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Summary. Water diffusion is anisotropic in organized tissues such as white matter
and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, mea-
sures water self-diffusion rates and thus gives an indication of the underlying tissue
microstructure. The diffusion rate is often expressed by a second-order tensor. In-
sightful DTI visualization is challenging because of the multivariate nature and the
complex spatial relationships in a diffusion tensor field. This chapter surveys the
different visualization techniques that have been developed for DTI and compares
their main characteristics and drawbacks. We also discuss some of the many biomed-
ical applications in which DTI helps extend our understanding or improve clinical
procedures. We conclude with an overview of open problems and research directions.

1 Introduction

Diffusion tensor imaging (DTI) is a medical imaging modality that can reveal
directional information in vivo in fibrous structures such as white matter or
muscles. Although barely a decade old, DTI has become an important tool
in studying white matter anatomy and pathology. Many hospitals, universi-
ties, and research centers have MRI scanners and diffusion imaging capability,
allowing widespread DTI applications.

However, DTI data require interpretation before they can be useful. Vi-
sualization methods are needed to bridge the gap between the DTI data sets
and understanding of the underlying tissue microstructure. A diffusion tensor
measures a 3D diffusion process and has six interrelated tensor components.
A volumetric DTI data set is a 3D grid of these diffusion tensors that form
complicated patterns. The multivariate nature of the diffusion tensor and the
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3D spatial characteristics of the diffusion tensor field combine to make DTI
visualization a challenging task. It is early in the history of visualization of
tensor fields and the field is still in an experimental stage. Visualization meth-
ods are exploring what users might need to see or evaluate qualitatively within
the data. Any qualitative insights that result help identify quantitative mea-
sures that have statistical and scientific importance. Applications that involve
visualization are beginning to be pursued, but they are even more embryonic
than the visualization methods themselves.

This chapter describes current visualization techniques and analyzes their
comparative strengths and weaknesses.

DTI research is broadly interdisciplinary. Figure 1 gives a simplified il-
lustration of the research domains surrounding DTI. It is worth noting that
all of the components in the diagram are interrelated: new discoveries in one
specific area often lead to improvements in the whole DTI field. For example,
Pierpaoli et al. found incorrect connections in the neural pathways generated
from a DTI data set [1]. Issues like this stimulate research in diffusion imaging
and lead to new methods, in this case high angular resolution imaging [2, 3].

In section 2, we review techniques for DTI data acquisition In section 3, we
survey computational and visualization techniques. We review some applica-
tions of DTI in section 4, discuss some open issues and problems in section 5,
and conclude in section 6.

Fig. 1. The research context of DTI. Note that all the research domains are in-
terrelated: progress in one domain can easily propagate to advance the rest of the
field.
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2 Diffusion Tensor Imaging

As for any visualization method, the merits of DTI visualization methods
depend on the quality of the data. Understanding where the data come from,
what they measure, and what their limitations are is an important first step
in designing and implementing a visualization scheme. We briefly review the
diffusion tensor imaging techniques here. Chapter 5 by Alexander presents a
more detailed discussion of the subject.

Water molecules in human tissues constantly collide randomly with one
another and with other molecules, a phenomenon called Brownian motion.
In pure water, this seemingly random movement results in a dynamically ex-
panding Gaussian distribution of water molecules released from one point [4].
In human tissues, however, cell membranes and large protein molecules limit
the motion of water molecules. The geometrical and physical properties of
the tissue determine the rate and orientation of diffusion. We can thus infer
the microstructure of human tissue by measuring the diffusion of the water
molecules.

The discovery of the nuclear magnetic resonance (NMR) effect [5, 6] in 1946
was the beginning of work that has led to the current form of diffusion mag-
netic resonance imaging (MRI). Two important landmarks were the discovery
of the spin echo [7], whose signal is perturbed by the water molecule diffusion,
and MR imaging [8], which determines exactly where the NMR signal origi-
nates within the sample. Diffusion imaging was the first imaging modality to
measure the diffusion of water in human tissues in vivo. Although the exact
mechanism of the generation of diffusion MRI signals in biological tissues is
not fully understood, it is generally believed that the quantity measured by
diffusion MRI is a mixture of intracellular diffusion, intercellular diffusion,
and the exchange between the two sides of the the cell membrane [9].

Inferring tissue structure from the diffusion process requires exploring the
orientation dependence of the diffusion. This dependence can be described
by the diffusion propagator P (r, r′, τ), which is the probability of a water
molecule traveling from position r′ to r in diffusion time τ [10]. In practice, the
number of diffusion directions we can measure in a clinical scan is limited by
scanning time, making it impossible to reconstruct the diffusion propagator
completely. A diffusion tensor [11] describes the orientation dependence of
diffusion assuming free diffusion in a uniform anisotropic medium (Gaussian
diffusion). For example, a diffusion tensor is a good model for diffusion in
uniformly oriented white matter structures such as the corpus callosum, but
is insufficient in areas where different tracts cross or merge. The coefficients
of the diffusion tensor, D, are related to the diffusion-weighted MRI (DWI)
signals by [12] Ĩ = I0 exp(b : D), where I0 is the image with no diffusion
weighting, the tensor b characterizes the diffusion-encoding gradient pulses
used in the MRI sequence, and b : D =

∑3

i=1

∑3

j=i bijDij is the tensor dot
product.

A 3D diffusion tensor is a 3 × 3 positive symmetric matrix:
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D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz





Diagonalizing D, we get three positive eigenvalues λ1, λ2 and λ3 (in decreasing
order) and their corresponding eigenvectors e1, e2 and e3. Many scalar indices
and visualization methods are based on the eigenvalues and eigenvectors of
DTI measurements, as discussed in section 3.

One geometric representation of Gaussian diffusion is a diffusion ellipsoid.
These ellipsoids represent the surface of constant mean-squared displacement
of diffusing water molecules at some time τ after they are released from one
point. The shape of a diffusion ellipsoid is inherently related to the eigen-
values and eigenvectors of the diffusion tensor: the three principal radii are
proportional to the eigenvalues and the axes of the ellipsoid aligned with the
three orthogonal eigenvectors of the diffusion tensor. Figure 2 shows ellipsoids
representing different kinds of diffusion; the difference among the shapes of
the ellipsoids are discussed in section 3.1.

DTI measurements have been validated within acceptable error on the
fibrous muscle tissue of the heart [13, 14]. However, in a voxel containing
nonuniformly oriented neural fibers (see figure 3), DTI measures an average
signal from all the fibers within the voxel, which usually results in an appar-
ent reduction of anisotropy and increase in uncertainty [15]. To resolve the

Fig. 2. Barycentric space of diffusion tensor ellipsoids.

Fig. 3. Illustration of regions with planar anisotropy due to the fiber configuration.
Gray regions represent voxels with planar anisotropy: (left) kissing fibers, (middle)
two fiber bundles crossing and (right) diverging fibers.
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uncertainty in these areas, q-space spectral imaging [16] and other high an-
gular resolution diffusion imaging methods [17, 18] have been explored (see
chapter 10 by zarslan et al.). Beyond these ambiguities introduced in regions
where the diffusion is not coherent and cannot be modelled as a tensor, noise
in the underlying MR images propagates through the computational pipeline
changing the source diffusion weighted images, resulting diffusion tensor im-
ages, and visualizations based on them. Understanding the implications of all
of these artifacts in visualizations is an active area of current research (see,
e.g., chapter 6 by Hahn et al.).

Image acquisition for DTI is a very active research area. Progress is fre-
quently reported on resolution improvement and reductions in imaging time,
noise, and distortion.

3 DTI Visualization

Meaningful visualization of diffusion tensor fields is challenging because they
are multivalued, with complex interrelationships among the values within a
single tensor as well as among different tensors. The last decade has seen
several approaches to visualizing diffusion tensor data, most of them based
on reducing the dimensionality of the data by extracting relevant informa-
tion from the tensor. One possible classification of the different visualization
techniques is by the dimensionality to which the tensor is reduced. Another
important characteristic is the ability of these algorithms to show local or
global information, where global information means the complex spatial rela-
tionships of tensors. Our discussion here groups the visualization methods on
the basis of these two criteria. Anisotropy indices reduce the 6D information
to a scalar value (1D). Volume rendering for DTI uses anisotropy indices to
define transfer functions that show the anisotropy and shape of the tensor.
Tensor glyphs do not reduce the dimensionality of the tensor, instead using
visual represntations that show the 6D tensor as such; however, these tech-
niques cannot show global information. Vector-field visualization reduces the
tensor field to a vector field, and therefore to 3D information at each point.
Several techniques can be used for vector-field visualization that show local
as well as global information. Section 3.5 describes algorithms in which the
vector field is extended with more information from the tensor. This includes
techniques where the whole tensor information is taken into account. Finally
in section 3.6, several interaction schemes in DTI visualization are discussed.

3.1 Scalar Indices

The complexity of a DTI data set requires a complicated visualization scheme;
however, medical researchers and practitioners alike are trained to read scalar
fields on gray-level images slice by slice. Scalar data sets, although limited in
the amount of information they can convey, can be visualized with simplicity
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and clarity and thus interpreted quickly and easily. It can thus be useful to
reduce DTI to scalar data sets. Since the advent of diffusion MRI, scalar
indices of diffusion MRI data have been designed and visualized successfully
alongside multivariate visualization schemes: rather than competing, the two
methods complement one another.

The challenges of reducing a tensor-valued diffusion MRI measurement to
a scalar index include mapping to a meaningful physical quantity, maintaining
invariance with respect to rotation and translation, and reducing the effect of
noise. Some scalar indices for DTI data are listed in Table 1.

Scalar Index Equations

Mean diffusivity, 〈D〉 Dxx + Dyy + Dzz

3
,
λ1 + λ2 + λ3

3
,
Trace(D)

3

[19] Volume ratio, VR
λ1λ2λ3

(

λ1+λ2+λ3

3

)3
, 27

Determinant(D)

Trace(D)3

[20] Fractional anisotropy, FA

√

3

2

||D − 〈D〉I||
||D||

[20] Rational anisotropy, RA
||D − 〈D〉I||

||〈D〉I|| ,

√

Var(λ)

E(λ)

[19] Lattice index, LI

N
∑

n=1

an

(√
3√
8

√
A : An√
D : Dn

+
3

4

A : An√
D : D

√
Dn : Dn

)

[21] Linear anisotropy, cl

λ1 − λ2

λ1 + λ2 + λ3

Planar anisotropy, cp

2(λ2 − λ3)

λ1 + λ2 + λ3

Isotropy, cs

3λ3

λ1 + λ2 + λ3

Table 1: Some scalar indices for DTI data. ||D|| =
√

D : D is the tensor norm,
Var(λ) and E(λ) are the variance and expectation of the three eigenvalues, an

is a normalized weighting factor, A = D − 〈D〉I.

Mean diffusivity (MD), which measures the overall diffusion rate, is the
average of the diffusion tensor eigenvalues and is rotationally invariant. Van
Gelderen et al. [22] demonstrated that, after a stroke, the trace of the diffusion
tensor delineates the affected area much more accurately than the diffusion
image in one orientation.

Before the diffusion tensor model was made explicit in 1994 by Basser et

al. [11], several different anisotropy indices derived from DWIs were used, such
as anisotropic diffusion ratio [23]. Unfortunately, these anisotropy indices de-
pend on the choice of laboratory coordinate system and are rotationally vari-
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ant: their interpretation varies according to the relative orientations of the MR
gradient and the biological tissues, usually resulting in an underestimation of
the degree of anisotropy [19]. Therefore it is important to use rotationally
invariant anisotropy indices such as volume ratio (VR), rational anisotropy
(RA) or fractional anisotropy (FA), which are based on the rotationally in-
variant eigenvalues. Note that both RA and FA can be derived from tensor
norms and traces without calculating the eigenvalues.

However, rotationally invariant indices such as RA and FA are still sus-
ceptible to noise contamination. Pierpaoli et al. [19] calculated an intervoxel
anisotropy index, the lattice index (LI), which locally averages inner products
between diffusion tensors in neighboring voxels. LI decreases the sensitivity to
noise and avoids underestimation of the anisotropy when the neighbor voxels
have different fiber orientations.

Because they contract the tensor to one scalar value, FA, RA and LI do
not indicate the directional variation of the diffusion anisotropy well. For
example, a cigar-shaped and a pancake-shaped ellipsoid can have equal FA
while their shapes differ greatly. Geometrical diffusion measures [21] have been
developed: linear anisotropy, cl, planar anisotropy, cp and spherical anisotropy
or isotropy, cs. By construction, cl + cp + cs = 1. Thus, these three metrics
parameterize a barycentric space in which the three shape extremes (linear,
planar, and spherical) are at the corners of a triangle, as shown in figure 2. It
is worth noting that, unlike FA or RA, geometrical diffusion metrics depend
on the order of the eigenvalues and are thus prone to bias in the presence of
noise [19].

Figure 4 shows one way to compare qualitatively some of the metrics de-
scribed above by sampling their values on a slice of a DTI data set of a
brain. Notice that the mean diffusivity (MD) is effective at distinguishing be-
tween cerebrospinal fluid (where MD is high) and brain tissue (lower MD),

(a) MD: mean diffu-
sivity

(b) FA: fractional
anisotropy

(c) cl (green) and cp

(magenta)

Fig. 4. Shape metrics applied to one slice of a brain DTI scan (see color plates).
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but fails to differentiate between different kinds of brain tissue. High frac-
tional anisotropy, FA, on the other hand, indicates white matter, because the
directionality of the axon bundles permits faster diffusion along the neuron
fiber orientation than across it. FA is highest inside thick regions of uniformly
anisotropic diffusion, such as inside the corpus callosum. Finally, while both
cl and cp indicate high anisotropy, their relative values indicate the shape of
the diffusion ellipsoid.

3.2 Volume Rendering

Volume rendering is a means of visualizing large-scale structure in a tensor
field, based on locally measured properties of the tensor data [24]. Volume ren-
dering has the defining property of mapping from the tensor field attributes to
a rendered image, without introducing additional geometry. However, volume
rendering is inherently flexible in the sense that the volume scene can easily
be supplemented with other visualizations (such as glyphs or fiber tracts, de-
scribed in following sections) to create a more informative image. Compositing
all the scene components together creates an integrated visualization in which
local and global aspects of the field may be seen in context. The volume of
tensor field attributes can either be precomputed and stored as a scalar field,
or computed implicitly as part of rendering. In either case, an anisotropy index
plays the important role of determining the opacity (thus visibility) of each
sample. Each sample is then colored and shaded to indicate local shape char-
acteristics; then samples are composited as the integral of colors and opacities
are sampled along each ray.

An essential element of volume rendering is the transfer function, which
assigns colors and opacities according to locally measured field properties.
Traditionally, volume rendering has been applied to visualization of scalar
fields, in which the domain of the transfer function is either the scalar value
defining the data set or additionally includes derived quantities such as the
gradient magnitude [25, 26]. The transfer function is usually implemented
as a one-dimensional or two-dimensional lookup table. The transfer function
domain variables are quantized to generate indices of table entries that contain
the colors and opacity of the transfer function range.

The extension of volume rendering to diffusion tensor fields is thus essen-
tially a matter of determining which quantities should serve as transfer func-
tion domain variables. To define opacity, the anisotropy indices in Table 1 are
used. Fractional anisotropy (FA) is attractive in this respect because it can be
expressed in terms of differentiable tensor invariants, so the chain rule can be
used to calculate the gradient of FA as a normal for surface shading. Figure 5
shows a depiction of basic 3D structure with volume-rendered isosurfaces of
fractional anisotropy. Rather than using a polygonal model of the anisotropy
isosurface (as with Marching Cubes [27]), these images are computed with an
opacity step function: opacity is 0.0 or 1.0 depending on whether FA is below
or above the indicated threshold.
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FA = 0.0 FA = 0.3 FA = 0.5 FA = 0.65

Fig. 5. Volume-rendered isosurfaces at a range of FA values show basic 3D structure
of white matter in a DTI brain scan.

Color can be assigned in diffusion tensor volume rendering to indicate ei-
ther the orientation or the shape of the underlying tensor samples. Applying
the standard RGB coloring of the principal eigenvector (see section 3.4) al-
lows basic neuroanatomic features to be recognized by their overall color, as
in figure 6(a). Color can also be used to clarify differences in the shape of
anisotropy apart from the anisotropy index used to define opacity. In partic-
ular, the difference between linear and planar anisotropy as measured by the
cl and cp indices (Table 1) can be mapped onto the anisotropy isosurface, as
in figure 6(b) (where the variation from green to magenta for linear to planar
anisotropy is the same as in figure 4(c)). The rendering indicates how features
with orthogonal orientations lead to planar anisotropy at their adjacencies.
Locations in the brain characterized by this configuration of white-matter
fibers include the right-left transpontine tracts ventral to the inferior-superior
corticospinal tracts in the brainstem, and the right-left tracts of the corpus
callosum inferior to the anterior-posterior cingulum bundles.

(a) Principal eigenvector (b) Linear versus planar

Fig. 6. Volume renderings of half a brain scan, (a) colored according to orientation
of principal eigenvector; (b) the distribution of linear (green) and planar (magenta)
anisotropy. Surface is defined by FA = 0.4(see color plates).
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Fig. 7. Interactive volume renderings of a human brain data set. The volume ren-
derings (top) show collections of threads consistent with major white-matter struc-
tures: IC=internal capsule, CR=corona radiata, CB=cingulum bundle, CC=corpus
callosum diagrammed on the bottom. Components of the tensor-valued data con-
trol thread orientation, color, and density. Direct volume rendering simultaneously
shows in blue the cerebral spinal fluid in the ventricles (labeled V) and some sulci
for anatomical context(see color plates).

A recent application of volume rendering to diffusion tensor visualization
is based on converting the tensor field to scalar fields, as described by Wenger
et al. [28]. The approach here is to precompute multiple scalar volumes that
can be layered and interactively rendered with 3D texture-mapping graphics
hardware [29]. The renderings in figure 7 show visualizations that combine a
volume rendering of the cerebral spinal fluid with a collection of fiber tracts
rasterized into a color-coded scalar volume to illustrate the relationship be-
tween the distribution and orientation of the fiber tracts and the large-scale
patterns of anisotropy. The flexible combination of the different scalar vol-
umes into the final rendering permits interactive exploration and generation
of visualizations.

There are currently no implementations that can volume render directly
from a diffusion tensor volume to an image at interactive rates. The computa-
tional speed and flexibility of modern graphics hardware is increasing at such a
rate, however, that this should soon be feasible. For example, two-dimensional
transfer functions took minutes to render (in software) when introduced in
1988 [26], but can now be rendered at multiple frames per second with com-
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modity graphics hardware [30]. Whether applied to scalar or tensor data, the
intrinsically data-parallel nature of volume rendering makes it well suited to
the streaming-based processors found on modern graphics hardware [31]. We
anticipate that volume-rendering graphics hardware will play an increasing
role in the interactive visualization of diffusion tensor data.

3.3 Tensor Glyphs

Another avenue of DTI visualization has focused on using tensor glyphs to
visualize the complete tensor information at one point. A tensor glyph is a
parameterized graphical object that describes a single diffusion tensor with its
size, shape, color, texture, location, etc. Most tensor glyphs have six or more
degrees of freedom and can represent a diffusion tensor completely. However,
tensor glyphs do not expose relationships and features across a diffusion ten-
sor field; rather, they imply these relationships from the visual correlation
and features of the individual glyphs. While exploiting many different types
of tensor glyphs, from boxes to ellipsoids to superquadrics, tensor glyph de-
signers aim to make the mapping between glyphs and diffusion tensors faithful,
meaningful and explicit.

The diffusion ellipsoid described in section 2 is the most commonly used
representation of a diffusion tensor. Pierpaoli et al. [19], in the first use of
ellipsoids as tensor glyphs for DTI, associated ellipsoid size with the mean
diffusivity and indicated the preferred diffusion orientation by the orientation
of the diffusion ellipsoid. Arrays of ellipsoids were arranged together in the
same order as the data points to show a 2D slice of DTI data.

Laidlaw et al. normalized the size of the ellipsoids to fit more of them in
a single image [32] (see figure 8(a)). While this method forgoes the ability to
show mean diffusivity, it creates more uniform glyphs that show anatomy and
pathology over regions better than the non-normalized ellipsoids.

(a) (b)

Fig. 8. (a) Arrays of normalized ellipsoids visualize the diffusion tensors in a single
slice. (b) Brush strokes illustrate the orientation and magnitude of the diffusion:
background color and texture-map show additional information(see color plates).
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(a) Boxes (b) Ellipsoids (c) Superquadrics

Fig. 9. A portion of a brain DTI scan as visualized by three different glyph methods
(overall glyph sizes have been normalized)(see color plates).

Laidlaw et al. [32] also developed a method that uses the concepts of brush
strokes and layering from oil painting to emphasize the diffusion patterns.
They used 2D brush strokes both individually, to encode specific values, and
collectively, to show spatial connections and to generate texture and a sense
of speed corresponding to the speed of diffusion. They also used layering and
contrast to create depth. This method was applied to sections of spinal cords of
mice with experimental allergic encephalomyelitis (EAE) and clearly showed
anatomy and pathology (see figure 8(b)).

Boxes and cylinders have also been used to show the directions and relative
lengths of all three eigenvectors. Boxes clearly indicate the orientation of the
eigenvectors. They also have fewer polygons and are thus faster to render. But
their flat faces usually make it hard to infer the 3D shapes from a 2D image
(see figure 9(a)).

Kindlmann adapted superquadrics, a traditional surface modeling tech-
nique, to generate tensor glyphs [33]. The class of shapes he created includes
spheres in the isotropic case, while emphasizing the differences among the
eigenvalues in the anisotropic cases. As shown in figure 10, cylinders are used

Fig. 10. Superquadrics as tensor glyphs, sampling the same barycentric space as in
figure 2.



Visualization and Applications of DTI 13

for linear and planar anisotropy and intermediate forms of anisotropy are
represented by approximations to boxes. As with ellipsoid glyphs, a circular
cross-section accompanies equal eigenvalues, for which distinct eigenvectors
are not defined.

The differences among some of the glyph methods can be appreciated by
comparing their results on a portion of a slice of a DTI brain scan, as shown in
figure 9. The individual glyphs have been colored with the principal eigenvec-
tor colormap. The directional cue given by the edges of box glyphs 9(a) is effec-
tive in linearly anisotropic regions, but can be misleading in regions of planar
anisotropy and isotropy, since in these cases the corresponding eigenvectors are
not well defined numerically. The rotational symmetry of ellipsoid glyphs 9(b)
avoids misleading depictions of orientation, with the drawback that different
shapes can be difficult to distinguish. The superquadric glyphs 9(c) aim to
combine the best of the box and ellipsoid methods.

3.4 Vector Field Visualization

The tensor field can also be simplified to a vector field defined by the main
eigenvector, e1. This simplification is based on the assumption that in the
areas of linear anisotropy, e1 defines the orientation of linear structures. The
sign of e1 has no meaning.

One commonly used method to visualize DTI data is to map e1 to color,
e.g., directly using the absolute value of the e1 components for the RGB
channel: R = |e1 · x|, G = |e1 · y|, B = |e1 · z|. The saturation of this
color is weighted by an anisotropy index to de-emphasize isotropic areas (see
figure 11).

(a) sagittal slice (b) axial slice

Fig. 11. Mapping of e1 to the RGB channel shown in 2D slices of a healthy volunteer
brain(see color plates).
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(a) (b)

Fig. 12. (a) Streamline tracing using two ROIs to trace the corona radiata in a
data set of a healthy volunteer brain. (b) Streamlines in a data set of a goat heart
using the seeding technique of Vilanova et al. [38](see color plates).

Other methods have been proposed to visualize the global information of
2D as well as 3D vector fields [34], and there are well established 2D vector-
field visualization methods [35]. Although 2D techniques have been extended
to 3D, the visualization of 3D vector fields is still a challenging problem due
to visual cluttering and computational cost.

We concentrate here on 3D DTI data. The most commonly used technique
to visualize DTI data is streamline tracing; in DTI-specific literature this is
also called fiber tracking [36] or tractography [37]. There is a direct analogy
between the streamlines and the linear structures to be visualized (e.g., fibers).
Furthermore, streamlines in 3D can easily be visualized by regions in order to
avoid cluttering. Streamline tracing is based on solving the following equation:

p(t) =

∫ t

0

v(p(s))ds (1)

where p(t) is the generated streamline and v corresponds to the vector field
generated from e1. p(0) is set to the initial point of the integral curve.

The streamline technique has three main steps: definition of initial tracking
points (i.e., seed points), integration, and the definition of stopping criteria.
Seed points are usually user defined: the user specifies one or more regions
of interest (ROI). Interior of the ROIs are sampled and the samples are used
as seed points (see figure 12). Equation (1) is solved by numerical integration
via such schemes as Euler forward and second or fourth-order Runge-Kutta.
Stopping criteria avoid calculation of the streamline where the vector field
is not robustly defined. In areas of isotropic or planar diffusion, the value of
e1 can be considered random, and thus has no meaning for the underlying
structure. The user can usually set a threshold based on the anisotropy indices
(e.g., FA, RA or cl) to describe the areas where the vector field is defined;
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the value of this threshold depends on the data-acquisition protocol and the
nature of the object being scanned. Other criteria can also be used, such as
the curvature or length of the streamline.

Hyperstreamlines are an extension to streamlines for second-order tensor
fields [39], first used by Zhang et al. for DTI data [40]. Hyperstreamlines
employ all eigenvalues and eigenvectors. A streamline defines the axis of a
generalized cylinder whose cross-section perpendicular to the axis is an ellipse
defined by e2 and e3 and λ2 and λ3, respectively.

Streamline-tracing techniques for DTI have several disadvantages that are
constantly being addressed. In areas of nonlinear diffusion the main eigenvec-
tor is not robustly defined [15]. However, linear structures can be present in
areas with nonlinear diffusion, appearing where the linear structure orienta-
tion is not coherent within a voxel (see figure 3) or arising from noise. Most
DTI tracing algorithms consider only the areas where the vector field is de-
fined robustly. Several authors have proposed methods to trace within areas of
isotropic or planar diffusion following the most probable diffusion orientation
based on some heuristics (e.g., [41, 42]). Some of these methods are based
on regularization techniques that are commonly used in image processing for
noise removal.

Another difficulty in streamlines is seeding. The seed points can be defined
by the user. In a healthy person with known anatomy, users can estimate where
the interesting bundles are and where to seed. However, in some cases, there
are no real clues to the possible underlying structure and user seeding can
miss important structures. Defining the seed points to cover the whole volume
can be computationally expensive, however, and furthermore, too many seed
points clutter the image and make it difficult to extract useful information.

Zhang et al. [40] employed uniform seeding throughout the entire vol-
ume and developed a culling algorithm as a postprocessing step to control
the streamline density. This allows inside structures to be visible and outside
structures still to be adequately represented. The metrics for the culling pro-
cess include the length of a trajectory, the average linear anisotropy along a
trajectory, and the similarity between a trajectory and the group of trajecto-
ries already selected.

Vilanova et al. [38] extended Jobard et al.’s seeding algorithm [43] for
3D DTI data (see figure 12(b)). Here seeding and generation of streamlines
depend on a parameter that defines the density of the streamlines (i.e., min-
imal distance between streamlines). This method allows control of cluttering
and less computationally expensive generation of streamlines than seeding
the whole volume regularly. However, if the density is set to a low value this
method does not guarantee that the important structures are visible, since
only the distance between streamline seed points is taken into account.

Generally, the fiber bundles are more interesting than an individual fiber,
and several authors have proposed ways to cluster the streamlines to ob-
tain bundles (e.g., [44, 45, 46, 47]). These algorithms differ primarily in the
metrics used to define the similarity between streamlines and clusters, which
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are mainly based on the shape and distance between fiber pairs. Bundles
are a compact representation of the data that alleviates cluttering; however,
these algorithms have the disadvantage of relying solely on the results of the
streamline-tracing algorithm, and therefore are very sensitive to its errors.

3.5 Beyond Vector Field Visualization

The previous section presented several visualization methods for which the
diffusion tensor data are simplified to the main diffusion orientation to recon-
struct the underlying linear structure. In doing this, of course, information
is lost. In this section, we present several approaches that try to rectify this
loss and use more information than the main eigenvector, e1. In DTI, it is

Seed Points

(a) (b)

Fig. 13. Examples of streamsurfaces: (a) red streamlines (represented as cylinders)
and green streamsurfaces generated using the method of Zhang et al. [40] show
linear and planar anisotropy, respectively, together with anatomical landmarks for
context; (b) Streamlines using seed points (yellow region) trace streamsurfaces and
show the possible prolongation of the fiber bundle, generated using the algorithm of
Vilanova et al. [38](see color plates).

assumed that the diffusion tensor gives an indication of the underlying geo-
metrical structure. In the streamline tracing algorithm, the main eigenvector
is assumed to represent the tangent vector of an underlying linear structure.
However, diffusion does not indicate just linear structures, but also planar
structures (e.g., sheet). Similarly to linear anisotropy, it can be assumed that
planar anisotropy indicates a planar structure. Therefore, the eigenvectors
e1 and e2 define the tangent plane of an underlying planar structure, i.e.,
the streamsurface. Zhang et al. [40] presented an algorithm to generate the
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streamsurface based on the planar anisotropic characteristics of the data. Fig-
ure 13(a) shows the results of using their algorithm to trace streamlines and
streamsurfaces in the whole volume. In the brain there are no structures which
have a planar like shape. However, due to fibers crossing and the partial vol-
ume effect planar like structures appear in the DTI data. Vilanova et al. [38]
used a similar algorithm to Zhang et al. in combination with streamline trac-
ing to show the areas where linear structures cross, kiss, converge or diverge
(see figure 3).

Figure 13(b) shows streamlines generated by a few seed points (in the
yellow circle). Instead of stopping, a streamsurface is traced when a streamline
reaches an area of planar anisotropy. In addition, the possible continuations
of the initial streamline going through the streamsurface are traced further.

Streamsurfaces are extensions of streamlines, but the tensor information is
still simplified and not treated as a whole. Parker et al. [48] and Brun et al. [49]
modeled all possible paths from a given starting point. Parker et al. used
a front-propagation method with a speed function based on the underlying
tensor field. The path between the starting point and any point in the volume
is defined by using the time of arrival of the front to each point and a gradient-
descent algorithm. A connectivity metric describes the likelihood of connection
of each path. Brun et al. [49] modeled the paths as a probability distribution
that is discretely represented by weighted samples from it. For each path, a
connectivity is also assigned according to the diffusion tensor and the path’s
shape. Batchelor et al. [50] propose a method based on simulating the diffusion
defined by the diffusion tensor, and use a probabilistic interpretation of the
time of arrival of the diffusion front to quantify the connectivity of two points.
O’Donnell et al. [51] describe a similar idea: a flux vector field based on solving
for the steady-state concentration is created. Paths generated in this vector
field have a measure of connectivity based on the flow along the paths; the
maximum flow indicates the most probable connection. They also present a
method based on warping the space locally using a metric defined by the
inverse of the diffusion tensor. The minimum-distance path (i.e., geodesic) in
this warped space provides a reconstruction of a possible underlying linear
structure and a numerical measure of connectivity between two points (i.e.,
distance).

The advantage of these methods is that they are well defined in the com-
plete space, even in areas with planar or isotropic diffusion. Furthermore, they
give a quantitative measure of connectivity. Their drawbacks are that they are
computationally expensive and any pair of points in the space is connected.
Therefore, it is necessary to define not just a starting point but also end points,
or to establish criteria for which points are considered to be connected (e.g.,
a percentile of the most probable connections).

There have been several efforts to visualize the global information of the
second-order tensor field in general [52, 53]( see also chapter 16 by Hotz et al.).
Zheng and Pang [54] presented an extension of the vector-field visualization
method LIC (line integral convolution) to tensor data. Similarly, Bhalerao and
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Westin [?] extended splatting (a scalar volume rendering technique) to tensor
data. Cluttering is a problem when these methods are applied to DTI data,
since not much more than the outer shell of the anisotropic areas is visible.

Hesselink et al. [55] presented a method to extract topology skeletons of
second-order 3D tensor fields. These skeletons are mainly defined by points,
lines and surfaces that represent the complex structure of a tensor field in
a compact and abstract way. The topology is based on the calculation of
degenerate points whose eigenvalues are equal to each other. In chapter 14,
Zheng et al. show that the stable degenerated features in 3D tensor fields
form lines. The main drawback of this method is the lack of an intuitive
interpretation of the topology skeletons for tensor fields. In real data, the
resulting skeletons can be very complex and difficult to analyze.

3.6 Interaction

Human-computer interaction (HCI) arises in multiple aspects of DTI visu-
alization: transfer function manipulation, seeding point selection, streamline
culling, streamline query, and graphical model exploration, to name a few. We
briefly review some of the interaction techniques here. In volume rendering,

(a) (b)

Fig. 14. (a) An interactive exploration tool for DTI volume rendering. Clockwise
from upper left are a 2D barycentric widget, a 1D widget, a 2D Cartesian widget,
and a 2D Cartesian culling widget. (b) A user explores a complex 3D model in a
virtual reality CAVE(see color plates).

transfer functions determine the mapping from the data to color and opacity
(see section 3.2). The selection of transfer functions often requires expertise;
in addition, it is often done by trial and error, so that it is important that the
user be able to select the transfer functions intuitively and quickly. Kniss et

al. [30] describes a set of widgets that let the user specify multidimensional
transfer functions interactively. Wenger et al. [28] applied this idea to DTI
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volume rendering, employing a set of widgets including a barycentric widget
for manipulating the geometrical diffusion measures (see figure 14).

Interaction permeates the whole process of vector field visualization: both
seed points selection and connectivity query involve specifying ROIs. Stream-
line culling requires selecting certain criteria and setting the corresponding
thresholds. Displaying the 3D streamline models often relies on user input
to show the models at different scales and perspectives. Akers et al. [56] de-
veloped a pathway-query prototype to expedite the first two operations, pre-
computing the pathways and their statistical properties to achieve real-time
interaction.

The complexity of the DTI data sets often yields complicated graphical
models that are hard to discern in a still picture. Continuing developments in
computer graphics constantly change how users interact with these models.
Desktop 3D graphics used mouse click and drag to move the models; fishtank
virtual reality display systems added stereo and head tracking [57]. The CAVE
provided an immersive virtual environment that engaged the user in whole-
body interaction [58] (see figure 14(b)). However, none of these systems are
sufficient alone; each has its strengths and weaknesses depending on certain
applications [57].

The interaction schemes can also be combined in hybrid visualization
methods. For example, the streamtube-culling widget can be incorporated
into the control panel with various other transfer function widgets (see fig-
ure 14(a)). A traditional 2D structural image slice provides context in a com-
plex 3D scene (see figure 14(b)).

Currently, computational power limits our ability to achieve real-time in-
teraction and precomputed models must often be used for sake of speed. In
the future, we expect a closer tie between computation and human input for
more efficient and effective data exploration.

4 Applications

DTI is especially useful in studying fibrous structures such as white matter
and muscle: the anisotropy information it provides reveals the fiber orientation
in the tissue and can be used to map the white-matter anatomy and muscle
structure in vivo [37]. The diffusion coefficient measures a physical property
of the tissue and the measurements can be compared across different times,
locations, and subjects. Therefore, DTI has frequently been used to identify
differences in white matter due to a variety of conditions. Normal conditions
such as age and gender have been reported to affect anisotropy and diffusivity;
neural developments such as myelination, physical trauma such as brain injury,
and neurodegenerative diseases such as multiple sclerosis and HIV have all
been indicated by DTI studies to affect white-matter composition, location,
or integrity.
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The variety of DTI applications provides a valuable testbed for visual-
ization methods. Indeed, without applications to guide the development of
computational and visualization tools, these tools are far less likely to be
useful. We introduce some of the applications of DTI in this section.

4.1 White Matter Normal Conditions

Some normal conditions are reflected in the microstructure of white matter.
Significant differences were found in diffusivity and anisotropy of the human
corpus callosum with gender and handedness [59]. Age also has significant
effect on white matter, usually resulting in reduced FA and increased diffusiv-
ity [60, 61]. These factors should be considered when selecting control groups
for white-matter pathology studies.

The vector-field visualization methods introduced in section 3.4 have been
employed to reveal connectivity in a normal brain. A common application is
to use neuroanatomy knowledge to select ROIs and then reconstruct neural
pathways running through them. Evidence of occipito-temporal connections
within the living human brain was found by tracing neural pathways between
two ROIs [62]. Expert-defined ROIs for brainstem fibers and associated fibers
have been used to generate corresponding tracts [63]. An exciting trend is
to combine functional MRI (fMRI), which measures the changes in blood
flow and oxygenation in a brain area, with DTI fiber tracking, so that both
activated brain areas and the tract connecting them to other brain areas can
be visualized at the same time. For example, foci of fMRI activation have
been used as ROIs to reveal axonal connectivity in a cat’s visual cortex [64].

4.2 White Matter Development

Almost all the neurons that a brain will ever have are present at birth. How-
ever, the brain continues to develop for a few years after birth. A significant
aspect of brain development is myelinization, the continued growth of myelin
around the axons. Myelin acts as an insulating membrane and allows a con-
duction of nerve impulses from ten to one hundred times faster than along a
non-myelinated system and, at birth, few fibers are myelinated. The develop-
ment of myelin is thus a measure of increasing maturity of the neural system.
Previous studies have explored when particular fibers are myelinated; e.g.,
areas related with primary sensory (vision, touch, hearing, etc.) and motor
areas are the first to myelinate [65].

Diffusion tensor imaging has the potential to evaluate brain maturity in
newborns. Myelinated fibers have higher anisotropy than non-myelinated ones,
i.e., the anisotropy depends on the development phase. The study of newborn
brain presents new challenges:

• The anisotropy in the neonatal brain is lower than in the adult brain.
Therefore it is more difficult to reconstruct fibers reliably.
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(a) (b)

Fig. 15. Studies of white matter fibers in neonatal brains with different data sets.
(a) Premature neonate lacking corpus callosum (see arrow), (b) full-term neonate
where no fiber abnormalities were found. Corpus callosum and corona radiata are
seen(see color plates).

• Motion artifacts can play a larger role, since neonates often move more
than adults.

• The signal-to-noise ratio is smaller. The neonatal brain is smaller than that
of an adult, and hence the voxel size must be smaller, leading to decreased
signal.

The first years of life are a critical time for brain development. Early di-
agnoses of brain lesions can help diminish the consequences of an injury. For
example, neonates who suffer hypoxic ischemic brain damage have brain in-
juries caused by lack of oxygen and nutrients because of blood flow problems.
Diffusion weighted imaging has already proved useful in detecting this injury.
Diffusion tensor imaging might provide further information about structure
and the development of the neonatal brain. Figure 15(a) shows the white
matter fibers corresponding to a data set of a premature neonate of 26 weeks
and scanned at six weeks old. Several fiber structures are visible (e.g., corona
radiata in blue). However, the corpus callosum is not visible: the arrow in-
dicates where the fibers are missing. Further investigation of remaining MR
images of this neonate confirmed that this patient lacks a corpus callosum.
Figure 15(b) shows the result of tracing streamlines using ROIs to visualize
the corpus callosum and the corona radiata in a full-term neonate scanned
at four weeks after birth. The DTI data does not reveal any alteration in the
fibers, even though the neonate had meningitis.

4.3 White Matter Injury and Disorders

DTI has proven effective in studying a range of white-matter disorders. Some
of these disorders are brain injury, brain tumor, focal epilepsy, multiple sclero-
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sis, tuberous sclerosis, Parkinson’s disease, Alzheimer’s disease, schizophrenia,
HIV infection, Krabbe’s disease, chronic alcohol dependence, ALS, X-linked
ALD, and CADASIL. Reviews of these studies can be found in [66, 67, 68, 69].
We select three application areas in which pathological causes differ greatly,
resulting in different patterns and subtleties of the changes in white mat-
ter. These cases can be analyzed effectively only by applying processing and
visualization methods accordingly.

Brain Tumor

It is estimated that 17,500 people in the U.S. die from primary nervous-system
tumors each year [70]. A better understanding of the pathophysiology of brain
tumors is essential if we are to find effective treatments. Cortical disconnection
syndromes may play a significant role in clinical dysfunction associated with
this disorder.

Tractography methods have been applied to study patterns of white-
matter tract disruption and displacement adjacent to brain tumors. Wiesh-
mann et al. [71] found evidence of displacement of white-matter fibers of the
corona radiata in a patient with low-grade glioma when compared with spa-
tially normalized data collected from 20 healthy volunteers. Mori et al. [72]
found evidence of displacement and destruction of the superior longitudinal
fasciculus and corona radiata in two patients with anaplastic astrocytoma.
Gossl et al. [73] observed distortion of the pyramidal tract in a patient with

(a)

Cl=1

Cp=1 Cs=1

(b)

Fig. 16. Visual exploration and quantitative analysis of a cancerous brain. (a) A
3D visualization showing streamtubes and streamsurfaces as well as tumor and ven-
tricles. (b) The difference histogram obtained by subtracting normalized barycen-
tric histograms calculated from tumor-bearing and contralateral sections. Here zero
maps to medium gray because the difference is signed. Note that the most striking
difference occurs near the cs = 1 vertex(see color plates).
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a high-grade glioma. Witwer et al. [74] found evidence of white-matter tract
edema. Zhang et al. [75] observed the pattern of linear and planar diffusion
around a tumor and analyzed the asymmetries of white-matter fiber tracts
between the tumor and the contralateral hemisphere.

Figure 16 shows visual exploration and quantitative analysis of a can-
cerous brain [75]. The streamtubes and streamsurfaces visualize both linear
and planar diffusion. The displacement of fiber tracts around the tumor is
accompanied by a cradle of streamsurfaces, indicating a local increase of pla-
nar anisotropy. The normalized distribution of anisotropy is calculated on
a barycentric space (see section 3.1) for both the tumor-bearing side and
contralateral side of the brain. The difference in the two distributions (fig-
ure 16(b)) clearly indicates a decrease in linear anisotropy and an increase
in planar anisotropy in the tumor side of the brain. As figure 17 indicates,
the geometrical alteration of fiber structures surrounding the tumors can have
different patterns [38]. In figure 17(a), the fibers are pushed to the left by the
presence of the tumor; in figure 17(b), the fibers seem to be destroyed: the
structure around the tumor is not moved, but in the tumor area no fibers are
present.

Tumors and their surrounding edema often cause gross changes in the
neural fibers around them. DTI can benefit tumor growth study and surgery
planning by modeling these changes geometrically. Scalar index analysis com-
plement the geometrical modeling by quantifying these changes.

(a) (b)

Fig. 17. Two cases of adult tumor brain. (a) Fibers are pushed by the tumor. (b) No
fibers are in the tumor area, indicating the destruction of neural structures there(see
color plates).
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(a) (b) (c)

Fig. 18. Visualization of coregistered DTI and MS lesion models. (a) The whole
brain with streamtubes, streamsurfaces, lesion masks and ventricles. (b) A closeup
view of white matter fibers near the MS lesions. The streamtubes around the lesion
area give some clues about white matter structural changes there. (c) The same
brain and view as (a) but showing only streamtubes that contact the lesions, thus
clarifying the white matter structures involved(see color plates).

Multiple Sclerosis

Multiple sclerosis (MS) is a chronic disease of the central nervous system
that predominantly affects young adults during their most productive years.
Pathologically, MS is characterized by the presence of areas of demyelination
and T-cell predominant perivascular inflammation in the brain white matter.
Recent studies on MS have shown an elevated mean diffusivity and reduced
diffusion anisotropy [76] in MS lesion areas. The lesions with more destructive
pathology are generally shown to have the highest diffusivity.

Analyzing the interrelationship between the MS lesion and the affected
fiber pathways might help in understanding the mechanism of the axonal
damage. The visualization of DTI models with coregistered MS lesion masks
in figure 18 can be utilized to determine the relationship between focal lesions
and the neuronal tracts that are anatomically related. Figure 18(b) suggests
the different effects that the focal lesions might have on the fibers. Note that
the streamtubes sometimes continue through the lesions (A) and sometimes
break within them (B). Figure 18(c) depicts only the fiber pathways that are
confined in the lesion area.

MS lesions are often dispersed and show different levels of severity. Visual-
izing the affected tracts can clarify the various effects of the lesions. Identifying
the gray matter to which these partially damaged tracts connect might help
explain the disabling effect of MS. The study of MS remains an active research
area. These visualization results might help researchers think about the pro-
gression of the pathology and design other experiments which, in turn, might
help validate the DTI results.

HIV Neurodegeneration

Human immunodeficiency virus (HIV) is an aggressive disease that affects
multiple organ systems and body compartments, including the central ner-
vous system (CNS). Structural imaging studies of HIV patients’ brains reveal
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morphometric changes in the subcortical gray and white matter regions [77].
However, because of the relatively poor sensitivity of structural imaging to
white-matter abnormalities in patients with mild HIV [78], the relationship
between cognition and white-matter abnormalities in structural MRI has not
been fully determined. These limitations can be overcome by DTI. Recent
DTI studies have demonstrated white-matter abnormalities among patients
with HIV even when fluid-attenuated inversion recovery (FLAIR) structural
MRI scans failed to do so [79, 80]. Most recently, Ragin et al. [81] reported
strong relationships between whole-brain fractional anisotropy and severity of
dementia among a small cohort of HIV patients (n = 6).

In cases such as HIV infection, where the white-matter structural changes
may be too subtle to detect with structural imaging, DTI can be used to
quantify the changes.

Fig. 19. Visualization of transmural twist of myofibers in canine myocardium, seen
in a short axis slice. The edges of the superquadric glyphs help show the flat incli-
nation at midwall and the differences among the eigenvalues at various locations.

4.4 Myocardial Structure

Diffusion tensor MRI can also be used to measure directionally constrained
diffusion in tissues outside the nervous system. Understanding the complex
muscular structure of the mammalian heart is another important applica-
tion. The efficiency of the heart is due in part to its precise arrangement of
myofibers (contractile muscle cells), especially the myocardium (the muscu-
lar wall) of the left ventricle, which is responsible for pumping blood to the
rest of the body. The pattern of myofiber orientation in the myocardium is
helical : between the epicardium and endocardium (outer and inner surface)
there is roughly a 140-degree rotation of myofiber orientation, from −70 to
+70 degrees. Computational simulations of heart dynamics require an accu-
rate model of the myofibral orientation in order to model both the contractile
mechanics of the myocardium and the pattern of electrical wave propagation
within it [82]. The principal eigenvector as measured by DT-MRI has been
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confirmed to align with the myofiber orientation [13, 14]. Recent work (see
figure 19) has applied superquadric tensor glyphs to visualize the myofiber
twisting and to inspect other anatomical features revealed by DT-MRI [83].

As is clear from the descriptions above, the applications of DTI are in-
creasingly diverse. Associated with the breadth of application areas is a need
for a wide variety of visualization techniques. Characterizing a tumor’s effect
on white matter integrity is based on fiber tracking, while the effect of neu-
rodegenerative diseases may be quantified in terms of anisotropy metrics, and
myocardial structure is described by a continuous rotation of the principal
eigenvector.

5 Open Problems

Successfully applying DTI to new research areas and problem domains de-
mands that visualization tools be flexible enough to support experimentation
with the range of techniques so as to evaluate the appropriateness of each.
This in turn requires that the modes of interaction efficiently support the ex-
ploration and parameter setting needed for creating visualizations, ideally in
a manner friendly to application-area experts who may not be visualization
experts.

In clinical practice, anisotropy indices, such as FA or trace (see section 3.1),
are commonly used. Although, they show just a part of the information con-
tained in the tensor, their visualization is similar to what radiologists are
used to, and they are easy to understand and quantify. Other visualization
techniques based on tractography or fiber tracking are popular probably due
to the direct analogy between streamlines and fibers. However, the result of
most of these techniques are very sensitive to input parameter values from
the user (e.g., seed point). Important information can be missed if the user
fails to give the right input when the underlying anatomy is not known. User
independence is critical for statistical comparison and evaluation of diseases.

Some methods have tried to achieve more user independence by recon-
structing linear structures in the whole volume. The main problems in this
case are the computational cost and the huge amount of data to inspect.
Therefore, the user should be able to navigate and explore the data interac-
tively and in an intuitive way. For example, meaningful grouping or clustering
of data can help navigation. Intuitive interaction for setting of parameters,
such as transfer functions or thresholds (e.g., cl in fiber tracking to define ar-
eas with linear structure). Fiber tracking algorithms are prone to error, e.g.,
due to partial volume effect or numerical integration. Finding and visualizing
uncertainty measures for the visualization algorithms could help to reduce the
effect of this error.

Visualization techniques are commonly used as exploratory tools to iden-
tify measures for quantification. At the moment, measures for quantification
only exist for anisotropy indices. Quantification is important to get clinical
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acceptance. It is necessary to generate statistics and distinguish between dis-
eased and normal, and to build models according to the different demographic
and clinical variables that influence the results such as age and sex.

Validation is an important issue for DTI. There have been too few vali-
dation studies to be able to conclude that what is measured corresponds to
the anatomy [1, 13]. At the moment and to our knowledge, there is no gold
standard to validate the results of the techniques developed in this field.

An open problem of a different sort is the communication among different
scientific fields. It is important for physicians and technicians to communicate
in such a way that the necessary software and tools to advance in the clinical
investigations for DTI are developed.

Finally, although not discussed in this chapter, a main research issue is
the protocols for DTI data acquisition in order to improve quality and reduce
scanning times. Furthermore, much research in image processing has been
devoted to scalar but less to vector images, and little work has been done
on image processing techniques for tensor data. Filters for noise removal,
interpolation, feature extraction, etc. are of importance for the development
of DTI (e.g., see the chapters on part E: Image Processing Methods for Tensor
Fields). Second order diffusion tensor does not contain enough information
to disambiguate areas where a voxel contains non-coherent linear structures.
New representations for diffusion that show its more complex behavior are
being researched. Visualization and image processing techniques would need
to adapt to the complexity of this new data.

6 Summary and Conclusions

DTI allows the visualization of tissue microstructure (e.g., white matter or
muscle) in vivo. Meaningful visualizations are crucial in analyzing and get-
ting insight into multivariate data such as DTI. We have presented several vi-
sualization techniques developed in recent years. All visualization techniques
have their advantages and disadvantages. Tensor glyphs are good for giving
information at individual points, however, they typically do not relate ten-
sor values well spatially. Fiber tracking methods relate values spatially by
following major coherent fiber structures, but are prone to error due to, for
example, partial volume effects, noise, and numerical integration inaccuracies.
Fiber tracking methods usually reduce the dimensionality of the tensor from
6D to 3D, based in the assumption that linear structures are the most inter-
esting to study. Other methods where the whole tensor is used to show the
relationships between tensors suffer from cluttering. To acheive the goals of
any given application, it is important to choose an appropiate visualization
technique or combination of techniques. However, there are still limitations all
techniques share, including the lack of robust parameter definition and a lack
of ease-of-use for application-area experts who are not visualization experts.
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We have presented some examples of the large variety of DTI applications.
While much work has been devoted to white matter, DTI is also useful for
studying muscle, including, in particular, the heart.

DTI is a relative young and exciting new field of research that brings to-
gether several disciplines. Research in each of these disciplines is crucial to
achieve fruitful results in the application and use of DTI data. DTI visualiza-
tion will clearly bring new insights in a number of research areas.
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(a) MD (b) FA (c) cl-cp

Fig. 4. Different shape metrics applied to one slice of a brain DTI scan.

(a) Principal eigenvector (b) Linear versus planar

Fig. 6. Volume renderings of half a brain scan, (a) colored according to orientation
of principal eigenvector; (b) the distribution of linear (green) and planar (magenta)
anisotropy. Surface is defined by FA = 0.4.
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Fig. 7. Interactive volume renderings of a human brain data set. The volume ren-
derings (top) show collections of threads consistent with major white-matter struc-
tures: IC=internal capsule, CR=corona radiata, CB=cingulum bundle, CC=corpus
callosum diagrammed on the bottom. Components of the tensor-valued data con-
trol thread orientation, color, and density. Direct volume rendering simultaneously
shows in blue the cerebral spinal fluid in the ventricles (labeled V) and some sulci
for anatomical context.

(a) (b)

Fig. 8. Brush strokes illustrate the orientation and magnitude of the diffusion:
background color and texture-map show additional information

(a) Boxes (b) Ellipsoids (c) Superquadrics

Fig. 9. A portion of a brain DTI scan as visualized by three different glyph methods
(overall glyph sizes have been normalized).
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(a) axial slice (b) sagittal slice

Fig. 10. Mapping of e1 to the RGB channel shown in 2D slices of a healthy volunteer
brain.

(a) (b)

Fig. 11. (a) Streamline tracing using two ROIs to trace the corona radiata in a
data set of a healthy volunteer brain. (b) Streamlines in a data set of a goat heart
using the seeding technique of Vilanova et al. [38].
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Seed Points

(a) (b)

Fig. 14. Examples of streamsurfaces: (a) red streamlines (represented as cylinders)
and green streamsurfaces generated using the method of Zhang et al. [40] show
linear and planar anisotropy, respectively, together with anatomical landmarks for
context; (b) Streamlines using seed points (yellow region) trace streamsurfaces and
show the possible prolongation of the fiber bundle, generated using the algorithm of
Vilanova et al. [38].

(a) (b)

Fig. 15. (a) An interactive exploration tool for DTI volume rendering. Clockwise
from upper left are a 2D barycentric widget, a 1D widget, a 2D Cartesian widget,
and a 2D Cartesian culling widget. (b) A user explores a complex 3D model in a
virtual reality CAVE.



Visualization and Applications of DTI 37

(a) (b)

Fig. 16. Studies of white matter fibers in neonatal brains with different data sets.
(a) Premature neonate lacking corpus callosum (see arrow), (b) full-term neonate
where no fiber abnormalities were found. Corpus callosum and corona radiata are
seen.

(a)

Cl=1

Cp=1 Cs=1

(b)

Fig. 17. Visual exploration and quantitative analysis of a cancerous brain. (a) A
3D visualization showing streamtubes and streamsurfaces as well as tumor and ven-
tricles. (b) The difference histogram obtained by subtracting normalized barycen-
tric histograms calculated from tumor-bearing and contralateral sections. Here zero
maps to medium gray because the difference is signed. Note that the most striking
difference occurs near the cs = 1 vertex.
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(a) (b)

Fig. 18. Two cases of adult tumor brain. (a) Fibers are pushed by the tumor. (b)
No fibers are in the tumor area, indicating the destruction of neural structures there.

(a) (b) (c)

Fig. 19. Visualization of coregistered DTI and MS lesion models. (a) The whole
brain with streamtubes, streamsurfaces, lesion masks and ventricles. (b) A closeup
view of white matter fibers near the MS lesions. The streamtubes around the lesion
area give some clues about white matter structural changes there. (c) The same
brain and view as (a) but showing only streamtubes that contact the lesions, thus
clarifying the white matter structures involved.


