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We study the cross-section of stock option returns by sorting stocks on the difference

between historical realized volatility and at-the-money implied volatility. We find that a

zero-cost trading strategy that is long (short) in the portfolio with a large positive

(negative) difference between these two volatility measures produces an economically

and statistically significant average monthly return. The results are robust to different

market conditions, to stock risks-characteristics, to various industry groupings, to option

liquidity characteristics, and are not explained by usual risk factor models.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Options allow an investor to trade on a view about the
underlying security price and volatility. A successful
option trading strategy must rely on a signal about at
least one of these inputs. In the vernacular of option
traders, at the heart of every volatility trade lies the
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trader’s conviction that the market expectation about
future volatility, which is implied by the option price, is
somehow not correct.1 Since all the option pricing models
require at least an estimate of the parameters that
characterize the probability distribution of future volati-
lity, volatility misestimation is the most obvious source of
options mispricing.

A common finding reported by studies of measurement
and forecast of volatility is mean-reversion.2 One forecast
of volatility is embedded in the implied volatility (IV) of
the stock, which can be obtained by inverting the Black
1 Options are also, of course, a very important risk management tool

for hedging. A successful options trading strategy for these purposes can

be implemented without any assumption that the market prices are

incorrect.
2 The volatility forecasting literature is extensive and too volumi-

nous to cite in detail here. The interested reader is referred to the recent

surveys in Granger and Poon (2003) and Andersen, Bollerslev, Chris-

toffersen, and Diebold (2006).
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and Scholes (1973) model.3 IV from an option on a stock
should, therefore, reflect the fact that future volatility will,
on average, be closer to its long-run average historical
volatility (HV) than to its current volatility. We do not
suggest that IV should be the same as realized (historical
or current) volatility. Our conjecture is only that large
deviations of IV from HV are indicative of option
mispricing.

Therefore, we sort stocks based on the difference
between HV and IV. HV is calculated using the standard
deviation of daily realized stock returns over the most
recent 12 months and IV is computed by taking the
average of the implied volatilities of the call and put
contracts which are closest to at the money (ATM) and are
one month to maturity. These selection criteria ensure
that we construct a homogeneous sample with respect to
the option contract characteristics across stocks, and that
we consider the most liquid options contracts. Since we
want to choose option positions which take advantage of
volatility mispricing and have the least directional
exposure to the underlying stocks, we compute returns
of straddles and delta-hedged call portfolios.

We find that a zero-cost trading strategy involving a
long position in an option portfolio of stocks with a large
positive difference between HV and IV and a short
position in an option portfolio of stocks with a large
negative difference generates statistically and economic-
ally significant returns. For example, a long-short decile
portfolio of straddles yields a monthly average return of
22.7% and a Sharpe ratio of 0.710. Similarly, we find
statistically and economically significant positive returns
for high decile portfolios and negative returns for low
decile portfolios of delta-hedged calls.4 These returns are
comparable in magnitude to those in Coval and Shumway
(2001), who report absolute returns of around 3% per
week for zero-beta straddles on the Standard and Poor’s
500 (S&P 500).

We then examine whether option returns to the long-
short strategy are related to aggregate risk and/or
characteristics. The alphas from standard risk-factor
models with standard equity-risk and option-risk factors
are very high and close to the raw returns.5 Using cross-
sectional regressions as well as via double sorted
portfolios, we find that, while option returns covary with
some of the stock characteristics that are found to be
important for stock returns, this covariance is not enough
to explain the high realized returns to our strategy.
3 Strictly speaking, IV is only a rough estimate of the market’s risk-

neutral estimate of future volatility of the underlying asset. Britten-Jones

and Neuberger (2000) derive a procedure that gives the correct estimate

of the option-implied (i.e., risk-neutral) integrated variance over the life

of the option contract when prices are continuous but volatility is

stochastic. Jiang and Tian (2005) improve upon this procedure and also

show its validity in a jump-diffusion setting.
4 We also sort stocks into two groups based on the sign of difference

between HV and IV. Returns on these portfolios (also reported in the

paper) are qualitatively similar to those for deciles.
5 Although these regressions are linear factor models, we find that

non-linear adjustments make virtually no difference. For instance,

models with betas conditional on option greeks and models with Leland

(1999) utility have very similar alphas as those from standard models.
Our results are robust to the choice of sample periods
as well as volatility measures. Consistent with the
literature on transaction costs on options markets, we
find that trading frictions reduce the profitability of the
option portfolio strategy. For instance, the long-short
decile straddle portfolio returns are reduced to 3.9% per
month if we consider trading options at an effective
spread equal to the quoted spread.6 We also find that the
before-cost profits are higher for illiquid options than for
liquid options. Finally, we show that margin requirements
for short positions are roughly equal to one and a half
times the cost of written options, which drives another
wedge into the profitability of our strategies. Our analysis,
therefore, shows that liquidity considerations reduce, but
do not eliminate, the economically important profits of
our portfolios.

To further understand the underlying reasons of the
empirical regularity that we observe, we study the
behavior of volatility (IV and HV) around the portfolio
formation date. We find that the deviations between HV
and IV are transitory—there is very little difference
between the volatility measures one year before and after
the portfolio formation, while the portfolio formation
month, by construction, has large deviations. At the same
time, in the month preceding portfolio formation the
stocks in decile one have negative returns and the stocks
in decile 10 have positive returns. In the months other
than the portfolio formation month there is no appreci-
able pattern in stock returns. The fact that temporary
deviations of IV from HV are accompanied by extreme
patterns in stock returns suggests that investors overreact
to current events, increasing (decreasing) their estimate of
future volatility after large negative (positive) stock
returns.

The conjecture that overreaction to current stock
returns leads to misestimation of future volatility is
consistent with the behavioral model of Barberis and
Huang (2001) (henceforth BH).7 Investors in the BH model
have non-standard preferences with loss aversion and also
engage in mental accounting. They get utility from gains
and losses in wealth, rather than absolute levels of their
wealth. In particular, they are more sensitive to losses
than to gains (loss aversion). In addition, they apply this
loss aversion to gains and losses defined narrowly over
individual stocks (narrow framing in mental accounting).
BH use their model to explain many empirical features of
the data, such as excess volatility, time-series predict-
ability, and cross-sectional value premium. The driving
force for BH’s results is the fact that the individual stock
riskiness (discount rate) changes with the stock’s past
performance. If a stock has had good recent performance,
6 De Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002)

show that typically the ratio of effective to quoted spread is less than 0.5.

On the other hand, Battalio, Hatch, and Jennings (2004) study two

periods in the later part of the sample, January 2000 and June 2002, and

find that for a small sample of stocks the ratio of effective spread to

quoted spread is around 0.8.
7 While there are many models in behavioral finance that endogen-

ously generate under- and overreaction, very few of them are concerned

with volatility mispricing (since, by design, the objective is to explain

empirical patterns in the first moments, viz. returns).
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8 Battalio and Schultz (2006) note that option and underlying prices

are recorded at different times in the Ivy DB database, creating problems

when an arbitrage relation such as the put–call parity is examined. This

property of the data is not an issue for us because the tests that we

conduct do not require perfectly coordinated trading data in the two

markets.
9 Interest rates used by the Ivy DB option models are derived from

British Banker’s Association LIBOR rates and settlement prices of Chicago

Mercantile Exchange Eurodollar futures. The current dividend yield is

assumed to remain constant over the life of the option and the security is

assumed to pay dividends at specific predetermined times. We refer the

reader to the Ivy DB reference manual for further details.
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then the investors become less concerned about future
losses on this stock, as future losses are cushioned by prior
gains. This stock is, therefore, perceived to be less risky
than before. Conversely, poor performance of a stock
makes the investor more sensitive to the possibility of
future losses, raising its riskiness.

Our empirical findings are in line with the predictions
of the BH model. Stocks in decile one experience negative
returns in the portfolio formation month, and have higher
IV (perceived future volatility) than before portfolio
formation; stocks in decile 10 have positive returns in
the portfolio formation month, and have lower IV than
before portfolio formation.

These expectations of changing volatility are, however,
not justified by future events. We verify this by running a
standard rationality test of forecasting future volatility
using IV. We find that the forecast error in predicting
future volatility using current IV is negative for decile one
and is positive for decile 10. To summarize, investors
overestimate future volatility of stocks following negative
stock returns and under estimate future volatility follow-
ing positive returns. This overreaction is precisely what
leads to abnormal option returns. Our paper, thus,
contributes to the debate about efficient markets, by
identifying a trading strategy that produces abnormal
returns and relating it to a behavioral model in the
relatively unexplored area of options markets.

Our empirical tests and results are related to those of
Black and Scholes (1972). Using data from an over-the-
counter options market maker’s book, they find that
returns on options on high volatility (measured by HV)
stocks are higher than those on low HV stocks. While
Black and Scholes’ motivation was to test the empirical
validity of their pricing model, it is interesting to note the
similarity between their and our results. On a more
current note, our evidence of investor irrationality is
analogous to Stein (1989). Stein studies the term structure
of the implied volatility of index options and finds that
investors overreact to the current information. They
ignore the long-run mean reversion in implied volatility
and instead overweight the current short-term implied
volatility in their estimates of long-term implied volatility.
Our findings are also consistent with those of Poteshman
(2001), who finds that investors in the options market
overreact, particularly to periods of increasing or decreas-
ing changes in volatility. Finally, our paper is related to the
growing recent literature that analyzes trading in options.
Coval and Shumway (2001) and Bakshi and Kapadia
(2003) study trading in index options. Chava and Tookes
(2006), Ni, Pan, and Poteshman (2008), and Ni (2006)
study the impact of news/information on trading in
individual equity options. To the best of our knowledge,
we are the first to study the economic impact of volatility
mispricing through individual equity option trading
strategies.

The rest of the paper is organized as follows. The next
section discusses the data. Section 3 presents the main
results of the paper by studying option portfolio strate-
gies. Whether returns to option portfolios are related to
fundamental risks and/or characteristics is investigated in
Section 4. We discuss robustness checks as well as the
impact of trading frictions on portfolio profitability in
Section 5. Section 6 presents evidence consistent with
investor overreaction. We conclude in Section 7.

2. Data

The data on options are from the OptionMetrics Ivy DB
database. The data contain information on the entire U.S.
equity option market and includes daily closing bid and
ask quotes on American options as well as their IV and
greeks (deltas, gammas, vegas) for the period from
January 1996 through December 2006.8 The IV and greeks
are calculated using a binomial tree model using Cox,
Ross, and Rubinstein (1979).9

We apply a series of data filters to minimize the impact
of recording errors. First we eliminate prices that violate
arbitrage bounds. Second we eliminate all observations for
which the ask price is lower than the bid price, the bid
price is equal to zero, or the bid–ask spread is lower than
the minimum tick size (equal to $0.05 for option trading
below $3 and $0.10 in any other cases). Finally, following
Driessen, Maenhout, and Vilkov (2009), we remove all
observations for which the option open interest is equal to
zero, in order to eliminate options with no liquidity.

We construct portfolios of options and their underlying
stocks. These portfolios are formed based on information
available on the first trading day (usually a Monday)
immediately following the expiration Saturday of the
month (all the options expire on the Saturday immedi-
ately following the third Friday of the expiration month).
To have a continuous time-series with constant maturity,
we consider only options that mature in the next month.
Among these options with one month to maturity, we
then select the contracts which are closest to ATM. Since it
is not always possible to select options with moneyness
(defined as the ratio of strike to stock price) exactly equal
to one, we keep options with moneyness between 0.975
and 1.025. Thus, for each stock and for each month in the
sample, we select the call and the put contract that are
closest to ATM and expire next month. After next month
expiration, we select a new pair of call and put contracts
that are at that time closest to ATM and have one month
to expiration. Our final sample includes 4,344 stocks and
is composed of 75,627 monthly pairs of call and put
contracts.

For each stock and for each month in the sample, we
calculate two different measures of volatility: historical
volatility (HV) and implied volatility (IV). HV is calculated
using the standard deviation of realized daily stock
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Table 1
Summary statistics.

The data on options are from the OptionMetrics Ivy DB database. We

select one call and one put for each stock in each month of the sample

period. All options have expirations of one month and moneyness closest

to one. We first compute the time-series average of these volatilities for

each stock and then report the cross-sectional average of these average

volatilities. The other statistics are computed in a similar fashion. For

each month and for each stock, historical volatility (HV) is calculated

using the standard deviation of daily realized stock returns over the most

recent 12 months. For each month and for each stock, implied volatility

(IV) is the average of the implied volatilities of the call and put contracts

that are closer to being at the money and have one month to maturity.

The volatilities are annualized. The sample includes 4,344 stocks and is

composed of 75,627 monthly pairs of call and put contracts. The sample

period is 1996 to 2006.

Mean Median StDev Min Max Skew Kurt

IV 0.544 0.528 0.118 0.397 0.771 0.482 2.712

HV 0.563 0.554 0.101 0.437 0.731 0.288 2.269

DIV �0.012 �0.013 0.140 �0.217 0.197 0.045 2.343

DHV �0.001 �0.001 0.018 �0.028 0.026 0.008 3.173

10 Deviations of IV from HV will be more pronounced for stocks with

higher volatility of volatility than for stocks with lower volatility of

volatility. Stocks with high prices of volatility risk (positive or negative)

will also exhibit differences between IV and (future) realized volatility:

IV is only a risk-neutral expectation of future volatility.
11 The results from a time-series regression for each stock are very

similar to the ones reported here. However, it is a non-trivial exercise to

calculate the standard error of the cross-sectional average of regression

coefficients.
12 Christensen and Prabhala (1998) point out that measurement

error in IV introduces a bias in estimated coefficients. We obtain similar

results by instrumenting current IV with lagged IV and with lagged

measures of one-month and 12-month realized volatility.
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returns over the most recent 12 months. IV is computed
by taking the average of the ATM call and put implied
volatilities. We compute the time-series average of these
volatilities for each stock and then report the cross-
sectional average of these average volatilities in Table 1.
The other statistics (median, standard deviation, mini-
mum, maximum, skewness, and kurtosis) are computed in
a similar fashion so that the numbers reported in the table
are the cross-sectional averages of the time-series statis-
tics and can be interpreted as the summary statistics of an
average stock.

HV and IV are close to each other, with values of 56.3%
and 54.4%, respectively. Similar to the finding of Driessen,
Maenhout, and Vilkov (2009), HV is slightly higher than IV
by about 2% for individual stocks. The overall distribution
of IV is, however, more volatile and more positively
skewed than that of HV. The average monthly change in
both measures of volatility is very close to zero. Changes
in IV can be quite drastic and usually correspond to events
of critical importance for the survival of a firm. For
example, UICI, a health insurance company, has a DIV of
86% which corresponds to the release of a particularly
negative quarterly loss for the fourth quarter of 1999.
During the month of December, UICI options went from
trading at an ATM IV of 31% to an IV of 117%. The stock
price lost 56% of its value in the same month. Many of the
other large spikes in volatility happen during months of
large declines in stock prices. For example, the IV of the
stocks in the technology sector jumped over 150% during
the burst of the Nasdaq bubble in the spring of 2000.
Spikes in individual stock IV also happen on earnings
announcements (Dubinsky and Johannes, 2005).

3. Option portfolio strategies

All option pricing models require, at least, an estimate
of the parameters that characterize the probability
distribution of future volatility. It is well-known that
volatility is highly mean-reverting—the average autocor-
relation for individual stock volatility in our sample is 0.7.
This implies that large deviations of current volatility
from its long-term average are temporary in nature and
are likely to reduce in magnitude at a quick rate
(determined by the mean-reversion parameter). Any
forecast of future volatility must account for this mean-
reversion. One such forecast is embedded in the IV of the
stock. Therefore, IV from an option on a stock should
reflect the fact that future volatility will, on average, be
closer to its HV than to its current volatility.

Note that we are not suggesting that mean-reversion
implies that IV should be the same as realized (historical
or current) volatility. Indeed the stochastic nature of
volatility and the existence of a volatility risk premium
necessarily results in differences between IV and HV.10

However, high autocorrelation of volatility implies that
large deviations between IV and HV are unlikely to persist.
Therefore, we speculate that, if there is volatility mispri-
cing, it is more likely to manifest itself in extreme
temporary deviations between HV and IV. Stocks for
which IV is much lower than HV have cheap options, and
stocks for which IV is much higher than HV have
expensive options.

To further motivate volatility trading strategy based on
both HV and IV, we conduct a standard rationality test of
predicting future realized volatility from HV and IV. In
particular, following Christensen and Prabhala (1998), for
each month in the sample we run the following cross-
sectional regression11:

fvi;tþ1 ¼ at þ b1t ivi;t þ b2thvi;t þ �i;tþ1, (1)

where fv is the (log of) the future realized volatility over
the life of the option, where the future volatility is
calculated as the standard deviation of daily returns, and
iv and hv are the logs of IV and HV, respectively. The
underlying hypothesis is that, if IV is an unbiased forecast
of FV, then the parameters a, b1, and b2 should be equal to
zero, one, and zero, respectively.

We run regression (1) each month and calculate the
time-series average of the regression coefficients, together
with their standard error, corrected for autocorrelation in
time-series following Newey and West (1987). We find
that b1 ðb2Þ is 0.967 (0.877) in a univariate regression,
with very high statistical significance. In a bivariate
regression, b1 and b2 are 0.695 and 0.286, respectively
(t-statistics are 21.8 and 10.2, respectively).12 Further-
more, out-of-sample mean square error and mean
absolute square error decrease, from 0.032 to 0.030 and
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from 0.110 to 0.105, respectively, when HV is included in
the regression. Taken together these pieces of evidence
suggest that predicting future volatility using HV and IV
reduces the forecast error by approximately 5% (versus a
prediction using only IV). Thus, both IV and HV contain
valuable information about future volatility, and IV does
not subsume the information contained in HV. These
results hint at the possibility that a trading strategy based
on HV (in addition to IV) might be profitable.
3.1. Portfolio formation

We construct two types of portfolios. First, we sort
stocks into deciles based on the log difference between HV
and IV. Decile one consists of stocks with the lowest
(negative) difference while decile 10 consists of stocks
with the highest (positive) difference between these two
volatility measures. The decile portfolios are equal-
weighted. Second, we sort stocks into two groups
depending on the sign of the difference between HV and
IV. We label these groups P (for positive, HV higher than
IV) and N (for negative, HV lower than IV). These two
groups are relative value-weighted—weights in each of
the two groups are proportional to the (absolute) devia-
tion between HV and IV. On average, the equal-weighted
decile portfolios contain 53 stocks in each month and the
relative-weighted P (N) portfolio contains 279 (252)
stocks.

Descriptive statistics of the equal-weighted decile
portfolios and the relative value-weighted P and N
portfolios are reported in Table 2. These are calculated
by first computing averages (equal-or value-weighted
depending on the portfolio) across stocks for each month
in the sample and for each portfolio. This procedure gives
us a continuous time-series of portfolio statistics. The
table then reports the time-series averages of these
portfolio statistics.

While HV increases as one proceeds from decile one to
decile 10, IV follows the opposite pattern generally
decreasing from decile one to 10. We note that the spread
Table 2
Formation-period statistics of portfolios sorted on the difference between HV a

HV and IV are calculated as in Table 1. We sort stocks into portfolios based on t

Portfolios 1 through 10 are obtained by sorting stocks into deciles based on

weighted. Portfolios N and P are obtained by sorting stocks into two groups dep

groups P, for positive difference, and N, for negative difference. These two portf

proportional to the (absolute) deviation between HV and IV. D, G, and V are the

averaged across stocks in each portfolio and then averaged across time. The sam

and put contracts. The sample period is 1996 to 2006.

Decile portfolios

1 2 3 4 5 6

HVt � IVt �0.148 �0.076 �0.046 �0.023 �0.004 0.01

HVt 0.389 0.410 0.421 0.429 0.446 0.46

IVt 0.537 0.486 0.467 0.452 0.450 0.44

Dc 0.544 0.541 0.540 0.537 0.536 0.53

Dp �0.460 �0.464 �0.465 �0.468 �0.469 �0.47

G 0.133 0.124 0.124 0.125 0.128 0.12

V 3.967 4.168 4.330 4.350 4.263 4.31
in HV between portfolio one and 10 is much larger than
that in IV. This shows that our sort is not just on the levels
on IV but on richer dynamics of the difference between
HV and IV.

There is not much variation (not accounted for by
differences in IV and underlying prices) in option greeks
across portfolios. For instance, deltas of calls in all deciles
are close to 0.54 while the deltas of puts in all deciles are
close to �0:47. The gammas (second derivative with
respect to underlying price) and vegas (first derivative
with respect to volatility) are of similar magnitude across
deciles. The P and N portfolios also have similar options
greeks.

The difference HV–IV between P and N portfolios
(15% ¼ 8:2%� ð�6:8%Þ) is less than half as much as
that between decile 10 and one portfolios
(34:5% ¼ 19:7%� ð�14:8%Þ). This implies that the extreme
decile portfolios have options with larger deviations of HV
and IV than do the P and N portfolios.

In unreported results, we find that there is no industry
over-concentration in any of our portfolios. We do find
that stocks in our sample are typically large and belong to
the top two deciles of market capitalization by NYSE
breakpoints. For example, the average market capitaliza-
tion of a stock in decile one (10) is $8.1 ($8.9) billion,
although there is no pattern in size across any of the
portfolios. Finally, we find that the skewness and kurtosis
of stock returns is higher for higher numbered deciles
than it is for lower numbered deciles.
3.2. Portfolio returns

Since our interest is in studying returns on options
based only on their volatility characteristics, we want to
neutralize the impact of movements in the underlying
stocks as much as possible. We accomplish this task by
forming straddle portfolios and delta-hedged call portfo-
lios (results for delta-hedged put portfolios are very
similar to those for delta-hedged calls, and are omitted
for brevity). Straddles are formed as a combination of one
nd IV.

he difference between historical volatility (HV) and implied volatility (IV).

the log difference between HV and IV. These 10 portfolios are equally

ending on the sign of the difference between HV and IV. We label these

olios are relative value-weighted—weights in each of the two groups are

delta, gamma, and vega, respectively, of the options. All statistics are first

ple includes 4,344 stocks and is composed of 75,627 monthly pairs of call

7 8 9 10 N P

6 0.036 0.060 0.097 0.197 �0.068 0.082

3 0.485 0.509 0.550 0.651 0.419 0.532

7 0.449 0.449 0.453 0.455 0.487 0.450

4 0.532 0.528 0.531 0.531 0.540 0.532

1 �0.475 �0.478 �0.474 �0.476 �0.465 �0.474

8 0.133 0.135 0.142 0.167 0.126 0.142

6 4.160 4.189 3.997 3.727 4.110 4.110
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Table 3
Post-formation returns of portfolios sorted on the difference between HV and IV.

Portfolios are formed as in Table 2. The returns on options are constructed using, as a reference beginning price, the average of the closing bid and ask

quotes and, as the closing price, the terminal payoff of the option depending on the stock price and the strike price of the option. The hedge ratio for the

delta-hedged calls is calculated using the current IV estimate. The options monthly returns are equal-weighted (for deciles) or value-weighted (for P and N

portfolios) across all the stocks in the portfolio. SR is the Sharpe ratio and CE is the certainty equivalent. CE is computed from a utility function with

constant relative risk-aversion parameters of three and seven. The sample includes 4,344 stocks and is composed of 75,627 monthly pairs of call and put

contracts. The sample period is 1996 to 2006.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10–1 N P P–N

Panel A: Straddle returns

mean �0.128 �0.078 �0.057 �0.033 �0.018 �0.010 �0.002 0.007 0.027 0.099 0.227 �0.094 0.044 0.138

std 0.182 0.178 0.220 0.225 0.227 0.255 0.227 0.233 0.239 0.291 0.251 0.188 0.241 0.189

min �0.572 �0.411 �0.414 �0.406 �0.353 �0.486 �0.540 �0.440 �0.368 �0.321 �0.271 �0.400 �0.347 �0.572

max 0.724 0.667 0.832 1.129 0.877 1.413 1.197 1.187 1.133 1.501 1.492 0.829 1.194 1.016

SR �0.722 �0.455 �0.272 �0.162 �0.092 �0.051 �0.020 0.017 0.101 0.329 0.903 �0.518 0.168 0.730

CE ðg ¼ 3Þ �0.177 �0.125 �0.120 �0.092 �0.082 �0.081 �0.061 �0.056 �0.037 0.017 0.156 �0.138 �0.016 0.080

CE ðg ¼ 7Þ �0.245 �0.183 �0.183 �0.149 �0.144 �0.155 �0.152 �0.123 �0.102 �0.058 0.069 �0.181 �0.075 �0.109

Panel B: Delta-hedged call returns

mean �0.017 �0.011 �0.008 �0.006 �0.004 �0.002 �0.002 0.001 0.003 0.010 0.027 �0.013 0.005 0.018

std 0.024 0.022 0.025 0.024 0.024 0.027 0.025 0.027 0.030 0.034 0.033 0.025 0.028 0.027

min �0.088 �0.073 �0.079 �0.062 �0.053 �0.056 �0.047 �0.048 �0.059 �0.050 �0.045 �0.077 �0.042 �0.086

max 0.097 0.067 0.103 0.122 0.099 0.142 0.120 0.147 0.142 0.172 0.194 0.132 0.131 0.141

SR �0.856 �0.628 �0.458 �0.399 �0.297 �0.198 �0.200 �0.090 0.007 0.195 0.809 �0.660 0.063 0.674

CE ðg ¼ 3Þ �0.018 �0.012 �0.009 �0.007 �0.005 �0.003 �0.003 �0.000 0.002 0.008 0.025 �0.014 0.004 0.017

CE ðg ¼ 7Þ �0.019 �0.013 �0.010 �0.008 �0.006 �0.005 �0.004 �0.002 0.001 0.006 0.024 �0.015 0.002 0.016
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call and one put with the same underlying, strike price,
and maturity.13 Delta-hedged call positions are obtained
by buying one call contract and short-selling delta shares
of the underlying stock. Stock prices are taken from the
Center for Research in Security Prices (CRSP) database. We
use the delta (based on the current IV) provided by the Ivy
DB database.14,15

For each stock and for each month in the sample we
select a call and a put contract that is approximately ATM
and has one month to maturity. We then construct time-
series of straddle and delta-hedged call returns. The
straddle returns are constructed using, as a reference
13 In addition to the simple straddle returns, we also considered

zero-delta and zero-beta straddles. Zero-delta straddles were formed

using the delta provided by the Ivy DB database, while zero-beta

straddles were constructed following the procedure in Coval and

Shumway (2001). The returns on these portfolios were very similar to

the ones reported in the paper for the plain vanilla straddles.
14 If there is volatility mispricing in options, a more powerful and

profitable approach is to recalculate delta based on an implied volatility

estimate. However, we do not attempt to estimate a new delta because

we do not have an alternative estimate of implied volatility (only a signal

that IV is higher/lower than HV). Green and Figlewski (1999) note that a

delta-hedged strategy based on incorrect delta entails risk and does not

provide a riskless rate of return. This means that we are conservative in

our construction of delta-hedged portfolios—we earn lower returns and

have higher risk.
15 Our delta-hedged portfolios are held until expiration and not

rebalanced during the holding period (similar to the straddle portfolios).

This is a conservative approach as our buy-and-hold strategy entails

higher risk than a frequently/daily rebalanced strategy. Note, however,

that rebalancing the portfolio would involve transaction costs of trading

the underlying stock to adjust the delta.
beginning price, the sum of the average of the closing bid
and ask quotes of the call and put, and, as the closing
price, the terminal payoff of the option that expires in the
money. The terminal payoff depends on the stock price at
expiration and the strike price of the option. The delta-
hedged call returns are constructed using, as a reference
beginning price, the average of the closing bid and ask
quotes of the call minus delta shares of the stock valued at
the closing stock price on the strategy initiation day, and,
as the closing price, the terminal payoff of the call minus
delta shares of the stock valued at the closing stock price
on the day the option expires.16

To ameliorate microstructure biases, we start trading a
day after the day on which we obtain the signal (the
difference between HV and IV). Specifically, we form
portfolios on the first trading day (typically a Monday)
after the expiration Friday of the month and we initiate
option portfolio strategies on the second trading day
(typically a Tuesday) after the expiration Friday of the
month. The returns are equal-weighted for decile portfo-
lios and relative value-weighted for P and N portfolios, as
described earlier.

Table 3 reports summary statistics of the returns of the
10 decile portfolios, P and N portfolios, as well as of two
spread portfolios: 10–1 portfolio formed by taking a long
16 The options are American. However, we ignore the possibility of

early exercise in our analysis for simplicity. Optimal early exercise

decisions would bias our results downwards for the long positions in

portfolios and upwards for the short positions in portfolios. The net

effect is not clear. See Poteshman and Serbin (2003) for a discussion of

early exercise behavior.
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17 The only notable exception is Duarte and Jones (2007). We

calculate alphas based on their model and find that these are very close

to the raw returns. Additional details are available upon request.
18 We obtain data on the first four factors from Ken French’s Web

site, while we construct the volatility factors ourselves following the

procedure described in Coval and Shumway (2001). During our sample

period, the average return of the zero-beta S&P 500 index ATM straddle

is �11:50% per month while the average return of the delta-hedged S&P

500 index call is �0:46%.
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position in the options in decile 10 and by writing the
options in decile one; and P–N portfolio formed by taking
a long position in the options in portfolio P and by writing
the options in portfolio N.

In addition to standard descriptive statistics, we also
calculate two measures related to the risk-return trade-
off: Sharpe ratio (SR) and certainty equivalent (CE). SR is
the most commonly used measure of risk-return trade-off;
nonetheless, CE is potentially a better measure than SR
because it takes into account all the moments of the
return distribution. We compute CE for a long position in
the portfolio and we use a power utility function with a
coefficient of relative risk aversion, g, equal to three and
seven.

Panel A of Table 3 shows that straddle decile portfolios
exhibit a striking pattern with average returns that go
from �12:8% to 9.9%, respectively. The volatility of these
returns is also low at between 18% and 30% per month.
The 10–1 straddle strategy has an average return of 22.7%
with a 25.1% monthly standard deviation (the minimum
monthly return in the sample is �32:1%), leading to a
monthly SR of 0.903 and a CEðg ¼ 3Þ of 15.6% per month.
The P–N straddle portfolio has lower average return of
13.8% but lower volatility at 18.9% than the 10–1 portfolio.
P–N portfolio has lower returns than 10–1 portfolio,
because the range of the sorting variable (HV–IV) is
higher for the 10–1 portfolio than it is for the P–N
portfolio, as described in the previous section. To put all
these numbers in perspective, the value-weighted CRSP
portfolio has a monthly SR of 0.131 and a monthly CE of
0.582% ðg ¼ 3Þ for our sample period.

The magnitude of returns for delta-hedged calls in
Panel B is lower than that for straddles. This is to be
expected for two reasons. First, straddles benefit from
mispricing of both calls and puts, while delta-hedged calls
benefit only from mispricing of calls. Second, delta-
hedged call position involves part of the portfolio weight
in stock, for which we make no claim of mispricing. In
spite of this, we see that our sorting criterion still lends
itself to positive returns for high decile portfolios and
negative returns for low decile portfolios. The average
return of the delta-hedged 10–1 portfolio is 2.7% with
standard deviations of 3.3%. The low standard deviation of
these portfolios leads to high SR (0.809), and the absence
of huge positive and negative returns also leads to positive
CE (2.5%).

Note that these option returns are not driven by
directional exposure to the underlying asset. When
underlying stocks are sorted according to the same
portfolio classification, the returns of the stock portfolios
in the month after portfolio formation exhibit no pattern
across deciles, or between P and N portfolios.

Note also, that the spread in option returns across
portfolios is not simply a result of the fact that stocks in
decile one (10) have high (low) IV. It is true that stocks in
decile one have high IV and low HV, and stocks in decile
10 have low IV and high HV (see Table 2). However,
we find that the average difference in the return of the
extreme decile portfolios obtained by sorting only on the
levels of IV or only on the levels of HV is often economic-
ally small and not statistically significant.
4. Controls for risk and characteristics

Our next task is to establish whether the large portfolio
returns are systematic compensation for risk or abnormal.
Since options are derivative securities, it is reasonable to
assume that option returns depend, at least, on the same
sources of risks or characteristics that explain individual
stock returns. The absence of a general formal theoretical
model for the cross-section of option returns, however,
makes our endeavor non-trivial.17 We approach our
problem from several different perspectives. We start by
running factor-model regressions with the standard
equity-risk factors augmented with risk factors for
options. We then explore whether stock/option character-
istics are related to the variation in our portfolio returns.
This second analysis is done on individual options via
cross-sectional regressions, as well as via double sorted
portfolios.

We acknowledge that we (like others) are subject to a
joint hypothesis problem—the estimated alphas are
derived from models and, therefore, rejection of the null
of zero alpha is a joint rejection of zero alpha and the
model. Our hope is that these experiments taken together
lend credence to our belief that the portfolio returns from
the previous section are not related to obvious sources of
risk and characteristics.
4.1. Risk-adjusted returns

We regress the returns of spread (10–1 and P–N)
straddle and delta-hedged call portfolios on various
specifications of a linear pricing model consisting of the
Fama and French (1993) three factors, the Carhart (1997)
momentum factor, and an aggregate volatility factor. For
the straddle portfolio, the aggregate volatility factor is the
excess return of a zero-beta S&P 500 index ATM straddle,
as in Coval and Shumway (2001). For the delta-hedged call
portfolio, the aggregate volatility factor is the excess
return of a delta-hedged S&P 500 index call.18 Since all the
factors are spread traded portfolios, the intercept from the
following regression can be interpreted in the usual sense
of mispricing relative to the factor model:

Rpt ¼ ap þ b0pFt þ ept , (2)

where Rp is the return on portfolio and F’s are factors.
Although, any linear factor model is unlikely to character-
ize the cross-section of option returns over any discrete
time interval, we use it merely to illustrate that the option
returns described in this paper are not related to
aggregate sources of risk in an obvious way.
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Table 4
Risk-adjusted option returns.

Portfolios are formed as in Table 2. We present results from the following time-series regression of 10–1 and P–N portfolio returns:

Rpt ¼ ap þ bpFt þ ept .

The risk factors are the Fama and French (1993) three factors (MKT–Rf, SMB, and HML), the Carhart (1997) momentum factor (MOM), and the Coval and

Shumway (2001) excess zero-beta S&P 500 straddle factor (ZB-STRAD–Rf). DH-CALL–Rf is the S&P 500 delta-hedged call factor return. The first row gives

the coefficients while the second row gives the t-statistics in parentheses. The sample includes 4,344 stocks and is composed of 75,627 monthly pairs of

call and put contracts. The sample period is 1996 to 2006.

Straddles Delta-hedged calls

10–1 P–N 10–1 P–N

(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.242 0.244 0.148 0.150 0.026 0.025 0.017 0.016

(9.96) (9.73) (8.03) (7.76) (8.22) (7.85) (6.39) (5.61)

MKT–Rf �0.357 �0.578 �0.312 �0.418 0.031 �0.020 0.031 0.002

(�0.51) (�0.85) (�0.60) (�0.80) (0.29) (�0.21) (0.37) (0.03)

SMB �0.460 �0.946 0.081 0.029

(�0.53) (�1.76) (0.72) (0.31)

HML �0.952 �0.799 �0.214 �0.107

(�1.05) (�1.36) (�1.51) (�1.02)

MOM 0.378 0.285 0.098 0.032

(0.59) (0.60) (0.99) (0.38)

ZB-STRAD–Rf 0.110 0.099 0.070 0.058

(2.83) (2.99) (2.25) (2.11)

DH-CALL–Rf 0.233 0.205 0.098 0.086

(1.82) (1.89) (0.89) (0.87)

R
2 0.074 0.070 0.053 0.067 0.032 0.075 �0.002 �0.009

A. Goyal, A. Saretto / Journal of Financial Economics 94 (2009) 310–326 317
Estimated parameters for these factor regressions are
reported in Table 4. The market model regressions show
that all spread portfolios have insignificant loadings on
the market factor. The other regressions show that the
loadings on Fama and French and momentum factors are
also statistically insignificant. More interesting is the fact
that the spread straddle portfolios load positively on the
zero-beta straddle portfolio (regressions (3) and (4)). This
implies that our portfolios earn abnormal returns (posi-
tive alphas) even with positive exposure to volatility risk.
Regressions (5)–(8) show a similar pattern for delta-
hedged calls, although the loadings on the volatility factor
are significant only at the 10% level for only the 10–1
portfolio. The magnitude of the alphas in all regressions is
very close to that of the average raw returns.19

We also make efforts to ameliorate the problem
associated with linear factor models in two ways. First,
19 We also tried to investigate whether liquidity risk factor can

explain the option returns. However, we were unable to reconstruct the

Pástor and Stambaugh (2003) or Sadka (2006) liquidity factors to exactly

match our holding period (from Tuesday of the fourth week to the third

Friday of the next month). When we used the misaligned factors in

factor-model regressions, we found that the loadings on these liquidity

factors were not significant.
we estimate the following factor-model regressions with
conditional betas:

Rpt ¼ ap þ ðb0p þ b01pYpt�1Þ
0Ft þ ept , (3)

where Y’s are either portfolio option greeks (delta,
gamma, and vega), portfolio implied volatility, or aggre-
gate implied volatility measured by the Chicago Board
Options Exchange Volatility Index, VIX. Conditional betas
are used to proxy for the time-variation (over the life of
the option) in expected returns of options. The alphas
from this model are very similar to those reported in Table
4.

Second, we estimate Leland (1999) alpha. Leland
proposes a correction to the linear factor models that
allows the computation of a robust risk measure for assets
with arbitrary return distributions. This measure is based
on the equilibrium model of Rubinstein (1976) in which a
CRRA (constant relative risk aversion) investor holds the
market. Our estimates of Leland’s alpha are also very close
to the ones reported in Table 4. For instance, Leland alpha
for the 10–1 straddle portfolio is 23.2%.

We have remarked earlier that the levels of skewness
and kurtosis in stock returns are higher for decile 10 than
those for decile one. Are there differences in the
sensitivity of portfolio returns to the risk of, rather than
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Table 5
Option returns controlling for stock characteristics (cross-sectional

regressions).

Options are selected as in Table 1. We estimate the following cross-

sectional regression for individual option returns:

Rit �
bb
0

iFt ¼ g0t þ g01tZit�1 þ eit ,

where the bb’s are calculated using a first-pass regression using the entire

sample, F’s are the factors, and Z’s are characteristics. The factors used in

risk-adjustment are the Fama and French (1993) factors, momentum

factor, and an option factor. The option factors are ZB-STRAD–Rf and DH-

CALL–Rf for straddles and delta-hedged calls, respectively. The char-

acteristics are hv� iv (log difference of HV and IV), Size (market

capitalization), BtoM (book-to-market), Mom (last six-month cumulative

stock return), and skewness and kurtosis of stock returns (calculated

using the last year’s daily data). The table reports the averages of g
coefficients and the associated t-statistics, corrected for autocorrelation

following Newey and West (1987) in parentheses. The last row gives the

average R
2

from the monthly regressions. The sample includes 4,344

stocks and is composed of 75,627 monthly pairs of call and put contracts.

The sample period is 1996 to 2006.

Straddles Delta-hedged calls

(1) (2) (3) (4)

const �0.006 0.044 0.096 0.004

(�0.50) (0.83) (1.83) (0.70)

hv� iv 0.225 0.224 0.258 0.029

(8.89) (8.51) (9.48) (9.35)

Size �0.004 �0.006 �0.001

(�1.04) (�1.72) (�1.47)

BtoM 0.003 0.003 �0.000

(0.13) (0.11) (�0.06)

Mom 0.003 0.005 0.001

(0.21) (0.35) (0.66)

Skew �0.007 �0.001

(�1.87) (�1.15)

Kurt �0.002 �0.000

(�3.95) (�3.66)

R
2 0.006 0.018 0.020 0.023
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the levels of, higher moments? To explore this, we first run
Eq. (2) including factors for skewness and kurtosis, such as
the square and the cube of the market return, for each
portfolio.20 We then take the betas from these time-series
regressions and run a second-stage cross-sectional regres-
sion:

Rp �
db1p

0

F1 ¼
db2p

0

l2 þ ap, (4)

where the bars denote the time-series sample averages,

cb1’s are loadings on traded factors, cb2’s are loadings on

non-traded factors, l2’s are the prices of risks of non-
traded factors, and the residuals from the second-stage
regression are the pricing errors. As a practical matter, we
stack the first- and the second-stage regressions together
in a generalized method of moments (GMM) framework
that allows us to account for the estimation error in betas
in calculating the standard errors from the second-stage
regression (see Cochrane, 2001, for details on this
procedure). We find that the betas on the non-traded

factors are insignificant and the prices of risk ðl2Þ of these
factors are also insignificant. Most important from our
perspective, we find that alphas from this experiment are
very close to the ones in Table 4.

4.2. Stock characteristics

We now investigate how the long-short straddle
portfolio returns are related to equity characteristics. We
first run cross-sectional regressions of risk-adjusted
individual option returns on lagged characteristics. Speci-
fically, our regressions specification is similar to that in
Brennan, Chordia, and Subrahmanyam (1998):

Rit �
bb
0

iFt ¼ g0t þ g01tZit�1 þ eit , (5)

where R is the return on individual options (in excess of
risk-free rate), F’s are factors, and Z’s are characteristics.
The bb’s on the left-hand side of the equation are estimated
via a first-pass time-series regression using the entire
sample. The factors are the same as in Section 4.1. Besides
the primary variable of interest (HV–IV), the other
characteristics chosen are: size, book-to-market, past
six-month return, skewness, and kurtosis. All character-
istics are lagged by one month in these regressions.

We run these regressions every month and report the
time-series averages of g coefficients and their t-statistics,
corrected for autocorrelation following Newey and West
(1987) in Table 5. Consistent with results in prior sections,
the difference between HV and IV is strongly statistically
significant in explaining the pattern of subsequent
returns. Kurtosis (and to some extent, skewness) is the
only stock characteristic that seems to have some
predictive power for option returns, albeit with relatively
small economic magnitude.

We also investigated a bigger set of stock/option
variables by including proportion of systematic risk ðR2

Þ,
dispersion in analyst forecasts, and credit rating of the
20 See Kraus and Litzenberger (1976), Friend and Westerfield (1980),

and Harvey and Siddique (2000) for studies relating skewness to stock

returns.
company’s bonds. We select R2 since Duan and Wei (2009)
find that systematic risk proportion is useful for cross-
sectionally explaining the prices of equity options, analyst
dispersion because of the evidence in Diether, Malloy, and
Scherbina (2002), and the credit rating to check if our
option returns are related to default risk. Finally, two
option characteristics (gamma and vega) are chosen to
reflect information that is not directly contained in
equities. The unreported results of these extensive
experiments show that, first, none of these variables has
predictive power for option returns, and, second, the
difference between HV and IV remains strongly significant
in each case.

To provide yet another perspective of whether char-
acteristics subsume our effect, we consider two-way
sorts—one based on the volatility signal (HV–IV) and the
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Table 6
Option returns controlling for stock characteristics (double-sorted

portfolios).

Each month, we first sort stocks into quintiles based on stock

characteristics and then, within each quintile, we sort stocks based on

the difference between the historical HV and the current IV. The second

sort is a sort into quintiles or into P/N portfolios, as in Table 2. The

volatility portfolios are then averaged over each of the five characteristic

portfolios. Beta is the stock beta calculated from the market model using

last 60 months, Size is the market capitalization, BtoM is the book-to-

market, Mom is the last six-month cumulative return, and skewness and

kurtosis of stock returns are calculated using the last year’s daily data.

Breakpoints for all stock characteristics are calculated each month based

only on stocks in our sample. The table reports the average return and

the associated t-statistics, in parentheses, of this continuous time-series

of monthly returns. The sample includes 4,344 stocks and is composed of

75,627 monthly pairs of call and put contracts. The sample period is

1996 to 2006.

Quintile portfolios

Control 1 2 3 4 5 5–1 P–N

Panel A: Straddle returns

Beta �0.108 �0.050 �0.019 �0.007 0.043 0.151 0.087

(�7.34) (�2.66) (�1.00) (�0.35) (2.03) (8.89) (7.00)

Size �0.101 �0.048 �0.018 0.008 0.069 0.170 0.095

(�6.94) (�2.77) (�0.96) (0.44) (3.15) (9.88) (7.82)

BtoM �0.113 �0.041 �0.019 �0.000 0.064 0.177 0.103

(�7.64) (�2.32) (�0.91) (�0.02) (2.94) (9.96) (7.73)

Mom �0.101 �0.040 �0.019 �0.002 0.066 0.166 0.101

(�6.82) (�2.35) (�0.98) (�0.11) (3.09) (10.22) (8.54)

Skew �0.103 �0.048 �0.005 0.001 0.059 0.162 0.101

(�7.31) (�2.64) (�0.29) (0.05) (2.78) (10.39) (8.23)

Kurt �0.105 �0.050 �0.010 0.008 0.061 0.166 0.093

(�7.53) (�2.86) (�0.52) (0.39) (2.86) (10.61) (7.56)

Panel B: Delta-hedged call returns

Beta �0.014 �0.008 �0.003 �0.001 0.003 0.017 0.011

(�8.16) (�4.11) (�1.71) (�0.67) (1.39) (9.51) (7.57)

Size �0.015 �0.007 �0.005 0.000 0.007 0.022 0.012

(�7.85) (�3.51) (�2.29) (0.09) (2.64) (8.88) (7.39)

BtoM �0.015 �0.006 �0.004 �0.002 0.007 0.022 0.013

(�8.38) (�3.18) (�1.75) (�1.02) (2.85) (9.99) (7.54)

Mom �0.013 �0.007 �0.003 �0.001 0.007 0.020 0.013

(�6.95) (�3.88) (�1.43) (�0.40) (2.69) (8.94) (7.51)

Skew �0.014 �0.008 �0.002 �0.000 0.006 0.020 0.013

(�8.20) (�3.79) (�1.14) (�0.03) (2.28) (9.15) (7.81)

Kurt �0.015 �0.008 �0.002 �0.000 0.006 0.021 0.013

(�8.36) (�4.09) (�1.05) (�0.05) (2.34) (9.21) (7.28)
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second based on characteristics. The advantage of this
approach over the cross-sectional regressions is that it
does not impose any linear structure of returns (the
disadvantage is that we can only control for one
characteristic at one time).

Our sorts are conditional. We first sort stocks into
quintiles based on stock characteristics. We sort stocks
into quintile portfolios, as opposed to deciles, to keep the
portfolios well populated. Second, within each quintile,
we sort stocks based on the difference between HV and IV
into quintiles or into the P and N portfolios. The five
volatility quintiles or the two P and N portfolios are then
averaged over each of the five characteristic portfolios.
They, thus, represent volatility portfolios controlling for
characteristics. Breakpoints for all stock characteristics are
calculated each month based only on the stocks in our
sample.

We report the average return and the associated t-
statistic of this continuous time-series of monthly option
portfolio returns in Table 6. In Panel A we report results for
straddle portfolios and in Panel B we report results for
delta-hedged call portfolios. In both panels, we find
similar magnitudes of average returns across all controls.
Average return range from 15.1% to 17.7% for the 5–1
straddle portfolio, from 8.7% to 10.3% for the P–N straddle
portfolio, from 1.7% to 2.2% for the 5–1 delta-hedged call
portfolio, and from 1.1% to 1.3% for the P–N delta-hedged
call portfolio. These numbers are also comparable to those
reported in Table 3, albeit a bit lower as expected (since
we sort into quintiles in Table 6 as opposed to deciles in
Table 3).

We conclude that, while the option returns covary with
some of the stock characteristics that are found to be
important for stock returns, this covariance is not enough
to subsume the predictive power of the difference
between HV and IV in explaining option returns.
5. Robustness and trading execution

5.1. Robustness

The results in the previous sections are presented after
we have made many choices about key variables and
sample periods. In this section, we check whether our
results are robust to these decisions. We only present the
salient features of these tests to not overwhelm the
readers with numbers (complete set of results can be
obtained from us upon request).

Moneyness: We select options close to ATM with
moneyness in the range 0.975–1.025. Our reasons for
choosing a narrow range of moneyness are twofold. One,
we do not want the option returns to be driven by the
smile in the volatility surface. Second, we want to use
options which have a high sensitivity to volatility changes
(vega) since our strategy is essentially a volatility trade.
The vega is the highest around ATM and decreases quickly
moving in or out of the money. However, we check the
sensitivity of our results by increasing the moneyness
range to 0.95–1.05. This leads to an increase in the
number of overall stocks to 4,587 (from 4,344) and the
average number of stocks in each decile portfolio to 97
(from 53). The volatility of the returns on the option
portfolios also decreases as a consequence of the greater
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number of stock options in each portfolio. However, the
magnitude of raw returns and the alphas is very similar to
that reported in the paper.

Subsample returns: We replicate the analysis of Table 3
by dividing the data into two subsamples. The subsamples
are formed by considering two different periods based on
the sign of the changes in the VIX index and the sign of the
market value-weighted CRSP portfolio returns. The option
portfolio returns are higher in months in which VIX is
increasing. For instance, the 10–1 straddle portfolio has an
average return of 29.3% in months of positive changes in
VIX and 18.0% in months of negative changes in VIX. We
obtain essentially the same result when we sort the
sample based on market returns—option returns are
higher in months of negative market returns. These two
results are not completely independent since market
returns and changes in VIX are negatively correlated.

When the sample is divided in the two subsamples
1996–2000 and 2001–2006, we observe that the average
returns are statistically significant in both subsamples
(slightly higher for the period 1996–2000).

Since the options market is particularly active during
months in which the S&P 500 futures options expire
(‘‘triple witching Friday’’) we also compute the average
return for the strategies in only those particular months
and compare these to the returns in other months. We
find that there is no statistically meaningful difference in
portfolio returns across these two sets of months.

The equity option market was particularly active
during the years of the technology bubble. It is, therefore,
useful to establish if portfolio returns are high only in the
technology industry. We find this not to be the case. The
long-short straddle portfolio is quite profitable in each
industry. The highest average return (23.9% per month) is
in the finance sector while the lowest return (18.9%) is in
the utilities industry. We also check if the distribution of
industries is uniform across our volatility sorted deciles
and find this to be the case.

Volatility measures: Our basic measure of IV is the
average of one-month ATM call and put implied volatility.
We redo our analysis with two modifications. First, we
calculate the IV using only the call or the put. Second, our
options are American—this implies that the early exercise
premium embedded in IV could make the IV measure not
strictly comparable to HV. We check for this by removing
all observations in which stock pays a dividend during the
holding period.21 The results of both these experiments
are virtually identical to those reported in the paper.

An alternative to the Black and Scholes implied
volatility provided by Ivy DB database is a model-free
implied volatility (Jiang and Tian, 2005). This computation
requires a large number of strikes for each stock at any
point in time. The median number of strikes for options in
our database is three, which implies that we can construct
reliable estimates of model-free IV for a very small subset
of stocks (for which there are at least 10 strikes for each
21 We acknowledge the fact that while this controls for early exercise

option of calls, American puts might still have a premium.
option). Our results are qualitatively similar for this
restricted sample.

We calculate HV from daily stock return data. We do
not use GARCH (or any versions, thereof) to estimate
volatility as our purpose is not to forecast future volatility
from calibrated models. One can use high-frequency intra-
day data to potentially improve our measure of HV.
However, unavailability of this data to us precludes us
from doing this. Our hope is that there is no systematic
bias in our use of daily data vis-à-vis intra-day data,
especially since we calculate HV from a long time period
of one year.

Earnings announcements: Dubinsky and Johannes
(2005) find spikes in IV around earnings announcements.
We check whether this influences our results again by
running two tests. First, we remove observations where
our trade dates coincide with earnings announcement
dates (approximately 5% of observations). Second, we
remove all observations where a company announces
earnings during the month prior to portfolio formation
date or during the holding period month. Removing these
observations has no material impact on our results. In
addition to the above tests, we find that the earnings
announcements are uniformly distributed in number
across portfolios. Moreover, none of the portfolios shows
abnormally positive or negative earnings around these
announcements—the standardized unexpected earnings
measure shows no pattern across decile portfolios.

5.2. Transaction costs

There is a large body of literature that documents that
transaction costs in the options market are quite large and
are in part responsible for some pricing anomalies, such as
violations of the put–call parity relation.22 It is essential to
understand to what degree these frictions prevent an
investor from exploiting the profits on the portfolio
strategies studied in this paper. We accordingly discuss
the impact of transaction costs, measured by the bid–ask
spread and margin requirements, on the feasibility of the
long-short strategy in this section.

5.2.1. Bid–ask spreads

The results reported so far are based on returns
computed using the mid-point price as a reference;
however, it might not be possible to trade at that price
in every circumstance. De Fontnouvelle, Fisher, and Harris
(2003) and Mayhew (2002) show that the effective
spreads for equity options are large in absolute terms
but small relative to the quoted spreads. Typically the
ratio of effective to quoted spread is less than 0.5. On the
other hand, Battalio, Hatch, and Jennings (2004) study a
period in the later part of our sample (January 2000 to
June 2002) and find that for a small sample of large stocks
the ratio of effective spread to quoted spread fluctuates
between 0.8 and 1. Since transactions data are not
22 See for example Figlewski (1989), George and Longstaff (1993),

Gould and Galai (1974), Ho and Macris (1984), Ofek, Richardson, and

Whitelaw (2004), and Swidler and Diltz (1992).
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Table 7
Impact of liquidity and transaction costs.

Portfolios are formed as in Table 2. They are further sorted into two

groups based on stock options liquidity characteristics. We consider

groups based on the average quoted bid–ask spread of all the options

series traded in the previous month, as well as based on daily average

dollar volume of all the options series traded in the previous month. The

returns on options are computed from the mid-point opening price

(MidP) and from the effective bid–ask spread (ESPR), estimated to be

equal to 50%, 75%, and 100% of the quoted spread (QSPR). The closing

price of options is equal to the terminal payoff of the option depending

on the stock price and the strike price of the option. If the option expires

in the money, exercising the option incurs stock transaction costs too.

The table reports the average returns and the associated t-statistics, in

parentheses, of this continuous time-series of monthly returns. The

sample includes 4,344 stocks and is composed of 75,627 monthly pairs

of call and put contracts. The sample period is 1996 to 2006.

10–1 P–N

ESPR/QSPR ESPR/QSPR

MidP 50% 75% 100% MidP 50% 75% 100%

Panel A: Straddle returns

All 0.227 0.126 0.083 0.039 0.138 0.040 �0.002 �0.045

(10.41) (5.98) (3.94) (1.84) (8.42) (2.48) (�0.12) (�2.73)

Alpha 0.244 0.140 0.096 0.051 0.150 0.049 0.005 �0.039

(9.73) (5.81) (3.98) (2.10) (7.76) (2.54) (0.28) (�1.94)

Based on average bid–ask spread of options

Low 0.195 0.130 0.105 0.082 0.144 0.084 0.060 0.038

(7.27) (4.99) (4.07) (3.17) (6.55) (3.92) (2.84) (1.76)

High 0.239 0.115 0.065 0.014 0.140 0.022 �0.026 �0.078

(8.95) (4.51) (2.57) (0.56) (6.19) (0.99) (�1.15) (�3.27)

Based on average trading volume of options

Low 0.227 0.110 0.064 0.017 0.134 0.023 �0.022 �0.070

(8.83) (4.50) (2.62) (0.69) (8.14) (1.46) (�1.41) (�4.34)

High 0.207 0.135 0.107 0.081 0.145 0.077 0.049 0.022

(6.95) (4.65) (3.70) (2.77) (5.68) (3.05) (1.95) (0.86)

Panel B: Delta-hedged call returns

All 0.027 0.010 0.007 0.005 0.018 0.002 �0.000 �0.002

(9.33) (3.49) (2.66) (1.82) (7.77) (0.82) (�0.14) (�1.11)

Based on average bid–ask spread of options

Low 0.024 0.013 0.012 0.010 0.018 0.008 0.007 0.006

(6.51) (3.61) (3.23) (2.88) (5.47) (2.45) (2.07) (1.70)

High 0.028 0.007 0.004 0.001 0.019 �0.001 �0.003 �0.006

(9.30) (2.46) (1.49) (0.52) (6.91) (�0.23) (�1.19) (�2.19)

Based on average trading volume of options

Low 0.027 0.008 0.005 0.002 0.017 �0.001 �0.004 �0.006

(9.53) (2.88) (1.90) (0.92) (8.21) (�0.68) (�1.93) (�3.21)
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available to us, we consider three effective spread
measures equal to 50%, 75%, and 100% of the quoted
spread. For example if the bid price of an option is $3 and
the ask price is $4, we consider the following scenarios:
buy at $3.75 and sell at $3.25 (50% effective to quoted
spread); buy at $3.87 and sell at $3.12 (75% effective to
quoted spread); buy at $4 and sell at $3 (100% effective to
quoted spread). This is done only at the initiation of the
strategy since we terminate the portfolio at the expiration
of the option.

Since the settlement of individual equity options
requires delivery of the underlying, we also include the
transaction costs of trading the underlying stocks. In the
case of the straddles, the cost is incurred only at
expiration and is relative to the shares that need to be
bought or delivered as a consequence of the exercise of
one of the two options. In the case of the delta-hedged
strategies, the cost is incurred both at the initiation and at
the expiration of the strategy as shares of the underlying
(for a quantity equal to the option delta) are bought or
sold on the first and last trading day.

The stock trading costs are computed from two
different sources. First, the effective spreads for each
stock are computed using the intra-day transactions and
quotations (TAQ) data.23 In all cases where we are unable
to obtain data from TAQ, we calculate effective spreads
using the method of Hanna and Ready (2005). Hanna and
Ready estimate effective bid–ask spreads for stocks using
transactions data. Then, they fit a regression model for the
spreads using market capitalization, share price, monthly
turnover, and monthly volatility as independent variables.
We use the same characteristics and their estimated
parameters (from their Table 2) to obtain an estimate of
the bid–ask spreads. We refer the interested reader to
their paper for further details on the computation of stock
spreads.

Finally, to address the concern that the results might
be driven by options that are thinly traded, we repeat the
analysis by splitting the sample into two different
liquidity groups. For each stock we compute the average
quoted bid–ask spread and the daily average dollar
volume of all the option contracts traded on that stock
during the previous month. We then sort stocks into low
and high option liquidity groups, based on these char-
acteristics, and calculate average returns for the long-
short straddle portfolios for these two groups of stocks.

We report the results of these computations for
straddle portfolios in Panel A of Table 7. The 10–1 portfolio
returns (left-hand side of Panel A) decrease substantially,
as expected, after taking transaction costs into account:
the average return decreases from 22.7% per month when
trading at mid-point prices to 3.9% (statistically significant
only at the 10% level) per month if we consider trading
options at an effective spread equal to the quoted spread.

The liquidity of options also has an impact on returns
as returns are higher for thinly traded stocks. Consider, as
High 0.024 0.012 0.011 0.010 0.019 0.008 0.007 0.006

(5.61) (2.90) (2.57) (2.27) (5.15) (2.21) (1.85) (1.51)23 See Chordia, Roll, and Subrahmanyam (2000) for details on the

construction of these data. We thank Tarun Chordia for making these

data available to us.
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an illustration, the results obtained by sorting on the
average bid–ask spread of options. The 10–1 straddle
portfolio has mid-point returns that are 19.5% on average
for stocks with more liquid options (low bid–ask spreads)
and 23.9% for stocks with less liquid options (high bid–ask
spreads). These returns decline further with transaction
costs. If the effective bid–ask spreads are the same as
quoted spreads, the returns are still significantly positive
at 8.2% for more liquid options and insignificant at 1.4% for
less liquid options. This pattern arises because, by
construction, the impact of transaction costs (as measured
by bid–ask spreads) is higher for stocks with less liquid
options. The results are qualitatively the same when we
sort stocks based on the options average daily trading
volume. A similar deterioration in performance is ob-
served for the P–N straddle portfolio (right-hand side of
Panel A). Since the before-costs returns of the P–N
portfolio are lower than those of the 10–1 portfolio, the
after-costs returns are positive and significant only for
effective spread equal to half the quoted spread.

The cost-adjusted performance of delta-hedged call
portfolios is reported in Panel B of Table 7. The pattern of
higher returns for less liquid options found in Panel A for
straddles is repeated in Panel B for delta-hedged calls. For
instance, the average return (calculated using mid-points)
of the 10–1 delta-hedged call portfolio increases from 2.4%
to 2.8% per month, as one goes from the less liquid options
to the more liquid options (liquidity as measured by
bid–ask spreads). Bid–ask spreads also decrease the
portfolio returns. For effective bid–ask spreads equal to
the quoted spreads, the delta-hedged calls have statisti-
cally insignificant average returns of around 0.5% ð�0:2%Þ
for the 10–1 (P–N) portfolio.

We conclude that trading costs reduce the profits to
our portfolios but do not eliminate them at reasonable
estimates of effective spreads.24 We also find that the
profitability of option portfolios is higher for less liquid
options.
5.2.2. Margin requirements

Since the spread portfolios involve writing options in
each month of the sample, we now investigate the impact
of margin requirements on the strategy feasibility. While
each brokerage house has its own way of determining
margin requirements, most of the brokers adopt a
scenario-based system in which the option position is
evaluated in a range of scenarios using an option pricing
model (typically the Black and Scholes, 1973, model). The
most widely used scenario analysis algorithm for the
determination of margin requirements is the Standard
Portfolio Analysis of Risk (SPAN) system.25
24 Note that we skip an additional day in constructing our portfolio

strategies. While our motivation for this procedure is to avoid

microstructure issues, the unintended consequence of this approach is

that our traders trade based on the closing quotes on Tuesday. In actual

practice, the option traders would have the whole day to decide when to

optimally trade and minimize the market impact costs.
25 We refer the interested reader to Santa-Clara and Saretto (2009)

or to the SPAN manual (http://www.cme.com/clearing/rmspan/span/

compont2480.html) for a detailed description of the algorithm.
In SPAN, the theoretical value of the position in each of
the scenarios is compared to the market value of the
option and the relative possible losses and gains are
determined. The largest loss among those computed in
the scenario analysis is called the option risk charge. The
initial margin requirement is equal to the sum of the risk
charge plus the proceeds obtained from writing the
option. This procedure is repeated every day and the
maintenance margin is computed as the sum of the option
closing price and the risk charge.

The key factors that affect the determination of the
margin requirements are the ranges of movement for the
underlying stock value and the underlying volatility. In
what follows, we use �15% as the range for the price of
the underlying stock, with progressive increments of 3%,
and �10% as the range for level of volatility.

For simplicity, we limit the analysis to straddle
portfolio one (the decile that is shorted in the 10–1
strategy). Results of the analysis for the delta-hedged call
portfolio are very similar. We calculate two different
statistics: haircut ratio and maximum cumulative margin
call. We compute the haircut ratio as the ratio of the initial
risk charge to the value at which the straddle is written.
Thus, the haircut ratio for stock i in month t is given by

Hi;t ¼
Mi;t;1 � Si;t;1

Si;t;1
,

where Mi;t;1 is the initial margin requirement and Si;t;1 is
the dollar amount received at the initiation of the strategy
for writing the straddle. The haircut ratio represents the
investor’s equity in the option position as a percentage of
the value of the straddle. We compute the maximum
cumulative margin call as the difference between the
highest value of the maintenance margin account
throughout the holding period month and the initial
margin requirement:

MCi;t ¼
maxfMi;t;sg

Nt

s¼1 �Mi;t;1

Si;t;1
,

where Nt is the number of trading days in the holding
period month t. The maximum cumulative margin call
represents the additional capital that the investor might
be required to provide to keep the positions open before
the expiration of the options.

Since the portfolio is equal-weighted, we calculate the
haircut ratio and the maximum cumulative margin call for
the portfolio by taking an equal-weighted average of these
statistics for the individual stocks in the portfolio for each
month in the sample. We plot the monthly time-series of
the portfolio haircut ratios in Panel A, and the monthly
time-series of the maximum cumulative margin calls in
Panel B of Fig. 1. Panel A shows that the haircut ratio
fluctuates between 0.51 and 2.08. The average haircut
ratio in our sample is 1.21, indicating that, for each dollar
of written options, an investor needs to borrow $1.21, on
average, to satisfy the initial margin requirement. Panel B
shows that there are two months in our sample in which
the investor does not receive any additional margin call,
and the largest additional monthly margin call is $0.79 for
each dollar of written options. The average maximum
cumulative margin call is 0.21. Overall the analysis shows

http://www.cme.com/clearing/rmspan/span/compont2480.html
http://www.cme.com/clearing/rmspan/span/compont2480.html


ARTICLE IN PRESS

Aug97 Apr99 Dec00 Aug02 Apr04 Dec05
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

H
ai

rc
ut

 ra
tio

Date

Aug97 Apr99 Dec00 Aug02 Apr04 Dec05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ax

im
um

 c
um

ul
at

iv
e 

m
ar

gi
n 

ca
ll

Date

Fig. 1. Straddle portfolio margin requirements. Portfolios are formed as in Table 2. This figure plots the time-series of the haircut ratio and of the

maximum cumulative margin call for decile one straddle portfolio. (Panel A) Haircut ratio for stock i in month t is given by Hi;t ¼ Mi;t;1=Si;t;1 � 1, where

Mi;t;1 is the margin requirement and Si;t;1 is the dollar amount received at the initiation of the strategy for writing the straddle. (Panel B) Maximum

cumulative margin call is the difference between the highest value of the margin account throughout the holding period month and the initial margin

requirement, and is calculated as MCi;t ¼ ðmaxfMi;t;sg
Nt

s¼1 �Mi;t;1Þ=Si;t;1 � 1, where Nt is the number of trading days in the holding period month t. Decile

one straddle portfolio statistics are calculated by taking an equal-weighted average of the statistics for individual stocks in that decile. The sample

includes 4,344 stocks and is composed of 75,627 monthly pairs of call and put contracts. The sample period is 1996 to 2006.
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that an investor, on average, would need to borrow $1.42
ð¼ 1:21þ 0:21Þ for each dollar of written options to satisfy
margin requirements in our sample. The worst month
from the margin requirement perspective is October 2004,
when an investor would have to borrow $1.71 to cover the
initial margin and an additional $0.79 to cover the margin
call.

The evidence, therefore, suggests that margin require-
ments drive another wedge into the profitability of our
trading strategy. An investor would need to put aside as
much capital for margins as is invested in trading strategy,
since the margin requirements are roughly equal to one
and a half times the cost of written options. Since the
return earned (if any) on the margin capital is usually
small, this would further reduce the effective returns to
our trading strategy.

To summarize the transaction cost results, our strategy
has after-cost profits which can be much lower than the
before-cost profits, and is, therefore, potentially profitable
only to funds that can dedicate enough resources to its
careful execution.
6. Overreaction

We have motivated our trading sorts by the mean-
reverting nature of volatility. Large deviations between IV
and HV are suggestive of mispricing, and the evidence
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Fig. 2. Volatilities and stock returns before and after portfolio formation. This figure plots the average level of implied volatility, IV (Panel A), the average

difference of historical volatility (HV) and implied volatility, HV–IV (Panel B), and the average stock returns (Panel C) for decile portfolios one and 10

during the period from 12 months before and 12 months after portfolio formation. Portfolio formation month is month zero. Portfolios are formed as in

Table 2. In each plot, the solid line represents the portfolio corresponding to decile one and the dotted line corresponds to decile 10. All statistics are first

averaged across stocks in each portfolio and then averaged across time. The sample includes 4,344 stocks and is composed of 75,627 monthly pairs of call

and put contracts. The sample period is 1996 to 2006.
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presented so far is consistent with this hypothesis. Are the
deviations of IV from HV indeed temporary, as conjec-
tured, and if so, what are the determinants of these
deviations?

We start answering these questions by analyzing the
pattern of volatilities before and after portfolio formation
month. In Fig. 2 we plot the level of IV (Panel A) and the
difference HV–IV (Panel B) for decile portfolios one and
10. We consider a range of 12 months before and 12
months after portfolio formation (portfolio formation
month is month zero). Panel A shows that IV at time zero
for decile one (10) is higher (lower) than what it has been
in the previous 12 months. The figure also shows a
striking pattern of IV after portfolio formation. IV for
decile one (10) decreases (increases) after portfolio
formation almost as quickly as it increases (decreases) in
the months preceding the portfolio formation date. The
pattern of changes in IV is not accompanied by a similar
pattern of changes in HV. Panel B shows that the
difference HV–IV is highest at time zero (by construction)
and insignificant a year before and after portfolio forma-
tion. These figures show that deviations of HV from IV are
indeed not persistent.

What leads to these temporary deviations? Recall that
IV is an estimate of future volatility. To make the estimate
for IV, an investor requires, at the very least, a model of
volatility, the parameter estimates for this model, and an
estimate of current volatility. Therefore, a misspecification
of the model and/or a misestimation of one of the model
inputs would lead to a misestimation of IV.

It is difficult to identify characteristics of stocks that
would make them susceptible to these misspecification/
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misestimation problems. Indeed, we do not find that the
stocks in extreme deciles are abnormal in terms of size,
book-to-market, or industry. However, the stocks in the
extreme deciles do share one characteristic that is
different from the stocks in the intermediate deciles—th-
ese stocks have large returns in the month immediately
preceding the portfolio formation date. Panel C of Fig. 2
shows that stocks in decile one (10) have returns of �1:2%
(5.3%) in month zero. Stock returns in the months
preceding or following the portfolio formation month
show no appreciable pattern (stocks in decile 10, though,
have slightly higher than usual returns even in the two
months before portfolio formation).

The evidence so far, thus, shows that extreme returns
to underlying stocks are related to extreme changes in IV
(expectation of future riskiness of the stocks). The natural
question at this stage is whether the perceived changes in
future volatility are rational. We find this not to be the
case as future realized volatility does not change by as
much as predicted by IV. Indeed, when we run the
rationality test of predicting future volatility using current
IV (univariate Eq. (1)) separately for stocks in deciles one,
10, and the intermediate deciles, we find that the average
a and b1 coefficients are �0:275 and 0.975 for decile one,
0.162 and 1.085 for decile 10, and 0.000 and 0.975 for the
intermediate deciles, respectively. Recall that, under the
null hypothesis that IV is an unbiased forecast of future
volatility, the coefficient b1 should be equal to one and the
coefficient a should be equal to zero. It is easy to see that
the average forecast error ðFV� IVÞ in these regressions is
given by aþ ðb1 � 1ÞIV, and is thus closely related to a
(since b1’s are close to one). Negative (positive) a
intercepts in these regressions imply, therefore, that IV
over (under) predicts future volatility for decile one (10).26

To summarize, investors overreact to high realizations of
stock returns leading them to form an estimate of future
volatility (IV) that is not justified by subsequent events.

While overreaction is difficult to reconcile within the
traditional finance paradigm of rational investors, there
are many behavioral finance models that seek to accom-
modate empirical challenges to CAPM-like models.27 The
building blocks of these models are either biased beliefs or
non-standard preferences. The majority of these models
endogenously generate under- and overreaction. However,
these studies are typically concerned with reconciling the
pattern of returns (first moments) rather than the pattern
of volatility of returns (second moments), which is our
focus. One exception is the model of Barberis and Huang
(2001).

Investors in the BH model are loss averse and do
mental accounting. There are three main points of
departure in BH from standard rational agents models.
First, investors get utility from gains and losses in wealth,
rather than from absolute levels of their wealth. Second,
they are more sensitive to losses than to gains. This is
26 Exact calculations yield that the forecast error is �0:254, 0.079,

and 0.025 for decile one, decile 10, and intermediate deciles, respectively.
27 The literature on anomalies and behavioral responses to explain

these patterns in the data is too voluminous for us to cite here. See the

surveys by Barberis and Thaler (2003) and Daniel and Womack (2001).
known as loss aversion and implies a kink in the utility
function. Third, investors engage in mental accounting,
which answers the question of which gains/losses they
pay attention to. BH suggest that when doing mental
accounting, investors exhibit narrow framing. In other
words, they define the gains and losses narrowly over
individual stocks (rather than over total wealth).28

The modeling assumptions of BH add an additional
dimension of risk to each stock. Investors gain utility from
good performance of a stock and become less concerned
about future losses on this stock, as future losses are
cushioned by prior gains. In other words, they perceive
this stock to be less risky than before. Conversely, if one of
her stocks performs poorly, the investor finds this painful
and becomes more sensitive to the possibility of further
losses on this stock. In other words, they treat this stock to
be riskier than before.

This pattern of overreaction in the BH model is
precisely the one observed in our data. Investors raise IV
(increase their estimate of future volatility) after negative
returns for stocks in decile one, and reduce IV (decrease
their estimate of future volatility) after positive returns for
stocks in decile 10. However, the perceived increase/
decrease in riskiness of these stocks is not justified by the
future and, therefore, leads to high returns on strategies
such as ours that seek to exploit volatility mispricing.

In addition to the link with the theoretical model, our
findings of investor overreaction in option markets are
also related to those of Stein (1989). Stein studies the term
structure of the implied volatility of index options and
finds that investors ignore the long-run mean reversion in
implied volatility and instead overweight the current
short-term implied volatility in their estimates of long-
term implied volatility. Our evidence is also consistent
with Poteshman (2001), who finds that investors in the
options market overreact, particularly to periods of
increasing or decreasing changes in volatility. This is
analogous to our deciles one and 10, which exhibit the
greatest changes in volatility, and are also characterized
by the most mispricing.
7. Conclusion

We emphasize that our results do not depend on the
validity of the Black and Scholes (1973) or the Cox, Ross,
and Rubinstein (1979) models. Implied volatilities should
be interpreted as representation of option prices. There-
fore, the reader should view our portfolio sorts as sorts on
option prices with decile one (10) representing cheap
(expensive) options. This perspective does not require one
to take a stand on the correct option pricing model. The
objective of our paper is to document the existence of a
substantial spread in the cross-section of U.S. equity
options sorted on a very simple criterion.

The underlying reason for the empirical regularity that
we observe in equity option prices is unclear. While we
28 BH also model an economy in which investors are loss averse over

the fluctuations of their stock portfolio. However, they find that this

economy is less successful in explaining the empirical phenomena.
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find that our option returns are not related to obvious
sources of risk, we cannot conclusively establish that
these are true alphas. It is possible that the profits to our
volatility portfolios arise as compensation for some
unknown aggregate risk. If such is indeed the case, the
daunting task of formulating a cross-sectional options
return model that accounts for our portfolios’ returns is
left to future research.

If, instead, these returns are abnormal, the evidence
presented in the paper raises the question of what
accounts for this volatility mispricing. Barberis and Huang
(2001) model an economy with loss averse investors who
count gains and losses in individual stocks separately. In
the model, investors become excessively optimistic (pes-
simistic) about the future riskiness of the stock after large
positive (negative) returns. Our results are consistent with
their model.
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