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Abstract. It is well known that the problem of finding the shortest path amid
3-D polyhedral obstacles is a NP-Hard problem. In this paper, we propose an effi-
cient algorithm to find the globally shortest path by solving stochastic differential
equations (SDEs). The main idea is based on the simple structure of the shortest
path, namely it consists of straight line segments connected by junctions on the
edges of the polyhedral obstacles. Thus, finding the shortest path is equivalent
to determining the junctions points. This reduces the originally infinite dimen-
sional problem to a finite dimensional one. We use the gradient descent method
in conjunction with Intermittent Diffusion (ID), a global optimization strategy, to
deduce SDEs for the globally optimal solution. Compared to the existing meth-
ods, our algorithm is efficient, easier to implement, and able to obtain the solution
with any desirable precisions.

1. Introduction

Finding the shortest path in the presence of obstacles is one of the fundamental
problems in path planning and robotics. The problem can be described as follows:
given a finite number of obstacles in R2 or R3, what is the shortest path connecting
two given points X, Y while avoiding the obstacles. The problem has received great
attention during the last few decades, and many techniques have been developed for
polygonal obstacles in R2, where the problem can be reformulated as an optimization
problem on a graph, and therefore can be solved by combinatorial methods. For
example, by using the shortest path map method, Hershberger and Suri [6] found
an optimal O(n log n) polynomial time algorithm where n is the total number of
vertices of all polygonal obstacles. We refer to [8, 9] for a survey of the results and
references therein. However, Canny and Rief [1] proved that this problem in R3

becomes NP-hard under the framework known as “configuration space”. This is
mainly because the shortest path doesn’t necessarily pass through the set of vertices
of polyhedrons. Instead, it may go through the interior points of edges, and this
makes the optimal algorithm in 2-D fail.

Two different approaches were developed later to overcome this difficulty. One
is to find a path that is 1 + ε times the length of the shortest one. The idea is
to subdivide the edges in certain ways and adopt the same optimal combinatorial
methods which are effective in R2. Following this idea, Papadimitriou developed an
algorithm in [10] with complexity O(1ε ). In a special case where the shortest path is
unique, one can define the precision δ of the problem, which is the difference between
the shortest path and the second shortest path. Given ε < δ, a faster algorithm was
developed in [2] with complexity O(log(1ε ) + P (1/δ)) for some polynomial P . The
idea is to apply the appoach in [10] to obtain a good initialization within error δ to
the shortest path, and then use a gradient descent strategy to improve the accuracy
to ε.
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Another commonly used approach divides the problem into two parts: (i) find the
sequence of edges that the shortest path may go through, and (ii) find the optimal
connecting points on those edges. For convex polyhedral obstacles, it is observed in
[13] that the total number of possible sequences are of order O(n7kkk) where n is the
total number of vertices and k is the number of obstacles. Part (ii) is proven to be
NP-hard [5]. A different method, called unfolding technique, was introduced in [11]
under a theoretical computation model in which it assumes any infinite-precision
real arithmetic operation requires constant time. However, this assumption may not
be practical.

On the other hand, several PDEs based methods have been proposed to tackle the
shortest path problem with obstacles having smooth boundaries. For example, path
evolution method finds the solution by solving a 2-point boundary value ordinary
differential equation (ODE), resulting local optimal solutions. The front propagation
method finds the global solution by solving an eikonal equation, a partial differential
equation (PDE). The numerical solution of the eikonal equation can be computed
by fast marching [12] or fast sweeping method [14].

In [4], we proposed a different algorithm called Evolving Junctions on Obstacle
Boundaries (E-JOB) for finding the shortest path. E-JOB is a general framework
which can be applied to environment with obstacles of arbitrary shape (continuous or
discrete) in any dimension (R2,R3 or higher). The key idea is dimension reduction.
It takes advantage of a simple geometric structure of the shortest path, i.e. the
shortest path is composed by line segments and arcs on the obstacle boundaries.
The shortest path is determined completely by the junctions of those segments. In
this way, the problem becomes how to find those junction points on the boundaries.
In other words, the original infinite dimensional problem of finding the whole path
is converted to a finite dimensional problem of finding only the junction points. The
optimal position of those junctions can be determined efficiently by the gradient
descent method. To avoid the problem of stuck in local minimizers associated,
a global optimization strategy called intermittent diffusion (ID) is adopted. This
strategy adds random perturbations to the ODEs of the gradient descent method
in a temporal discontinuous fashion, which leads to stochastic differential equations
(SDEs). It obtains the globally shortest path with probability 1 − δ where δ is an
arbitrarily small number.

In this paper, we focus on applying E-JOB to the shortest path problem with
polyhedral obstacles in R3. The restriction on polyhedral obstacles allows us to
achieve further dimension reductions. For obstacles with smooth boundaries, the
implementation of E-JOB requires computations of geodesics on the boundaries
between two given points. In [4], this is achieved by either traversing the boundaries
in R2, or fast marching on the boundary surfaces in R3. However, for polyhedral
obstacles, the geodesics also has a similar simple structure, i.e. the geodesic between
two points on a polyhedron is a conjunction of line segments whose ending points
are located on polyhedron edges. And to determine the geodesic is equivalent to
determine those junction points. Therefore the overall shortest path connecting X
and Y is merely a conjunction of line segments whose ending points lie on obstacle
edges. In other words, the domain for each junction is an 1-D interval. This makes
the algorithm extremely simple and efficient.

A feature of this study is that we do not restrict the obstacles to be convex polyhe-
drons. The algorithm we develop can equally be applied to non-convex polyhedrons.
For polyhedrons with Euler characteristic 2, which include all convex polyhedrons
and concave polyhedrons without holes, our algorithm can find the globally optimal
path with probability arbitrarily close to 1 in a finite time. However, when dealing
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with more sophisticated polyhedrons, for example, polyhedrons with complicated
holes, certain topological problems emerge, and prevent us from obtaining the glob-
ally optimal path. We will discuss this issue at the end of the paper as well as some
possible solutions.

It should be noted that our approach resembles the one in [2] in the sense that both
employ a gradient descent strategy. However, before the strategy can be applied,
the method in [2] requires the assumption that the shortest path is unique, and an
initialization that approximates the shortest path within error δ (precision) to start
with (achieved by using [10]). Our approach needs neither of them. In fact, our
approach can be viewed as a way to find both the edge sequence and the optimal
connecting points in a unified manner, thanks to the introduction of randomness into
the differential equations. Below, we summarize some advantages of our algorithm:

(1) The algorithm can obtain the shortest path in any precision. This is because
only a system of SDEs needs to be solved which involves no subdivision of
edges.

(2) The algorithm is able to handle non-convex polyhedral obstacles.
(3) The algorithm is easy to implement.
(4) The algorithm is fast. Since we solve an initial value problem of SDEs, the

results can be obtained efficiently by various established schemes.

The paper is arranged as follows. In Section 2, we give the derivation of the
algorithm following the ideas presented in [4]. The algorithm is then presented
whose details follows afterwards. In Section 3, we give several interesting examples.
Finally, we discuss the topological issues arosen when dealing with polyhedrons with
holes.

2. New Algorithm

In this section, we present our new algorithm for the shortest path problem with
polyhedron obstacles. We start with some mathematical description of the problem,
through which we introduce notations needed in the rest of the paper. The algorithm
follows afterwards and its details are presented at the end of this section.

Let {Pk}Nk=1 be N polyhedral obstacles in R3. Each obstacle Pk is determined
uniquely by its vertices, edges and faces. Denote V,E, F the set of vertices, edges
and faces of Pk respectively. We do not limit the polyhedrons to be convex. However,
we will focus on polyhedrons without holes in this section, i.e. polyhedrons whose
Euler characteristic is 2. The Euler characteristic is defined by

χ = |V | − |E|+ |F |.
Polyhedrons with holes will be discussed in the last section. For any edge e ∈ E, it
has a representation

e = (u,v)

where u,v are the coordinates of the ending points of e. Any point x on edge
e = (u,v) can then be represented by the following expression

(1) x(u,v, θ) = θu + (1− θ)v.
Thus to determine the position of a point on an edge, one only needs to find its
corresponding θ.

2.1. Geodesics on polyhedrons. For any two points x, y on the edges of Pk,
we can define the distance dk(x, y) between them to be the length of the shortest
path on Pk connecting x and y. If we view Pk as a surface in R3, i.e. a two
dimensional manifold, then dk(x, y) is nothing but the geodesic on Pk connecting x
and y. For instance, for any x and y in a tetrahedron, d(x, y) = ‖x−y‖ since the line
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segment joining them is on the surface. For general polyhedrons, the shortest path
is composed by a sequence of line segments connected to each other. To be more
specific, the shortest path can be represented by (x0, x1, x2, . . . , xnk

, xnk+1) where
x0 = x, xnk+1 = y and each xi is a point on some edge ei = (ui,vi). The shortest
distance dk(x, y) therefore equals

dk(x, y) = L(x1, x2, . . . , xnk
) =

nk∑
i=0

‖xi+1 − xi‖.

Denote xi = θiui + (1− θi)vi, we then have

L(θ1, . . . , θnk
) = L(x1, . . . , xnk

) =

nk∑
i=0

‖θi+1ui+1 +(1−θi+1)vi+1−θiui− (1−θi)vi‖.

2.2. Structure of the shortest path. A path is a curve γ ∈ R3, which is a
continuous map

γ(·) : [0, 1]→ R3.

We denote L(γ) the Euclidean length of the path γ. We are concerned with all
feasible paths F, i.e. paths that don’s intersect with any obstacle Pk. The shortest
path connecting X and Y is then given by

γopt = argminγ∈F L(γ).

In [4], we proved that the shortest path has a simple structure, i.e. it is composed
by line segments outside the obstacles and paths on the boundary of the obstacles.
Since all the obstacles here are polyhedrons, the paths on the boundaries of the
obstacles also consist of a sequence of line segments connected by points on the
edges. Therefore, by putting all the connecting points together and relabeling them,
the shortest path connectingX and Y can be represented by (x0, x1, x2, . . . , xn, xn+1)
where x0 = X,xn+1 = Y .

Let us denote

(2) J(xi) = ‖xi−1 − xi‖+ ‖xi+1 − xi‖.
Then the length of the path is

(3) L(x1, . . . , xn) =
1

2

n∑
i=1

J(xi).

Again all xis are on the edges of the obstacle. Denote xi = θiui + (1− θi)vi, J(xi)
then becomes

(4) J(θi) = ‖θiui + (1− θi)vi − xi−1‖+ ‖θiui + (1− θi)vi − xi+1‖.

2.3. Optimal Path. To find the optimal path, we differentiate J(θi) with respect
to θi to obtain

(5) ∇J(θi) =
(xi − xi−1) · (ui − vi)

‖xi − xi−1‖
+

(xi − xi+1) · (ui − vi)

‖xi − xi+1‖
.

So using the method of gradient decent, we can find the optimal position θi following
a system of ODEs,

(6)
dθi
dt

= −∇J(θi).

In order to find the global optimal path, we adopt a strategy called Intermittent
Diffusion, i.e. we evolve the following stochastic differential equation

(7)
dθi
dt

= −∇J(θi) + σ(t)dW (t)
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where σ(t) is a step function and W (t) is standard Brownian motion. More precisely,

(8) σ(t) =
m∑
l=1

σl1[Sl,Tl](t)

with 0 = S1 < T1 < S2 < T2 < · · · < Sm < Tm < Sm+1 = T , and 1[Sl,Tl] being the
indicator function of interval [Sl, Tl]. Here Sl, Tl, σl are chosen to be random and
the magnitude of σl depends on the size of the obstacles. For more details, see [3].

Theorem 1. If all the obstacles have Euler characteristic 2, then for any small
number ε,equation (7) converges to the global minimizer with probability 1 − ε for
suitable σ(t).

We will postpone the proof until the last section when we discuss the topological
issues.

2.4. Numerical Scheme. In this section, we discuss how to solve equation (7).

2.4.1. Discretization of SDE. We use forward Euler method to discretize equation
(7) as following

θj+1
i − θji

∆t
= −∇J(θji ) + σ(j∆t)

√
∆tξ

where ξ ∼ N(0, 1) is a normal random variable.

2.4.2. Initialization. We can use the optimal path whose junctions are restricted on
vertices of the obstacles to initialize the path. This initialization can be obtained
efficiently by a method called visibility graph . The visibility graph W is a weighted
graph whose nodes are the vertices of all the obstacles as well as the starting and
ending points X,Y , and there is an edge between vertices u ∈W and v ∈W if and
only if they are visible to each other, that is, if the line segment uv doesn’t intersect
with any obstacles. The weight of edge uv is simply the Euclidean distance of uv.
One thing to notice is that the visibility graph we construct here is essentially 2D,
in the sense that it encodes whether two points are visible to each other. This is
fundamentally different from the 3D reduced visibility graph (3DRVG) in the intro-
duction. 3DRVG consists of connected planes as opposed to straight line segments
which becomes complicated when there are more than one obstacles. See [7]. After
the visibility graph is constructed, the initialization is the shortest path between
X and Y on the visibility graph W which can be obtained efficiently by Dijkstra
algorithm..

2.4.3. Evolution when a junction reaches a vertex. In the proposed method, the
junctions move according to the SDEs if they are on the interior of edges. When a
junction x = (u,v, θ) reaches to a vertex u following the gradient flow, it continues
moving according to different rules depending on whether the two neighbors of x are
on the same obstacle or not. If the neighbors of x are both on the same obstacle as
x, we call x an interior junction, otherwise we call x an exterior junction. In other
words, an exterior junction is one of the two ending points of the line segments that
connects two different obstacles. The following are the rules for interior and exterior
junctions reaching the vertices respectively.

Case 1. x = (u,v, θ = 1) is an interior junction. See the following illustration where
(x1, x2, x, x4) is the path on the obstacle and x1, x4 are exterior junctions.
When x hits u (θ = 1), path (x1, u = x, x4) will have smaller length than
(x1, x2, u = x, x4) length. In other words, all the junctions adjacent to u
will be dragged to u except the exterior junctions. Hence we remove all the
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junctions adjacent to u and add junctions on the edges adjacent to u that
haven’t been occupied which results in a new path (x1, x6, x5, x4).

v1 v2

v

v4

v5v6

u

x1
x2 x

x4
x5x6

Figure 1. Movement of interior junction

Case 2. x = (u,v, θ = 1) is an exterior junction. Let z be its neighbor on the same
obstacle and y be the neighbor on another obstacle. x will move to a different
feasible edge uw once it hits u. Edge uw is said to be feasible if
(a) The line segment joining y and u + ∆θ(w − u) doesn’t intersect with

any obstacle for arbitrarily small ∆θ.
(b) The length J(x) decreases as x moves away from u on uw, i.e.

∇J(x) · (w − u) < 0.

We collect all the feasible directions and select one of them with equal possi-
bility, x then continues evolving according to the flow. Depending on whether
neighbor z is visible to edge uw, the new path are as follows:

i. z is on the same face as uw, then the new path becomes (· · · , y, x′, z, · · · )
where x′ ∈ uw.

ii. z is not on the same face as uw, then x is used as an intermittent
junction and the new path becomes (· · · , y, x′, x, z, · · · ) where x′ ∈ uw.

For an illustration, see the following example. The feasible direction are uv8

and uv2. z is visible to uv8, the path after evolution is simply (y, x′, z).
On the other hand, z is invisible to uv2, the path after evolution is simply
(y, x′, x, z).

x

y

z

v2

x′ v

u

v8

x

y

z

v2

v

u
x′

v8

Figure 2. Movement of exterior junction x. The left figure corre-
sponds to case (i) and the right corresponds to case (ii)

2.4.4. Add and remove junctions. During the evolution of each point, we may need
to add or eliminate junction points. When two neighboring junctions x, y are both
exterior and xy intersect with obstacle Pk1 , Pk2 , · · · , Pkr , we initialize a path with
x, y being the starting and ending points and {Pki}ri=1 being the obstacles. Denote
the new added junctions by (xn+1, xn+2, · · · , xn+s) where s is the total number of
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new junctions. Then they are inserted into the set of junctions in order and the
evolution process continues. On the other hand, when two neighboring junctions
x, y are both exterior and x meets y, we may shorten the path by removing x and
y. More precisely, let z1 be the other neighbor of x and z2 be the other neighbor
of y, i.e. the path contains (· · · , z1, x, y, z2, · · · ) as a fraction. Since x = y, we may
connect z1 and z2 directly which shorten the length. In other words, we have the
new fraction (· · · , z1, z2, · · · ). Notice, the line segment z1z2 may intersect with some
obstacles. Again we add the necessary junctions as described above.

2.5. Algorithm. We present our algorithm below

Input: number of intermittent diffusion intervals m, duration of diffusion ∆Tl, l ≤ m.
diffusion coefficients σl, l ≤ m.

Output: The optimal set Uopt of junctions.

Initialization. Find the initial set U of junction points.
for l = 1 : m

Ul = U ;
for xi = (u,v, θ0i ) ∈ Ul

for j = 1 : ∆Tl
Update x according to (7), i.e. θj+1

i = θji + (−∇J(θji ) + σl
√

∆tξ)∆t;
Update set Ul, i.e. remove junctions from or add junctions to Ul;

end

while |θj+1
i+1 − θ

j
i | > ε (or other convergence criterion)

Update x according to (6), i.e. θj+1
i = θji −∇J(θji )∆t;

Update set Ul;
end

end
end
Compare Uls and set Uopt = argminl≤m L(Ul).

3. Numerical Examples

We show several examples in this section to illustrate the paths obtained by our
algorithm. The diffusion coefficients are chosen randomly in interval [1, 2] and the
duration of diffusion ∆Tl is chosen randomly in [5, 20]. The number of intermittent
diffusion intervals m are specified in each example.
Example 1
The first example computes the shortest path between two points on a hexagonal
prism with side length

√
3 and base length 1. In one realization with m = 10

intermittent diffusion intervals, it finds 3 minimizers among which the global one is
visited 6 times.

(a) Occurs 6
times, L=2.600

(b) Occurs 3
times, L=2.623

(c) Occurs once,
L=3.000
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Example 2
There are three obstacles in this example, two cubes and one hexagonal prism. The
algorithm finds 6 local optimal paths in 20 intermittent diffusion intervals, among
which the global optimal path occurs 13 times. Below we list all the local minimizers.

(d) Occurs 13 times, L=7.0803 (e) Occurs 2 times, L=7.0956

(f) Occurs 2 times, L=7.3404 (g) Occurs 1 times, L=7.3436

(h) Occurs 1 times, L=7.4314 (i) Occurs 1 times, L=7.5253
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Example 3
In this example, we demonstrate that our algorithm works for non-convex obstacle
without holes. One obstacle is a rotated cube and the other one is a larger cube with
a indentation (not through). In 20 intermittent diffusion intervals, the algorithm
finds 4 local optimal path. The global shortest path is visited 14 times.

(j) Occurs 14 times, L=4.4249 (k) Occurs 2 times, L=4.4599

(l) Occurs 3 times, L=4.6176 (m) Occurs 1 times, L=4.5509

4. Polyhedron with holes

We say two paths are homotopic if one can be deformed continuously to the other
while keeping its endpoints fixed. More precisely, let X be the space that takes away
all the obstacles, i.e.

X = R3 \
⋃
Pi.

Two paths f0, f1 are path-homotopic if there exists a family of paths ft : [0, 1]→ X
such that

(1) ft(0) = x0 and ft(1) = x1 are fixed.
(2) the map F : [0, 1]× [0, 1]→ X given by F (s, t) = ft(s) is continuous.
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(n) L=1.1543 (o) L=1.2659

Figure 3. Shortest path with tunneled cube

Intuitively, two paths are homotopic if one can be continuously transformed to the
other without passing through the obstacles. Path-homotopic is a equivalence re-
lation. Thus one can divide all path into equivalence classes. It is easy to see the
following

Theorem 2. If all the obstacles have Euler characteristic 2, then there is only one
path-homotopic equivalence class in the set of feasible paths F .

Proof. Since each Pi has Euler characteristic 2, Pi is homotopy to 2-dimensional
sphere S2. Notice that R3 − D2 where D2 is the 2-dimensional disk is trivial.
Therefore, any two path in R3 −D2 are path-homotopic. Same result holds for R3

taking away n disks. �

With this result, it is simple to obtain the results in Theorem 1.

Proof of Theorem 1. Theorem 2 guarantees that our algorithm is able to visit all
possible paths from any initialization. Therefore, by employing intermittent dif-
fusion, equation (7) converges to the global minimizer with probability 1 − ε for
suitable σ(t). �

However, on the contrary, if the obstacle contains holes, for example, a triangu-
lated torus, there would be multiple equivalence classes. For illustration, see the
following tunneled cube in Figure (3). The shortest path through the hole is 1.1543
while the one doesn’t has length 1.2659. By slightly changing the position of the
hole, the shortest path would be the one that not pass through it. Therefore, mul-
tiple initializations are needed to ensure that all possible equivalence classes are
covered.

A simple idea we can use is to block the homotopy equivalence class the current
path belongs and then reinitialize. A block can be formed ,for example, by identify-
ing the entrance of the path followed by deleting all the vertices on it. Those vertices
will not be used in the reinitialization which forces the new path to a different ho-
motopy class. After it settles down at the global minimizer in the current homotopy
class, the path is reinitialized and the algorithm is repeated to get a different global
minimizer. This procedure is repeated until all homotopy equivalence classes are
visited. The two paths in the above example are obtained in this method.

However, there are two problems with this approach. First of all, the block is often
difficult to form because which vertices should be removed is a complicated matter,
for instance, a well triangulated torus as follows. Second, the number of different
homotopy classes we need to visit is unknown in prior. For example, topologically,
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there are infinitely many homotopy classes for a smooth torus and the shortest path
could wind the torus arbitrary times. In Figure (5), the shortest path winds the
torus twice.

Figure 4. A triangulated torus

Figure 5. A shortest path winding a torus twice

A different approach is to use already established approximation method, for
example [10] as described in the introduction section, to initialize the path. Those
algorithms are able to obtain a path that has length 1 + ε times the length of the
shortest path. Here ε depends on the mesh size. If the mesh size is sufficiently small,
the initialized path and the global minimizer will be in the same homotopy class.
However, the choice of the grid size is a critical and often hard to determine.

As discussed above, our method still applies for polyhedrons with holes provided
that appropriate initializations are taken. Although initialization is a complicated
matter, simple ideas usually work for most cases. We conclude our discussion here
and leave the improvement of initialization methods to our future work.
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