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ABSTRACT
WiFi Display, also called Miracast, is an emerging technology

that allows a mobile device (source) to duplicate its screen content
to an external display (sink) via a peer-to-peer WiFi link. Despite
its diverse application scenarios and growing popularity, Miracast
consumes substantial power due to a combination of video encod-
ing/decoding and transmission. In this paper, we first conduct a
measurement study to quantify and model key parameters that scale
Miracast’s power consumption. We then propose a set of opti-
mization mechanisms to bypass redundant codec operations, reduce
video tail traffic, and relocate the Miracast channel dynamically
to maximize transmission efficiency. We have implemented this
energy-efficient Miracast framework on an Android smartphone. Ex-
perimental results show that the legacy Miracast system costs 1.3 to
2.4 Watts. Our framework reduces the power consumption by 29%
to 61%, depending on the Miracast application’s video traffic pat-
terns. Our optimization mechanisms do not affect the video quality,
and can even reduce the latency of certain Miracast applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-

tecture and Design—Wireless communication

Keywords
WiFi Direct; WiFi Display; Miracast; energy efficiency; mobile

phones

1. INTRODUCTION
Contemporary mobile devices feature a one-to-one binding with

small display units. Amid the insufficient display real-estate, many
application scenarios (e.g., gallery sharing, collaborative editing,
presentation) call for a dynamic binding towards extraneous, large
displays, such as PC monitors, TV screens and wall-projectors.
Urged by such demands for screencasting, the Miracast standard
(also referred to as WiFi Display) was recently developed by the WiFi
Alliance. Acting like a wireless HDMI cable, Miracast allows a user
to, for example, echo display plus audio from a smartphone onto an
external screen in real-time. Unlike proprietary video-cast solutions
such as Apple Airplay or Google Chromecast, once Miracast is
enabled, every UI component – from the general interface to videos
– will be duplicated on the screen. Thus, no modification is required
for applications.
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WiFi-Direct, also referred to as WiFi P2P, serves as an enabling
networking technology for Miracast. The Miracast source can mirror
its local content via a peer-to-peer link with the sink, e.g., a WiFi-
enabled HDMI dongle connected to a TV screen. Meanwhile, it
allows tethered streaming, i.e., downloading content from an access
point (AP) while streaming it to the sink. Such features offer easy
compatibility with existing WiFi devices. In fact, latest mobile
operating systems like Android [1] and Windows Phone [2] already
have built-in support for Miracast. Corresponding sink adapters
from Microsoft [3], Amazon [4], etc., have recently witnessed a
large consumer market.

However, for a battery-operated Miracast source like a smart-
phone, maintaining a wireless external display can be very costly.
The source has to stream video frames through WiFi with high
bit-rate towards the external display. Prior to sending, it has to en-
code (compress) the video stream so that the WiFi link is capable
of handling the bit-rate. During tethered streaming, it also has to
decode the downloaded content before compression and transmis-
sion. These activities together make Miracast power-hungry even
when the mobile device is idle. The Miracast standard devised an
optional energy-saving feature called video frame skip, which allows
the source to stop generating/transmitting video frames if its screen
content is static and not updating. However, this mechanism alone
barely helps taming the energy cost, especially during continuous
video streaming.

From a high level perspective, Miracast’s power consumption
involves many parts of the mobile device, including processing and
networking, none of which can be trivially ignored. Despite a rich
literature on mobile energy efficiency, Miracast necessitates new
mechanisms to jointly optimize two aspects. First, existing work
on mobile multimedia delivery (see [5] and the references therein)
focused on curtailing the receiver- or client-side power consumption
by reshaping the video server’s traffic, thereby creating sleeping
opportunities that can be harnessed by WiFi’s Power Saving Mode
(PSM). In contrast, Miracast’s dominating operations reside on the
source or transmitter side. Second, Miracast incurs substantial codec
power consumption, especially in tethered streaming that requires
real-time decoding and reencoding. It is the intersection between
video-dominated application content generation and transmitter-
centric network optimization that calls for a new, holistic approach
towards energy-efficient Miracast.

This paper marks a first step towards systematic understanding and
optimization of Miracast power consumption. We conduct a mea-
surement of Miracast-compatible smartphones to obtain application-
specific and component-wise power profile. The measurement re-
sults pinpoint key parameters such as screen resolution, video bit-
rate, channel selection, which help establishing a power consumption
model, later used in devising power-reduction strategies.

Grounded on the measurement insights, we explore a set of system
optimizations to tame processing and networking related energy cost
at the Miracast source node. First, for bursty screencast applications
like slide show, we identify a video tail phenomenon that reflects
a tradeoff between video quality and the source’s traffic load that
in turn affects its power consumption. We design an adaptive tail-



cutting algorithm that reduces the power cost without noticeably
impairing video quality.

Second, we explore a video pass-through mechanism that allows
the source to circumvent decoding/reencoding of video frames, thus
evading the power-hungry codec operations. For both encoded local
content and network content downloaded via the AP (in tethered
streaming mode), the source directly passes the video frames, and
offloads the decoding tasks to the sink. This mechanism also enables
batching and speculative transmission of video frames to the sink,
without incurring the latency that used to appear when waiting for
the codec to output frames at a slow, constant pace.

Third, observing that network contention affects the idle listening
time and hence power efficiency of the source, we propose an off-
channel Miracast scheme that opportunistically migrates the source-
sink link to an energy-efficient channel. This so-called off-channel
may differ from the AP-source channel in tethered streaming mode.
Selection of the most energy-efficient channel is guided by the model
that we have developed through measurement and calibration.

Besides, we have identified and curtailed background Miracast
traffic due to silent audio generation and hidden image layers, which
account for substantial energy wastage in certain applications with
bursty video traffic patterns.

We have implemented the above power optimization mechanisms
on Galaxy Nexus, a Miracast-compatible Android phone. The im-
plementation is application transparent. Our experimental evalua-
tion uses the Vanilla Android Miracast framework as a benchmark.
The results demonstrate that the total system power savings range
from 29% to 61% depending on application use cases and Mira-
cast operation mode. Adaptive tail-cutting alone saves 2.3% to
19.6% for bursty applications. Video pass-through, combined with
batching/prefetching, can save 52% to 61% for continuous video
streaming. Off-channel miracasting can further add up to 8% for
tethered streaming case under intensive contending traffic.

The main contribution of this work lies in a framework to optimize
the overall system-level power consumption of a mobile device
serving as Miracast source. This is feasible because when it is
running, Miracast tends to dominate a mobile device’s activities and
computation/networking resources. Our specific contributions can
be summarized as follows:

• Characterize Miracast power consumption in a component-
wise manner, and develop a model to profile the impact of
computation/network factors.

• Explore a set of power-optimization principles, including
video tail cutting, video-frame pass-through, and energy-
aware off-channel selection/switching. These principles also
make it possible to execute conventional system-design princi-
ples, such as batching and prefetching, without hurting latency
performance.

• Implement and evaluate the optimization mechanisms on top
of Android’s Miracast framework, in an application-transparent
manner. Promising performance gains justify the proposed
mechanisms, and demonstrate their potential as general guide-
lines for an energy-efficient Miracast system.

The remainder of this paper exposits each of the above contribu-
tions. Following background information about Miracast (Section
2), Section 3 describes our measurement and modeling of Mira-
cast power consumption. Section 4 presents the power-optimization
mechanisms with implementation, followed by Section 5 where we
evaluate the energy savings. We discuss certain unexplored direc-
tions in Section 6, related works in Section 7, and finally conclude
the paper in Section 8.
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Figure 1: Network topologies for WiFi Display: (a) P2P topol-
ogy for source’s local content streaming; (b) Two-hop topology
for tethered streaming.

2. BACKGROUND

2.1 WiFi Direct
WiFi Direct is a standard from the WiFi Alliance [6]. It enables

devices to communicate by establishing P2P groups. Within the
group, the device implementing AP functionality is called the Group
Owner (GO), whereas others are P2P clients. Group members nego-
tiate roles during initial setup through a handshake with randomized
ranking.

Two new power saving mechanisms are introduced for the GO.
Opportunistic power saving mode allows the GO to sleep once all
clients are asleep. Another mechanism, called the Notice of Absence,
allows a GO to proactively announce time intervals where it powers
down to save energy. In contrast to the GO, a WiFi Direct client is
allowed to use legacy 802.11 Power Saving Mode (PSM).

2.2 Miracast: Wireless Display Over WiFi Di-
rect

2.2.1 General Architecture
WiFi Display or Miracast [7] is another standard from the WiFi

Alliance. It mirrors the screen of a device by streaming it as a live
video over WiFi Direct to an external screen. Miracast enables a
diverse set of use cases, such as: (i) Presentation slide or picture
gallery show. (ii) Projecting GPS application in vehicles [8]. (iii)
Mirroring videos to a TV screen or monitor. (iv) Multi-user gaming.

WiFi Direct’s logical GO/client role assignment eases the deploy-
ment of two Miracast network topologies, as shown in Figure 1.
In the local streaming topology, a mobile source node can mirror
locally generated screen content, e.g., general UI, game scenes, pic-
tures and videos, towards the sink via a peer-to-peer connection.
In the tethered streaming topology, the source downloads Internet
content via the WiFi AP, renders it on the screen and casts it towards
the sink. For compressed online video, the source needs to decode
before rendering and casting. In both topologies, the source can act
as either a GO or client w.r.t. the sink, but must be a client w.r.t. the
infrastructure WiFi AP.

Miracast consists of multimedia protocols on top of the WiFi
network stack as shown in Figure 2. The architecture is the same
for the Miracast source and sink. The screen content is compressed
into video frames and, along with audio frames, encapsulated in an
MPEG2-TS container, and sent using UDP-based RTP. The TCP-
based RTSP protocol provides session and playback control.

Figure 3 illustrates the source’s workflow during a Miracast ses-
sion on Android. Applications can generate screen content, which
is composed with GPU and displayed on the UI. We emphasize
that Miracast itself does not directly “capture” the screen. Instead,
it leverages a media routing module to acquire the screen pixels
directly, encodes them, and delivers them through the WiFi NIC.
Whenever the screen rendering stops (e.g., due to user turning off
the screen), Miracast is also suspended.
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Figure 2: System architec-
ture of Wi-Fi Display.
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Figure 3: WiFi Display work flow on
Android.

2.2.2 Media Codec
Screen mirroring can produce a huge traffic load. For example,

the raw video stream of a screen with 1280x720 resolution, 16-bit
color depth and 30fps refresh rate has a bit-rate of over 400Mbps,
which is barely sustainable on current WiFi Direct. Thus the data
must be compressed before casting over the P2P link.

Video encoding. Currently, H.264 is the only option for video
encoding in the Miracast standard [7]. It is very efficient but also
computationally intensive, and the CPUs on mobile devices usually
lack the computational power to do the encoding in real-time. As a
result, a dedicated hardware encoder is usually used, which can pro-
vide reasonable performance and relatively good energy-efficiency.

Audio encoding. Since audio data has a relatively low bitrate,
compression of audio stream is optional [7]. There are 3 avail-
able formats: uncompressed LPCM, AAC and Dolby AC-3. Audio
encoding needs to rely on CPU if the device does not have a corre-
sponding hardware encoder. However, the CPU time consumption
is usually only a small fraction of the total CPU time.

2.2.3 Power Saving Mechanisms in Miracast
Miracast proposes a new technique called Video Frame Skipping

(VFS) [7] to save power. This is useful when the source’s screen is
temporarily static, in which case capturing the screen and casting it
continuously will waste substantial channel time, and hence energy.
VFS avoids such wastage by allowing the source to stop casting
if it detects a static screen. The decision of how to detect and
invoke VFS is left to the device vendor. Note that even when VFS is
triggered, the RTSP still needs to send heart-beat messages (once per
25 seconds in Android 4.2) to keep the TCP control session alive.

3. UNDERSTANDING THE POWER CON-
SUMPTION OF WIFI DISPLAY

In this section, we present a measurement study that quantifies
the energy overhead of Miracast. We then build simple models to
pinpoint key variables that can be optimized.

3.1 A Breakdown of Power Consumption
Measurement setup. We use the Samsung Galaxy Nexus (GT-

I9250) phone as our main testbed. It runs the Android Open Source
Project (AOSP) 4.2.2 and can act as either a Miracast source or sink.
Its hardware codec provides 30fps HD video encoding, and around
100fps of playback rate in H.264 format. In its default Miracast
setting, the codec encodes videos with 720p resolution and a target
video bit-rate of 5 Mbps. The Miracast implementation of AOSP
4.2.2 comes with the VFS mechanism and is enabled by default, and
we use it as the baseline.

We use the Monsoon Power Monitor [9] to measure power con-
sumption in real time when the Galaxy Nexus acts as a Miracast
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Figure 4: A breakdown of Miracast’s power consumption. Ap-
plication workload decreases from left to right.

source. For accuracy and consistency, we strive to eliminate irrel-
evant factors that may lead to random results. We always keep the
phone in airplane mode to prevent the cellular modem from inter-
fering with our measurements. We also turn off Bluetooth and GPS
and screen auto-rotation unless they are required by the specific test.
Screen brightness is set to the minimum by default. This mimics
real scenarios – when a user is watching the mirrored screen, the
phone tends to be left untouched, and thus can be switched to a low
brightness state.

To obtain a component-wise breakdown of power consumption,
ideally an instrumented phone is needed. Due to limited access to the
Galaxy Nexus hardware, we approximate the breakdown by incre-
mentally enabling system components. This enables measurement
of 6 modules constituting Miracast: sys idle, screen, application,
encoding, network, and silent audio.

We measure the sys idle power by blacking out the screen while
keeping the phone awake in an idle state. To isolate irrelevant back-
ground applications, we install a clean AOSP on the phone without
the Google services and also disable the dynamic wallpaper. To
obtain screen power, we built an application that lights up all pixels
from black state to the default brightness level. We measure the
corresponding power increment. Galaxy Nexus has an AMOLED
screen, whose power consumption depends on contents and may
vary across different applications. To obtain the application power,
we run the application but without Miracast, and then measure the
power consumption increment to the sys idle and screen. To measure
the encoding power, we put the network interface in sleep state, run
the Miracast application, intercept and drop all video frames it gen-
erates to prevent them from triggering network operations. Again,
the power increment is used to approximate the encoding power.

Besides, Miracast continuously delivers background audio even
though the application is silent (details in Section 4.5.2). Corre-
spondingly, it induces additional silent audio power. Finally, we
isolate the network power consumption by enabling the source-sink
miracasting and measuring the additional power on top of the prior
5 components.

Measured Miracast applications. We profile the following 5
typical Miracast applications.

(i) Tethered video: a popular video clip on YouTube is streamed
to the source in real-time while being cast to the sink. (ii) Local
video: a downloaded version of the YouTube video is used by the
source for local playback and direct miracasting to the sink. (iii)
Gallery: a random set of images from the Bing gallery, updated
every 2 seconds. (iv) Presentation: 25 black-on-white slides, some
with figures, updated every 15 seconds. (v) Map navigation: We
use the OpenStreetMap data to design a route that fits on to a few
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Figure 5: Measured dynamic power from
Miracast network interface.
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Figure 6: Measured network power con-
sumption vs. contention intensity.
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Figure 7: Measured network power con-
sumption vs. Miracast video traffic load.

roads with at least 2 turns, covering middle to west part of the UW-
Madison campus. We built an app that stitches, pans and renders
the map tiles in real-time with 1Hz update rate, typical for GPS
applications. Each tile has a resolution of 256×256 pixels and the
route covers 100 tiles.

Breakdown of Miracast power consumption. Figure 4 presents
the averaged power numbers. System idling consumes approxi-
mately 557±10 mW, which accounts for a nontrivial fraction in the
3 applications with intermittent, bursty Miracast traffic (map, gallery
and presentation). The screen power consumption falls in the range
of 40 - 100mW, a relatively small fraction in all test scenes1.

The application power consumption is negligible (35 mW or
3.2%) in the Presentation, but increases with the application’s work-
load. Between the bursty application and continuous video appli-
cation that involves a hardware codec, there is a drastic increase
of application power (from below 120 mW to around 600 mW).
This trend implies that the majority of the application power may be
attributed to the codec’s decoding operations, since other hardware
components (e.g., CPU and memory) are only handling lightweight
tasks (e.g., audio encoding and occasional user interaction).

The encoding power shows a similar increasing trend, accounting
for 162 mW, 291 mW, 465 mW, 519 mW and 519 mW in the 5
applications with increasing work load. Accordingly, the Miracast
video traffic becomes more intensive, resulting in increasing network
power consumption (192 to 315 mW). Also note that the silent
audio accounts for a non-negligible fraction in the 3 bursty video
applications.

Overall, aside from the sys idle and screen power that is inde-
pendent of Miracast, other modules together account for 450 mW
to 1656 mW, or 43% to 73% depending on applications – thereby
providing sufficient opportunities for power optimization.

3.2 Modeling WiFi Display Power Consump-
tion

We aim to build a coarse model to highlight the key factors that
dominate Miracast’s asymptotic power consumption at the source.
We focus on the local streaming mode. The tethered streaming
differs only by adding a legacy (AP-source) WiFi link. Our model
accounts for two major power consumers: network and codec.

3.2.1 Network Factors
Our network model estimates the energy overhead when perform-

ing Miracast on different channels (with different contention levels
and hardware profile). This estimation will later facilitate our off-
channel miracasting scheme. In contrast to prior analytical work that
1However, at full brightness with all pixels being white, the
AMOLED screen can consume 765.9±1.3mW.

focused on 802.11 MAC layer [10, 11] or cognitive radios [12, 13],
our model is measurement-driven and explicitly accounts for the
impact of channel selection on power consumption.

Model. For a given channel and traffic load on the source-sink
link, mean power consumption of the source can be dissected into
2 parts: Pstatic, the average static power or idle power to keep the
network interface ready for transmission/receiving, and Pdynamic, the
dynamic power, or power increment on top of Pstatic when the source
is actively transmitting/receiving. The total network power is the
sum of Pstatic and Pdynamic:

Pnetwork(Ch,Bi) = Pstatic(Ch,Bi)+Pdynamic(Ch,Bi) (1)

where Bi (i = t,r) denotes the traffic load in bps, for transmitting
and receiving, respectively. For simplicity, we represent the total
traffic load as B = ∑

i=t,r
Bi = Bt +Br.

The static part can be further decomposed as follows:

Pstatic(Ch,B) = Pbs(Ch) ·Ractive(Ch,B)

= Pbs(Ch) ·
(

Rwait(Ch)+
B

BPHY ·ηMAC

)
(2)

where Ractive denotes duty-cycle, or the fraction of time the NIC
is not sleeping. Pbs(Ch) is the base power, which only depends on
WiFi hardware and may vary as it is tuned to different channels. The
duty-cycle consists of the fraction of idle time Rwait(Ch) plus the
fraction in transmission/receiving. The former mainly depends on
contention intensity on a given channel Ch. The latter depends on
traffic load B, WiFi bit-rate BPHY, as well as MAC efficiency ηMAC
(i.e., ratio between MAC throughput and PHY bit-rate). In practice,
since the source-sink distance tend to be short, and both tend to be
relatively stationary, BPHY usually remains stable. Thus, the fraction
of time in transmission/reception only depends on traffic load B.

For the dynamic component, suppose Ei(Ch) is the additional
energy per bit needed on top of static power for channel Ch, then,

Pdynamic(Ch,Bi) = ∑
i=t,r

[Ei(Ch)×Bi] (3)

This component also accounts for related CPU power budget. Ei(Ch)
(i = t,r) can be obtained by running a constant-bit-rate UDP ses-
sion with PSM disabled, and subtracting measured Pbs(Ch) from
aggregate power.

Combining Eq. (2) and (3), we can pinpoint 4 factors to determine
the network power consumption: B, Pbs(Ch), Rwait(Ch) and Ei(Ch).
For the 3 channel-dependent factors, only Rwait(Ch) depends on
contention intensity in the radio environment. Pbs(Ch) and Ei(Ch)
can be measured and tabulated for each device model during factory
calibration. Note that this model ignores the sleeping power. In
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Figure 8: Measured decoding power vs.
video bit-rate.
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Figure 10: Measured decoding power vs.
frame-rate.

addition, it does not explicitly model PSM, but the impact of PSM
is to reduce idle listening power, which is indirectly reflected in
Rwait(Ch).

Validation and observations. We validate the above modeling
approach on Galaxy Nexus. We first calibrate the Pbs(Ch) and
Ei(Ch) parameters for this hardware model. Pbs(Ch) is obtained by
measuring the power difference between the case when the NIC is
sleeping and when it is idle. Idle mode is created by disabling PSM
while no packet transmission is going on. To obtain Ei(Ch), we set
up a WiFi Direct link between two phones on channel Ch, and run
the iperf utility to generate a specific traffic load B. We then obtain
Pdynamic(Ch,Bi) by measuring the power increment on top of the
Pbs(Ch). Ei(Ch) is taken as the first-order derivative of Pdynamic with
respect to Bi. Our experiments are done in late night to minimize
the impact from ambient traffic.

The dynamic power model assumes a linear relation between
Ei(Ch) and Pdynamic, which we verify through measurement (Figure
5). We observe that Pbs(Ch,Bt) is roughly linear w.r.t. Bt , except
when Bt falls between 4 and 5 Mbps, likely because of boundary
effects caused by frame fragmentation. Pbs(Ch,Br) is close to linear
when Br < 5 Mbps, but levels off afterwards, likely because of
interrupt aggregation for the network I/O. However, for a Miracast
source, transmission traffic dominates and Br typically falls well
below 5 Mbps. From Figure 5, we also note that 5.2GHz band
consumes more dynamic power than 2.4GHz, which is attributed to
radio hardware. We also observe that different channels within the
5 GHz band or 2.4 GHz band show similar dynamic power (curve
omitted here). Thus, Ei(Ch) only needs to be calibrated for one
channel on each band.

To verify the static power model, we measure the network power
under different contention intensity and hence Rwait values, gen-
erated by varying the traffic load of an external link on the same
channel. The traffic of Miracast is held constant at 5Mbps, such that
the dynamic power remains constant and the power increase only
comes from the static part. From the measurement results (Figure
6), we see contention intensity and Pstatic fit a linear relation, con-
sistent with the model in Eq. (2). In Section 4.4.1, we will develop
a channel surveying mechanism that enables a Miracast source to
estimate Rwait directly.

Finally, Figure 7 depicts the Miracast source’s total network
power consumption Pnetwork as video transmission traffic Bt in-
creases (the source’s receiving traffic Br is negligible). Due to
linear relation between Bt and static/dynamic power, the total power
fits a linear relation as well.

Since Pdynamic(Ch,Bt) is already measured, we can subtract it
from Pnetwork(Ch,Bt) to obtain Pstatic(Ch,Bt). Based on Eq. (2), we

know the slope of the measured curve in Figure 7 equals Pbs(Ch)/
(BPHYηMAC). Since Pbs(Ch) and BPHY are known, we can also ob-
tain ηMAC. By now, all stationary parameters have been calibrated
and the model (1) can be used to compare the relative power con-
sumption when the Miracast source runs a different Ch and video
bit-rate Bt .

3.2.2 Codec Factors
Model. We model the codec power consumption as:

Pcodec(Ri,Bi) = ∑
i=e,d

(
E f i(W ×H) ·Ri +Ebi ·Bi

)
(4)

where Ri, Bi and W ×H represent the video frame-rate, bit-rate,
and resolution, respectively. When VFS is enabled, we take the
time-averaged values for Ri and Bi. Also, E f i (i = e,d) is the en-
ergy per frame that the codec consumes for encoding and decoding,
respectively. Ebi (i = e,d) is the overhead energy per bit, mainly
associated with memory movements and extra CPU computations.
Note that audio codec is omitted by this model considering the
relatively small power consumption.

Validation and observations. By playing a set of video clips
encoded with different W ×H, Ri and Bi from the same lossless
video source, we can measure the decoding power and thereby
calibrating E f i and Ebi (i = d). The measurement methodology
follows Section 3.1.

Figure 8 shows that the decoding power consumption indeed
follows a linear relation with Bi as modeled in Eq. 4, but the
slope Ebi is less than 3mW/Mbps. For a typical 720p video stream,
corresponding bit-rate ranges from 2 to 8 Mbps. Within this range of
bit-rate, Ebi only contributes to a small fraction of the energy cost.

In contrast, the video resolution W ×H affects the power con-
sumption much, as shown in Figure 9. This is because the amount
of computation scales non-linearly with number of pixels. In effect,
the E f i fits a square function with resolution. Notably, the additional
processing power is needed for videos with a pixel aspect ratio (PAR)
other than 1:1. For example, 480p video with a 16:9 display aspect
ratio can not have a square pixel shape since (480/9)×16 is not an
integer. Thus, it consumes even more power than 540p.

Consistent with our model, measurement results in Figure 10
verify that decoding power grows linearly with frame rate, since
the codec needs to sustain more workload per unit time. The base
power component caused by the playback (CPU, GPU, screen, etc.)
is estimated to be about 145.1mW.

We have observed similar trend in encoding power w.r.t. Bi, Ri
and W ×H, albeit with different model parameters. We omit the
measurement details due to space constraint. Notably, the Miracast
encoder on Android defaults to a fixed resolution of 720p, target



bit-rate 5 Mbps and frame rate 30fps. Time-averaged Bi and Ri
differ across applications and corresponding encoding power has
been discussed in Section 3.1.

4. ENERGY EFFICIENT MIRACAST SYS-
TEM

4.1 Overview of Solution Set
We follow a set of simple principles to optimize the Miracast

source’s power consumption: when idle, maximize sleeping time;
when busy, work in the most efficient way and cut unnecessary
transmissions; amortize the cost of other states and offload tasks
to the energy-insensitive sink node. Table 1 summarizes our spe-
cific designs and the applications, categorized according to network
topology as local/tethered streaming, and according to traffic pattern
as continuous/bursty video.

Our first solution mechanism, adaptive video tail cutting, reduces
redundant transmissions that follow each traffic burst in intermittent
screen-update applications (e.g., map, gallery or slide show). Such
redundancy is used to refine the quality of video frames, but at the
cost of substantial traffic load and hence power consumption.

The second mechanism, video pass-through, applies to continuous
video traffic. It allows the source to bypass the H.264 encoding and
offload the decoding task as well to the sink node. Rather than
waiting for the codec, the source can also batch a group of already
coded frames and send them to the sink in a speculative manner.

In addition, we explore an off-channel Miracast mechanism, that
executes an energy-aware channel selection scheme for the source-
sink WiFi Direct link, based on the model in Section 3.2. In tethered
streaming scenario, the source can alternate between the channel
with AP (which may not be controllable), and the energy-efficient
channel it selects. With this measure, it also avoids self-contention
between the AP-source link and source-sink link, allowing for more
efficient video data transportation.

In our system, the Miracast source acts as a client w.r.t. the sink
and/or the AP. Thus, all the above mechanisms need to work coher-
ently with the PSM protocol. Yet PSM itself is unaware of Miracast
traffic patterns. We design a PSMlock mechanism, to manage PSM
in a fine-grained manner following the typical clustered patterns of
Miracast video traffic, thus creating more sleeping opportunities.
Besides, background audio/video frames, invisible but presented to
the Miracast source due to oblivious screen rendering driver, can be
suppressed to save substantial power.

4.2 Cutting Video Tails

4.2.1 Video Tail: Quality and Power Tradeoff
The VFS allows a Miracast source to pause encoding and casting

video frames when there are no updates on the screen. However,
it is left to the vendor to decide when to pause. A trivial way is
to encode one video frame for a still screen, and stop immediately
afterwards. However, this may significantly impair video quality.
For a sophisticated scene, the H.264 codec is unable to compress
all the details into a single frame. Thus, the “encode-and-stop”
approach may result in an incomplete or low-quality image delivered
to the sink.

To deal with the problem, the Miracast source needs to add a “tail”
after each sudden scene transition to gracefully refine the image
quality. It keeps the encoder running and generating new frames
until there are enough details in the image for human observation.
In Android’s Miracast framework, the tail is fixed to 30 frames per
screen, lasting 1 second after each screen transition.
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To gain a quantitative understanding of impact of tail on video
quality, we rerun the gallery application with 0.5 Hz picture transi-
tion rate, using another Galaxy Nexus as sink node. We dump the
sink’s screen image data when each screen is encoded by one frame
(“no tail” case) or 30 frames (“1s tail” case). Then we compute the
PSNR by comparing with the original image at source side. Figure
11 plots the CDF of PSNR across all pictures. We see a median
PSNR improvement of 1.1 dB and best case 5 dB, which upgrades
the corresponding perceived picture quality at the sink.

On the other hand, a video tail generates additional frames that
translate into energy cost. Figure 12 plots the average power con-
sumption and PSNR as a function of tail length. For the gallery
application, whereas PSNR increases by up to 3 dB, power con-
sumption increases quickly – by 280 mW as tail length grows from
1 to 30 frames. For the presentation slide show, the power consump-
tion increase is less obvious due to long idle period between 2 slides,
within which network management overhead (e.g., beacons and idle
waiting) dominates the additional tail energy.

Note that for fast-changing scenes, like a 30fps continuous video
casting, tails are not needed, as human eyes can not capture fine
details before each next scene is displayed. However, for bursty
video casting like slide show, we can identify much more details
since each scene will be displayed for an extended amount of time
to become discernible.

4.2.2 Adaptive Tail Cutting
Given the tradeoff between video quality and power consump-

tion for certain bursty miracasting traffic, an adaptive algorithm is
preferred that cuts the video tail but without hampering PSNR. A
straightforward solution is to compute PSNR on-the-fly for each tail
frame output by the codec, and stop encoding once PSNR plateaus.
However, the computational cost is formidable. Alternatively, we
can monitor the codec’s output frame size to gauge how much in-
formation is included in the frame and whether more details need
to be added to the picture. However, the relationship of encoded



Adaptive video
tail cutting

Video
pass-through

batching &
prefetching

off-channel
miracast PSMlock

background
suppression

Local streaming X X X X X X

Tethered streaming X X - X X X

Continuous video - X X X X X

Bursty video X - - X X X

Table 1: Solution space for energy efficient Miracast.
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Figure 13: PSNR and variance of tail frame size, across 10 ex-
ample video scenes with 30 tail frames each, lasting 1 sec. The
dash line indicates the threshold for cutting tail.

frame data size with the room of PSNR improvement is not straight-
forward – we found that absolute frame size is not monotonically
decreasing as more tail frames are added.

Fortunately, we empirically observed that the variance of the out-
put frame sizes will drop when PSNR stops growing. Figure 13 plots
the PSNR growth with the tail length, in contrast to how variance of
frame sizes changes over time, which testifies our observation. We
suspect the phenomenon is caused by the interaction between the
codec’s bit-rate control and quantization. The H.264 encoder works
to meet a fixed target video bit-rate constraint in Miracast (default
to 5 Mbps in Android 4.2). Under this constraint, immediately after
a scene change, the encoder oscillates between low/high quantiza-
tion level and large/small frame size. The oscillation stops after
PSNR saturates, because there is insufficient difference to encode
to generate a large frame, and thus the frame size remains roughly
consistent.

Our adaptive tail cutting algorithm uses the variance of tail frame
size as a decision metric. We keep a moving window to calculate
the size variance of 5 most recent frames, and cut the tail once the
variance drops below a threshold. We found an empirical threshold
of 250000 (corresponding to standard deviation 500 bits) works
across a wide range of tested applications, although online tuning
may yield even better quality/power tradeoff. Also, we upper-bound
the tail length to 30 frames, corresponding to the 1 second tail in
Android’s Miracast framework. Figure 14 illustrates the integra-
tion between our algorithm and modules inside Android’s Miracast
framework, where a repeater keeps feeding the encoder with frames
until tail ends. Decision of tail cutting in our algorithm is made by
the encoder which notifies the repeater via a message interface.

4.3 Video Pass-Through
In this section, we describe the video pass-through mechanism

that opportunistically offloads the source’s codec tasks to the sink,
while allowing batching and speculative transmission of videos as
raw data.

4.3.1 Workflow and Implementation
Our pass-through design is application-transparent: it detects

H.264 coded video data from application, intercepts the frames, and
passes them directly to the Miracast module without involving the
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Figure 14: Work flow of the adaptive tail cutting implementa-
tion.

codec. We note that this scheme precludes the casting of screen
elements other than the video.

To understand how video pass-through works, we first introduce
the source’s default way of mirroring local/online video (Figure
15(a)). An application typically calls a multimedia player framework
to read coded video data from either local file or network I/O. The
player further leverages a codec interface to invoke the hardware
codec which decodes the video data. The video frames are rendered
on the source’s screen and mixed with other UI elements, if any,
through a composer module. The composite frames are passed to
the Miracast module as screen content. Then, Miracast follows its
standard procedure to encode the content using the hardware codec,
and eventually deliver the coded data to the sink.

In the pass-through design, we add a format checker on the codec
interface, and pause the hardware codec whenever an H.264 video is
played (Figure 15(b)). Then, the video data are packetized directly
and fast-tracked to the network interface, as if they are the codec
output under the command of Miracast. However, before that, we
need two manipulations over the video frames on behalf of the legacy
Miracast module, so as to hide the pass-through operation from the
sink, allowing it to play video as usual.

First, the passed-through video frames have their native times-
tamps relative to the video start point. To cast the video in a Miracast
session, we need to replace the native timestamps with the Miracast
timestamp, such that the video can be played in the correct order
together with other screen-generated frames before/after the video.

Second, the passed-through frames also have their native sequence
numbers. Ideally, these should be modified as well to match the
Miracast video sequence. However, we found the sequence number
can have variable length, from 4 bits used in Internet videos to 16
bits in Galaxy Nexus. Worse still, the offset of the sequence number
within each video frame is unknown, because H.264 uses Golomb
coding to encode the parameters field prior to the sequence number
in a video frame’s header.

We overcome this hurdle by forcing the source to execute cer-
tain reset operations. Specifically, when pass-through starts, the
source composes an end-of-sequence frame to tell the sink to reset
the sequence number, and a parameter frame to inform it of a new
sequence number length. Both frames are standard configuration
frames in H.264. When the pass-through video ends and the Mira-
cast session switches back to the screen UI, we execute the same



Miracast

Application

Player
Framework

Codec
Interface

Codec Driver & Hardware

Display Buffer

Composer

UI Video

MPEG2­TS

RTP

Network

Raw
Image

Video

Packets

Screen

Codec Interface

(a)

Miracast

Application

Player
Framework

Codec
Interface

Display Buffer

Composer

UI Video

MPEG2­TS

RTP

Network

Video

Packets

Screen

Throttle

Format Check

(b)
Figure 15: Work flow of video pass-through (b) in contrast to
the default Miracast (a).

operation and request the codec to generate an I-frame2 to start a
new sequence of stream, without wrongly referring to frames in the
pass-through stream. The overhead in delay caused by the resetting
operation is minimal since most of the frames involved are without
video data and are generated instantly, and the sink only needs very
little extra time to process these frames.

4.3.2 Enabling Batching and Prefetching in Local
Video Miracast

Video pass-through enables locally coded video data to be cast
more efficiently, following two classical schemes: (i) Batched trans-
mission; (ii) Prefetching of batched frames to the sink well before
playback. Although we can enforce such schemes without video
pass-through, the resulting playback latency will grow proportion-
ally with batch size, because the codec outputs video frames at a
constant pace (e.g., 30fps) commensurate with the sink’s playback
frame-rate. For instance, our experiments show that aggregating
merely 12 frames entails 1.2 seconds of waiting time (Section 5.1),
apparently undesirable in practice.

To enable batching, we add a throttling function in the codec
interface (Figure 15(b)), such that video frames are passed to the
MPEG2-TS only if their number exceeds a batch size threshold.
Meanwhile, we run a simple prefetching scheme: an entire batch
of frames is sent once the due time of the first among them comes.
To configure the batch size properly, we first need to understand the
impact of batching/prefetching on power consumption and relevant
tradeoffs.

Impact of batching on power consumption. We first cast a
local video with pass-through and measure the power consumption
under different batch sizes. Figure 16 plots the results. We evaluate
a 2.4 GHz, 5.2 GHz channel, with and without our optimized PSM
management scheme (Section 4.5.1). For all 4 settings, we observe
the power consumption drop fits an exponential relation with batch
size Sbatch:

Ptotal = Ae−B×Sbatch +P0 (5)

where the first term is the overhead and P0 the energy truly spent on
data processing/transmission. Sbatch denotes batch size as in number
of aggregated video frames. A and B are empirical parameters
defining how large the initial overhead is and how quickly it dies out
with frame aggregation.

With the vanilla WiFi Direct PSM, substantial overhead still exists
due to a tail effect: the Miracast source keeps the network interface
alive after each batch of transmission [14]. Such overhead is con-
2In H.264, an I-frame is a self-contained frame whose encoding
does not depend on other frames.

sistently amortized as batch size increases, leading to consistent
power consumption drop. In contrast, PSMlock cuts the PSM tail,
so marginal power saving is observed (< 10 mW beyond a batch
size of 10).

It might seem that latency will still grow with batch size (albeit
more slowly than the case without video pass-through), due to the
growth in batch download time, and thus it will depend on the
output video bit-rate and WiFi Direct link throughput. However, in
practice the player will always buffer substantial video data before
the playback starts, in order to counteract the jitter effects. So the
additional latency from batching may be merged with the initial
buffering delay. We will quantify such latency effects in Section 5.1.

Impact of prefetching. An inherent tradeoff exists when the sink
prefetches batches of video frames: if the user interrupts and stops
the video, the prefetched but undisplayed frames will be wasted.
Thus, the actual power saving from prefetching depends on not only
batch size, but also frequency of user intervention.

Figure 17 shows this tradeoff quantitatively. We used the prior
model from Figure 16 to compute power saving, and then subtract
the cost from wasted transmitting, assuming user interrupts the
playback periodically. The results verify that power consumption
drops to a valley with batch size, but increases afterwards. The less
frequently user interrupts the video display, the larger the “sweet
spot” batch size is. Although user behavior is hard to predict, less
than 5 seconds of holding time is not common in practice. Also, the
power saving trend is similar among all user holding period larger
than 5 s, as long as the batch size is not excessively large (below
20).

Based on observations from the above experiments, we can see
that a batch size of 10 to 20 is sufficient to harvest the majority
power saving from batching/prefetching. We thus adopt a fixed
batch size of 20 in our implementation. For different devices, the
suitable range of batch size may be calibrated separately following
the above approach.

4.4 Energy-Aware Off-channel Miracast
WiFi-Direct allows a Miracast source to freely select wireless

channels independent of any infrastructure. Our off-channel Mira-
cast leverages this property, incorporating a model-driven, energy-
aware channel selection/switching scheme.

4.4.1 Energy-Aware Off-Channel Selection
Considering the strong dependency of power consumption on

network contention, the Miracast source can pick the least congested
channel. Real-world wireless environment is highly dynamic and
exact traffic intensity is hard to predict. However, it is feasible to
distinguish two channels based on their long-term (e.g., second or
minute-scale) contention intensity and static power. Our off-channel
selection scheme follows this principle – we require the source to
quickly survey available channels, and then use a model-driven
approach to rank them according to their potential for saving energy.

The power consumption model in Section 3.2.1 indicates that the
only contention-dependent parameter is Rwait, whereas others can be
obtained through factory calibration. We approximate Rwait in a lin-
ear relation with Bct , an intermediate parameter indicating intensity
of contending traffic on the same channel, i.e., Rwait = α1Bct +β1.
The linear model is calibrated in a controlled environment, where
we generate different levels of contention traffic Bct , follow the ap-
proach in Section 3.2.1 to measure all parameters in Eq. (2) except
Rwait which can be easily extrapolated. Given Bct and Rwait, α1 and
β1 can be easily calibrated.

In an uncontrolled environment, Bct may be obtained if the source
can monitor and average the ambient traffic, yet the monitoring
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mode is unavailable on most smartphones. Instead, we require the
source to send a ping message to the sink, and use a model to infer
Bct based on its ping delay.

To corroborate this approach, Figure 18 plots ping delay as a
function of intentionally generated contending traffic. For each
contending traffic setting, we repeat the measurement for 5 times,
each lasting 1 second. The scattered dots depict the max, min,
and mean ping delay within each 1 second interval. Despite the
unpredictable variation (partly due to interfering traffic), we see that
the mean ping delay is densely concentrated and fits a polynomial
model Tping ≈ γ2B2

ct +α2Bct +β2. The model parameters depend
on the WiFi protocol version, bit-rate, and processing capability of
the device, and thus can be calibrated in advance.

To summarize, the source needs to survey available channels
to obtain Tping, from which it obtains Bct and consequently Rwait.
Finally, it feeds Rwait in Eq. (2) and selects the channel with the
minimum Pstatic. The dynamic power is channel independent and
thus ignored.

To test the energy-aware channel selection, we place the source-
sink link to multiple locations and at different time of the day. In
each setting, the source pings over each channel for 1 second, ob-
tains the Tping and ranks the channels with the model. The ranking
is compared with that from actual measurement, where we run a
30-second Miracast session for 3 times and then take the average
power consumption. Figure 19 shows that, the model can select the
top channels with high confidence. In case it errs, it only confuses
the order of the top 2 channels out of a total of 7 channels, which
we found to have similar power consumption. We emphasize that
although the model parameters are only calibrated once in a con-
trolled setting, it shows high channel selection confidence in random
test environment.

Many WiFi devices support contention-based automatic channel
selection (ACS) [15], which may resemble our Ping-based channel
ranking approach. However, the ACS mechanism is not energy-
aware and it only ranks the contention intensity. Although the
current Ping-based approach is more costly than ideal, production
level implementation can integrate more closely with the firmware
to provide better energy-aware channel selection with less overhead.

4.4.2 Channel Flipping for Tethered Streaming
For the tethered streaming, the AP-source and source-sink link

can operate over two orthogonal channels. The source first selects an
energy efficient channel for the source-sink link using the aforemen-
tioned channel selection method, and then switches (flips) between
these two channels per beacon period, for video downloading and
mirroring, respectively, making itself a virtual multi-channel de-
vice. Besides the flexibility of selecting an energy efficient Miracast
link, this can isolate the two links, reduce their self-contention,
thereby further improving the efficiency of video delivery. Such
dual-channel operation is already supported by the WiFi Direct
standard and does not require any hardware modification.

However, we found such fine-grained per-beacon-period switch-
ing is disabled by the WiFi firmware on Galaxy Nexus. We thus
resort to a coarse-grained emulation to approximate the benefit from
channel flipping. Specifically, we found that the NIC enforces the
same channel for the infrastructure and P2P interface, and is willing
to change only during a reassociation. Thus, whenever channel
flipping is needed, we force a reassociation on the target channel.
To isolate the artifact from emulation, we ignore the reassociation
cost, and replace its time/power consumption value with that of a
bare channel switching in actual measurement.

4.5 Other Optimizations
Besides the above principle approaches, we enforce two other

schemes that refine WiFi Direct’s PSM and reduces unnecessary
traffic during a Miracast session.

4.5.1 PSMlock: Fine-grained PSM Management
Although Wi-Fi Direct has a few built-in power management

mechanisms [16], such as Notice of Absence (NoA), Opportunis-
tic Power Saving (OppPS) and legacy PSM, there exist obstacles
preventing us from utilizing them effectively. NoA and OppPS are
not supported by any of the Miracast devices we are aware of. Also,
together with PSM, these low-level mechanisms can not cooperate
with upper level applications very efficiently. Thus, we design a
PSMlock scheme to tighten the PSM schedule by leveraging the
unique traffic pattern of Miracast. In a continuous video streaming
application, video frames are generated following a periodic pattern
(e.g., 33.3ms per frame or 30fps), each frame wrapped by MPEG2-
TS and converted into multiple WiFi packets. In a bursty video
application (e.g., slide show), such periodic pattern will remain for a
few video frames after each scene change until the video tail ends
(Section 4.2). Both cases end up with clusters of traffic demands
followed by long/short idle period.

The WiFi PSM module is oblivious of such patterns. Modern
smartphone clients widely adopt an adaptive-PSM (A-PSM) [14]
protocol, that keeps the wireless interface active for extra time im-



mediately after each burst of transmission, so as to avoid frequent
mode switching [5]. As a byproduct, a PSM “tail” is introduced.

Our PSMlock scheme cuts the PSM tail after each burst of Mira-
cast traffic, as we know deterministically when the next burst will
come. PSMlock is application-transparent. It establishes a signaling
channel between the MPEG2-TS module and WiFi Direct interface.
Whenever a new video frame is generated, MPEG2-TS informs the
network module that it will packetize a new cluster of RTP/UDP
packets. Afterwards, the network module polls the packet transmis-
sion queue in the kernel associated with the Wi-Fi Direct interface
at 1 ms interval, and switches the NIC into sleep mode immediately
once the queue is empty (implying the transmission is finished).
The switching operation requires the PSM client (Miracast source)
to send a null frame containing a “PM=1” flag to inform the GO
(Miracast sink) that it will sleep. The NIC is turned on again upon a
new signal from MPEG2-TS.

4.5.2 Reducing Invisible Background Traffic
We have also identified two redundant background traffic sources

in Android, likely caused by lack of interaction between application
and the Miracast framework.

Silent background audio. First, during Miracast, the audio
codec is being fed audio data constantly, no matter whether the
audio is silent or not. While local speakers will be put into standby
by the system during absence of useful audio, Miracast code is not
notified. The additional computational power and network traffic
load in casting such audio data can be substantial in bursty video
casting (e.g., slide show) that is not associated with any audio track.
We have modified the MPEG2-TS module such that it can skip silent
audio. This has not affected the non-silent audio playback at the
sink side.

Background image layers. Many mobile devices’ screens have
a status bar indicating time, WiFi download/upload activities, bat-
tery status, as well as cellular link quality. In Android, the screen
composer treats the status bar as a separate layer of pixels even if
it is hidden by a full-screen video. Such behavior is desired for
certain applications that need both layers. In a full-screen Miracast,
the status bar is invisible, but it keeps triggering new frames and
traffic periodically. We found that when displaying a still image,
such hidden traffic can escalate the power consumption by multiple
folds.

5. EVALUATION
In this section, we present an experimental evaluation of the

energy-efficient Miracast framework. The evaluation starts with
a micro-benchmark profiling of the effectiveness and cost of each
individual power-optimization mechanism in Table 1, followed by a
summary accounting of the contribution of each mechanism across
the 5 typical Miracast applications (Section 3.1).

5.1 Micro-benchmarks
Our micro-benchmark experiments are conducted in a student of-

fice during day time. Around 5 WiFi APs coexist on our experiment
channel. The Miracast system on Galaxy Nexus (Android 4.2) is
used as a baseline system. We disable the background image layer as
its artifact unnecessarily magnifies the baseline power cost (Section
4.5.2). Since Galaxy Nexus is a single-stream 802.11n device, and
in our test setup the source and the sink is just a few meters apart
and without blockage in between, the PHY rate remains 65Mbps
most of the time.

PSMlock. We first verify the PSMlock as other mechanisms are
implemented on top of it. Figure 20 plots the power saving from
PSMlock. Continuous video applications leave little chance for
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Figure 20: Power saving from PSMlock.

finer-grained PSM control (Section 4.5.1), and hence only 17.6 mW
and 16.8 mW of saving on average, for local and tethered streaming,
respectively. For bursty video applications, Map benefits most in
terms of absolute (80 mW) power saving values, followed by Gallery
and Presentation. This is consistent with the relative video traffic
intensity they generate. Overall, the relative saving is 3% to 5.2%.

All our follow-on micro-benchmarks run on top of the PSMlock-
optimized system.

Video Tail Cutting. We focus on the power saving from adaptive
tail cutting in the local-streaming case. Tethered streaming differs
only in base power. Figure 21 plots measurement results across 3
applications with bursty video traffic. Saving for presentation is
only 2.3%, since the interval between video scenes is long and static
system idle power dominates. Due to shorter interval, saving for the
gallery application is more noticeable (5.6%). Map benefits most
(19.6%) because of its short display interval and simple images that
lead to more space for tail cutting.

We now evaluate the impact on video quality, focusing on the
map application that experienced the most aggressive tail cutting.
Figure 22 shows that PSNR is almost unaffected compared with
the baseline 1-second fixed tail in Android. Thus, our adaptive tail
cutting algorithm can effectively reduce video tail traffic without
hurting user experience.

Video Pass-through, batching and prefetching. Since batch-
ing/prefetching needs to be enabled together with pass-through, we
evaluate their joint impact on power consumption. In this exper-
iment, the source plays a 1-minute video clip locally while mira-
casting. To quantify the power saving across different video con-
figurations, the video clip has multiple versions with resolution
from 144p to 720p, corresponding to bit-rate of 100 Kbps to 3
Mbps. We first measure the power saving from pass-through. Batch-
ing/prefetching’s saving is measured as the additional power reduc-
tion after enabling them.

Figure 24 shows that pass-through saves 48% to 54% of power
compared with the baseline system, and batching/prefetching saves
additional 3% to 7% atop. It might seem counter-intuitive that the
saving is insensitive to video resolution and bit-rate configurations,
considering the codec power increases proportionally with video
traffic load (Section 3.2). Note however that this measurement
involves both codec and network power consumption. For a low
resolution video, whereas pass-through saves less codec power, it
saves more network power since much less video traffic is passed
to the NIC. Without pass-through, the Miracast codec outputs at a
constant bit-rate irrespective of the input video resolution.

To quantify the latency due to batching, we run a stopwatch
application on the source and cast its UI on the sink. The timer on
the sink’s screen always lags behind the sources’, and the difference
equals Miracast’s end-to-end latency. This measurement approach



 0

 100

 200

 300

G
al
le
ry

Pre
se

nt
at

io
n

M
ap

P
o

w
e

r 
s
a

v
in

g
 (

m
W

)

5.6%

2.3%

19.6%

Figure 21: Power saving from adaptive tail
cutting.

 0.2

 0.4

 0.6

 0.8

 1

 25  30  35  40

F
ra

c
ti
o

n
 o

f 
fr

a
m

e
s

PSNR (dB)

No Tail
1s Tail

Adaptive

Figure 22: Distribution of PSNR across
tiles in the Map application.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12

L
a

te
n

c
y
 (

m
s
)

Batch Size (Frames)

Aggregation
Pass-through, No User

Pass-through, With User

Figure 23: Impact of batching/aggregation
on latency.

0

20

40

60

144p 240p 360p 480p 540p 720p
900

1000

1100

1200

1300

P
ow

er
S
av
in
gs

(%
)

P
ow

er
S
av
in
gs

(m
W
)

Batching (%)

Passthrough (%)

Batching+passthrough (mW)

Passthrough (mW)

Figure 24: Power saving from pass-through and batch-
ing/prefetching (batch size 20) for local video Miracast.

does not work when pass-through is enabled, since the source does
not display the video. We thus synchronize the source and sink by
synchronizing them to the same NTP server prior to the start of
each test, and then measure the time it takes from user’s playback
command to the time when the sink starts playback. Similarly, when
user intervention occurs, the latency equals the time it takes from the
user’s stop command to the time the sink stops playback. The error
introduced by NTP is measured to be less than 10ms, and keeps
consistent over a period of 10 minutes, which is long enough for
each test to be done.

Using a similar measurement approach as in batching, we can
quantify the latency of the straightforward aggregation approach
(Sec. 4.3.2), which waits for the codec output and aggregates
video frames together. Figure 23 shows that, without pass-through,
straightforward aggregation increases latency linearly. Even an ag-
gregation of 3 video frames results in an unacceptable latency of 1
second. Note that even without aggregation (aggregation size = 1)
the baseline system experiences 400 ms latency, due to the codec’s
processing overhead and associated queuing delay.

Remarkably, with pass-through, the latency is reduced from 400
ms to around 26 ms with a batching/prefetching size of 1 frame. As
the batch size increases, the increase of air-time cost is negligible,
and further absorbed by the buffering at the sink side. Even with user
intervention, we observe only 400 ms of latency when 12 frames are
batched.

Off-channel Miracast. We verify the model-based channel se-
lection (Section 4.4.1) directly in the office environment with natural
contending traffic. Our energy-aware approach is compared with the
most power consuming channel, and a random selection that picks 3
channels arbitrarily and take the average power consumption. The
Miracast link setup is the same as in Section 4.4.1. Table 2 lists the
measured power consumption. For local video, our approach further
saves 49 mW (2.3%) and 36 mW (1.8%), compared with worst and
random case, respectively. The small percentage is mainly attributed
to the low contending traffic during the test period (below 1 Mbps).
Since power consumption increases linearly with contention traffic,

Energy-aware Worst-case Random

Local (mW) 1955.5 2004.6 1991.1

Tethered (mW) 2424.4 2440.5 2427.9

Table 2: Effectiveness of energy-aware channel selection. Tests
done in an office environment during day time.
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Figure 25: Power saving from off-channel Miracast for tethered
video.

the saving will increase in environment where the worst-case chan-
nel is heavily congested. For tethered video, the saving is smaller
due to self-contention between the AP-source and source-sink links.

We further evaluate the coarse-grained channel flipping protocol
by injecting different levels of contention traffic on the AP-source
channel, and allowing the source-sink link to flexibly select/switch
channels. Experimental results in Figure 25 show that the sav-
ing from channel flipping increases with contention intensity, and
plateaus at 8% when the AP-source channel becomes saturated by
contention. Even if no external contention exists, channel flipping
can still save 37 mW (1.3%) owing to reduction of self-contention.

5.2 System-Level Evaluation
We present a comprehensive evaluation of our energy-efficient

Miracast system in two different contention environment: (i) se-
vere contention, where we try to saturate the wireless channel by
generating 42 Mbps of UDP traffic from a separate link, which
makes the coexisting Miracast link extremely laggy. (ii) no con-
tention, an environment with a completely idle 5 GHz channel. All
other Miracast parameter settings are configured to the default in
the baseline system (Section 3.1). We break down the power sav-
ing by incrementally enabling each optimization mechanism, in the
following order: PSMlock, tail-cutting, pass-through, batching/pre-
fetching/aggregation and background suppression. Contribution of
each mechanism is the power saving incremental on top of previous
ones. Since the experiment fixes on one channel, we disable the
off-channel Miracast.

The results in Figure 26 show that, compared to the baseline
system, the overall power saving ranges from 29% to 61% depending
on application traffic patterns. Notably, contention intensity plays a
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marginal role on the overall percentage of power saving, although
it affects the absolute value of power consumption by up to 100
mW (Section 3.2). However, contention does vary the relative
contribution of different optimization mechanisms.

For continuous video applications, power saving comes predomi-
nantly from pass-through (42-54%), followed by batching/prefetching
(3-7%). PSMlock barely helps in severe contention as each cluster
of traffic is broken by contending transmissions, yet still offers 5%
of saving when the channel is idle.

For bursty video applications, PSMlock exhibits similar behavior.
The main contribution comes from tail cutting, frame aggregation,
and background audio suppression. Tail cutting shows consistent
savings as in our microbenchmark evaluation. By reducing redun-
dant background traffic, silent audio suppression can save 5% to 9%
of power. For frame aggregation, we configure the batch size to 3
video frames, which adds 200 ms of latency on top of the baseline
(Section 5.1), and saves 17-21% in an idle environment, and 7% to
16% under severe contention.

We emphasize that the power saving evaluation involves an en-
tire smartphone system, instead of the Miracast application power
alone. Among all contributing factors, only the off-channel miracast-
ing mechanism adopts a model-driven approach, and is evaluated
separately in Section 5.1.

6. DISCUSSION AND FUTURE WORK
Our implementation and experiments have been conducted on

the Galaxy Nexus Android phone. However, the Miracast power
optimization mechanisms are not restricted to any hardware model.
They do require modifications to the Miracast software inside the
source node and may result in different power savings across differ-
ent models.

Although Miracast is envisioned to support highly interactive
applications like mobile gaming, we have not found any of such
applications tailored to Miracast. Due to the 400 ms of end-to-end
latency (Figure 23), we contend that the current Miracast frame-
work is unsuitable for mobile gaming. Though pass-through and
prefetching can reduce latency by an order of magnitude, they only
help applications that provide encoded video frames. Improving the
responsiveness/energy of interactive Miracast requires a joint opti-
mization of codec and queuing operations between system models,
which is left as our future work.

Due to limitation of the available firmware, we have not explored
alternative WiFi Direct power saving protocols (e.g., NoA) which,

compared with PSMlock, enables more fine-grained control of the
source’s sleeping schedule. Similarly, the off-channel WiFi Direct,
once enabled in firmware, will provide more power saving than the
coarse-grained emulation approach that we evaluated. With new
generation of WiFi, transmission cost may decrease. However, we
note that the main power cost in Miracast lies in codec process-
ing, plus the idle listening power caused by redundant traffic that
keeps the NIC alive. Thus, we expect video pass-through, prefetch-
ing/batching and tail cutting to be useful even if WiFi evolves to
much higher rate.

There are also some practical concerns for production level im-
plementation of the video pass-through mechanism. For example,
some users or applications may wish to pass-through full screen
videos only, thus it is possible for other elements on the screen
to be displayed together with the video side by side on the sink.
We should allow users and applications to control their preferences
about the behavior. Also, it is possible that multiple video elements
can be present simultaneously while Miracast is in use. In this case,
it might be favorable to disable video pass-through temporarily, or
to employ extra algorithm to determine which video is the “main”
one and should enforce pass-through.

7. RELATED WORK
Quality-aware mobile video streaming. Echoing the fast pen-

etration of mobile devices in the past decade, substantial research
work has focused optimizing video quality over wireless networks.
The overarching goals involve minimizing startup latency, contain-
ing jitter under bandwidth fluctuation, etc. [17]. To date, commer-
cial deployment has adopted many solution mechanisms [18], e.g.,
video bit-rate adaptation, caching [19], and Dynamic Streaming over
HTTP (DASH). The same server may enforce different mechanisms
over different mobile devices or applications to balance between a
matrix of practical factors such as video traffic profile and network
condition.

Energy-aware mobile video streaming. Apart from performance
optimization, energy cost reduction has been a parallel theme. Most
solutions shape the downlink video traffic to create intermittent
sleeping opportunities for the mobile client, while respecting video
quality constraints. Depending on the vantage point of execution,
the solutions can be classified as follows. (i) Client-side protocols
allow a mobile video receiver to proactively pull contents from the
streaming server based on playback buffer status [20] or prediction
of demand [21]. (ii) Proxy-based protocols act on behalf of the
server to reshape video traffic into bursts, and harnesses WiFi’s PSM
for clients’ sleep scheduling [22]. (iii) Server-assisted protocols
customize the traffic scheduler at streaming servers. For instance, it
has been observed that YouTube, Vimeo and DailyMotion servers
trigger a chunk-mode strategy [18] to create periodic bursts. Ulti-
mately, the power saving depends on how aggressive the client’s
PSM decides to harnesses the sleeping opportunities.

At the application layer, content adaptation offers a flexible means
of trading video quality for energy saving. The H.264 scalable video
coding standard [23] compresses video data into a low-rate base-
layer plus enhancement layers that can be gracefully added. It allows
a client to inform the server of its video quality choice according to
decoding capability and power budget [24]. The server is ready for
such customized requests when running DASH [25].

System-level power optimization for mobile video. From a mo-
bile system perspective, a variety of strategies exist to optimize the
power consumption, some applicable beyond mobile video play-
back. For software codecs, dynamic voltage/frequency scaling can
be executed based on observation of video workload [26]. For ASIC
codecs, power consumption is closely related with the computational



cost in compression. By modeling the relation between computa-
tional cost and rate-distortion (quality reduction), and leveraging
extraneous information (e.g., motion prediction from sensors [27]),
it is possible to customize a set of codec parameters to optimize the
power-quality tradeoff [28]. Yet to our knowledge, such customiza-
tion is not supported by commercial smartphone video codecs. In
addition, adaptive algorithms have been proposed that change back-
light level or image brightness [29, 30], to curtail the huge display
power cost during video playback. On the other hand, caution has
been posed w.r.t. fidelity loss due to aggressive screen content-aware
optimization [31].

Network interface power optimization. Many energy saving
protocols that are application-independent have been proposed to
address the inherent limitations of the WiFi PSM. For example,
NAPman [32] and SleepWell [33] isolate the traffic bursts of differ-
ent APs/clients, to reduce the idle listening power due to contention.
Many COTS smartphones use A-PSM (Section 4.5.1), but it is shown
to nullify the energy saving of PSM during video streaming, as it
tends to keep the client in active mode [34]. Further improvement to
has been proposed that cuts A-PSM’s keep-alive or tail time [14]. In
cellular networks, the mobile network interface also bears a keep-
alive period after each transmission, which incurs substantial tail
energy when traffic is bursty [35]. The video tail problem that we
have identified bears similar spirit, but a different tradeoff – between
energy saving and video quality rather than network performance.

New protocols have also been designed to optimize the power
consumption of mobile hotspots. DozyAP [36], for example, in-
troduces a coarse sleep scheduling mechanism to 802.11 softAP.
Cool-Tether [37] aggregates the cellular connections from multiple
smartphones as a single backhaul, and employs a reverse-tethering
architecture, requesting the smartphones to act as clients of a mobile
host, thus enabling their PSM. The latest WiFi-direct power-saving
schemes may fundamentally simplify such protocols.

Optimizing screen sharing applications. Screen sharing is a
relatively new mobile application that garnered little attention in the
research literature. Most recent work [38,39] focused on maintaining
video quality. Ha et al. [40] simulated a frame-rate adaptation
scheme that reduces Miracast traffic load by analyzing the dynamism
of screen content. This approach involves substantial computational
overhead and the practical power saving remains unknown.

Unlike Miracast, Chromecast [41] allows the sink side to directly
download videos from the Internet, at the cost that each App must
be modified accordingly, whereas Miracast provides a application-
transparent solution. Also, in some situations the sink might not
have Internet access, or the source has access to a private network
while the sink does not, making it impossible for the Chromecast
approach to work properly. Thus, the Miracast approach is more
universal.

8. CONCLUSION
In this paper, we have conducted the first systematic measurement

study on the power consumption of Miracast. The measurement
enables a modeling framework that associates network/codec power
with the Miracast channel selection as well as video traffic load.
Insights from the measurement lead to a set of optimization mecha-
nisms which uncover and remove redundant Miracast traffic, curtail
unnecessary computations, and improve transmission efficiency via
batching/prefetching. Our implementation on a Miracast-compatible
smartphone consolidates these mechanisms and demonstrates sub-
stantial power savings.
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