The Task Matrix: An Extensible Framework for
Creating Versatile Humanoid Robots

Evan Drumwright
Interaction Lab/USC Robotics Research Labs
University of Southern California
Los Angeles, CA 90089-0781 USA
drumwrig @robotics.usc.edu

Abstract— The successful acquisition and organization of a
large number of skills for humanoid robots can be facilitated
with a collection of performable tasks organized in a task matrix.
Tasks in the matrix can utilize particular preconditions and
inconditions to enable execution, motion trajectories to specify
desired movement, and references to other tasks to perform
subtasks. Interaction between the matrix and external modules
such as goal planners is achieved via a high-level interface that
categorizes a task using its semantics and execution parameters,
allowing queries on the matrix to be performed using different
selection criteria. Performable tasks are stored in an XML-
based file format that can be readily edited and processed by
other applications. In its current implementation, the matrix is
populated with sets of primitive tasks (eg., reaching, grasping,
arm-waving) and macro tasks that reference multiple primitive
tasks (Pick-and-place and Facing-and-waving).

I. INTRODUCTION

A key motivation behind the creation of humanoid robots
is the desire to execute the various tasks humans are capable
of doing. A collection of realizable tasks embedded within a
task matrix' can act as a framework for facilitating this goal.
If the matrix is readily scalable and modifiable, it follows
that improving or adding to the robot’s skill set will be
straightforward.

Further hindering the achievement of this goal is the
presence of numerous mechanisms for performing different
humanoid tasks (e.g., state machines [1], [2], operational-
space formulation [3], policies learned from reinforcement
learning [4], etc.) The existence of these various methods
suggest it is unrealistic to assume that a single method exists
for performing all tasks equally well on humanoid robots.
Each method presents certain requirements for success. For
example, motion planning algorithms typically assume that the
world can be geometrically modeled and that obstacles in an
environment are not moving. Thus, if one wishes to perform
diverse tasks on a humanoid robot using a single framework,
heterogeneous methods and their specific requirements must
be accommodated.

The distinction between a task and skill in this paper is
important, with task meaning a function to be performed
and skill referring to a developed ability. The task matrix

n our context, the term matrix refers to a medium in which tasks can
reside and be interconnected (not a two-dimensional array).

Victor Ng-Thow-Hing
Honda Research Institute USA
Mountain View, CA, 94041 USA
vng @honda-ri.com

queries querie
r]

Task Selection <4—tasks tasks=—p Earl
Planner
Interface
Task _
Robot
Liasks—» Execution [e——tasks——]
Manager Keae
[ESTY
skill Skill L motor
parameters Module| commands

Fig. 1. System overview: Tasks can be queried via an interactive interface
(the Task Selection Interface) or by a goal planner (not implemented) and are
executed via the Task Execution Manager. Tasks utilize robot-specific skills
like trajectory tracking in the Skill Module. Note the clear separation between
all components.

consists of task programs, or functions that a robot is capable
of performing (using skills). A task is an objective to be
accomplished and is robot independent. Skills are diverse
methods used to achieve that objective and are robot-specific.

A. Design Goals

With the above motivations in mind, we can articulate a set
of design goals for the task matrix.

1) Simple task programs can be treated as primitive com-
ponents to perform more complex tasks and behaviors.
Early work in developing autonomous robots has devel-
oped the idea that complex behavior can be built from
a set of existing simple robot programs [5], [6]. Matarié
has proposed this idea for humanoid robots [7]. These
ideas promote the ability to reuse task programs, thus
avoiding redundancy in the matrix.

2) Task matrix is independent of any particular approach
to goal planning or task sequence execution. The task
matrix should not dictate any particular approach for de-
ciding when to execute tasks on the robot. It should not
restrict the freedom of designing and experimenting with
different goal planning and task execution algorithms.
On the other hand, a simple way of interfacing the task
matrix to these external modules should be provided.
Figure 1 illustrates the approach taken in this paper,

which separates the matrix from elements that use it
(e.g., goal planner, task scheduler, etc.)

3) On-line additions to the matrix are allowed to facilitate
continual learning or upgrading of skills. The matrix
should allow additions while the robot is operating on-
line. This requirement would allow a robot to gradually
improve its skills without service interruption. It should
be straightforward for a robot designer to author changes
to the task matrix. It should also be possible to utilize
different sources for synthesizing new task programs.
For example, retargeted motions from motion-capture
could be used to create new skills. The matrix should
facilitate the proper conversion of this information into
new task programs.

4) Task matrix should promote robot independence. Hu-
manoid robot designs change frequently. It would be
inconvenient to discard an entire matrix and be forced
to rebuild the contents with every new robot design. We
would like the matrix to remain invariant to robot design
changes to increase the likelihood that the vocabulary of
task programs can continuously grow and expand with a
robot’s evolving hardware design. Achieving separation
of the task descriptions from robot configurations allows
sharing a task matrix between different robots.

B. Contributions

The paper describes the design and implementation of a
task matrix which attempts to meet the above goals. The
matrix is extensible and contains a set of programs for
performing heterogeneous tasks, varying in complexity. New
task programs can be constructed from existing entries in the
matrix, promoting reuse of simple task programs to create
more complex behaviors. The outline of the paper follows.
Section II reviews related work. Section III describes the
design of the task matrix. Section IV describes how complex
task programs are formed from simple programs and Section
V presents the task programs with which we have seeded
the matrix. We present results and discussion in Section VI
illustrating how different aspects of the matrix meet the design
goals proposed in Section I. Conclusions and future work are
discussed in Section VII.

II. RELATED WORK

Brooks introduced the idea of producing complex, emer-
gent behaviors from simple, reactive behaviors [5] on mobile
robots. Subsequent researchers modified this approach to allow
for more complex, time-extended basis behaviors [6]. These
basis behaviors have been relatively amenable to combination,
generating such complex activities as flocking and foraging
[8]. However, it has proven difficult to extend these ideas to
humanoid robots, for which concerns such as self-collision and
dynamics become prevalent. In contrast, manipulator robots
have focused on fask-level programming [9] to create systems
that focus on achieving tasks using symbolic representations
for robot and world state and robot actions [10], [11]. Our
work is similar to the task-level programming framework.

<conditions>
<postural name="ready-to-wave" posture="wave-posture.xml" />
<postural name="ready-to-grasp" posture="hand-pregrasp.xml" />
</conditions>

<tasks>
<postural name="get-ready-to-wave" kinematic-chain="singlearm"
posture="wave-posture.xml" />
<pcanned name="wave" parameters="duration=float period=float"
preconditions="ready-to-wave" kinematic-chain="rightarm"
trajectory-set="wave.xml" />
<postural name="ungrasp" kinematic-chain="singlehand"
posture="ungrasp-posture.xml" />
<procedural name="grasp" library="grasp.so"
kinematic-chain="singlehand" parameters="duration=float"
procedural-parameters="posture=grasp-posture.xml" />
<procedural name="reach" library="reach.so"
kinematic-chain="singlearm base" />
</tasks>

Fig. 2. Example XML file of a small portion of the task matrix

However, we concentrate on developing a repertoire of com-
plex behaviors using manually-devised connections between
the primitive task programs, in contrast to past research
that emphasizes planning. Additionally, we focus on creating
the primitive task programs in a robot-independent manner.
Finally, task-level programming has traditionally considered
only sequences of primitive actions; this work handles both
sequential and concurrent execution.

The notion of generating humanoid movement using sim-
ple behaviors has been explored by the computer animation
community. Badler et al. [12] developed a set of parametric
primitive behaviors for “virtual” (kinematically simulated)
humans; these behaviors include balancing, reaching, ges-
turing, grasping, and locomotion. Additionally, Badler et al.
introduce Parallel Transition Networks for triggering behaviors
functions, symbolic rules, and other behaviors. There are
key differences between the work of Badler et al. and that
presented here. In particular, Badler et al. focus on motion
for virtual humans, for which the kinematics are relatively
constant, and the worlds they inhabit are deterministic. Our
work is concerned with behaviors for humanoid robots with
relatively different kinematic structures (e.g., varying degrees-
of-freedom in the arms, differing hands, etc.) that operate in
dynamic, uncertain environments.

The concept of a motion database to organize sets of
motion-captured sequences has also been explored in the field
of computer animation. In particular, methods to synthesize
new motion sequences from a collection of existing motion
capture data have been developed [13], [14], [15]. Motions are
represented in joint-space with limited consideration of other
task variables. Emphasis is on the motion of the character, with
little consideration to objects in the environment that might
be relevant to performing a task. In contrast, our task matrix
is designed to accommodate motion trajectories originating
from motion capture, but also provides support for other
task parameters (e.g., different physical preconditions, objects
needed to perform the task, etc.)

Another useful concept from animation is the development

Left Hand

Right Leg / “\\ LeftLeg

Trajectory
us;’ tracking skill T |
B . L 5 _ moves Right Hand
9W|ng @—contains— owing | Uses all :l
Trajectory Task
A
references
Ready-To- Greeting Lo
Wave Task
Precondition (macro)
Wavi require references
aving .
Trajectory Oomaml Wave Hand
Task

Fig. 3.

This figure shows the interaction between components in the matrix. Specifically, primitive tasks (bowing and waving) make use of preconditions

(Ready-To-Wave), trajectories, kinematic chains (full body for bowing, single arm for waving), and the trajectory tracking skill. This figure also shows how a

“macro task” (Section 1V), greeting, references multiple primitive tasks.

of scripting systems for specifying real-time behavior for
characters or virtual agents [16]. The behaviors defined with
the scripting language are usually defined in terms of changing
sequences of degrees-of-freedom of the character, though
parameters for tasks and other state variables can be provided.
In the system architecture of Perlin [16], simple behaviors
are stored in an animation engine while high level behaviors
are modeled in the behavior engine. However, the logic to
determine when to perform certain tasks is intermixed with
descriptions of complex task sequences (created from simpler
atomic tasks) in this animation engine. In the task matrix, we
choose to separate all tasks, both simple and aggregate, from
goal execution and planning. This separation allows the matrix
to be reusable for a variety of different task performance
mechanisms.

III. TASK MATRIX DESIGN

The task matrix is composed of three fundamental con-
structs: conditions, task programs, and motions. Additionally,
the matrix relies on a fourth construct, the Skill Module, to
provide a common skill set. These four elements are presented
in this section.

A. Conditions

A condition is a Boolean function of state (typically per-
cepts). Conditions are used both to determine whether a
task program is capable of executing (precondition) and to
determine whether a task program can continue executing (in-
condition). The idea of using conditions to determine whether
a task program is capable of beginning or continuing execution
was drawn from Nicolescu and Matari¢ [17]; they call a
precondition an ‘“enabling precondition” and an incondition
a “permanent precondition”, but the underlying mechanisms
are identical.

Two types of conditions are currently included with the
matrix: postural conditions and kinematic chains. Postural
conditions determine whether a kinematic chain of the robot
is in a specified posture (and the velocities and accelera-
tions of those degrees-of-freedom comprising the subchain
are zero). Kinematic chains are a special kind of precondi-
tion used for deadlock prevention [18] if multiple tasks are
performed simultaneously. Task programs must declare what
kinematic chains (e.g., arm, legs, head, etc.) may be used
before being executed. Tasks can utilize abstract chains like
“singlearm”, “singlehand”, or “singleleg” or specific chains
such as “rightarm”, “righthand”, or “leftleg”. This abstraction
allows tasks to be mirrored from one limb to another where
applicable. An example interaction between task programs and
conditions is shown in Figure 3.

B. Task programs

A task program is a function of time and state that runs for
some duration (possibly unlimited), performing robot skills.
Task programs may run interactively (e.g., reactively) or
may require considerable computation for planning. We use
preconditions to determine whether a task program may be
executed and inconditions to check whether a task program
can continue executing. Task programs can accept parameters
that influence execution. In the sample XML file included in
Figure 2, the wave task program accepts two floating-point
parameters, period and duration that are used to modify the
generated movement.

An important issue encountered when attempting to decom-
pose tasks into simpler constituents is that of granularity, the
chosen atomic level of the task. Tasks that exhibit extremely
coarse granularity would be at the level of human semantics
(eg., “finding keys”, “driving to John’s house”, and “washing
laundry”). The primary advantage of defining tasks in this

way is simplicity in interfacing with humans; this is the way
that humans think of tasks. The disadvantage of defining
tasks at this level is profligacy resulting from failure to
utilize similarities between like tasks (e.g., “finding keys” and
“finding wallet”).

The other extreme, fine granularity, would put tasks at the
stroke-level; sample atomic tasks would be “move hand up
+1”, “move hand right +1”, “move head left -1”, etc. Tasks
like “finding keys” could then be expressed as sequences and
combinations of the atomic tasks. Defining tasks at this level of
granularity is parsimonious and would result in a rather small
vocabulary. Attempting to express tasks as sequences of stroke
level movements has not been viable to date; it is generally
too tedious to decompose high-level tasks into stroke level
movements. Additionally, defining tasks at the stroke level
would result in a robot specific implementation, which this
work attempts to avoid.

Seeking a reasonable balance between these extremes, we
choose to define the granularity of tasks in the matrix at the
coarsest level such that no task consists of clearly identifiable
subtasks. If a task contains subtasks, it should be decomposed
into its constituent subtasks until further decomposition is
difficult (elaborated below). For example, assume that we wish
to add the Pick-and-place task to the matrix. Pick-and-place
consists of several subtasks: extending the arm to reach the
object to be picked, grasping the object, moving the arm to
place the object at the proper location, and releasing the object.
The Pick-and-place task would then be represented as a macro
task in the matrix (Section IV), consisting of the subtasks
reach, grasp, and release. Choosing this level of granularity
allows for intuitive task semantics and economical storage of
the matrix. In practice, it is quite natural to program tasks at
this granularity; coarser granularity requires additional effort
from the programmer to transition between subtasks, while
finer granularity tends to be robot dependent.

C. Motions

We refer to sets of trajectories, whether joint-space or
operational-space, as motions. Motions are stored within the
task matrix, and are not integrated with the task programs. This
separation allows the set of task programs to be easily trans-
ferred to another robot; only the motions need be changed.
Storing the motions has other benefits as well: trajectories can
be mirrored to other limbs and multiple task programs can
utilize a single set of trajectories (e.g., a task could modify the
trajectories for hitting a tennis ball to hit a ping-pong ball).

D. Skills

The Task matrix relies upon a set of common (across
robot platforms) skills to perform tasks in the matrix. A task
program that simply follows a trajectory, for example, does
not operate directly upon the robot. Instead, the program uses
the trajectory following skill. This skill operates independently
of the underlying controller; the task does not need to know
whether the robot uses computed torque control, feedback
control, etc.

The common skill set for robots currently consists of
trajectory tracking (following a trajectory), motion planning
(with collision avoidance), trajectory rescaling (slowing the
timing of a trajectory so that it may be followed using the
robot’s dynamics limitations), forward and inverse kinematics,
and a method for determining the requisite humanoid hand
configuration for grasping a given object. Note that the tasks
in the matrix know only about the robot’s anthropomorphic
topology; tasks execute skills using abstract kinematic chains
(e.g., “leftarm”, “head”, etc.) rather than concrete degrees-of-
freedom.

IV. MACRO TASKS

Performing primitive tasks in isolation does not exploit
the full capabilities of the task matrix. Interesting behavior
emerges as a result of performing multiple tasks sequentially
and concurrently. We design macro tasks (i.e., complex tasks)
using Message-Driven Machines (MDMs), a state machine
representation that allows for both sequential and concurrent
execution of tasks. MDMs allow multiple states (i.e., task
programs) to be active simultaneously, in contrast to finite-
state machines, for which only one state is active at any time.

MDMs operate using a message passing mechanism. Task
programs are executed or terminated based on messages from
other task programs. Typical messages include fask-complete
(indicating the task has completed execution), planning-started
(indicating the planning phase of the task has begun), and
force-quit (indicating that the task was terminated prema-
turely).

MDMs are composed of a set of states and transitions.
There is a many-to-one mapping from states to task programs
(i.e., multiple states may utilize the same task program)
within a MDM; the task programs in this mapping may be
primitive programs or other MDMs. A transition within a
MDM indicates that a task program is to be executed or
terminated, depending on the transition type. A transition to
a state may only be taken if both the appropriate message
is received and an optional Boolean conditional expression
associated with the transition is satisfied.

Figure 5 depicts a simple sequential macro task for per-
forming Pick-and-place, performed using the MDM in Figure
4. Execution begins at the start state and proceeds as follows:
If the robot is already grasping an object, it transitions to the
Release, state, where it begins execution (thereby dropping
the grasped object). A transition is made to the Reach; state,
which causes the robot to reach to the target object. When the
robot has successfully reached the target object, it is made to
grasp the object. Next, the robot reaches to the target location
(the Reachs state). Finally, the robot releases the object, now
at its target location. The outline drawn around the Release;
state in Figure 4 indicates that the macro task ends execution
upon termination of this state. Note that the MDM presents
its own parametric interface (the shaded boxes in Figure 4);
these parameters are “wired” to the task programs contained
within the MDM.

lis-grasping?

task-done

task-done

Release,

task-done

Fig. 4. The MDM for performing the Pick-and-place task. Parameters are
represented by the shaded boxes. Transitions are indicated by lines with
arrows. Boolean conditions are in unaccented text, messages are in italicized
text

Reach Grasp Reach Release
I\ | r\' ! -
L N

Fig. 5. The primitive subtasks of Pick-and-place, in action

Figure 6 depicts a MDM for facing a person and waving
concurrently (shown in Figure 7). Execution again begins at
the start state and then immediately transitions to the facing
state, which begins searching for a person to face. “Facing” can
execute as a recurrent behavior, meaning that it has no natural
end, and must be explicitly terminated. When the robot is
facing a person, it outputs the message goal-achieved (but does
not terminate). This message causes the get-ready-to-wave task
to begin executing, which gets the robot in the appropriate
posture for waving. However, the “facing” task continues
executing. Once the robot is in the correct posture, the robot
begins waving. When waving is complete, a transition is used
to terminate the facing behavior.

It is natural to wonder what happens if one of the subtasks
in a macro task fails. We strive to make the primitive tasks
in the task matrix very robust, but failure is always possible.
MDMs can catch and recover from failures in execution using
an alternate path of execution, transitioned to by receiving the
task-failed message. By default, if a rask-failed message is not
“caught”, execution of the MDM terminates.

\ Y l

Wave
duration

Person

A
Y task-done

4@y-To—Wave

task-done

Arm

\

x task-done

Fig. 6. The MDM for performing the facing and waving simultaneously.
Parameters are represented by the shaded boxes. Transitions that execute
new task programs are indicated by sold lines with arrows; transitions that
terminate running task programs are indicated by dashed lines with arrows.
Messages are in italicized text.

V. SEEDING THE MATRIX

We aim to build a large, diverse set of task programs in
the task matrix. To facilitate this goal, we have seeded the
matrix with a few classes of tasks, two types of conditions,
and implemented several task performance modules.

A. Task classes

A primitive task can be coded as a procedural task, which
is implemented as a dynamically loaded library module (e.g.,
the reach task in Figure 2) used to perform a specific task. In
addition to procedural tasks, we have identified three classes of
primitive tasks: canned aperiodic, canned periodic, and pos-
tural (Figure 8). These classes allow for production of many
behaviors using a common interface. In particular, the task
matrix was programmed using the object-oriented paradigm,
allowing for calling mechanisms to treat tasks abstractly.

1) Canned tasks: A “canned” task program is used to
generate trajectories for a kinematic chain of a robot for
position control only (i.e., no interaction control). Canned
tasks get their name because the joint-space or operational-
space taken by the robot remains constant; only the timing
of the movement may change. The trajectories are encapsu-
lated in motion elements of the task matrix (see Section III-
C), localizing robot-specific degrees of freedom. The caller
must specify the duration of the movement (and period for
periodic movements). To add a new canned task, only a set of

Task

Procedural

Postural

Canned

| Aperiodic Periodic
Grasp Get-Ready-To- Bow Wave
Wave
' ?

=

Fig. 8. Depiction of the current primitive task class hierarchy and example tasks that fit within the hierarchy. All primitive tasks are subclasses of type task.
Each level represents a subclass (both conceptually and programatically); for example, aperiodic is a subtype of canned, which is a subtype of fask.

joint-space or operational-space trajectories is required. The
underlying skills sends appropriate commands to a controller.
Examples of canned tasks are waving, sign language commu-
nication, and taking a bow.

2) Postural tasks: A postural task requires the robot to
drive a kinematic chain to a desired joint-space position in
a collision-free manner, which is a motion-planning problem
[19]. Adding a new postural task program requires specifying
only the kinematic chain and desired posture. When that new
task is executed, a collision-free motion path from the current
posture to the desired posture is planned. Postural tasks are
used to satisfy preconditions for other tasks (such as canned
tasks), as well as to produce some body gestures.

B. Postural condition

The postural precondition is frequently necessary to per-
form canned tasks. A postural condition requires some spec-
ified kinematic chains of the robot to be in a given posture
(i.e., joint-space position, zero velocity, and zero acceleration)
to evaluate to true. The waving task program, is an example
of a task program that utilizes a postural precondition.

C. Reach task

Reaching to a location in operational-space is an important
skill for humanoid robots. Humanoids need to manipulate
objects, and reaching is required to do so. The task matrix
includes a procedural task for reaching to a location in a
collision-free manner, even when locomotion is required. Note
that, even though the reaching task is a procedural task, it is
still robot independent.

D. Facing task

Humanoid robots must be able to interact with humans. We
have included one procedural program for facing a human.
Given the position of a human as input, the facing task
program servos the robot’s planar orientation so that it faces
the human. This task program differs from the other programs
presented in this section in two ways: it may be recurrent
(i.e., it does not necessarily terminate when it reaches its goal)
and its behavior is a function of a dynamic variable (human
position). This task program relies on the locomotion skill to
perform the robot specific movements necessary to face in the
desired direction.

E. Grasp task

Grasping to provide force-closure, the ability to resist all
object motions provided that the end-effector can apply suffi-
ciently large contact forces [20], is a generally desirable ability
for humanoid robots. The hand configuration for grasping de-
pends on the robot hand geometry and physical characteristics,
the object to be grasped, and the task with which the object
will be used (this last information is frequently a function
of the type of the object to be grasped). Grasping can be
considered to be a motion planning task for which the goal
configuration is in resting contact.

We assume the existence of a single grasping configuration
for the robot hand; in general, there are multiple (possibly
infinite) hand configurations that can be used to grasp an
object. Grasping relies upon the skill described in Section III-
D to determine the hand configuration as a function of object

Fig. 7. Successive images from simultaneously facing and waving

type, robot, and grasping hand. Note that it is possible to pass
additional parameters to the grasping task program to specify
where and for what purpose an object is to be grasped; future
work will investigate the utility of this direction.

VI. RESULTS

We have implemented the task matrix in accordance with
the design goals described in Section I. The previous section
presented the tasks and conditions that we used to seed
the matrix. This section shows the capabilities of the task
matrix, with regard to performing complex tasks, updating the
matrix, and promoting robot independence. All examples were
generated by connecting the task matrix to our robot simulator
that uses a 26 degree-of-freedom robot. Although the simulator
is kinematics-based only, the task matrix is not precluded from
being used in dynamic settings.

A. Complex tasks from task primitives

We previewed the possibilities for constructing complex
behavior from primitive task programs in Section IV. We
demonstrated how we could perform a Pick-and-place task
that utilizes locomotion using three primitive task programs
(reaching, grasping, and releasing) and a facing-and-waving

task that also uses three primitive task program (facing, get-
ready-to-wave, and waving). We constructed these macro tasks
in only a few minutes by specifying the MDM states and
transitions and “parameter wiring”.

B. Interface to the matrix

We have implemented a simple interface to the Task matrix
(the Task Selection Interface in Figure 1). The interface uses
a module called a Task Execution Manager (Figure 1) to
execute task performance programs; this module is similar
to a process scheduler in an operating system. Although
the interface for selecting and running tasks is very simple,
the execution manager module is quite sophisticated. The
module checks that the required kinematic chains are available
and any preconditions are satisfied before executing a task
performance program. Additionally, the execution manager
controls concurrent execution of programs.

C. Updating the matrix

The task matrix facilitates easy updating of content and
inter-task relationships to allow the vocabulary of tasks to
be constantly expanded. Our design accomplishes this feat in
several ways:

o All tasks and their elements are represented as separate
entities, so the task designer is free to add more instances
of any category (motions, conditions, or task programs).
An XML file format stores the information offline.

e Task programs and conditions are represented as
dynamically-linked executable objects that are external
to the task matrix framework software. This separation
allows developers to implement and distribute their meth-
ods in an efficient manner.

o The organization of task programs in the matrix is sep-
arated from the underlying method used to perform the
task. Implementations can be improved while maintaining
a consistent task interface because the algorithmic details
are isolated and hidden in the dynamic executable object.
For example, if the motion-planning algorithm used by
postural task programs is replaced with a more efficient
one, then the performance of all postural task programs
will subsequently improve.

« Different algorithms that accomplish the same task can
co-exist in the same matrix. The precondition mechanism
can be used to specify the conditions for which a partic-
ular algorithm should be used. For example, a navigation
algorithm for a locomotion task might be a function of
whether the environment is static or dynamic.

D. Robot Independence

To ensure robot independence, the interfaces to all tasks
avoid using any robot-specific parameters. Kinematic chains
are identified semantically rather than referring to specific
body segments. Trajectories can be specified using a “mo-
tion descriptor”, rather than producing joint-space positions,
velocities, etc. as a function of time; segment orientations or
operational-space configuration can be used to decouple the
trajectory coordinates from a particular robot.

E. Limitations

There are currently several important limitations to the task
matrix. We assume concurrent tasks are allowable only if there
is no conflict of kinematic chains. We do not consider or
compensate for dynamic instabilities caused by the induced
inertial effects of combined tasks. These issues could be
mitigated using whole-body control techniques for handling
multiple tasks, as described in [21]. The task matrix framework
also requires the provision of the primitive task programs.
Though there has been some research to address this issue
through automatic methods [22], it remains a manually inten-
sive endeavor.

VII. CONCLUSION

We presented an extensible matrix seeded with several
useful categories of tasks that allows our robot to produce
complex behavior. In the future, we will expand the capa-
bilities of the matrix by identifying and implementing more
classes of primitive tasks. We will add a planning mechanism
for sequences of tasks to relieve some of the work cur-
rently occupied by programming macro tasks. New “execution
modes”, such as an imitative mode, will be added to the system
to complement the current interactive mode (the planning
mechanism and execution modes are components external to
the matrix; the task matrix itself will remain unchanged.) We
also plan to add more primitive task programs and types of
conditions to expand the capabilities of humanoids using the
matrix. Finally, we intend to validate the task matrix on a
wide range of tasks, in both real and physically simulated
environments.

In the quest for building autonomous robots, we believe
that the task matrix framework can provide a bridge between
high-level goals and low-level motor programs.

REFERENCES

[1] J. Hodgins and V. Wooten, “Animating human athletes,” in Robotics
Research: The Eighth Intl. Symposium, Y. Shirai and S. Hirose, Eds.
Berlin: Springer-Verlag, 1998, pp. 356-367.

[2] P-F. Yang, J. Laszlo, and K. Singh, “Layered dynamic control for
interactive character swimming,” in Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, R. Boulic and D. Pai, Eds.,
Grenoble, France, 2004.

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

O. Khatib, “A unified approach to motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43-53, Feb 1987.

S. Schaal and C. G. Atkeson, “Robot juggling: An implementation of
memory-based learning,” Control Systems Magazine, vol. 14, no. 1, pp.
15-71, 1994.

R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Trans. on Robotics and Automation, vol. 2, no. 1, pp. 14-23,
April 1986.

R. C. Arkin, Behavior-Based Robotics. MIT Press, May 1998.

M. Matari¢, “Getting humanoids to move and imitate,” /EEE Intelligent
Systems, pp. 18-24, July 2000.

——, “Behavior-based control : Examples from navigation, learning,
and group behavior,” Journal of Experimental and Theoretical Artificial
Intelligence, vol. 9, no. 2-3, pp. 323-336, 1997.

J. J. Craig, Introduction to Robotics: Mechanics and Control.
MA: Addison-Wesley, 2005.

T. Lozano-Pérez, “Task planning,” in Robot motion: planning and
control, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez,

and M. T. Mason, Eds. MIT Press, 1982, pp. 474-498.
A. Levas and M. Selfridge, “A user-friendly high-level robot teaching

system,” in Proc. of Intl. Conf. on Robotics and Automation (ICRA),
1984, pp. 413-416.

N. 1. Badler, R. Bindiganavale, J. Bourne, J. Allbeck, J. Shi, and
M. Palmer, “Real time virtual humans,” in Proc. of Intl. Conf. on Digital
Media Futures, Bradford, UK, 1999.

L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Transac-
tions on Graphics, vol. 21, no. 3, pp. 473-482, July 2002.

J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard, “Interactive
control of avatars animated with human motion data,” in Proc. of
SIGGRAPH 2002, San Antonio, TX, July 2002, pp. 491-500.

O. Arikan, D. Forsyth, and J. F. O’Brien, “Motion synthesis from anno-
tations,” ACM Transactions on Graphics, Proceedings of SIGGRAPH,
vol. 22, no. 3, pp. 402-408, July 2003.

K. Perlin and A. Goldberg, “Improv: A system for scripting interactive
actors in virtual worlds,” in Proc. of SIGGRAPH 1996, 1996.

M. Nicolescu and M. Matari¢, “Learning and interacting in human-
robot domains,” Special Issue of IEEE Trans. on Systems, Man, and
Cybernetics, Part A: Systems and Humans, vol. 31, no. 5, pp. 419-430,
September 2001.

A. S. Tanenbaum, Modern Operating Systems, 2nd. ed. Prentice Hall,
2001.

S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

A. T. Miller, “Graspit: A versatile simulator for robotic grasping,” Ph.D.
dissertation, Columbia University, 2001.

O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” Intl. Journal of Humanoid
Robotics, vol. 1, no. 1, pp. 29—44, March 2004.

O. C. Jenkins, “Data-driven derivation of skills for autonomous hu-
manoid agents,” Ph.D. dissertation, University of Southern California,
2003.

Reading,

