
Detecting Energy-Greedy Anomalies and Mobile Malware
Variants

Hahnsang Kim, Joshua Smith, Kang G. Shin
The University of Michigan

Ann Arbor, MI 48109-2121, USA
{hahnsang, smjoshua, kgshin}@eecs.umich.edu

ABSTRACT
Mobile users of computation and communication services
have been rapidly adopting battery-powered mobile hand-
helds, such as PocketPCs and SmartPhones, for their work.
However, the limited battery-lifetime of these devices re-
stricts their portability and applicability, and this weak-
ness can be exacerbated by mobile malware targeting de-
pletion of battery energy. Such malware are usually diffi-
cult to detect and prevent, and frequent outbreaks of new
malware variants also reduce the effectiveness of commonly-
seen signature-based detection. To alleviate these prob-
lems, we propose a power-aware malware-detection frame-
work that monitors, detects, and analyzes previously un-
known energy-depletion threats. The framework is com-
posed of (1) a power monitor which collects power sam-
ples and builds a power consumption history from the col-
lected samples, and (2) a data analyzer which generates a
power signature from the constructed history. To gener-
ate a power signature, simple and effective noise-filtering
and data-compression are applied, thus reducing the detec-
tion overhead. Similarities between power signatures are
measured by the χ2-distance, reducing both false-positive
and false-negative detection rates. According to our exper-
imental results on an HP iPAQ running a Windows Mobile
OS, the proposed framework achieves significant (up to 95%)
storage-savings without losing the detection accuracy, and a
99% true-positive rate in classifying mobile malware.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: System Archi-
tectures; D.2.11 [Software Engineering]: Software Archi-
tecture; I.5.4 [Pattern Recognition]: Applications

General Terms
Security

Keywords
Power consumption history, power signature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’08, June 17–20, 2008, Breckenridge, Colorado, USA.
Copyright 2008 ACM 978-1-60558-139-2/08/06 ...$5.00.

1. INTRODUCTION
In recent years, the worldwide market for handhelds has

grown dramatically. For instance, in 2006 the market grew
by 21% over 2005, selling 800 million mobile phones, and in
2007 1.1 billion mobile phones were estimated to have been
sold [1]. Because of continued miniaturization, ubiquitous
communication, and increasing computation power, mobile
handheld users can now perform many online tasks, includ-
ing web browsing, document editing, multimedia stream-
ing, and Internet banking, to name a few. At the same
time, the growing use of mobile handhelds for everyday life
and business has been attracting the attention of malware
writers, whose aim is to compromise data confidentiality,
integrity, and the ability to use handheld services. For in-
stance, SymbOS.Cabir [20], the first proof-of-concept mo-
bile worm, which appeared in June 2004, was written for
the Symbian OS and used a novel propagation vector (e.g.,
via Bluetooth or SMS). Although Cabir was designed solely
to demonstrate the feasibility of malicious code for mobile
devices, the publication of Cabir source code triggered a
worldwide outbreak of many variants, infecting Bluetooth-
enabled mobile phones.

The limited battery-lifetime for mobile handhelds is an
Achilles’ heel for the portability and the ubiquitous use of
mobile devices. This limitation exists because not only has
battery technology not kept up with Moore’s Law, but mo-
bile devices and software running thereon also demand more
power for a longer period than the battery can deliver [48].
At the same time, while most malicious code attacks on
handhelds aim to damage software resources such as in-
fecting files and stealing privacy information [5], intentional
abuse of hardware resources (e.g., CPU, memory, battery
power) has become an important, increasing threat [14, 41].
In particular, malware targeting the burning/depletion of
battery power are extremely difficult to detect and prevent,
mainly because users are usually unable to recognize this
type of anomaly on their handhelds and the battery can
be deliberately and rapidly drained in a number of differ-
ent ways (e.g., DoS attacks [30, 41], or the installation of
animated GIFs [14]). Despite these problems, only limited
research [11, 30, 41] has focused on the detection and pre-
vention of battery-draining attacks on handhelds, including
how to cope with a wider variety of attacks in [13, 40].

The most commonly-used technique for malware mitiga-
tion for antivirus and antispyware is signature-based anal-
ysis. Signatures are created using static information (e.g.,
file name and a code value), thus being vulnerable to sim-
ple obfuscation, polymorphism [31, 33], and packing tech-

239

niques [7]. Signature-based detection that requires a new
signature for every single malware variant is not well suited
for mobile handhelds mainly because handhelds have much
less resources (e.g., CPU, memory, and battery power) than
their desktop counterparts. Moreover, even ‘old’ malware
can harm new handhelds unless their system has been prop-
erly patched in a timely fashion. In practice, patching is
rarely an option for handhelds as their operating systems
are usually inaccessible to others (than the manufacturers).
Unlike signature-based detection, anomaly-based detection
compares definitions of the activity considered normal in a
profile against the observed events to identify significant de-
viations. The profile describes the normal behavior (e.g.,
users, hosts, applications, or network connections) [22, 56].
One common problem with anomaly-based detection, how-
ever, is inadvertent inclusion of a malicious activity as part
of the profile produces many false-negatives (failure to iden-
tify malicious activities). Similarly, behavioral detection [18]
is based on behavioral signatures that describe aspects of
any particular worm’s behavior such as sending similar data
from one machine to another, the propagation pattern, and
the change of a server into a client, thus representing a
generic worm propagation model [18]. These behavioral sig-
natures that are not sufficiently complex to reflect real-world
computing activities can cause many false-positives (incor-
rect identification of a benign activity as malicious). Also,
the propagation of mobile malware via non-traditional ex-
ploit vectors such as SMS and Bluetooth [10, 19, 51], in
conjunction with user mobility, renders network-behavioral
signatures almost ineffective.

There are two main challenges in developing a malware-
detection framework for handhelds. First, a detection frame-
work should be able to detect diverse types of malware, espe-
cially including energy-greedy (malicious) applications and
malware variants, keeping both false-negatives and false-
positives below a certain acceptable threshold. Second, un-
like resource-rich PCs, a detection framework on battery-
powered handhelds should not consume too much of the de-
vice resources, including CPU, memory, and battery power;
the overhead for executing the detection framework should
be kept to a minimum.

In this paper, we propose a novel power-aware malware
detection framework to monitor, detect, and analyze previ-
ously unknown and energy-greedy threats. Our malware-
detection framework is composed of a power monitor and
a data analyzer . The former collects power samples and
builds a power consumption history with the collected sam-
ples, and the latter generates a power signature from the
power consumption history. The data analyzer then detects
an anomaly by comparing the generated power signature
with those in a database. We evaluate detection perfor-
mance using a custom worm emulator that we designed for
this purpose.

The key contributions of this paper are two-fold, address-
ing the two challenges listed above. First, assuming that
one application is executed at a time on the handheld, a
power consumption history is recorded/built and then con-
verted into a power signature which is an abstraction of
the underlying application behavior. Considering the fact
that a new malware variant is usually created by adding
new functionality to existing malware or modifying obsolete
modules with fresh ones [31], this abstraction is effective
for detecting not only previously-unknown malware vari-

ants that share a common behavior exhibited by previously-
known malware, but also energy-greedy anomalies that most
current solutions fail to detect. A χ2-distance is calcu-
lated to gauge (dis)similarity to a database of power signa-
tures, thereby reducing false-positive and false-negative de-
tection rates. Second, simple and effective noise-filtering and
data-compression software components enable a lightweight
system implementation. In particular, this data compres-
sion results in a significant storage savings on the signature
database.

The rest of the paper is organized as follows. Section 2
provides background information on mobile malware and
power measurement issues. Section 3 describes the design of
power-aware malware detection, including the power mon-
itor and the data analyzer. The data analyzer includes
noise-filtering and data-compression components. Section 4
describes the implementation of our detection framework
and costume worm emulator. Details of software and hard-
ware power measurements and the mechanism for building
a power signature database are also presented there. Sec-
tion 5 evaluates the detection accuracy of our framework.
We discuss the related work in Section 6 and conclude the
paper in Section 7.

2. MALWARE AND MEASUREMENTS
In this section we review the various threats posed by

mobile malware, and discuss their effects on power and the
related power measurement issues.

2.1 Mobile Malware
Malware writers do not want their malicious creations to

be detected, analyzed, and filtered as they spread across a
network, yet this is precisely the goal of detection systems,
which examines incoming programs and compares them to
the known malware signatures in order to detect them (i.e.,
signature-based detection). To evade detection, malware
writers are increasingly using polymorphic coding techniques
[36, 46]. Polymorphism is a process through which mali-
cious code modifies its appearance to evade detection with-
out actually changing its underlying functionality. These
techniques include everything from modifying the names of
internal variables and subroutines, changing the order in
which instructions appear in the body of malware, to en-
crypting most of the malware code, only leaving in the clear
text the instructions necessary to decrypt the code (e.g., a
run-time packer [7]). These techniques, however, reflect a
different byte frequency or packet length distribution from
that of normal applications [24, 52], allowing a detection
system to filter this polymorphic malware. In addition to
changing the appearance of malware via polymorphism, new
malware can further change their behavior, going through
metamorphism [36]; metamorphic code actually changes the
functionality of malware, while hiding its payload using ob-
fuscation and encryption. When metamorphic techniques
are used in conjunction with polymorphism, malware of this
kind are much harder to detect, analyze, and filter.

Mobile malware targeting mobile handhelds seem rela-
tively uncommon due mainly to the closed nature of device
platforms and their relatively short time in the market, but
as the world SmartPhone market is rapidly growing, the oc-
currence of mobile malware is increasing fast [27]. Cabir [20],
which appeared in June 2004, was a classic proof-of-concept

240

worm and clearly entitled to bragging rights. This software
alerted mobile users to the feasibility of creating malicious
code for mobile handhelds. It was followed by a variant
thereof, called Commwarrior [49], whose behavior is almost
the same as that of Cabir, except that it sends an MMS mes-
sage containing a copy of itself to randomly-chosen phone
numbers. New variants, such as Mabir and Lasco, broke out
after the appearance of Commwarrior.

Early malware on PCs were also written as pranks or for
bragging rights, but have since been evolving with criminal
or malicious intent. The motivations behind this type of at-
tacks can be considered similar to those behind worms for
mobile handhelds. For instance, since the use of handhelds
has become essential to our everyday business, one seem-
ingly illegal way to sabotage a competitor’s business is to
reduce the usability of their handhelds by depleting their
batteries. Another way to inflict harm on competitors is to
exploit a unique feature of mobile handhelds such as their
built-in billing system. Excessive charges will be made to
unfortunate victims by sending them an excessive number
of SMS messages [27]. Many other attack scenarios may also
emerge. Considering trends in the evolution of mobile mal-
ware, wilder, more diverse and sophisticated mobile malware
will likely appear, and hence, we will need effective solutions
to combat this type of threat.

2.2 Power Measurement Issues
The energy usage of each application activity in a certain

system-power state is calculated by integrating the prod-
uct of instantaneous current and voltage over a specific pe-
riod of time. We approximate the energy usage by sampling
current, It, and voltage, Vt, at constant intervals, ∆t. In
software measurements on a handheld, Vt is kept constant
within accuracy that we want to achieve. Therefore, using a
single measured battery voltage sample, Vc, we calculate the

total energy consumption over n samples as Vc

∑
It∆t. Us-

ing an oscilloscope, we determine the current drawn by the
handheld through a hall-effect probe. The hall-effect probe
detects the magnetic field generated by a current-carrying
wire, resulting in a time-varying voltage, Vi, proportional
to the current. Therefore, the total energy usage over n

samples is calculated as Vc

∑
Vi∆t.

Most mobile devices—including our evaluation platform,
the HP iPAQ rx4200—are each powered by a lithium-ion
battery. The lifetime of this type of battery depends on its
capacity and state-of-charge levels. Although this battery
has high energy-density, its internal resistance increases with
age; after 2-3 years of use, the battery pack is likely useless
due to its high internal resistance [2, 3, 6]. According to [2],
the internal resistance also leads to dips in its output voltage
as a result of short, heavy current spikes from a digital load.
Unlike other types of batteries (e.g., nickel-metal-hydride),
the internal resistance of lithium-ion batteries is known to
be relatively constant. However, we have observed that the
lithium-ion battery used in our experiments also displays
variations in its internal resistance, depending on its remain-
ing charge. The effect of these variations will be evaluated
in Section 5.

We profile system-power states, including ON, BacklightOff,
ScreenOff, and Suspended, managed by the power manager
on the Windows Mobile 5 OS as shown in Fig. 1. In this
profile, given different charge levels, we record information

| On event

BacklightOff

ScreenOff

On Suspended

SetSystemPowerState
On event | User input

SystemIdle timeout

SystemIdleTimerReset

SystemIdleTimerReset

SystemIdle timeout

SetSystemPowerState

SystemIdle timeout

On event

Backlight timeout

SetSystemPowerState

Figure 1: A simplified system power state transition
diagram on Windows Mobile OS

on energy usage and average power-consumption level in
each state. The power manager on the Windows Mobile
5 OS maintains these states. In the ON state, everything
is ready for execution; the opposite is true in Suspended
state. In the BacklightOff state, everything except for the
backlight is ready to use. The transition from ON to Back-
lightOff is made with the backlight timer enabled, allowing
energy savings of 2.90 Joules for 10 seconds—more mea-
surement data and analyses will be provided in Section 4.
In the ScreenOff state, the LCD screen is off. The tran-
sition from ON to ScreenOff is made only when an ap-
plication makes a request to the power manager such as
Windows Media Player via SetSystemPowerState(), which
then allows the user to listen to the device in the ScreenOff
state. In the Suspended state, most programs are deacti-
vated, while only a few device drivers are awake. The tran-
sition from ON/BacklightOff/ScreenOff to the Suspended
state is made when the SystemIdle timer expires; SystemI-
dleTimerReset() initiates the timer. Besides these system-
power states, UserIdle, Unattended, and Resuming states
are available only for specific models of SmartPhones or
PocketPCs (which are not considered in this paper).

3. SYSTEM ARCHITECTURE AND
SOFTWARE COMPONENTS

This section describes the architecture and key software
components of our framework.

3.1 The Architecture
The power-aware malware-detection framework consists

of two agents, a power monitor and a data analyzer, as il-
lustrated in Fig. 2. The two agents reside either in com-
bination or separately. The power monitor operates on a
mobile handheld, taking samples of the power consumption
which are used to build a power consumption history. The
data analyzer, on the other hand, processes the power con-
sumption history on either the host mobile handheld (Type
A in the figure), or a remote server/data-sync PC (Type B
in the figure) to reduce the overhead of the data analyzer.
In the latter case, the power consumption history is trans-
mitted from the mobile handheld to the server over the air,
or to the data-sync PC via a USB cable/cradle. The data
transmission though a USB cable/cradle does not consume
energy from the battery because most SmartPhone batter-

241

Power monitor Data analyzer

Alarm

Signature

Data

processing

Y/N

Verification

DB DB

Uploading

samples

Returning

verification result
Type A

Type B

Server

Figure 2: The system architecture: Type A stands
alone and Type B has a remote server/data-sync PC
for processing data.

ies can be charged through a USB interface which also pro-
vides enough power for the device. In this case, our power
monitoring probes are placed before the electronics powered
by the external supply (or the battery), so that accurate
measurement of the power consumption can still be guaran-
teed. Over-the-air transfer of the power consumption his-
tory, however, should be less energy-costly than processing
it locally. Yet, network energy cost varies with the amount
of data transmitted and the current network-device-power
state. For instance, according to [9], fetching 32Kbytes
of data via the WiFi radio in active mode on a handheld
(requiring 0.9 Joules) consumes 1.4 Joules less energy than
reading the data from the local microdrive in standby mode.
Thus, an estimated 1Kbyte-size power consumption history
can be transmitted in a single WiFi packet and when not
in use, the WiFi radio can be turned off, as opposed to an
EDGE network which must be kept active to receive calls
while roaming.

3.2 The Power Monitor
The power monitor, which reads the power drawn from

the battery on our handheld, is designed to capture power-
consumption anomalies exhibited by applications. It is re-
sponsible for monitoring the power consumption, detecting
a power surge in power consumption, and taking samples of
the power consumption. Next we will describe each of these
processes.

3.2.1 Monitoring
Choosing an appropriate rate to measure the power con-

sumption is the basis for detecting power-consumption anoma-
lies. The higher the frequency of making a reading (a set
of power measurement samples), the greater the chance of
capturing power-consumption anomalies, but the higher fre-
quency may have a detrimental effect on the energy usage.
At the same time, mobile malware writers eventually learn
about the implementation of power monitoring systems and
can then evade detection. To avoid detection, the malware
can remain dormant over a period of time and then occa-
sionally reactivate itself. By cycling between dormancy and
activation, malware behavior can be obfuscated. One way
to prevent this obfuscation is to randomly choose when to

ti tj

LB UB

s

reading

wait

LB UB

Timetk

reading

(a) Regular reading

ti

LB
UB

s

reading

LB
UB

Time

reading

tj tk

reading

(b) Irregular reading

Figure 3: Power-reading methods: regular read-
ing has a fixed interval based on t, while irregular
reading-points are not fixed. In both cases, reading-
points are randomly chosen in between lower bound
(LB) and upper bound (UB). A timer object is set
to a time period of s.

take the next power reading. If the power-reading time is
unpredictable, then it will be difficult for the malware to
evade detection. However, if reading-points are too random,
the ability to capture power-consumption anomalies would
be degraded.

To make this tradeoff, we devised two reading methods:
regular and irregular. The regular reading, as illustrated
in Fig. 3-(a), occurs at fixed intervals at which lower bound
(LB) and upper bound (UB) are defined, and a reading-point
is randomly chosen in between them. In other words, LB and
UB specify an interval in which to make a random choice
of a reading-point. In each interval, after a reading, the
power monitor waits for the next base and then randomly
chooses the next reading-point. Clearly, the larger the values
of LB and UB, the narrower the random-choice space, and
thus, the more regular the reading frequency over time. In
other words, reading-points are likely uniformly-distributed.
The irregular reading, on the other hand, does not wait in
order to calculate the next reading-point as illustrated in
Fig. 3-(b). Instead, LB and UB are determined according
to the previous reading-point and the next reading-point is
randomly chosen in between. So, only LB and UB are used
to adjust the random-choice space (i.e., UB minus LB).

The power monitor creates a timer object which is used
as an alarm clock. When an alarm is triggered, the power
monitor calls GetSystemPowerStatusEx2() in the Windows
CE .Net library in order to retrieve the battery status. This
function takes a certain amount of time to complete, be-
ginning with the invocation of its call to retrieve the data.
This time period serves as a base for specifying LB and UB
for the two reading methods. In practice, the time period
amounts to more than 30 milliseconds, limiting the sam-
pling rate. The regular reading invokes the timer object
once more over a given time period to randomly choose the
next reading time, incurring extra overhead.

The regular reading suits periodic reading and the irregu-
lar reading suits random reading. The latter, however, can
represent the same distribution of reading occurrences as the
former when LB and random-choice space for the irregular
reading are set to LB plus UB and 1.5 times that for the
regular reading, respectively.

242

3.2.2 Detection
While performing either of the two reading methods above,

the power monitor also captures a surge in the power con-
sumption, calculating the fraction of power surplus as fol-
lows:

(
X

Y
− 1) > δ, (1)

where δ is a given threshold, X is an observed power level,
and Y is the trained power level specified in the system-
power state profile. The system-power state profile defines
the average power-consumption level in each system-power
state (e.g., ON, BacklightOff, and ScreenOff). If the frac-
tion exceeds the threshold, the power monitor then raises
a flag, immediately starting to yield a power consumption
history. In practice, we observed erratic spikes from the HP
iPAQ rx4200 during the power reading process due to the
switching properties of the digital system, resulting in false
alarms. To reduce these false alarms, the threshold remains
set high enough to be resistant to those spikes. Obviously,
the higher the threshold, the fewer the false alarms, but the
less sensitive to the surge in the power consumption. In ad-
dition to the threshold adjustment, a false-alarm counter is
used; each time a false alarm occurs over an alarm-time pe-
riod starting from the first alarm occurrence, the false-alarm
counter is incremented by one. When the counter is greater
than a given alarm-threshold, a true alarm is raised, leading
to a switch to a sampling step. The false-alarm counter is
set to 0 when the alarm-time period expires or a true alarm
occurs. In our experiment, when δ = 0.2, no false alarms
occur in the ON state in which no explicit applications run.
When δ < 0.2, peaks from the spikes are detected, resulting
in false alarms. Given a peak interval, either the alarm-
time period (e.g., an estimated 4 reading intervals) or the
alarm-threshold is adjusted to avoid these false alarms.

3.2.3 Sampling
The power monitor has a soft real-time constraint. Once

a true alarm is raised, the power monitor starts taking sam-
ples of the power consumption at a constant rate, yielding
a power consumption history; the higher the sampling rate,
the more accurately the power consumption history can be
interpreted, but also the more energy-costly. In addition, the
timer object that the power monitor sets off at every given
time interval can be preempted by another higher priority
process, resulting in a measurement delay (completion time
minus set-off time). Nevertheless, this delay can be offset by
lengthening the sampling time period. In practice, the size
of the history that results from software measurements of
the power consumption can also be used to differentiate ap-
plications, thus eventually being added to the corresponding
power signature. Note that it is a premise of these experi-
ments that one application is executed at a time.

3.3 The Data Analyzer
The data analyzer receives the power consumption history

from the power monitor and is designed to extract a unique
pattern from the history, yielding a power signature. This
power signature is then compared against the database of a
priori signatures. In yielding power signatures, the data an-
alyzer uses two data-processing software components: noise-
filtering and data-compressing. Next, we describe these two
components along with a signature-matching method.

3.3.1 Noise-Filtering
To reduce the effect of outliers on the power consumption

history of an application, a moving average filter is applied
to the dataset history. The moving average filter removes
high-frequency noise from the dataset, resulting in a more
generic power-consumption pattern. While calculating the
average of its neighboring samples within a window of size
2k +1, each sample, S(i), in the power consumption history
is converted into another, Sp(i), as follows:

Sp(i) =
1

2k + 1
(S(i−k)+S(i−k +1)+ · · ·+S(i+k)). (2)

This calculation starts from i = k+1 and continues until i =
n− k; the first and the last k samples can be dropped since
we are interested in an overall power consumption pattern.
The window size determines the smoothness of the curve,
i.e., the larger the k, the smoother the curve, but the less
characteristic of very recent fluctuations in the dataset. The
impact of k on the pattern associated with the detection
accuracy will be evaluated in Section 5.

Among various filters we chose a simple moving average
filter (e.g., a weighted moving average filter in which differ-
ent weights are imposed on different distant samples or an
exponential moving average filter in which weights decrease
exponentially from the center), which is because a simple
filter works just as well as, or even better than complicated
ones (i.e., the implementation incurs less processing over-
head). The choice of a simple filter is also advocated in [17].

3.3.2 Data Compression
A large power consumption history, which will result in a

large power signature, needs to be reduced for two reasons.
First, a large power signature consumes more energy than
a small one in executing the matching process. Second, it
is important to make economical use of memory in a mo-
bile device. To reduce the size of the power consumption
history, a simple and powerful one-way compression algo-
rithm is proposed. By applying Algorithm 1, local jitter is

Algorithm 1 A compression algorithm

1: Input: Sp(n): an n-length power consumption history
2: Input: m: look-ahead samples
3: Input: δc: a threshold
4: Output: Se(k): a k-length power signature
5: while i ≤ (n−m) do
6: Fetch m samples from Sp(i);
7: Compute N ∼(µ, σ2) of m;
8: if σ < δc then
9: Se(j) ← µ; /*compressing history*/

10: j ← j + 1
11: else
12: Sp(i : i + m) ← Se(j : j + m); /*copying history*/
13: j ← j + m
14: end if
15: i ← i + m
16: end while

effectively suppressed and compressed. As a result, a com-
pact power signature can be represented, thereby achieving
a substantial savings in both memory space and processing
time. We will prove this result in Section 5.

243

3.3.3 Signature Matching
To measure the similarity between two power signatures,

a χ2-distance [16] is calculated as:

χ2(Se, S′e) =

n∑
i=1

(Sei − S′ei)
2

(Sei + S′ei)
, (3)

where Se and S′e are signatures of the observed and the
expected events, respectively. Clearly, χ2 = 0 if and only if
all of the samples of Se match those of S′e. The higher the
value of χ2, the less likely the observed event belongs to the
expected group.

The χ2-distance is effective and efficient for our need. For
instance, χ2-distance-based techniques are found in diverse
areas, such as scene-change detection in image sequences [39,
25] and anomaly detection [56]. In addition, experimental
results [12] show that the use of the χ2-distance reduces the
amount of computation over one of the most widely used
techniques, i.e., the Bhattacharyya distance [42].

Two power signatures that have the most similar power
consumption patterns are found as:

χ2(Se, DB) = min
S′e∈DB

{χ2(Se, S′e)}. (4)

In some cases, two power signatures that comply with the
same pattern can be skewed mainly because of delays in cap-
turing the power surge. Since the χ2-distance is based on
the measurement of sample-to-sample distance, in order to
effectively match two skewed power signatures, the data ana-
lyzer relies on either of two matching techniques: brute-force
(BF) comparison and Fast Fourier Transform (FFT). The
brute-force approach uses two parameters: an incremental
state and a threshold. First, the distance is calculated and
then one of the two power signatures is shifted left by one
(and is subsequently done to the right). At the same time, if
the newly-calculated distance is greater than, or equal to the
previous distance, the incremental state parameter increases
by one. Otherwise, it is set to 0. This procedure repeats un-
til the incremental parameter exceeds the threshold. When
this procedure stops, it returns the minimum distance. In
addition to the incremental parameter, the proportion of
samples for comparison correlates with the confidence in the
comparison results (e.g., more than 90%). The brute-force
comparison is especially efficient in the case of small delays
in the reading in the power monitor. Alternatively, the FFT
method is applied, converting time-domain representation
of samples into their frequency-domain representation. In
practice, this method facilitates the calculation of the dis-
tances in that a large portion of converted samples in two
signatures that are similar to each other are likely to have
the same constant frequency components, which offsets the
complexity of the FFT computation. The performance com-
parison of the two methods will be presented in Section 5.

3.3.4 Response to the Analysis
The analysis results from the data analyzer pinpointing

the signature that is most similar to that of the observed
event, but this pinpoint accuracy (PA) is limited to the di-
versity of signatures in the database, e.g., a new application
whose signature is not in the database is falsely detected.
To address this limitation, each signature is labeled as ei-
ther legitimate or malicious by prompting the user to en-
ter the appropriate response—if no input from the user has
been given for several seconds, then a default action will be

0 2 4 6 8 10 12 14 16 18

SystemOn
BacklightOff

ScreenOff
BluetoothOn

WiFiOn

Energy usage (Joules)

Figure 4: Energy usage of system states for 10 sec-
onds on the HP iPAQ rx4200. No explicit applica-
tion is executed in the SystemOn, BacklighOff, and
ScreenOff states. For the BluetoothOn and WiFiOn
states, the Bluetooth and WiFi radios are turned on
exclusively for each state.

taken. When the observed event is confirmed by the user as
malicious, it is immediately stopped and quarantined. How
to stop/quarantine, however, is beyond the scope of this pa-
per. At the same time, the corresponding signature is added
to the database and labeled as ‘malicious’. If the observed
event is legitimate, it resumes execution and the correspond-
ing signature is also added and labeled as ‘legitimate’. As
a result, depending on the response type, signatures in the
database are classified into two groups: legitimate and ma-
licious. Then, the distance between the observed event and
each of the two groups is calculated. The comparison of
these distances allows the determination of the group to
which the observed event is closest, despite any possible in-
correct pinpoints (e.g., due to outliers), thereby reducing
both false-positive and false-negative detection rates.

4. IMPLEMENTATION
This section describes two types of programs written in

C#: the first aims to deplete the battery power on the HP
iPAQ rx4200 running the Windows Mobile 5 OS, and the
second emulates the behavior of four mobile worms on the
same handheld device. We then provide details on how the
signature database is built and how software and hardware
measurements are made in the system.

4.1 Battery-Depletion Attack
The most energy-consuming activity on our handheld de-

vice is the use of the WiFi radio. As shown in Fig. 4, the
handheld device with WiFi turned-on consumes 2.5 times
more energy than with it turned-off (corresponding to the
ON state in the figure) and 1.8 times more energy than with
Bluetooth turned-on.

We present a sneaky malware program, called a WiFi
faker, that launches a battery-depletion attack using the
WiFi radio. When the WiFi faker is executed on our hand-
held with the WiFi-enabled mobile device, it tricks the sys-
tem to believe that the WiFi device has been disabled, by
rendering the WiFi adapter invisible to the system—the user
just sees the WiFi-associated system tray icon indicating the
WiFi device is inactive, but in reality it is still active and
even deprived of doze mode, resulting in retaining the high-
est power consumption level. This deception is realized using
two power management functions, DevicePowerNotify() and
SetDevicePower(). In addition, the WiFi faker can collabo-
rate with a dummy program which launches CPU-intensive
activity (e.g., evaluating an exponential function), causing
the battery to drain rapidly while the user believes that the
WiFi radio is disabled. We will show that this attack can be
effectively captured by our detection framework in Section 5.

244

Worm emulating program

BtStack BtDevice

Connect()/

Disconnect()

StartDeviceSearch()/

StopDeviceSearch()
SendFile()

BtSendFileComplete

BtDevFound

BtSearchComplete

scan(), send(), sendMMS(), search()

Commwarrior Cabir Mabir Lasco

.Net

execute(), display(), create()

Widcomm Stack

Figure 5: Software architecture of a worm emulator

4.2 Proof-of-Concept Mobile Worms
Scanning for Bluetooth-enabled devices and transmitting

a file (regarded as worm payload) via Bluetooth are part of
the fundamental capability of many of known mobile worms.
The program that accesses a Bluetooth module in a device is
implemented using the BTAccess.NET v3.0 library [4] which
supports the Widcomm Bluetooth stack for our handheld
device. We use two main classes from the library: BtStack
and BtDevice, as illustrated in Fig. 5. Before using the Blue-
tooth radio, the program connects to the Widcomm stack,
using Connect() in the BtStack class (while Disconnect() is
used for disconnection from the stack). Once a connection
is made, Bluetooth-enabled devices nearby are searched for
using StartDeviceSearch(), which functions asynchronously.
To stop the scan before completion, StopDeviceSearch() is
called.

An event handler monitors two events: BtDeviceFound
and BtSearchComplete. The event handler captures the Bt-
DeviceFound event, thus returning the corresponding BtDe-
vice object. This object is then added to a list for later
retrieval. When the event handler captures the BtSearch-
Complete event indicating the completion of the search, the
program stops searching for devices. In order to send a file
(i.e., worm payload) when the searching is finished a BtDe-
vice object is dequeued from the list and SendFile() in the
BtDevice object is called. Success in sending a file triggers
the BtSendFileComplete event. This procedure continues
until all the objects on the list are dequeued.

The overall behavior of the four worms is represented by
combinations of seven component actions, as listed below.

(s1) execute(): starts a worm-behavior emulation.

(s2) display(): opens a window and displays a message on
the window. Cabir and Lasco exhibit this behavior to
identify themselves.

(s3) create(): generates a 15Kbyte array of data (i.e., an-
other worm payload). The data are then stored in a
system directory. An instance of the FileStream class
is created in order to write to a flash memory.

(s4) scan(): searches for Bluetooth-enabled devices nearby,
using the service discovery application profile [45] de-
fined in the Widcomm Bluetooth stack. This profile

relies on Service Discovery Protocol [45] to discover
devices.

(s5) send(): sends a file (i.e., worm payload) to the devices
found during the scan. This function uses the generic
object exchange profile defined for the Widcomm Blue-
tooth stack. The OBEX protocol [45] in the profile is
used to push the file data to nearby mobile devices.

(s6) sendMMS(): searches an address book and executes
send(). This behavior imitates an MMS message trans-
mission except that the Bluetooth radio rather than an
EDGE network is used.

(s7) search(): searches the system directory for specific sys-
tem files having a specific extension (e.g., Windows CE
installation cabinet (.cab)) so that they are virtually
appended for infection. The search is recursively per-
formed from the root through its subdirectories. Direc-
toryInfo.GetFiles() is applied to retrieve all the files in
a given directory, and DirectoryInfo.GetDirectories()
is applied to retrieve subdirectories for the recursive
call.

Note that the time taken to complete scan() and send()
varies, depending on the variety of Bluetooth-enabled de-
vices found nearby, and the number of corresponding objects
on the list. The more objects found in the scan process, the
longer the completion of the send() takes. The effect of this
unforeseen situation results in a variety of signatures yielded
even from the same application. Nevertheless, our detection
framework effectively identifies such power signatures.

Worm Type Sequential behavior

Cabir s1s2s3s4s5

Mabir s1s3s6s4s5

Commwarrior s1s3s4s5s6

Lasco s1s2s3s4s5s7

Table 1: The behavior of worms

The action sequence for each worm is presented in Table 1,
showing common subsequences. For instance, all the worms
but Mabir have a common subsequence, s3s5s6. However,
their power signatures can be greatly different from each
other because of the s5 behavior. Similarly, Cabir and Mabir
have behavior in common. Cabir is likely misidentified as
Lasco. In Section 5 we will evaluate the accuracy in detect-
ing previously unknown malware with respect to its power
signature similarity.

4.3 Building a Power Signature DB
We define application-behavior scenarios which are di-

vided into legitimate and malicious application groups. We
chose pairs of applications that have similar behavior and
different intent, i.e., one for the legitimate application group
and the other for the malicious application group. For in-
stance, a program designed to execute CPU-intensive func-
tions and a Windows Media Player (WMP) are both energy-
greedy, but have different intent. Also, the mobile worms
described above and legitimate Bluetooth file transfers have
a common behavior, but have different intent. First, we
characterize the following malicious applications in order to
build our signature database.

245

i-1. The dummy program executes a function that is not
productive and just consumes CPU time (e.g., CPU-
intensive computation), wasting energy. Power con-
sumption histories are captured at the beginning and
in the middle of this program run, thereby extracting
two different power signatures.

ii-1. The WiFi faker: This program, as described earlier,
disguises the WiFi system tray icon to appear as inac-
tive and in fact turns on the WiFi radio operating in
the highest power mode all the time. This behavior is
captured and then one power signature is extracted.

iii-1. The combination of the dummy program and the WiFi
faker. The WiFi faker is executed and the dummy
program is then launched (the order of execution does
not matter). One energy signature is extracted while
the two programs are running.

iv-1. The four mobile worms. The execution of each worm
results in a power signature.

v-1. A DoS-attack-like Bomber: This program bombards
the handheld with 1Kbyte- and 2Kbyte-size data via
WiFi (e.g., ping -s 1024/2048). In practice, a stream of
2Kbyte-size data froze the handheld after 30 seconds.
Two different power signatures are extracted for the
different size packets.

Second, legitimate applications are characterized as follows.

i-2. Windows Media Player: This program incurs high en-
ergy consumption, but the amount of energy consump-
tion varies depending on the video codecs used, e.g.,
Windows Media Video (WMV) 9 at 315bps and WMV7
at 704bps. Power-consumption histories are recorded
at the beginning and end of 5 seconds of execution for
each codec, resulting in four different power signatures.

ii-2. Bluetooth and WiFi file transfers. A 10Mbyte-size file
is transferred via Bluetooth and WiFi. Note that the
Bluetooth file transfer and the four mobile worms, as
well as the WiFi file transfer and the Bomber, have be-
havior in common, respectively. Two power signatures
are extracted.

iii-2. A users’ handheld-usage pattern. Two users separately
explore files, i.e., tapping on the start menu and exe-
cuting the file explorer. They then drag the scroll-bar
up and down, tapping on a subfolder and opening an
image file. This pattern leads to two different power
signatures.

4.4 Measurements
For software measurement, GetSystemPowerStatusEx2()

in Coredll.lib is used to retrieve battery status information,
including AC line status, battery current, and battery volt-
age, which are normally used for monitoring the system.

Hardware measurements are made with the Agilent In-
finiium 54815-A oscilloscope which is capable of sampling at
1GS/s with a 1 millisecond peak detection. This oscilloscope
makes it easy to synchronize power measurements with pro-
cess execution. Unless otherwise specified, samples are taken
every 100 milliseconds from software measurements (execu-
tion) and every 10 milliseconds for hardware (power).

The energy-consumption history is recorded over 10 sec-
onds via hardware measurement, and 20 seconds via soft-
ware measurement. The first round of the execution of these
application scenarios yields 18 different power signatures.
Twenty rounds are made in total; the first 5 rounds result
in 90 power signatures which are used as a training set, and
the remainder yields 270 power signatures which are used as
a test set.

5. EVALUATION
The metrics used to indicate the detection accuracy in-

clude pinpoint accuracy (PA) and true-positives. PA repre-
sents the ability to classify an event correctly. For instance,
Cabir should be identified as Cabir rather than any other
type of malware, such as Mabir. As there will be no signa-
tures in the database for previously unknown malware, the
data analyzer is unable to identify it by name. However,
since signatures are classified as malicious or legitimate, the
data analyzer is able to classify previously unknown applica-
tions as either malicious or legitimate, and the success rate
in this classification is represented by the true-positive rate.
Thus, PA is a measure of true-positives. In addition, false-
positive (classification of benign activity as malicious) and
false-negative (failure to identify malware) rates are calcu-
lated.

In this section we first assess system parameters defined
in our power-aware malware-detection framework and then
evaluate the detection accuracy with the optimal values of
the system parameters found. Finally, we analyze the per-
formance issues of the framework.

5.1 Assessment of System Parameters
Effect of Battery-Charge Level: To understand the cor-

relation between state-of-charge levels and the variation of
the power drawn from a lithium-ion battery (HP Model
No. HSTNH-S11B with 1200mAh), we implemented a power
measurement program to run on the HP iPAQ rx4200. Af-
ter the battery is fully charged, the power-measurement pro-
gram starts reading the on-device hardware power monitor
once a second, logging the corresponding power-consumption
values. The remaining charge in the battery decreases over
time at a room temperature of 75 degree Fahrenheit/24 de-
gree Celsius. However, we could not exclude the effect of
inherent increase in battery temperature over time (it in-
creased by 2 degree Fahrenheit) during the program run.
Fig. 6 shows a battery power consumption distribution and
the average power consumed as the battery discharges. Note
that the characteristics of the battery discharge are also af-
fected by the battery age. Clearly, the recognition system
for overall average power consumption relies on the knowl-
edge of the battery state-of-charge. For instance, when the
state-of-charge level is between 84% and 100%, the average
power consumed increases from 84mW to 86mW. When the
state-of-charge level is between 56% and 83%, the average
power steeply drops to 80 mW and gradually increases up
to 82 mW. At a charge level of 55%, the average power
jumps back to 90 mW and after this, it steadily increases
over time. This pattern results from short, heavy current
spikes from the handheld caused by the non-linear digital
electronics as a result of its changing supply voltage. The
changing supply voltage is caused by a voltage drop across
the battery’s increasing internal resistance [2, 6, 44] that is
associated with the battery-charge level. As a result, each

246

power signature is extracted, according to the three different
charge levels (high, med, and low). Battery temperature, on
the other hand, was found to have no impact on the power
consumption pattern except that the frequency of spike oc-
currences was reduced at very low temperatures (e.g., 35
degree Fahrenheit/2 degree Celsius).

100 80 60 40 20 0
60

80

100

120

140

160

180

State−of−Charge (%)

P
ow

er
 (

m
W

)

power point
mean power

Figure 6: Power consumption variations with re-
spect to the battery-charge level in software mea-
surement

Signature Generation: A power consumption history is pro-
duced while running an application on a handheld. The
power consumption history is transformed into a power sig-
nature via two techniques: the moving average filter and the
data compressing. The moving average filter removes noise
from the power consumption history, effectively extracting
a pattern. The compression technique, on the other hand,
is applied to reduce the size of a signature, without losing
the detection accuracy. In the compression technique, lo-
cal jitter is suppressed and compressed. Fig. 7 shows the
procedure of generating a power signature from the power
consumption history of a video clip playback with a bit-rate
of 315bps, using the WMV 9 codec. Fig. 7-(a) shows the
power consumption history captured in which a pattern can
hardly be recognized, mainly because of signal noise. After
the filter is applied, a pattern becomes visible as shown in
Fig. 7-(b). The application of the compression technique
results in a power signature as shown in Figure 7-(c).
Impact of Filter Parameters: The window size (k) in the
moving average filter determines the degree to which noise
is reduced, which, in turn, correlates with the detection ac-
curacy. That is, the larger the k, the smoother the curve,
which may lower the accuracy. On the other hand, if k is
too small, the filter may be less effective for reducing noise.
Thus, the optimal k needs to be found to achieve the highest
accuracy. We conducted an experiment to find the optimal
values, with the lookahead size and its threshold fixed (m=5
and δc=0.05 whose assessment will be presented shortly).
We evaluated the detection accuracy with a test set of 270
power signatures and a database of 90 power signatures la-
beled as either legitimate or malicious. As Fig. 8 shows the
correlation between the window size and PA, the 23- or 24-
point moving average filter for the 1000-sample power con-
sumption history allows the highest PA. When k is smaller
than 23, the filter seems ineffective and as k becomes larger

after 24, the effectiveness of reducing noise is gradually de-
graded. The reason for this is that the large k reflects less
of recent fluctuation of samples of the power consumption
within the window.

0 20 40 60 80 100
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Window size (k)

P
in

po
in

t a
cc

ur
ac

y

Figure 8: An optimal window size (k) in the mov-
ing average filter. When the k=23 or 24, PA is the
highest. No compression was applied.

Effectiveness of Compression: The lookahead size, m, and
its threshold, δc, used in the data compression determine
the compression ratio which we intend to maximize without
losing the detection accuracy. We conducted an experiment
under the same condition (i.e., the same database and test
set) as when the optimal k was obtained. From the result of
the previous experiment, k is set to 23. We then attempt to
find the optimal values of m and δc. As shown in Figs. 9-(a)
and (b), when δc > 0.05, more than 95% storage-savings is
achieved. As shown in Figs. 9-(c) and (d), the lookahead pa-
rameter correlates more prominently with the compression
ratio than PA when δc=0.06. As m increases, the compres-
sion ratio also increases, while PA is hardly affected. The
FFT technique allows a higher compression ratio than the
brute-force (BF) comparison because a large portion of sam-
ples are converted into constant frequency components.

Accordingly, when δc=0.06, the 23/24-point moving aver-
age filter and compression with the 20-sample lookahead (15
samples for FFT) allow the highest PA for hardware (power)
measurement, while when δc=2, the 5-point moving average
and compression with the 5-sample lookahead are optimal
in software (system execution) measurement.

5.2 Detection Accuracy
Detecting Battery-Depletion Attack: The WiFi faker ren-

ders the WiFi-associated system tray icon disabled, thus
misleading the user to think that the device is turned off
although it is actually on. The WiFi faker makes a request
to the power manager for letting the WiFi device adopt
the maximum power state, thus draining the battery at the
fastest possible rate. The WiFi faker can collaborate with
the dummy program that executes an exponential function
in a loop. Both aspects of this behavior shown by the WiFi
faker and the dummy program are effectively captured by
our power-aware detection framework. Fig. 10 shows power-
consumption patterns with the WiFi faker and the dummy
program executed separately, and in combination. Each of

247

0 200 400 600 800 1000
600

700

800

900

1000

1100

1200

Time (x 10ms)

P
ow

er
 (

m
W

)

(a) Raw samples

0 200 400 600 800 1000
880

890

900

910

920

930

940

950

960

Time (x 10ms)

A
ve

ra
ge

d
po

w
er

 (
m

W
)

(b) 50pt-moving average filter applied

0 10 20 30 40 50
895

900

905

910

915

920

925

930

935

940

945

Compressed sample

A
ve

ra
ge

d
po

w
er

 (
m

W
)

(c) Local jitter removed

Figure 7: Power signature generation

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The variation threshold (δ
c
)

C
om

pr
es

si
on

 r
at

io

SM, m=20
FFT, m=20

(a) Compression ratio with δc

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The variation threshold (δ
c
)

P
in

po
in

t a
cc

ur
ac

y

SM, m=20
FFT, m=20

(b) PA with δc

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The lookahead (m)

C
om

pr
es

si
on

 r
at

io

SM, δ
c
=0.06

FFT, δ
c
=0.06

(c) Compression ratio with m

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The lookahead (m)

P
in

po
in

t a
cc

ur
ac

y

SM, δ
c
=0.06

FFT, δ
c
=0.06

(d) PA with m

Figure 9: Compression ratio comparison

these three patterns (excluding the WiFi-connected pattern)
is then represented by a power signature as a malicious ap-
plication.

To evaluate the accuracy for detecting the battery deple-
tion attacks described above, we set up the following test
scenario. Starting with the signature database generated
as the basis of the legitimate application group signatures
defined in Section 4.3, we separately compared the WiFi
faker, the dummy program, and the combination of these
two programs, using 20-sample sets. First, the WiFi faker
was identified as abnormal rather than malicious because
the database did not contain a corresponding malware sig-
nature. The signature of the WiFi faker was then added to
the database, and finally, the three programs were tested.
By repeating this test with different combinations of the
programs, we diversified and populated the database. As
can be seen in Table 2, the WiFi faker (A) is identified with
100% accuracy using Database A, and detected 100% of the
time with Databases B and C because the WiFi faker and
the other two applications have common power consumption
patterns. The dummy program is identified 100% of the time

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

Time (ms)

P
ow

er
 c

on
su

m
pt

io
n

(W
)

Dummy:exp + Faker
WiFi Faker
WiFi connected
Dummy:exp

Figure 10: Comparison of the power consumption
with WiFi connection, the WiFi faker, and a com-
bination of a dummy program and the WiFi faker.
The WiFi device is in power-saving mode in which
the WiFi device dozes after every beacon interval.

with Database B. In particular, the combination (C) of the
two is detected 100% of the time with any of Database A, B,
or C. In general, the more diverse the database, the higher
the detection accuracy.

Four mobile worms—Cabir, Mabir, Commwarrior, and
Lasco—which come from the same malware family have com-
mon behavior. Likewise, the power signature of one worm
can be the basis for detecting the other worms. To eval-
uate the ability of our framework to detect previously un-
known worms whose signature is similar to those of previ-
ously known worms, the four costume worms were divided
into two groups: known-worm and unknown-worm groups.
Worms in the known-worm group were executed 5 times to
extract their signatures for the database (training set), while
worms in the unknown-worm group were executed 15 times
to generate a test signature set. Table 3 summarizes the
detection accuracy for unknown worms with different com-
binations of known and unknown worms. The first four rows
that correspond to the databases with a single worm signa-
ture exhibit the worm closest in behavior to the other. For
instance, Cabir (C) and Mabir (M) have a similar power

248

DB\Tested Malware A B C

A 100% 0% 100%
B 100% 100% 100%
C 100% 0% 100%

A, B 100% 100% 100%
A, C 100% 0% 100%
B, C 100% 100% 100%

A, B, C 100% 100% 100%

Table 2: Battery-depletion attack detection: A (the
WiFi faker), B (dummy program), and C (WiFi
faker and dummy program) are tested according to
diverse signatures of the DB. Ten distinct signatures
from the legitimate application group are initially
included in the DB.

consumption pattern, as do Mabir (M) and Lasco (L). The
more diverse worms collected and added to the database, the
higher detection accuracy for unknown worms. For instance,
the detection accuracy for Commwarrior (C) and Lasco (L)
is improved even with a partially-filled database, thus mak-
ing this technique attractive for resource-limited handhelds.

DB\Tested Worm C M W L

C 87% 93% 73% 87%
M 93% 100% 80% 93%
W 47% 93% 80% 87%
L 87% 93% 80% 93%

C, M 93% 100% 80% 93%
M, W 93% 100% 80% 93%
W, L 87% 93% 80% 93%

C, M, W 93% 100% 80% 93%
M, W, L 93% 100% 80% 93%

Table 3: The previously unknown worms: C (Cabir),
M (Mabir), W (commWarrior), and L (Lasco) are
tested against diverse signatures in the DB. Ten
distinct signatures from the legitimate application
group are initially included in the DB.

In addition to the detection of previously unknown worms,
the Bomber whose behavior is similar to that of the WiFi file
transfers was also identified with 95% accuracy. Activities
that result from the Windows Media Player such as playing
two distinct frames with different video codecs—signatures
were extracted at the beginning and end of a 5-second exe-
cution for each codec—were identified with 100% accuracy.

5.3 Performance Analysis
The moving average filter we used turned out to be very

effective for removing noise, thus extracting a clear power
consumption signature from the power consumption history.
Table 4 shows the detection accuracy with and without the
filter and the compression techniques applied. In the table,
the moving average filter and the compression techniques
were not applied in the case of C1, while only the filter was
applied in the case of C2. Comparing C1 and C2, PA was
improved by 22%, achieving a 98% true-positive rate. This
enhancement strongly supports the effectiveness of the filter.
In addition to the moving average filter, in comparison of

C2 and C3, our compression technique is also effective for
optimizing memory usage, without degrading the accuracy
(the effect of the compression technique will be analyzed
shortly). If the number of samples to be matched is 95%
of the total samples, our detection scheme achieves a 99%
true-positive rate, while decreasing the false-negative rate
down to 0% (in C4). In the case of applying the FFT (C5),
the overall accuracy is improved, with the false-negative rate
reduced to 2% in comparison with C1 which only achieved
5%.

Methods PA TP∗ FN FP TP

(C1) BF w/o opt. 64% 29% 5% 2% 93%
(C2) BF w/o comp. 78% 20% <1% 2% 98%
(C3) BF 78% 20% <1% 2% 98%
(C4) BF (95%) 76% 23% 0% <2% 99%
(C5) FFT 73% 23% 2% 3% 96%

Table 4: Comparison of the overall detection ac-
curacy, based on hardware measurement. TP (the
true-positive rate) equals PA plus TP∗ (the exclu-
sive true-positive rate). Brute-force (BF) compari-
son and FFT methods are compared with FN (false-
negatives) and FP (false-positives) as well as TP and
PA.

We applied a simple and powerful compression technique.
As shown in Table 5, this technique allows the power sig-
nature to be compressed by a factor of 21 without losing
the detection accuracy (in the case of R1). This compact
signature representation also allows the signature matching
to require less CPU time. For instance, the data processing
needed for the compression and the BF comparison (100%
samples matching) requires less CPU time than the case
without the compression by 71% (in the case of R2). When
the FFT method is applied, the data processing including
the FFT computation is estimated to be 1.6 times faster
than the case without this optimization, resulting in only
63% of CPU time required (in the case of R3). Comparing
the FFT method with the BF approach, therefore, as we ex-
pected, the data processing with the FFT method applied
is estimated to be 1.3 times faster than that with the BF
approach applied, because most of the transformed data as
a result of the FFT are zero or the same constant frequency
components, simplifying the distance metric computation.

Ratio Value

(R1) Compression ratio 21.3
(R2) CPU gain ratio (BF) 1.4
(R3) CPU gain ratio (using FFT) 1.6

Table 5: Performance comparison

6. RELATED WORK
Heuristics on what to monitor and what to collect vary

with different platforms (i.e., handhelds, workstations, and
their interconnection network), but technologies and method-
ologies for detecting known and unknown threats may be
similar or even same, regardless of the platform type, with
appropriate optimization and customization. In this section,

249

we review related work and list some of major technologies
and methodologies for malware detection and relevant mea-
surements.

• Code Analysis. An agent in a detection system ana-
lyzes attempts to execute code in several ways. First,
before running code normally on a host, the agent can
execute the code in a virtual machine or a sandbox,
comparing its behavior with profiles or rules that spec-
ify good and bad behavior [55]. Bad behavior includes,
for instance, attempts to gain administrator-level priv-
ileges or overwrite a system executable. Second, an
agent can detect attempts to perform stack and heap
buffer overflows, looking for their typical characteris-
tics such as certain sequences of instructions or ‘ret’
instructions in the code, e.g., shellcode [29, 37, 53].
The shellcode enters the system, exploiting the vulner-
ability of web browsers. Third, an agent can monitor
and process system calls to identify applications per-
forming certain actions such as intercepting keystrokes.
Characteristics of such malware can be extracted from
system calls by applying advanced techniques to the
call sequences, e.g., enumerating sequences [26, 47], n-
gram vectors [15], data-mining techniques [28], Bayesian
classification [35], neural networks [34], finite-state au-
tomata [43], and hidden Markov models [54]. Last, the
agent may monitor each application and library (e.g.,
a dynamic link library (DLL)) that a process attempts
to load. This information is then compared against
lists of authorized and unauthorized applications and
libraries.

• Statistical Monitoring. SmartSiren [13] is a virus de-
tection and alert system for mobile handhelds, which
aims to detect worms exploiting SMS messaging and
Bluetooth communication. This detection system is
based on statistical monitoring for the detection of fast
spreading worms, and abnormality monitoring for the
detection of slower worms and Trojans. Using statis-
tical monitoring, the average number of communica-
tions initiated every day and the average number of
handhelds exceeding the average are counted. When
daily measurements for each category exceed the aver-
age threshold, an alert is triggered. Using abnormality
monitoring, Trojans can be detected by keeping track
of the number of messages directed to a specific des-
tination. SmartSiren is the first infrastructure-based
solution to securing mobile phones despite the limita-
tions of post-infected detection.

• Payload Analysis. PAYL [52] is a payload-based IP
network intrusion detector in which a normal payload
is analyzed and then the occurrence of each character
found in the payload is counted to produce a byte fre-
quency distribution. The average byte frequency, and
standard deviation of each byte’s frequency, form a
payload model. The payload model is made for the ob-
served length of each IP port. Two neighboring models
converge or remain separate, comparing similarity of
the two using the Manhattan distance between aver-
age byte frequencies. After payload models are set,
the Mahalanobis distances [50] between data observed
from a process, and each model are calculated. If any
distance calculated is greater than a threshold, then

the process is considered anomalous. The feature of
the Mahalanobis distance is to consider not only the
mean distance, but also weights of each point using co-
variance. PAYL is, however, ineffective for encrypted
channels, because their distributions appear uniformly
distributed.

• Filesystem Monitoring. A filesystem can be monitored
by checking file integrity, file attributes, or file access
attempts. In checking for file integrity, the agent yields
message digests or cryptographic checksums for criti-
cal files, comparing them against reference values, and
verifying their differences [38]. Similarly, in check-
ing for file attributes, the agent checks the attributes
of important files (e.g., ownership and permission for
change). Both file integrity and attribute checking
can only determine (in an after-the-fact manner) if a
change has taken place. In checking for file access at-
tempts, an agent with a shim—a layer of code placed
in between existing layers of code—can monitor all at-
tempts to access critical files and stop suspicious at-
tempts by comparing policies with the characteristics
of the current attempt, such as which user/application
attempts to access what file with a particular type
of access (i.e., read, write, or execute). This can be
used for preventing the installation of malware, such
as rootkits, Trojans, and other types of malicious ac-
tivity.

• Power Consumption Monitoring. An agent can moni-
tor the power consumption resulting from applications
executing on the device. For accurate and detailed
measurements, a monitoring agent cooperates with a
profiling agent running on a separate device similar to
PowerScope [23]. These two agents in PowerScope are
connected by a digital multimeter. The monitoring
agent triggers the digital multimeter to take samples
and the sampled data are then passed to the profiling
agent. At the same time, the monitoring agent puts a
timestamp on the procedure call sequence. This way,
an energy profile which includes per-process and per-
user-level signatures can be constructed. Similarly, en-
ergy usage of applications can be measured on a pocket
PC running a Java virtual machine [21].

7. CONCLUSION
We end this paper by discussing the limitations encoun-

tered in pursuit of this work, along with concluding remarks.

7.1 Limitations
Only a few worm samples are publicly available for re-

search. Testing detection systems with real-world malware
is necessary to evaluate the effectiveness of any detection
system, but due to the nature of in-the-wild malware ac-
tivities, effective and comprehensive evaluation and testing
with real-world worm samples are difficult to do. For this
reason, most research relies on benign activity or worm mod-
eling [8, 32, 33] to study the effectiveness of methods. Al-
ternatively, a malware emulator that imitates real malware
behavior could be used and most importantly, the malware
emulator should be able to build diverse types of test suits so
that the malicious activity may accurately reflect the com-
position of recent threats against detection systems.

250

Considering a handheld’s limited user interface and design
of the window managers, we assumed that one application
would run at a time. Even the most advanced SmartPhone
currently available in the market tends to provide window
managers that only support one application running at a
time. However, multiprocessing is expected to be employed
in future handhelds, and how to address this issue is part
of our future work. In particular, the fine-grained measure-
ment of energy usage per process on the handheld is as im-
portant as the enhancement in the battery data acquisition
system that a battery chip offers.

7.2 Concluding Remarks
Mobile handhelds must be protected against malware, es-

pecially those with the goal of dramatically reducing their
battery lifetime. In this paper, we have presented a power-
aware malware-detection framework, with the aim of fur-
thering users’ mobility and the ubiquitous use of their mo-
bile device. We began by characterizing power consump-
tion patterns of events and designed two important system
components. We then performed a comprehensive analy-
sis of the detection accuracy for pinpointing the identity of
events, as well as classifying them as malicious or normal.
We addressed two challenges: (1) extracting characteristics
of the power consumption history from noisy samples, and
using data compression to generate a compact power signa-
ture, resulting in a 95% storage savings, and (2) deriving
the efficacy of detecting energy-greedy anomalies as well as
unknown malware over our representative test set up to a
99% true-positive rate. In summary, our framework offers a
unique solution to the problem of securing battery-powered
mobile devices, and is further enhanced with the support of a
wireless server/PC-side providing a comprehensive analysis
of the data.

Acknowledgment
We would like to thank our shepherd, Roy Want, for his
detailed technical and editorial comments which enhanced
this paper significantly.

The work reported in this paper was supported in part
by the National Science Foundation under Grant No. CNS
0523932, Samsung Electronics, and Intel Corporation.

8. REFERENCES
[1] http://www.gartner.com/it/page.jsp?id=501734.

[2] Battery university - the high-power lithium-ion.
http://www.batteryuniversity.com/partone-22.htm.

[3] Battery university - the high-power lithium-ion.
http://www.batteryuniversity.com/partone-5A.htm.

[4] Btaccess.net. http://www.high-point.com.

[5] Making handheld security a priority.
http://www.symantec.com/norton/products/library/
article.jsp?aid=handheld security.

[6] The secrets of battery runtime 2.
http://www.technick.net/public/code/cp dpage.php
?aiocp dp=guide bpw2 c06 03.

[7] UPX: the Ultimate Packer for eXecutables.
http://upx.sourceforge.net/.

[8] Bluetooth Worms: Models, Dynamics, and Defense
Implications, Dec. 2006.

[9] Manish Anand, Edmund B. Nightingale, and Jason
Flinn. Ghosts in the machine: interfaces for better

power management. In MobiSys, pages 23–35, New
York, NY, USA, 2004. ACM.

[10] A. Bose and K. G. Shin. On mobile viruses exploiting
messaging and bluetooth services. In SecureComm,
pages 1–10. IEEE, Aug. 2006.

[11] T.K. Buennemeyer, M. Gora, R.C. Marchany, and
J.G. Tront. Battery exhaustion attack detection with
small handheld mobile computers. In PORTABLE,
pages 1–5. IEEE, May 2007.

[12] Branislav Kisa canin, Vladimir Pavlović, and
Thomas S. Huang, editors. Real-time vision for
human-computer interaction. ISBN 387276971.
Springer, 1 edition, 2005.

[13] Jerry Cheng, Starsky Wong, Hao Yang, and Songwu
Lu. Smartsiren: virus detection and alert for
smartphones. In MobiSys, pages 258–271, San Juan,
Puerto Rico, Jun. 2007. ACM.

[14] David Dagon, Tom Martin, and Thad Starner. Mobile
phones as computing devices: The viruses are coming.
Pervasive Computing, 3(4):11–15, Oct. 2004.

[15] Marc Damashek. Gauging similarity with n-grams:
Language-independent categorization of text. Science,
267(5199):843–848, Feb. 1995.

[16] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification. ISBN 0-471-05669-3. A
Wiley-Interscience Publication, second edition, 2001.

[17] Robert D. Edwards and John Magee. Technical
analysis of stock trends. ISBN 0814406807.
AMACOM, New York, NY, 8th edition, 2001.

[18] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and
Scott D. Tenaglia. A behavioral approach to worm
detection. In WORM, pages 43–53, Washington DC,
USA, 2004. ACM.

[19] William Enck, Patrick Traynor, Patrick McDaniel,
and Thomas La Porta. Exploiting open functionality
in sms-capable cellular networks. In CCS, pages
393–404, Alexandria, VA, USA, 2005. ACM.

[20] F-secure. Cabir.
http://www.f-secure.com/v-descs/cabir.shtml.

[21] Keith Farkas, Jason Flinn, Godmar Back, Dirk
Grunwald, and Jennifer Anderson. Quantifying the
energy consumption of a pocket computer and a java
virtual machine. SIGMETRICS: PER, 28(1):252–263,
June 2000.

[22] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad
Fogla, Wenke Lee, and Weibo Gong. Anomaly
detection using call stack information. In SP,
Oakland, CA, USA, May 2003. IEEE.

[23] Jason Flinn and M. Satyanarayanan. Powerscope: A
tool for profiling the energy usage of mobile
applications. In WMCSA, New Orleans, Louisiana,
Feb. 1999. IEEE.

[24] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg
Kolesnikov, and Wenke Lee. Polymorphic blending
attacks. In Security Symposium, pages 17–17,
Berkeley, CA, USA, 2006. USENIX.

[25] R.M. Ford, C. Robson, D. Temple, and M. Gerlach.
Metrics for scene change detection in digital video
sequences. In ICMCS, pages 610–611, Los Alamitos,
CA, USA, 1997. IEEE.

[26] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,

251

and Thomas A. Longstaff. A sense of self for unix
processes. In SP, page 120, Oakland, CA, USA, May
1996. IEEE.

[27] Mikko Hypponen. Malware goes mobile. Nov. 2006.

[28] Wenke Lee and Salvatore J. Stolfo. Data mining
approaches for intrusion detection. In Security
Symposium, volume 7, San Antonio, Texas, USA, Jan.
1998. USENIX.

[29] S. Macaulay. Admmutate: Polymorphic shellcode
engine. http://www.ktwo.ca/security.html.

[30] Thomas Martin, Michael Hsiao, Dong Ha, and Jayan
Krishnaswami. Denial-of-service attacks on
battery-powered mobile computers. In PerCom, page
309, Washington, DC, USA, 2004. IEEE Computer
Society.

[31] M.Christodorescu, S.Jha, S.A.Seshia, D.Song, and
R.E.Bryant. Semantics-aware malware detection. In
SP, pages 32–46, Oakland, CA, USA, May 2005.
IEEE.

[32] James W. Mickens and Brian D. Noble. Modeling
epidemic spreading in mobile environments. In WiSe,
pages 77–86, New York, NY, USA, 2005. ACM.

[33] Jose A. Morales, Peter J. Clarke, Yi Deng, and
B. M. Golam Kibria. Testing and evaluating virus
detectors for handheld devices. Journal in Computer
Virology, 2(2):135–147, Nov. 2006.

[34] Srinivas Mukkamala and Andrew H. Sung. Identifying
key features for intrusion detection using neural
networks. In ICCC, pages 1132–1138, Mumbai,
Maharashtra, India, 2002.

[35] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and
Christopher Kruegel. Anomalous system call
detection. TISSEC, 9(1):61–93, 2006.

[36] Carey Nachenberg. Computer virus-antivirus
coevolution. Communications of the ACM,
40(1):46–51, 1997.

[37] James Newsome, Brad Karp, and Dawn Song.
Polygraph: Automatically generating signatures for
polymorphic worms. In SP, pages 133–145, Oakland,
CA, USA, May 2005. IEEE.

[38] Taejoon Park and Kang G. Shin. Soft tamper-proofing
via program integrity verification in wireless sensor
networks. TMC, 4(3):297–309, May 2005.

[39] N.V. Patel and I.K. Sethi. Compressed video
processing for cut detection. Vision, Image and Signal
Processing, 143(5):315–323, October 1996.

[40] Matthew Pirretti, Sencun Zhu, N. Vijaykrishnan,
Patrick McDaniel, Mahmut Kandemir, and Richard
Brooks. The sleep deprivation attack in sensor
networks: Analysis and methods of defense. IJSNet,
2(3):267–287, Sept. 2006.

[41] Radmilo Racic, Denys Ma, and Hao Chen. Exploiting
mms vulnerabilities to stealthily exhaust mobile
phone’s battery. In SecureComm, pages 1–10,
Baltimore, MD, Sep. 2006. IEEE.

[42] C. Reyes-Aldasoro and A. Bhalerao. The
bhattacharyya space for feature selection and its
application to texture segmentation. Pattern
Recognition, 39(5):812–826, May 2006.

[43] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A
fast automaton-based method for detecting anomalous
program behaviors. In SP, page 144, Oakland, CA,
USA, Apr. 2001. IEEE.

[44] S. P. Shukla, Y. W. Suen, and M. Shayegan.
Magnetic-field-induced triple-layer to bilayer
transition. Phys. Rev. Lett., 81(3):693–696, Jul 1998.

[45] Bluetooth SIG. Specification of the Bluetooth system,
Core Version 1.1. http://www.bluetooth.com/, Feb.
2001.

[46] Ed Skoudis and Lenny Zeltser. Malware: Fighting
Malicious Code. ISBN 0131014056. Prentice Hall
PTR, Upper Saddle River, New Jersey 07458, 2004.

[47] Anil Somayaji and Stephanie Forrest. Automated
response using system-call delays. In SP, page 14,
Oakland, CA, USA, May 2000. IEEE.

[48] Thad Starner. Thick clients for personal wireless
devices. Computer, 35(1):133–135, 2002.

[49] Symantec. Commwarrior description available at.
http://securityresponse.symantec.com.

[50] Camilo Tenorio, Francisco de Carvalho, and Julio
Pimentel. A partitioning fuzzy clustering algorithm for
symbolic interval data based on adaptive mahalanobis
distances. In HIS, pages 174–179. IEEE, July 2007.

[51] Sampo Töyssy and Marko Helenius. About malicious
software in smartphones. Journal in Computer
Virology, 2(2):109–119, Nov. 2006.

[52] Ke Wang and Salvatore J. Stolfo. Anomalous
payload-based network intrusion detection. In RAID,
volume 3224, pages 203–222. LNCS, Oct. 2004.

[53] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun
Zhu. Sigfree: a signature-free buffer overflow attack
blocker. In Security Symposium, Vancouver, Canada,
Jan. 2006. USENIX.

[54] Christina Warrender, Stephanie Forrest, and Barak
Pearlmutter. Detecting intrusions using system calls:
Alternative data models. In SP, pages 133–145,
Oakland, CA, USA, Apr. 1999. IEEE.

[55] Carsten Willems, Thorsten Holz, and Felix Freiling.
Toward automated dynamic malware analysis using
cwsandbox. Security & Privacy, 5(2):32–39, March
2007.

[56] Nong Ye and Qiang Chen. An anomaly detection
technique based on a chi-square statistic for detecting
intrusions into information systems. Quality and
Reliability Eng. Int’l, 17(2):105–112, October 2001.

252

