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Abstract In this paper, making use of the’tHooft—Polyakov-Julia-Zeeansatz for the SU(2) Yang-Mills-Higgs
gauge field theory, we present the straightforward generalization of the Bogomoln’yi equations and its several
consequences. Particularly, this is shown that this idea is able to generate new types of non-abelian both dyons and
magnetic monopoles and, moreover, that within the new model the scalar field can be described through the
Coulomb potential, whereas, upto aconstant, the non-abelian gauge field becomes the Wu-Yang monopole.

Keywords: gauge field theories, SU (2), Yang-Mills-Higgs equations, " t Hooft-Polyakov monopole, Julia—Zee
dyon, Bogomoln’yi equations, BPS limit, non-abelian dyons, non-abelian magnetic monopoles, Higgs field,

Coulomb potential, Wu-Yang monopole

Cite This Article: Lukasz Andrzej Glinka, “On ’t Hooft-Polyakov Monopole, Julia-Zee Dyon, and Higgs
Field, throughout the Generalized Bogomoln’yi Equations.” Applied Mathematics and Physics, vol. 2, no. 3

(2014): 119-123. doi: 10.12691/amp-2-3-8.

1. Yang-Mills-Higgs Equations

The Yang-Mills—-Higgs theory is the non-abelian
Yang-Mills theory of the gauge field A" [1] coupled to
the Higgs field ¢® [2]. For the SU(N) gauge group, the
Lagrangian has the form
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are the strength tensor and the gauge-covariant derivative,
respectively, while g is a coupling constant, and f3 are

the (antisymmetric) structure constants of the Lie algebra
su (N) whose elements are the infinitesimal generators T,
of SU(N)
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and SU(N) is produced by formal exponentiation of su(N).
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m is a mass parameter, and A is a dimensionless constant.
The energy density
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where EX =cFX0 is the electric field and BX :%gk” R

is the magnetic field induction, is minimized HYMH = 0
for the Higgs vacuum
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which is degenerated, that is the set of vacuum expectation

values of the Higgs field forms a sphere Si on which all

the points are equivalent because the gauge transformation
connects them. Moreover, for ¢o = 0 there is the

spontaneous symmetry breakdown mechanism SU(N) —

UM, The field equations for the Yang-Mills-Higgs
theory (1) are
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and the Bianchi identities
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are satisfied for the dual field tensor
1
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2. 't Hooft-Polyakov-Julia—Zee Ansatz

Dyon, a hypothetical object carrying a non-zero both
electric and magnetic charges, was for the first time
considered through Julian Seymour Schwinger [3,4], who
applied this model as the phenomenological alternative to
quarks to describe a particle analogous to the flavor-
neutral JAy meson consisting of a charm quark and a
charm antiquark, known as charmonium, discovered soon
later [5,6]. Particularly, the Yang-Mills-Higgs system
was considered for the case of the SU(2) gauge group, that
is when the structure constants are the three-dimensional
Levi—Civita symbols &yC and the infinitesimal generators
in the fundamental representation are given by the Pauli

matrices G, as T, Z%O'a- In such gauge field theory, a

smooth nonsingular solution to the Yang—Mills—Higgs
equations, arising from the assumptions of spherical
symmetry and time independence of both the non-abelian
gauge field and the Higgs field
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known as the ’t Hooft—Polyakov ansatz, was considered in
the pioneering papers authored through Gerardus ’t Hooft
[7] and A.M. Polyakov [8,9], which with the boundary
conditions

K(&—>0)>LH(&—>0)<0(E),

(11)
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is known as the ’t Hooft-Polyakov monopole. In the
context of gauge field theories, dyons were for the first
time considered as the solutions to the Yang-Mills—Higgs
equations through Bernard Julia and Anthony Zee [10],
who supplemented the 't Hooft—Polyakov ansatz by

%$,J(r—>0)—>0,‘](r—>oo)—>ch (12)

where C is a constant. The’t Hooft-Polyakov-Julia—-Zee
ansatz is compatible with the Lorentz gauge 6”A2 =0

A2 =

which gives
sarkvik =0, (13)

that is rxVk =0, and, particularly, is satisfied through
each spherically symmetric function K.

3. Bogomol’nyi—-Prasad-Sommerfield
Limit

The only known analytical solution occurs for the
Bogomol’nyi-Prasad—Sommerfield (BPS) limit [11,12],

that is A — 0. Then, the Higgs field is massless but the full

gauge invariance remains broken due to its non-zero
vacuum expectation value. It is easy to see that the energy
calculated by (5)
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where V :lThC((pa(pa —gog) is the scalar field potential.,
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The minimum of (14) in the BPS limit occurs for the
Bogomol’nyi equations
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The Gauss law for electricity for E = E® Pa gives
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Consequently, one receives
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is the fine-structure constant. Through
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Einstein’s relation ey = Mc? , the effective mass M
satisfies the Bogomol’nyi bound

M > f1ra [ﬂsin a, +q—McosaCj, (22)
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And the equality holds in the BPS limit. For the’t
Hooft—Polyakov monopole, in the BPS limit, one has

M = po/drar ML (23)
ec
the total energy density of such a solution is
k 1 B’ & 2
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and the Bogomol’nyi equations (17)-(16) become
EZ =0,BX = \[uphcD¥p,. (25)

The subject of non-abelian both magnetic monopoles
and dyons has already met a certain interest, Cf. the Refs.
[13-44] and references therein.

4. Generalization of
Equations

Bogomol’nyi

Let us generalize the BPS solution to any A
Considering the Yang-Mills—Higgs energy in the form

EYMH = é€vym +8H,Where

&M _jd x( Ek Ea+inBa], (26)
211
where
Ek = B2 —cphcey D o® — ¢V Bk, @7)
Es=6,,04E)
gﬁ = BE —C ,uohcaz Dk(Da —C«/,U()Vﬂzg‘ka, (28)
~k i=b
Ba =5ab5kj B]
and
za a PP =k kj b
Sk = 6,0 +6,7—3¢,6a = 056 57, (29)

4

' , , a . o
5k = 0,68 +5, (’|’ |“;" X =557, (30)
4

and oy, ap, B, B, 61, 65,8, 5, are dimensionless

constants, and
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where the following consistency conditions hold
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The minimum of (35) is not only the Higgs vacuum, but

also Ek =0 and éﬁ‘:o, giving the BPS limit, or
equivalently
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If, moreover, this mass identically vanishes, that is
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then one has the condition
jd3xv =0, (41)

which includes, as the particular situation, the BPS limit,
but in general V is not necessary zero. Similarly, for (38)
the particular case
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is true if and only if (41), also for the BPS limit. In general,
the bound
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which for al = sinac, a2 = cosac is the Bogomol’'nyi
bound, is true for

[d®xv =0, (44)

The condition (32) gives eight in equivalent solutions
oy =1sing, & a, ==*CosSa, (45)
oy = *Cosa, & a, =1tsingg, (46)

whereas the condition (33) presented in the following
form
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and parameterized as A +B = 1, also leads to eight
solutions
A=4sing, & B==+cosf,, (48)
A =+cosf, & B=tsing,, (49)
where fc must not be related to ac in general. Then, one
obtains
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which, along with (36) and (37), lead to the system of
equations for a dyon
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For the 't Hooft —Polyakov monopole, J = 0, (57), (58),
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and, therefore, one obtains the solutions

|<=_/1+E —£2, (65)
oy Vhe

lgz
O
H=¢hezﬁ;1 he (66)
g A m 3 §
(00

Consequently, the Higgs field and the gauge field are
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whereas simultaneously the scalar field potential V
satisfies the following differential equation
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Interestingly, in the BPS limit, the "t Hooft—Polyakov
monopole is described through H = 0 and K = £1. Then,

¢*=0,forK=1also A} =0, while for K =1k
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where (sz )WY is the Wu-Yang monopole solving the

SU(2) Yang-Mills theory without the Higgs field [45].
Nevertheless, one can also consider the situation wherein
G =0, or, equivalently

By By
a—l(52+51)_a—2(51 +8,). (72)
Then, the gauge field is either trivial or (71), while the
Higgs field is
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and its straightforward integration gives two possible
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However, for the special case &,=-6, and
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which is the Coulomb potential. In such a situation, taking
& :h—ggooro and V, :@%, where ry is any initial
e )

value of r, which particularly can be identified with a
minimal scale, the configuration of fields is established
throughout the gauge field given through the solution (71),
where as the Higgs field has the following form

a
ot =50 /ir—. (79)

5. Summary

We have seen that generalization of the Bogomoln’yi
equations is realizable, and leads to potentially new results
for non-abelian both dyons and magnetic monopoles. It

should be emphasized that the idea of this paper was based
on the author’s monograph [46], and we hope for its
further development.
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