously, P(Ln > nx | Y ) = 0 if
x > x∗(Y ). Thus,

P(Ln > nx) = pn(1 + o(1)), (8)

where pn =
∑
y P(Y = y)pn(y) is the weighted average of the above approx-

imations, with weights given by P(Y = y).
In a somewhat different setting for modeling default-risk correlation and

portfolio heterogeneity, Gordy [4] also computed the cumulant generating
function of the portfolio loss distribution, using a saddle-point approximation
of the higher-order terms represented in (8) by pno(1)).
For large n, conditioning on the the excessive loss {Ln > nx} and Y , we

have the following estimates of the conditional distribution of the losses on
each position, letting Qα denote the original law of a loss exposure Uα of
type α:

• The individual losses ZiUi remain independent and of identical law
within each type α, although Zi and Ui themselves are not independent
(as they were, unconditionally).

• The loss probability for a position is changed to the larger value

δ̂α(Y ) =
δα(Y )

δα(Y ) + (1− δα(Y ))/Mα(s) . (9)

• For those i of type α for which Zi = 1, the conditional law of Ui is
Mα(s)

−1 exp(su) dQα(u), where s = s(x, Y ) is the solution of (3).

• For those i of type α for which Zi = 0, the conditional law of Ui is the
original law, Qα.

For example, if Ui is unconditionally exponentially distributed with parame-
ter βα, then a position i causing a loss (Zi = 1) has a loss exposure Ui that is
conditionally exponential with parameter βα−s(x, Y ). This applies for cases
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Figure 1: Probability of a loss per position exceeding x, for two portfolio
sizes.

in which the environmental variable Y satisfies x > x1(Y ), that is, where
large deviations apply. (A rigorous, precise statement of this “principle” and
its derivation, is along the lines of [1, Sections 7.3.1 and 7.3.3].) Otherwise,
that is, with x < x1(Y ), because the mean loss exceeds x, the impact of
conditioning on {Ln > nx} causes no change in the law of ZiUi.

3.2 Numerical Example

We illustrate with a simple numerical example that will be extended as we
later consider additional calculations.
Suppose a bank has n = 10, 000 borrowers or other forms of counter-

parties of two types, high rated (α = 1) and low rated (α = 2). There are
two macro-environments, “growth” (Y has outcome g) and “recession” (Y
has outcome b). High-rated counter-parties constitute half (q1 = q2 = 0.5) of
the positions. In a growth environment, the high-rated default probability
is δ1(g) = 0.001, and the low-rated default probability is δ2(g) = 0.004. In a
recessionary environment, we suppose that δ1(b) = 0.0015, and δ2(b) = 0.10.
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Figure 2: Comparison of approximations based on large deviations, brute-
force Monte Carlo simulation, and Central Limit Theorem, of the uncondi-
tional probability that the loss per position exceeds x, at base-case parame-
ters and with n = 10, 000.

These illustrative parameters are very roughly consistent with the data for
high-grade and speculative-grade debt, as for example in [8]. We suppose that
growth occurs with probability P(Y = g) = 0.7 (so recession has probability
0.3). We will suppose that the exposures given loss are exponential with
means (in units of, say, $10,000) of 100 and 10 for high-rated and low-rated
counter-parties, respectively. (That is, E(U1) = 100 (β1 = 0.01) and E(U2) =
10 (β2 = 0.1).) The LLN average loss per position is x1(g) = 0.07 in a growth
economy and x1(b) = 0.575 in a recessionary economy.
Figure 1 shows the large-loss probability, as a function of x > x1(b)

for n = 10, 000, and also for a less diversified portfolio (n = 5, 000) that is
otherwise identical. Figure 2 illustrates a comparison between three methods
of the calculating the large-loss probabilities, Monte Carlo simulation (with
1 million scenarios), the large-deviations analytical method developed here,
and the approximation based on the central limit theorem. As this example
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Figure 3: Large-Deviation estimates of large-loss-conditional expected posi-
tion loss of each type (α = 1 and α = 2), given that the total loss per position
exceeds x.

shows, approximation based on the central limit theorem is not as well suited
for an examination of the extreme loss distribution.
Figure 3 shows how the high-rated and low-rated mean losses, conditional

(in the sense of (9)) on a large average loss x, depend on x in the bad state
(Y = b).
Because the exposures given default are exponential in this example, the

event of an average position loss of x = 0.6705 that occurs with LD-estimated
probability 0.001 is associated with conditional exposures for defaulting high-
rated counter-parties that remain exponentially distributed but with a sub-
stantial increase in mean exposure from the unconditional mean of 100 to a
conditional mean of

pg × (0.01− s(x, g))−1 + pb × (0.01− s(x, b))−1 = 155.53,
where pg = pn(g)P(Y = g)/pn is the large-deviations estimate of P(Y =
g |Ln > nx) based on (7). The low-rated counter-party mean exposures are
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of course less dramatically affected by this large-loss event, from 10 to 10.37,
similarly calculated.

3.3 Sensitivity Analysis

We now consider the marginal impact of a change in the structure of a port-
folio on large-loss probabilities. For example, in the case of a bank portfolio,
one may be interested in the impact of a change in policy toward increasing
the fraction qα of borrowers or over-the-counter (OTC) derivative counter-
parties of given credit rating. In practice, exposure limits are based on credit
rating (the higher the rating, the larger the allowed exposure). For example,
banks typically limit each of their OTC counter-parties, based on rating, to
positions whose probability distribution of exposure given loss has a given
high (say 95%) confidence level of no more than a given number. When con-
sidering marginal adjustments in exposure limits, we will let aα be a scaling
parameter for the distribution of Uα. For example, Uα may be distributed
uniformly on the interval [0, aα], or may be distributed exponentially with
parameter βα = 1/aα.
Recalling that pn is the precise LD approximation of P(Ln > nx) given

by (8), we get

d log pn
dqα

=
1

pn

dpn

dqα
= nE[Lα(s | Y ) |Ln > nx] + O(1) (10)

and

d log pn
daα

=
1

pn

dpn
daα
= n
qα
aα
E[sL′α(s | Y ) |Ln > nx] + O(1), (11)

where Lα(s | Y ) = logE(esZαUα | Y ) is the cumulant generating function for
loss in a loan of type α (so that L(s | Y ) = ∑α qαLα(s | Y )). The effect of
conditioning on {Ln > nx} in the weighting of the different outcomes of Y
is computed via Bayes formula using the LD approximation pn(Y ) of (7) for
P(Ln > nx | Y ). The parameter s = s(x, Y ) that solves x = L′(s | Y ) is as
above.
In deriving the above formulas, we assume that x∗ > x > x1(y) for

every outcome y of Y , so that the LD approximation applies in all economy
states. The derivatives above typically grow linearly with n. The extra
constants (independent of n) marked in these formulas as “O(1)” are explicit

11



and computable, but complicated. In general, one sets s(x, y) = 0 for those y
such that x < x1(y), reflecting the fact that these outcomes do not affect the
linear growth of the derivatives of pn. We repeat that these formulas are not
necessarily derivatives of P(Ln > nx), but rather of the LD approximation
pn of (8).
In our illustrative example, the average position loss x that is exceeded

with an LD estimated probability of 0.001 is x = 0.7343 . The estimated
sensitivity of this large-loss probability to increasing the fraction of low-rated
counter-parties is

d log pn
dq2

= pg × 3.11 + (1− pg)× 29.58
= 29.58,

where pg = pn(g)P(Y = g)/pn is the large-deviations estimate of P(Y =
g |Ln > nx) based on (7). The estimated sensitivity to increasing exposure
limits of high-rated counter-parties is

d log pn
da1

= pg × 0.4676 + (1− pg)× 0.0863
= 0.0863.

One can likewise estimate other sensitivities.

4 Time Evolution of Losses

For estimating the risk of large loss in a portfolio, the conventional value-at-
risk approach is to calculate the probability distribution of losses at a fixed
time horizon, for example as explained in [2, Sections 2.4.1 and 13.4]. The
ability of a financial institution to replace lost capital (or otherwise restruc-
ture its portfolio) in order to return to a safe condition depends, however, on
the period of time over which the loss occurs. For example, re-capitalizing for
a given large loss that occurs over one year causes a smaller financial distress
cost than would be caused by the same-sized loss occurring over a one-week
period. Rather than attempting to treat the high-dimensional joint distribu-
tion of losses at each time horizon, we will estimate the likelihood that there
exists some sub-interval of time over a given planning period, say one year,
over which financial distress costs exceed some critical level. Under condi-
tions, we will show that the probability of this relatively complicated event
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can be approximated with a calculation that is in the spirit of a conventional
value-at-risk calculation.
For simplicity, we will suppose that financial distress costs are propor-

tional to the size of the loss, with a proportionality constant that is mono-
tone with respect to the length of the time interval during which the loss
occurs. That is, a loss of ` incurred over an interval of time of length ∆ gen-
erates a financial distress cost of G(∆)`, for a given non-negative, monotone
non-increasing function G( · ). For tractability, we also suppose that G( · ) is
bounded and Hölder continuous.
The loss on position i occurs at a random time Ti. We let Zi(t) = 0 for

t < Ti, whereas Zi(t) = 1 for t ≥ Ti > 0. We assume that, given Y , the times
{Ti} of loss events are independent of each other and of the loss exposures
Ui, where the distribution of Ti is the same for any position i of a given type
α. We further assume that, for each outcome y of Y and for each type α,
the distribution function Fα(t | y) = P(Tα ≤ t | Y = y) is sub-additive in t.
That is, whenever 0 ≤ t ≤ 1−∆ ≤ 1,

Fα(t+∆ | y)− Fα(t | y) ≤ Fα(∆ | y) . (12)

This condition is satisfied whenever each loss time Ti has a monotone non-
increasing density, as for example when Tα is distributed exponentially with
parameter ηα(Y ), or uniformly.
Now, the total loss on the portfolio by time t is Ln(t) =

∑n
i=1 Zi(t)Ui.

Looking at a fixed planning period, say [0, 1], we wish to approximate

Pn(Y ) = P

(
sup

0≤ t≤ 1−∆≤ 1
G(∆)(Ln(t+∆)− Ln(t)) > nx

∣∣∣∣ Y
)
, (13)

for large n. We will eventually show, under conditions, that there is a key
event time horizon ∆∗ that allows us to approximate Pn(Y ) with

Pn(Y,∆
∗) = P

(
G(∆∗)Ln(∆∗) > nx

∣∣∣∣ Y
)
, (14)

which is in the spirit of a value-at-risk calculation, at a time horizon ∆∗ that
depends on the portfolio. (We emphasize, however, that ∆∗ also depends on
Y and x.)
Moreover, the distribution of the individual position losses conditional on

the large portfolio loss can be similarly approximated based on the key event
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horizon time ∆∗. That is, given Y and the actual event of concern,

B =
{

sup
0≤ t≤ 1−∆≤ 1

G(∆)(Ln(t+∆)− Ln(t)) > nx
}
,

the conditional distribution of the individual losses and their times, (Ui, Ti),
can be approximated by conditioning instead on Y and the simpler event

A(∆∗) = {G(∆∗)Ln(∆∗) > nx} .
Given Y and A(∆∗), the individual losses and their times, (Ui, Ti), remain
independent and of identical law within each type α. The conditional default
probability per loan, P(Tα ≤ ∆∗ | Y = y,A(∆∗)), is given by δ̂α(∆∗, Y ), cor-
responding as with (9), to the unconditional probability δα(∆

∗, y). The law
of Ti conditional upon A(∆∗) and {Ti ≤ ∆∗, Y = y} is the same as the law of
Ti conditional only upon {Ti ≤ ∆∗, Y = y}. For i of type α, the law of Ui con-
ditional upon A(∆∗) and {Ti ≤ ∆∗, Y = y} is now Mα(s)−1 exp(su) dQα(u),
for s as in (9). In contrast, the law of (Ti, Ui) conditional upon A(∆∗) and
{Ti > ∆∗, Y = y} is the same as the law of (Ti, Ui) conditional only upon
{Ti > ∆∗, Y = y}, that is, Ti and Ui are independent, the law of Ui is
unchanged, and the law of Ti is simply

Fα(t|Y=y)−Fα(∆∗|Y=y)
1−Fα(∆∗|Y=y) . The above state-

ments are to be understood also in form of the “Gibbs conditioning principle”
as in [1, Sections 7.3.1 and 7.3.3].
Now, we provide the arguments and additional technical conditions that

allow us to replace the more complicated severe-loss event B with the simpler
event A(∆∗), and define the key event horizon time ∆∗.
With each choice of ∆ we associate δα(∆, Y ) = P(Tα ≤ ∆ | Y ) and the

corresponding L(s |∆, Y ) and x∆(Y ), as in (1) and (4), respectively. For
example, with Ti exponential as above, δα(∆, Y ) = 1 − exp(−ηα(Y )∆). We
then have the (rough) LD approximation,

logPn(Y ) = −n inf
0≤∆≤1

I

(
x

G(∆)

∣∣∣∣ ∆, Y
)
+O(logn) , (15)

where, for x∗ > z > x∆(Y ), we set I(z |∆, Y ) = sL′(s |∆, Y )−L(s |∆, Y ) for
the unique s = s(∆, Y ) > 0 such that L′(s |∆, Y ) = z, while I(z |∆, Y ) =∞
if z ≥ x∗, and I(z |∆, Y ) = 0 if z ≤ x∆(Y ). The LD approximation (15) is
relevant when

x > sup
0≤∆≤1

G(∆)x∆(Y ) , (16)
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while otherwise Pn(Y ) is bounded away from zero, uniformly in n. Indeed,
the lower bound on Pn is obtained by fixing t = 0 and then applying (6)
and (7) for a ∆ ∈ [0, 1] that minimizes I(x/G(∆) |∆, Y ). The correspond-
ing upper bound on Pn requires us to exchange in (13) the supremum over
(t,∆) and the computation of the conditional probability. To this end, by
monotonicity of G( · ) and Ln( · ), we upper bound Pn(Y ) while restricting
the supremum in (13) to some t and ∆ ≥ 2θ that are integer multiples of
some fixed θ > 0, provided we change there G(∆) to G(∆− 2θ). Since G( · )
is Hölder continuous, with r > 0 sufficiently large and θ = θ(n) = n−r, we
have, for all n large enough,

sup
2θ≤∆≤1

{G(∆− 2θ)−G(∆)} ≤ n−1.

Consequently, after some algebra,

Pn(Y ) ≤ θ−2 sup
0≤ t ≤ 1−∆≤ 1

P

(
Ln(t+∆)− Ln(t) > n x

G(∆)
− log n

∣∣∣∣ Y
)

+ θ−2 P(G(0)Ln(1) > n logn | Y ).
(In the above, the factor θ−2 which is the number of possible (t,∆)-pairs to
consider, results from the union bound.) Applying Chebyshev’s inequality
(of the form used in deriving [1, (2.2.12)]), we see that the second term in
the above is of order O(exp(−cn log n)) for some c > 0, hence negligible.
Condition (12) implies that P(t < Ti ≤ t + ∆ | Y ) is maximal for each i at
t = 0, hence it suffices to consider only t = 0 (with Ln(0) = 0). To complete
the derivation, recall that for any z and ∆, by Chebyshev’s inequality,

P(Ln(∆) > nz − log n | Y ) ≤ ns exp(−nI(z |∆, Y )),
with s = s(∆, Y ). (See [1, (2.2.12)] for a similar bound, but without the
− logn correction to nz.)
Fix an outcome y of Y for which (16) holds and suppose the minimum of

I(x/G(∆) |∆, y) is obtained at a unique 0 ≤ ∆∗ ≤ 1. Set s = s(∆∗, y) > 0 as
above. Then, for large n, the “most likely way” for the effectively excessive
loss to happen is during the time interval [0,∆∗] (assuming also that in (12)
we have strict inequality for ∆ = ∆∗, for at least one type α per t > 0).
That is, under the above conditions, conditioning on Y and the actual event
B of concern is equivalent, in the sense of the Gibbs conditioning principle
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already mentioned, to conditioning on Y and the simpler fixed-horizon loss
event A(∆∗).
Continuing our illustrative example, we ignore for simplicity the growth

macro-economic state (now taking P (Y = b) = 1), and suppose exponential
default arrival times, with parameters chosen so as to match the one-year
default probabilities of the original example, which is otherwise preserved.
We take the proportional financial distress cost factor to be G(∆) = e0.9(1−∆),
so that a given loss that occurs instantaneously generates a multiple of e0.9

of the distress cost that would be generated by the same size loss over one
year. (This is arbitrary, and merely for the purpose of a simple illustration.)
For the average position loss x that is associated with a one-year LD-

approximate excess-loss probability of pn(b) = 0.001, the “key time horizon”
for purposes of analyzing large financial distress costs is ∆∗ = 0.90 years.
Defaulting high-rated positions have an associated large-loss conditional de-
fault probability over the period [0,∆∗] of approximately δ̂1(∆∗) = 0.0023,
compared to the unconditional default probability of 0.0014. For low-rated
positions, we have δ̂2(∆

∗) = 0.0587, compared to the unconditional proba-
bility of 0.0566. High-rated defaulting positions have a conditional expected
exposure of (0.01 − s(∆∗))−1 = 163.54, compared to the unconditional ex-
pected exposure of 100. For low-rated positions; the conditional expected
exposure is 10.40; the unconditional is 10.
In this sense, given the occurrence of a large financial distress cost some-

time during the year, the conditional expected loss associated with α-rated
positions is

xα = δ̂α(∆
∗)Mα(s)−1

∫ ∞
0

esuu dQα(u).

The dependence of x1 and x2 on portfolio diversification (n) is shown in
Figure 4 for exponential Qα, and in Figure 5 for uniform Qα of the same
respective means. For each portfolio size n, the threshold loss xn is chosen
for an estimate of 0.001 (according to pn(b)) of the large-loss probability
P(Ln > nxn). We have in mind a range of financial institutions that have
been structured and capitalized so as to sustain a loss that would occur during
a given year with probability 0.001. We are interested in the contribution of
individual counter-parties of each type to expected losses in the event of large
loss. The information in these figures shows that, with exponential distribu-
tions of loss exposures, at our base-case parameters, as one increases the size
of the portfolio beyond about n = 1100 names, the high-rated-high-exposure
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Figure 4: Conditional expected losses, with exponential exposure distribu-
tion.

counter-parties cease being the greater contributors to large losses, in this
sense, and the low-rated-low-exposure counter-parties become the greater ex-
pected contributors to large losses. From the viewpoint of estimated distress
losses, this information may be useful when choosing exposure limits.
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