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A DCT Statistics-Based Blind Image Quality Index
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Abstract—The development of general-purpose no-reference ap-
proaches to image quality assessment still lags recent advances in
full-reference methods. Additionally, most no-reference or blind
approaches are distortion-specific, meaning they assess only a spe-
cific type of distortion assumed present in the test image (such as
blockiness, blur, or ringing). This limits their application domain.
Other approaches rely on training a machine learning algorithm.
These methods however, are only as effective as the features used
to train their learning machines. Towards ameliorating this we in-
troduce the BLIINDS index (BLind Image Integrity Notator using
DCT Statistics) which is a no-reference approach to image quality
assessment that does not assume a specific type of distortion of the
image. It is based on predicting image quality based on observing
the statistics of local discrete cosine transform coefficients, and it
requires only minimal training. The method is shown to correlate
highly with human perception of quality.

Index Terms—Anisotropy, discrete cosine transform, kurtosis,
natural scene statistics, no-reference quality assessment.

I. INTRODUCTION

HE ubiquity of digital visual information (in the form of

images and video) in almost every economic sector neces-
sitates reliable and efficient methods for assessing the quality
of this visual information. While a number of full-reference
image quality assessment (FR-IQA) methods have been estab-
lished and have shown to perform well (correlating highly with
subjective evaluation of image quality), no current no-reference
image quality assessment (NR-IQA) algorithm exists that pro-
vides consistently reliable, generic performance. Despite the ac-
ceptable performance of current FR-IQA algorithms, the need
for a reference signal limits their application, and calls for reli-
able no-reference algorithms. Existing approaches to NR-IQA
research are varied and commonly follow one of three trends:
1) Distortion-specific approach: In this approach, the IQA algo-
rithm quantifies a specific distortion in isolation of other factors,
and scores an image accordingly. Examples of such NR-IQA al-
gorithms are [1], which computes a blockiness measure, [2] and
[3], which estimate blur, and [4] and [5] which measure ringing
effects. 2) Feature extraction and learning approach: This ap-
proach extracts features from images and trains a learning algo-
rithm to distinguish distorted from undistorted images based on
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the features extracted. Examples include a support vector ma-
chine (SVM) based approach in [6], and a neural networks based
approach in [7]. 3) Natural scene statistics (NSS) approach: This
approach assumes that natural or undistorted images occupy a
subspace of the entire space of possible images, and then seeks
to find a distance from the distorted image (which supposedly
lies outside of that subspace) to the subspace of natural images.
This approach relies on how the statistics of images change as
distortions are introduced to them. An example of such an ap-
proach is described in [8].

The obvious disadvantage of the first approach is that it is dis-
tortion specific and hence also application specific. The number
of distortions introduced to images in a wide range of appli-
cations is large, which makes it difficult for an algorithm to
comprehensively quantify every type of distortion possible. The
second approach is only as effective as the features extracted.
The more representative the features are of the quality of the
image, the more reliable the approach is. Finally, the NSS ap-
proach is a very promising one, but relies on extensive statistical
modeling and reliable generalization of the models.

In this paper we present the BLIINDS index which is based
on a combination of approaches 2) and 3). We seek to observe
how certain perceptually relevant statistical features of images
change as an image becomes distorted, and then use these fea-
tures to train a statistical model that we develop to make blind
(or no-reference) predictions about the quality of the images.
The proposed NR-IQA method is based on a DCT framework
entirely. This makes it computationally convenient, uses a com-
monly used transform, and allows a coherent framework. Our
algorithm is tested on the LIVE database of images which con-
tains JPEG2000, JPEG, white noise, Gaussian blur, and fast
fading channel distortions. The fast fading channel errors in the
LIVE database are simulated by JPEG2000 errors followed by
channel errors. The proposed algorithm predicts a differential
mean opinion score (DMOS) in the range [0,100], as is usually
reported in subjective experiments, and as is provided by the
LIVE database of images [9] and corresponding reported sub-
jective DMOS scores. Providing a prediction of a quality score
in the interval [0,100] makes the method convenient to compare
against other algorithms that perform quality prediction and that
report a similar type of continuous prediction score. mds

II. IMAGE REPRESENTATION: FEATURE SELECTION

A model is only as effective as the features it relies on to rep-
resent the data being modeled. In other words, its performance
is a function of the representativeness of the features selected to
represent the visual quality of the image being assessed. Conse-
quently, the first issue we need to address is what type of features
to extract from the image so as to capture as much of the visual
quality of the image as possible.

Proceeding towards this goal, we first note that humans per-
form the task of blind IQA quite well, without the need for a ref-
erence image to do so. This leads us to believe that the human
visual system (HVS) is sensitive to a number of features that
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Fig. 3. Sharp object on blurred background.

distinguish high visual quality images from distorted ones. Fur-
ther it is believed that the HVS has evolved to adapt to the sta-
tistics of the projected natural world, and therefore embodies
mechanisms that process images in accordance with these sta-
tistics. Our feature selection process relies on the basic funda-
mental fact that natural images are highly structured (as was hy-
pothesized in [10]), in the sense that their pixels exhibit strong
dependencies, and these dependencies carry important informa-
tion about the visual scene. Since it has been noted that the vi-
sual system is highly adapted to its natural environment, and
since natural images are highly structured, the HVS is thus as-
sumed to be adapted to extracting structural information from
the visual field. Towards this end, we choose to extract image
features that represent image structure. In addition to structure,
the HVS is highly sensitive to contrast. In general, high contrast
in an image is a desirable property, accentuating image structure
and making the image more visually appealing. For instance, a
majority of viewers might prefer Fig. 1 over Fig. 2 due to the
higher contrast in Fig. 1 relative to Fig. 2. Consequently, we
choose to extract a feature representative of the contrast of the
images, the quality of which is to be assessed. Additionally, the
features we extract are also expected to account for image sharp-
ness (without explicitly measuring blur distortion or any other
specific distortion) and orientation anisotropies (properties of
images that the HVS is also highly sensitive to [11]). We note
however, that image sharpness for instance, is highly content de-
pendent. For example, the background is blurred in Fig. 3, yet
it is a desirable property of this specific image. This is why we
do not seek to quantify sharpness or blur as is, but rather ex-
plore how the statistics of spatial frequency domain characteris-
tics vary in natural and in distorted images. To do so, we employ
the discrete cosine transform (DCT) to extract a number of fea-
tures and model their statistics.
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A. DCT-Based Contrast

Contrast is a basic perceptual attribute of an image. One may
distinguish between global contrast measures and ones that are
computed locally (and possibly pooled into one measure post
local extraction). Several measures of contrast exist in the liter-
ature such as the simple global Michelson contrast [12] and the
more elaborate Peli’s contrast [13]. The Michelson contrast sta-
tistics did not correlate with human visual perception of quality
in our experiments, while Peli’s contrast is computationally too
intensive. Instead we resort to computing contrast based on local
DCT patches, and show that the statistics of these correlate with
human visual perception of distortion. This also conforms to our
DCT-only framework.!

In the simplest, single-scale implementation, the 2-D DCT is
applied to 17 x 17 image patches centered at every pixel in the
image.2 The local DCT contrast is then defined as the average of
the ratio of the non-DC DCT coefficient magnitudes in the local
patch normalized by the DC coefficient of that patch. The local
contrast scores from all patches of the image are then pooled
together by averaging the computed values to obtain a global
image contrast value.

B. DCT-Based Structure Features

Structure features are derived locally from the local DCT fre-
quency coefficients. We ignore the DC coefficient whose mag-
nitude is usually much larger than the higher frequency DCT co-
efficients in the image patch. Ignoring the DC coefficient does
not alter the local structural content of the image. We illus-
trate how the statistics of the higher frequency DCT coefficients
change as an image becomes distorted in Fig. 4 and Fig. 5, which
show the DCT coefficient histograms of a distortion free and a
Gaussian blur distorted image, respectively. Similar trends in
the histogram statistics are observed throughout the LIVE data-
base of images, on which we perform our study. Among the ob-
served differences in the histograms is the peakedness at zero,
(the distorted images are observed to have a higher histogram
peak at zero), and the variance along the support of the his-
togram. We seek to make use of statistical differences, such as
the ones demonstrated above, to develop a NR-IQA index. To
capture the statistical traits of the DCT histograms we compute
its kurtosis, which quantifies the degree of its peakedness and
tail weight, and is given by:

=——0 M

where p is the mean of z, and o is its standard deviation.

The kurtosis of each DCT image patch, (the same 17 x 17
image patches from which we computed local DCT contrast) is
computed, and the resulting values pooled together by averaging
the lowest tenth percentile of the obtained values to obtain a
global image kurtosis value.

It has been hypothesized that degradation processes damage
a scene’s directional information. Consequently, anisotropy,
which is a directionally dependent quality of images, was shown
by Gabarda et al. in [11] to decrease as more degradation is
added to the image. In [11] anisotropy is computed via the

ITransform-based contrast approaches have been studied in the literature and
shown to correlate with human visual perception of contrast based on the fact
that human contrast sensitivity is a function of spatial frequency [13].

217 was chosen since it is a non-multiple of 4, 8, or 16 to avoid falling on block

boundaries that may sometimes appear in JPEG, MPEG-2 or H.264 encoded
images.
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Fig. 4. Original image DCT log-histogram. Horizontal axis is non-DC DCT
coefficient magnitudes.
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Fig. 5. JPEG2000 distorted image DCT log-histogram. Horizontal axis is
non-DC DCT coefficient magnitudes.
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Fig. 6. Predicted DMOS versus subjective DMOS (JPEG2000 LIVE subset).
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Fig. 7. Predicted DMOS versus subjective DMOS (JPEG LIVE subset).
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Fig. 8. Predicted DMOS versus subjective DMOS (White noise LIVE subset).

generalized Renyi entropy and a windowed pseudo-Wigner dis-
tribution (PWD). In this work, we compute a modified version
of the anisotropy measure described in [11]. The anisotropy
measure we compute is derived from one dimensional, 17 x 1
oriented DCT patches. Our anisotropy computation proceeds as
follows: DCT image patches are computed along four different
orientations (0°, 45°, 90° and 135°). Each patch consists of
the DCT coefficients of 17 oriented pixel intensities. (We
discard the DC coefficient, since the focus is on directional
information). Let the DCT coefficients of a certain patch be
denoted by P[n, k], where k is the frequency index of the DCT
coefficient (1 < &k < 17), and n is the spatial index where the
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TABLE I
SPEARMAN CORRELATIONS (SUBJECTIVE DMOS VERSUS PREDICTED DMOS)
FOR OUR DCT-BASED NR-IQA METHOD AND FOR FR PSNR

LIVE Subset DCT-Based (NR-IQA)  PSNR (FR-IQA)

JPEG2000 0.9219 0.8765
JPEG 0.8391 0.8937
White Noise 0.9735 0.9560
Gaussian Blur 0.9569 0.8445
Fast Fading 0.7503 0.8617
All Data 0.7996 0.7810
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Fig. 9. Predicted DMOS versus subjective DMOS (Gaussian blur LIVE
subset).
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Fig. 10. Predicted DMOS versus subjective DMOS (Fast fading LIVE subset).
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Fig. 11. Predicted DMOS versus subjective DMOS (Entire LIVE database).

DCT patch was computed. Each DCT patch is then subjected
to a normalization of the form:

~ n 2
Poln, k] =] % (2)

where 6 is one of the four orientations. The Renyi entropy for
that particular image patch is then computed as

1 -
Roln] = —5log | Y Poln. KJ° | . 3)
k

Let My be the number of image patches for orientation 6, then
the average per orientation for all patches of orientation 6 is
obtained. This is denoted as E[Ry]. The variance across all four
orientations (denoted as var( E[Ry])) along with the maximum
E[Ry] across the four orientations (denoted as max(FE[Rg]))
are chosen as measures of anisotropy.

III. MULTISCALE FEATURE EXTRACTION

Previous work in IQA has shown that extracting features and
performing analysis at multiple scales can improve the quality
assessment method. This is due to the fact that the perception
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of image details depends on the image resolution, the distance
from the image plane to the observer, and the acuity of the
observer’s visual system. A multiscale evaluation accounts for
these variable factors. One example is the multiscale structural
similarity index (MS-SSIM) [14] which outperforms the single
scale SSIM index. We thus extract the same features described
above at two scales. The features at the second scale are ex-
tracted, in the same manner as explained in the previous sec-
tions, after performing a down-sampling operation (by a factor
of two in each spatial dimension) on the image in the spatial do-
main.

IV. PROBABILISTIC PREDICTION MODEL

Let X; = [z1,%2,...z,] be the vector of features extracted
from the image, where ¢ is the index of the image being assessed,
and n is the number of features extracted (in our case n = 8: 4
features at each scale for 2 scales). Additionally, let DM OS; be
the subjective DM OS associated with the image . We model
the distribution of the pair (X;, DMOS;).

The probabilistic model is trained on a subset of the LIVE
image database to determine the parameters of the probabilistic
model by distribution fitting. Two probabilistic models are
chosen and have been found to perform almost identically.
These are the multivariate Gaussian distribution and the multi-
variate Laplacian distribution. These two models were chosen
because of the simplicity with which they can be parameterized.
Parameter estimation of these two models only requires the
mean and covariance of the empirical data from the test set. The
probabilistic model P(X, DMOS) is designed by distribution
fitting to the empirical data of the training set. The training
and test sets are completely content independent, in the sense
that no two images of the same scene are present in both sets.
The LIVE database is derived from 29 reference images, the
training set contains images derived from 15 reference images,
and the test set contains the images derived from the other
14. The probabilistic model is then used to perform prediction
by maximizing the quantity P(DMOS;/X;). This is equiv-
alent to maximizing the joint distribution of X and DMOS,
P(X,DMOS) since P(X, DMOS) = P(DMOS/X)p(X).

V. RESULTS

Our method was tested on Release 2 of the LIVE database
of images [9]. The LIVE database consists of five subsets of 5
types of distortions: 1) JPEG2000 distortions (227 images), 2)
JPEG distortions (233 images), 3) White noise distortions (174
images), 4) Gaussian blur distortions (174 images), and 5) Fast-
fading Rayleigh channel distortions (which are simulated with
JPEG2000 compression followed by channel bit-errors) (174
images).

Four features were extracted at two scales. These are 1) the
average of the lowest 1% of the DCT coefficients kurtosis, 2) the
average of the local DCT contrast values, 3) the DCT coefficient
entropy variance across four orientations, and 4) the maximum
DCT coefficient entropy across four orientations. Each of the
features is raised to the power «; to assign importance to the
extracted features, where 1 < 7 < 8 is the index of the feature,
and Zle a; = 1. These exponents are determined from the
Spearman correlations of each of the 8 features with subjective
data on the training set. The features are then modeled by a
multivariate Gaussian distribution.
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To evaluate the method, the Spearman correlation was com-
puted between the reported subjective DMOS and the DMOS
predicted by our method. The results are displayed in Table I.
We also provide the PSNR correlations as well to compare
against, even though PSNR is a full-reference approach.3 A
plot of the predicted DMOS versus the subjective one for each
of the data set subsets is shown in Figs. 6Figs. 9—11.

VI. CONCLUSION

In this paper we have developed BLIINDS, a new approach
to NR-IQA and an exemplar algorithm that models the evolu-
tion of four features extracted from the DCT domain applied to
local image patched at two spatial scales. The BLIINDS index
correlates well with human visual perception, is computation-
ally convenient as it is based on a DCT-framework entirely, and
beats the performance of PSNR (which is a full reference ap-
proach). The probabilistic prediction model was trained on a
small sample of the data (the training set), and only required
the computation of the mean and the covariance of the training
data. The MATLAB code for BLIINDS can be found on the
LIVE webpage http://live.ece.utexas.edu/.
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