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To all who know more than one language



Preface

Compilers and operating systems constitute the basic interfaces between a programmer and
the machine for which he is developing software. In this book we are concerned with the
construction of the former. Our intent is to provide the reader with a firm theoretical basis
for compiler construction and sound engineering principles for selecting alternate methods,
implementing them, and integrating them into a reliable, economically viable product. The
emphasis is upon a clean decomposition employing modules that can be re-used for many com-
pilers, separation of concerns to facilitate team programming, and flexibility to accommodate
hardware and system constraints. A reader should be able to understand the questions he
must ask when designing a compiler for language X on machine Y, what tradeoffs are possible,
and what performance might be obtained. He should not feel that any part of the design rests
on whim; each decision must be based upon specific, identifiable characteristics of the source
and target languages or upon design goals of the compiler.

The vast majority of computer professionals will never write a compiler. Nevertheless,
study of compiler technology provides important benefits for almost everyone in the field.

e It focuses attention on the basic relationships between languages and machines. Un-
derstanding of these relationships eases the inevitable transitions to new hardware and
programming languages and improves a person’s ability to make appropriate tradeoffs
in design and implementation.

e [t illustrates application of software engineering techniques to the solution of a significant
problem. The problem is understandable to most users of computers, and involves both
combinatorial and data processing aspects.

e Many of the techniques used to construct a compiler are useful in a wide variety of appli-
cations involving symbolic data. In particular, every man-machine interface constitutes
a form of programming language and the handling of input involves these techniques.

e We believe that software tools will be used increasingly to support many aspects of
compiler construction. Much of Chapters 7 and 8 is therefore devoted to parser gen-
erators and analyzers for attribute grammars. The details of this discussion are only
interesting to those who must construct such tools; the general outlines must be known
to all who use them. We also realize that construction of compilers by hand will remain
an important alternative, and thus we have presented manual methods even for those
situations where tool use is recommended.

Virtually every problem in compiler construction has a vast number of possible solutions.
We have restricted our discussion to the methods that are most useful today, and make no
attempt to give a comprehensive survey. Thus, for example, we treat only the LL, and LR
parsing techniques and provide references to the literature for other approaches. Because we
do not constantly remind the reader that alternative solutions are available, we may sometimes
appear overly dogmatic although that is not our intent.
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Chapters 5 and 8, and Appendix B, state most theoretical results without proof. Although
this makes the book unsuitable for those whose primary interest is the theory underlying a
compiler, we felt that emphasis on proofs would be misplaced. Many excellent theoretical
texts already exist; our concern is reduction to practice.

A compiler design is carried out in the context of a particular language/machine pair.
Although the principles of compiler construction are largely independent of this context, the
detailed design decisions are not. In order to maintain a consistent context for our major
examples, we therefore need to choose a particular source language and target machine. The
source language that we shall use is defined in Appendix A. We chose not to use an existing
language for several reasons, the most important being that a new language enabled us to
control complexity: Features illustrating significant questions in compiler design could be
included while avoiding features that led to burdensome but obvious detail. It also allows
us to illustrate how a compiler writer derives information about a language, and provides an
example of an informal but relatively precise language definition.

We chose the machine language of the IBM 370 and its imitators as our target. This
architecture is widely used, and in many respects it is a difficult one to deal with. The
problems are representative of many computers, the important exceptions being those (such
as the Intel 8086) without a set of general registers. As we discuss code generation and
assembly strategies we shall point out simplifications for more uniform architectures like
those of the DEC PDP11 and Motorola 68000.

We assume that the reader has a minimum of one year of experience with a block-
structured language, and some familiarity with computer organization. Chapters 5 and 8
use notation from logic and set theory, but the material itself is straightforward. Several
important algorithms are based upon results from graph theory summarized in Appendix B.

This book is based upon many compiler projects and upon the lectures given by the
authors at the Universitat Karlsruhe and the University of Colorado. For self-study, we
recommend that a reader with very little background begin with Section 1.1, Chapters 2
and 3, Section 12.1 and Appendix A. His objective should be to thoroughly understand the
relationships between typical programming languages and typical machines, relationships that
define the task of the compiler. It is useful to examine the machine code produced by existing
compilers while studying this material. The remainder of Chapter 1 and all of Chapter 4 give
an overview of the organization of a compiler and the properties of its major data structures,
while Chapter 14 shows how three production compilers have been structured. From this
material the reader should gain an appreciation for how the various subtasks relate to one
another, and the important characteristics of the interfaces between them.

Chapters 5, 6 and 7 deal with the task of determining the structure of the source program.
This is perhaps the best-understood of all compiler tasks, and the one for which the most
theoretical background is available. The theory is summarized in Chapter 5, and applied in
Chapters 6 and 7. Readers who are not theoretically inclined, and who are not concerned
with constructing parser generators, should skim Chapter 5. Their objectives should be to
understand the notation for describing grammars, to be able to deal with finite automata,
and to understand the concept of using a stack to resolve parenthesis nesting. These readers
should then concentrate on Chapter 6, Section 7.1 and the recursive descent parse algorithm
of Section 7.2.2.

The relationship between Chapter 8 and Chapter 9 is similar to that between Chapter 5
and Chapter 7, but the theory is less extensive and less formal. This theory also underlies
parts of Chapters 10 and 11. We suggest that the reader who is actually engaged in com-
piler construction devote more effort to Chapters 8-11 than to Chapters 5-7. The reason is
that parser generators can be obtained “off the shelf” and used to construct the lexical and
syntactic analysis modules quickly and reliably. A compiler designer must typically devote
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most of his effort to specifying and implementing the remainder of the compiler, and hence
familiarity with Chapters 8-11 will have a greater effect on his productivity.

The lecturer in a one-semester, three-hour course that includes exercises is compelled to
restrict himself to the fundamental concepts. Details of programming languages (Chapter 2),
machines (Chapter 3) and formal languages and automata theory (Chapter 5) can only be
covered in a cursory fashion or must be assumed as background. The specific techniques
for parser development and attribute grammar analysis, as well as the whole of Chapter 13,
must be reserved for a separate course. It seems best to present theoretical concepts from
Chapter 5 in close conjunction with the specific methods of Chapters 6 and 7, rather than as
a single topic. A typical outline is:

1. The Nature of the Problem 4 hours
1.1. Overview of compilation (Chapter 1)
1.2. Languages and machines (Chapters 2 and 3)
2. Compiler Data Structures (Chapter 4) 4 hours
3. Structural Analysis 10 hours
3.1. Formal Systems (Chapter 5)
3.2. Lexical analysis (Chapter 6)
3.3. Parsing (Chapter 7)
Review and Examination 2 hours
4. Consistency Checking 10 hours
4.1. Attribute grammars (Chapter 8)
4.2. Semantic analysis (Chapter 9)

5. Code Generation (Chapter 10) 8 hours
6. Assembly (Chapter 11) 2 hours
7. Error Recovery (Chapter 12) 3 hours
Review 2 hours

The students do not write a compiler during this course. For several years it has been
run concurrently with a practicum in which the students implement the essential parts of a
LAX compiler. They are given the entire compiler, with stubs replacing the parts they are to
write. In contrast to project courses in which the students must write a complete compiler, this
approach has the advantage that they need not be concerned with unimportant organizational
tasks. Since only the central problems need be solved, one can deal with complex language
properties. At the same time, students are forced to read the environment programs and to
adhere to interface specifications. Finally, if a student cannot solve a particular problem it
does not cause his entire project to fail since he can take the solution given by the instructor
and proceed.
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Chapter 1

Introduction and Overview

The term compilation denotes the conversion of an algorithm expressed in a human-oriented
source language to an equivalent algorithm expressed in a hardware-oriented target language.
We shall be concerned with the engineering of compilers — their organization, algorithms,
data structures and user interfaces.

1.1 Translation and Interpretation

Programming languages are tools used to construct formal descriptions of finite computations
(algorithms). Each computation consists of operations that transform a given initial state
into some final state. A programming language provides essentially three components for
describing such computations:

e Data types, objects and values with operations defined upon them.
e Rules fixing the chronological relationships among specified operations.
e Rules fixing the (static) structure of a program.

These components together constitute the level of abstraction on which we can formulate
algorithms in the language. We shall discuss abstractions for programming languages in detail
in Chapter 2.

The collection of objects existing at a given point in time during the computation consti-
tutes the state, s, of the computation at that time. The set, S, of all states that could occur
during computations expressed in the language is called the state space of the language. The
meaning of an algorithm is the (partially-defined) function f : S — S by which it transforms
initial states to final states.

Figure 1.1 illustrates the concept of a state. Figure 1.la is a fragment of a program
written in Pascal. Since this fragment does not declare the identifiers ¢ and j, we add the
fact that both are integer variables. The values of 7 and j before the given fragment begins
to execute constitute the initial state; their values after execution ceases constitute the final
state. Figurel.lb illustrates the state transformations carried out by the fragment, starting
from a particular initial state.

Let f be the function defined by the state transformation of some particular algorithm A.
If we are to preserve the meaning of A when compiling it to a new language then the state
transformation function f’ of the translated algorithm A’ must, in some sense, ‘agree’ with f.
Since the state space, S’, of the target language may differ from that of the source language,
we must first decide upon a function, M, to map each state s; € S to a subset M(s) of S’.
The function f’ then preserves the meaning of f if f'(M(s)) is a subset of M(f(s)) for all
allowable initial states s € S.
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while 7 # j do
if ¢ > 7 then ¢ :=17 — 7 else 7 :=7 — 1;

a) An algorithm

Initial: =36 j =24
i=12 j=24
Final: =12 j =12

b) A particular sequence of states

Figure 1.1: Algorithms and States

For example, consider the language of a simple computer with a single accumulator and two
data locations called T and J respectively (Exercise 1.3). Suppose that M maps a particular
state of the algorithm given in Figure 1.1a to a set of machine states in which I contains the
value of the variable ¢, J contains the value of the variable j, and the accumulator contains
any arbitrary value. Figure 1.2a shows a translation of Figure 1.1a for this machine; a partial
state sequence is given in Figure 1.2b.

LOOP LOAD I

SUB J
JZERO EXIT
JNEG SUBI
STORE 1

JUMP  LOOP
SUBI LOAD J

SUB I

STORE J

JUMP  LOOP
EXIT

a) An algorithm

Initial: I=36 J=24 ACC=7
I=36 J=24 ACC =36
I=36 J=24 ACC =12

Final: I=12 J=12 ACC=0

b) A sequence of states corresponding to Figure 1.1b

Figure 1.2: A Translation of Figure 1.1

In determining the state sequence of Figure 1.1b, we used only the concepts of Pascal as
specified by the language definition. For every programming language, PL, we can define
an abstract machine: The operations, data structures and control structures of PL become
the memory elements and instructions of the machine. A ‘Pascal machine’ is therefore an
imaginary computer with Pascal operations as its machine instructions and the data objects
possible in Pascal as its memory elements. Execution of an algorithm written in PL on such
a machine is called interpretation; the abstract machine is an interpreter.
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A pure interpreter analyzes the character form of each source language instruction every
time that instruction is executed. If the given instruction is only to be executed once, pure
interpretation is the least expensive method of all. Hence it is often used for job control
languages and the ‘immediate commands’ of interactive languages. When instructions are
to be executed repeatedly, a better approach is to analyze the character form of the source
program only once, replacing it with a sequence of symbols more amenable to interpretation.
This analysis is simply a translation of the source language into some target language, which
is then interpreted.

The translation from the source language to the target language can take place as each
instruction of the program is executed for the first time (interpretation with substitution).
Thus only that part of the program actually executed will be translated; during testing this
may be only a fraction of the entire program. Also, the character form of the source program
can often be stored more compactly than the equivalent target program. The disadvantage of
interpretation with substitution is that both the compiler and interpreter must be available
during execution. In practice, however, a system of this kind should not be significantly larger
than a pure interpreter for the same language.

Examples may be found of virtually all levels of interpretation. At one extreme are the
systems in which the compiler merely converts constants to internal form, fixes the meaning
of identifiers and perhaps transforms infix notation to postfix (APL and SNOBOL4 are com-
monly implemented this way); at the other are the systems in which the hardware, assisted
by a small run-time system, forms the interpreter (FORTRAN and Pascal implementations
usually follow this strategy).

1.2 The Tasks of a Compiler

A compilation is usually implemented as a sequence of transformations (SL, L1), (L1, L), . . .,
(Ly,TL), where SL is the source language and TL is the target language. Each language
L; is called an intermediate language. Intermediate languages are conceptual tools used in
decomposing the task of compiling from the source language to the target language. The
design of a particular compiler determines which (if any) intermediate language programs
actually appear as concrete text or data structures during compilation.

Any compilation can be broken down into two major tasks:

e Analysis: Discover the structure and primitives of the source program, determining its
meaning.

e Synthesis: Create a target program equivalent to the source program.

This breakdown is useful because it separates our concerns about the source and target
languages.

The analysis concerns itself solely with the properties of the source language. It converts
the program text submitted by the programmer into an abstract representation embodying
the essential properties of the algorithm. This abstract representation may be implemented
in many ways, but it is usually conceptualized as a tree. The structure of the tree represents
the control and data flow aspects of the program, and additional information is attached
to the nodes to describe other aspects vital to the compilation. In Chapter 2 we review
the general characteristics of source languages, pointing out the properties relevant for the
compiler writer. Figure 1.3 illustrates the general idea with an abstraction of the algorithm
of Figure 1.1a.

Figure 1.3a describes the control and data flow of the algorithm by means of the k"
descendant of’ relation. For example, to carry out the algorithm described by a subtree
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a) Control and data flow

Node Additional Information
1dn identifier corresponding declaration

name | type of the variable

exp type of the expression value

b) Additional information about the source program

Node Additional Information

name | corresponding data location

if address of code to carry out the else part
while | address of the expression evaluation code

c¢) Additional information about the target program

Figure 1.3: An Abstract Program Fragment

rooted in a while node we first evaluate the expression described by the subtree that is the
first descendant of the while node. If this expression yields true then we carry out the
algorithm described by the subtree that is the second descendant. Similarly, to evaluate the
expression described by an expression subtree, we evaluate the first and third descendants
and then apply the operator described by the second descendant to the results.

The algorithm of Figure 1.1a is not completely characterized by Figure 1.3a. Information
must be added (Figure 1.3b) to complete the description. Note that some of this information
(the actual identifier for each idn) is taken directly form the source text. The remainder is
obtained by processing the tree. For example, the type of the expression value depends upon
the operator and the types of the operands.

Synthesis proceeds from the abstraction developed during analysis. It augments the tree
by attaching additional information (Figure 1.3c) that reflects the source-to-target mapping
discussed in the previous section. For example, the access function for the variable 7 in
Figure 1.1a would become the address of data location I according to the mapping M assumed
by Figure 1.2. Similarly, the address of the else part of the conditional was represented by
the label SUBI. Chapter 3 discusses the general characteristics of machines, highlighting
properties that are important in the development of source-to-target mappings.

Formal definitions of the source language and the source-to-target mapping determine the
structure of the tree and the computation of the additional information. The compiler simply
implements the indicated transformations, and hence the abstraction illustrated in Figure 1.3
forms the basis for the entire compiler design. In Chapter 4 we discuss this abstraction in
detail, considering possible intermediate languages and the auxiliary data structures used in
transforming between them.

Analysis is the more formalized of the two major compiler tasks. It is generally broken
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down into two parts, the structural analysis to determine the static structure of the source
program, and the semantic analysis to fix the additional information and check its consistency.
Chapter 5 summarizes some results from the theory of formal languages and shows how they
are used in the structural analysis of a program. Two subtasks of the structural analysis are
identified on the basis of the particular formalisms employed: Lezical analysis (Chapter 6)
deals with the basic symbols of the source program, and is described in terms of finite-state
automata; syntactic analysis, or parsing, (Chapter 7) deals with the static structure of the
program, and is described in terms of pushdown automata. Chapter 8 extends the theoretical
treatment of Chapter 5 to cover the additional information attached to the components of the
structure, and Chapter 9 applies the resulting formalism (attribute grammars) to semantic
analysis.

There is little in the way of formal models for the entire synthesis process, although al-
gorithms for various subtasks are known. We view synthesis as consisting of two distinct
subtasks, code generation and assembly. Code generation (Chapter 10) transforms the ab-
stract source program appearing at the analysis/synthesis interface into an equivalent target
machine program. This transformation is carried out in two steps: First we map the algo-
rithm from source concepts to target concepts, and then we select a specific sequence of target
machine instructions to implement that algorithm.

Assembly (Chapter 11) resolves all target addressing and converts the target machine
instructions into an appropriate output format. We should stress that by using the term
‘assembly’ we do not imply that the code generator will produce symbolic assembly code for
input to the assembly task. Instead, it delivers an internal representation of target instructions
in which most addresses remain unresolved. This representation is similar to that resulting
from analysis of symbolic instructions during the first pass of a normal symbolic assembler.
The output of the assembly task should be in the format accepted by the standard link editor
or loader on the target machine.

Errors may appear at any time during the compilation process. In order to detect as
many errors as possible in a single run, repairs must be made such that the program is
consistent, even though it may not reflect the programmer’s intent. Violations of the rules of
the source language should be detected and reported during analysis. If the source algorithm
uses concepts of the source language for which no target equivalent has been defined in a
particular implementation, or if the target algorithm exceeds limitations of a specific target
language interpreter (e.g. requires more memory than a specific computer provides), this
should be reported during synthesis. Finally, errors must be reported if any storage limits of
the compiler itself are violated.

In addition to the actual error handling, it is useful for the compiler to provide extra
information for run-time error detection and debugging. This task is closely related to error
handling, and both are discussed in Chapter 12.

A number of strategies may be followed in an attempt to improve the target program
relative to some specified measure of cost. (Code size and execution speed are typical cost
measures.) These strategies may involve deeper analysis of the source program, more complex
mapping functions, and transformations of the target program. We shall treat the first two
in our discussions of analysis and code generation respectively; the third is the subject of
Chapter 13.

1.3 Data Management in a Compiler

As with other large programs, data management and access account for many of the problems
to be solved by the design of a compiler. In order to control complexity, we separate the
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functional aspects of a data object from the implementation aspects by regarding it as an
instance of an abstract data type. (An abstract data type is defined by a set of creation,
assignment and access operators and their interaction; no mention is made of the concrete
implementation technique.) This enables us to concentrate upon the relationships between
tasks and data objects without becoming enmeshed in details of resource allocation that
reflect the machine upon which the compiler is running (the compiler host) rather than the
problem of compilation.

A particular implementation is chosen for a data object on the basis of the relationship
between its pattern of usage and the resources provided by the compiler host. Most of the
basic issues involved become apparent if we distinguish three classes of data:

e Local data of compiler tasks
e Program text in various intermediate representations
e Tables containing information that represents context-dependence in the program text

Storage for local data can be allocated statically or managed via the normal stacking
mechanisms of a block-structured language. Such strategies are not useful for the program
text, however, or for the tables containing contextual information. Because of memory lim-
itations, we can often hold only a small segment of the program text in directly-accessible
storage. This constrains us to process the program sequentially, and prevents us from rep-
resenting it directly as a linked data structure. Instead, a linear notation that represents a
specific traversal of the data structure (e.g. prefix or postfix) is often employed. Information
to be used beyond the immediate vicinity of the place where it was obtained is stored in ta-
bles. Conceptually, this information is a component of the program text; in practice it often
occupies different data structures because it has different access patterns. For example, tables
must often be accessed randomly. In some cases it is necessary to search them, a process that
may require a considerable fraction of the total compilation time. For this reason we do not
usually consider the possibility of spilling tables to a file.

The size of the program text and that of most tables grows linearly with the length of
the original source program. Some data structures (e.g. the parse stack) only grow with the
complezity of the source program. (Complexity is generally related to nesting of constructs
such as procedures and loops. Thus long, straight-line programs are not particularly complex.)
Specification of bounds on the size of any of these data structures leads automatically to
restrictions on the class of translatable programs. These restrictions may not be onerous to
a human programmer but may seriously limit programs generated by pre-processors.

1.4 Compiler Structure

A decomposition of any problem identifies both tasks and data structures. For example, in
Section 1.2 we discussed the analysis and synthesis tasks. We mentioned that the analyzer
converted the source program into an abstract representation and that the synthesizer ob-
tained information from this abstract representation to guide its construction of the target
algorithm. Thus we are led to recognize a major data object, which we call the structure tree
in addition to the analysis and synthesis tasks.

We define one module for each task and each data structure identified during the decom-
position. A module is specified by an interface that defines the objects and actions it makes
available, and the global data and operations it uses. It is implemented (in general) by a
collection of procedures accessing a common data structure that embodies the state of the
module. Modules fall into a spectrum with single procedures at one end and simple data
objects at the other. Four points on this spectrum are important for our purposes:
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e Procedure: An abstraction of a single "memoryless” action (i.e. an action with no
internal state). It may be invoked with parameters, and its effect depends only upon
the parameter values. (Example — A procedure to calculate the square root of a real
value.)

e Package: An abstraction of a collection of actions related by a common internal state.
The declaration of a package is also its instantiation, and hence only one instance is
possible. (Example — The analysis or structure tree module of a compiler.)

e Abstract data type: An abstraction of a data object on which a number of actions can
be performed. Declaration is separate from instantiation, and hence many instances
may exist. (Example — A stack abstraction providing the operations push, pop, top,
etc.)

e Variable: An abstraction of a data object on which exactly two operations, fetch and
store, can be performed. (Example — An integer variable in most programming lan-

guages.)

Abstract data types can be implemented via packages: The package defines a data type
to represent the desired object, and procedures for all operations on the object. Objects are
then instantiated separately. When an operation is invoked, the particular object to which it
should be applied is passed as a parameter to the operation procedure.

The overall compiler structure that we shall use in this book is outlined in Figures 1.4
through 1.8. Each of these figures describes a single step in the decomposition. The central
block of the figure specifies the problem being decomposed at this step. To the left are
the data structures from which information is obtained, and to the right are those to which
information is delivered. Below is the decomposition of the problem, with boxes representing
subtasks. Data structures used for communication among these subtasks are listed at the
bottom of the figure. Each box and each entry in any of the three data lists corresponds to
a module of the compiler. It is important to note that Figures 1.4 through 1.8 reflect only
the overall structure of the compiler; they are not flowcharts and they do not specify module
interfaces.

INPUT OoUTPUT
Source text Target Code
Error Reports

Compilation

Analysis| |Synthesis

LOCAL
Structure Tree

Figure 1.4: Decomposition of the Compiler

Our decomposition is based upon our understanding of the compilation problem and our
perception of the best techniques currently available for its solution. The choice of precise
boundaries is driven by control and data flow considerations, primarily minimization of flow
at interfaces. Specific criteria that influenced our decisions will be discussed throughout the
text.

The decomposition is virtually independent of the underlying implementation, and of
the specific characteristics of the source language and target machine. Clearly these factors
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INPUT oOUTPUT
Source text Target Code
Error Reports

Analysis

Structural Analysis| |Semantic Analysis

Figure 1.5: Decomposition of the Analysis Task

influence the complexity of the modules that we have identified, in some cases reducing them
to trivial stubs, but the overall structure remains unchanged.

INPUT OUTPUT
Source text Error Reports
Connection Sequence

Structural Analysis

Lexical Analysis| |Parsing

LOCAL
Token Sequence

Figure 1.6: Decomposition of the Structural Analysis Task

Independence of the modules from the concrete implementation is obtained by assuming
that each module is implemented on its own abstract machine, which provides the precise
operations needed by the module. The local data structures of Figures 1.4-1.8 are thus
components of the abstract machine on which the given subproblem is solved.

INPUT OUTPUT
Structure Tree Error Reports
Target Code

Synthesis

Code Generation| |Assembly

LOCAL
Target Tree

Figure 1.7: Decomposition of the Synthesis Task

One can see the degree of freedom remaining in the implementation by noting that our
diagrams never prescribe the time sequence of the subproblem solutions. Thus, for exam-
ple, analysis and synthesis might run sequentially. In this case the structure tree must be
completely built as a linked data structure during analysis, written to a file if necessary, and
then processed during synthesis. Analysis and synthesis might, however, run concurrently
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and interact as coroutines: As soon as the analyzer has extracted an element of the structure
tree, the synthesizer is activated to process this element further. In this case the structure
tree will never be built as a concrete object, but is simply an abstract data structure; only
the element being processed exists in concrete form.

INPUT OUTPUT
Structure Tree Error Reports
Target Tree

Code Generation

Targe Mapping| |Code Selection

LOCAL
Computation Graph

Figure 1.8: Decomposition of the Code Generation Task

In particular, our decomposition has nothing to do with the possible division of a com-
piler into passes. (We consider a pass to be a single, sequential scan of the entire text in
either direction. A pass either transforms the program from one internal representation to
another or performs specified changes while holding the representation constant.) The pass
structure commonly arises from storage constraints in main memory and from input/output
considerations, rather than from any logical necessity to divide the compiler into several se-
quential steps. One module is often split across several passes, and/or tasks belonging to
several modules are carried out in the same pass. Possible criteria will be illustrated by con-
crete examples in Chapter 14. Proven programming methodologies indicate that it is best to
regard pass structure as an implementation question. This permits development of program
families with the same modular decomposition but different pass organization. The above
consideration of coroutines and other implementation models illustrates such a family.

1.5 Notes and References

Compiler construction is one of the areas of computer science that early workers tried to
consider systematically. KNUTH [1962] reports some of those efforts. Important sources from
the first half of the 60’s are an issue of the Communications of the ACM 1961 the report of a
conference sponsored by the International Computing Centre [ICC, 1962] and the collection of
papers edited by ROSEN [1967]. Finally, Annual Review in Automatic Programming contains
a large number of fundamental papers in compiler construction.

The idea of an algorithmic conversion of expressions to a machine-oriented form originated
in the work of RUTISHAUSER [1952]. Although most of our current methods bear only a dis-
tant resemblance to those of the 50’s and early 60’s, we have inherited a view of the description
of programming languages that provides the foundation of compiler construction today: In-
termediate languages were first proposed as interfaces in the compilation process by a SHARE
committee MOCK et al. [1958]; the extensive theory of formal languages, first developed by
the linguist Noam Chomsky 1956, was employed in the definition of ALGOL 60 1963; the use
of pushdown automata as models for syntax analysis appears in the work of SAMELSON and
BAUER [1960].

The book by RANDELL and RUSSELL [1964] remains a useful guide for a quick implemen-
tation of ALGOL 60 that does not depend upon extensive tools. GRAU et al. [1967] describe
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an ALGOL 60 implementation in an extended version of ALGOL 60. The books by GRIES
[1971], AHO and ULLMAN [1972, 1977] and BAUER and EICKEL [1976] represent the state of
the art in the mid 1970’s.

Recognition that parsing can be understood via models from the theory of formal lan-
guages led to a plethora of work in this area and provided the strongest motivation for the
further development of that theory. From time to time the impression arises that parsing is
the only relevant component of compiler construction. Parsing unquestionably represents one
of the most important control mechanisms of a compiler. However, while just under one third
of the papers collected in Pollack’s 1972 bibliography are devoted to parsing, there was not
one reference to the equally important topic of code generation. Measurements [HORNING
et al., 1972] have shown that parsing represents approximately 9% of a compiler’s code and
11% of the total compilation time. On the other hand, code generation and optimization
account for 50-70% of the compiler. Certainly this discrepancy is due, in part, to the great
advances made in the theory of parsing; the value of this work should not be underestimated.
We must stress, however, that a more balanced viewpoint is necessary if progress is to be
maintained.

Modular decomposition PARNAS [1972, 1976] is a design technique in which intermedi-
ate stages are represented by specifications of the external behavior (interfaces) of program
modules. The technique of data-driven decomposition was discussed by LISKOV and ZILLES
[1974] and a summary of program module characteristics was given by Goos and KASTENS
[1978]. This latter paper shows how the various kinds of program modules are constructed
in several programming languages. Our diagrams depicting single decompositions are loosely
based upon some ideas of CONSTANTINE et al. [1974].

Exercises

1.1 Consider the Pascal algorithm of Figure 1.1a.

(a) What are the elementary objects and operations?
(b) What are the rules for chronological relations?
(¢) What composition rules are used to construct the static program?

1.2 Determine the state transformation function, f, for the algorithm of Figure 1.1a. What
initial states guarantee termination? How do you characterize the corresponding final
states?

1.3 Consider a simple computer with an accumulator and two data locations. The instruc-
tion set is:

LOAD d: Copy the contents of data location d to the accumulator.

STORE d: Copy the contents of the accumulator to data location d.

SUB d: Subtract the contents of data location d from the accumulator, leaving
the result in the accumulator. (Ignore any possibility of overflow.)

JUMP i:  Execute instruction i next.

JZERO i: Execute instruction i next if the accumulator contents are zero.

JNEG i:  Execute instruction i next if the accumulator contents are less than
Zero.

(a) What are the elementary objects?
(b) What are the elementary actions?
(¢) What composition rules are used?
(d) Complete the state sequence of Figure 1.2b.



Chapter 2

Properties of Programming
Languages

Programming languages are often described by stating the meaning of the constructs (ex-
pressions, statements, clauses, etc.) interpretively. This description implicitly defines an
interpreter for an abstract machine whose machine language is the programming language.

The output of the analysis task is a representation of the program to be compiled in
terms of the operations and data structures of this abstract machine. By means of code
generation and the run-time system, these elements are modeled by operation sequences and
data structures of the computer and its basic software (operating system, etc.)

In this chapter we explore the properties of programming languages that determine the
construction and possible forms of the associated abstract machines, and demonstrate the
correspondence between the elements of the programming language and the abstract machine.
On the basis of this discussion, we select the features of our example source language, LAX.
A complete definition of LAX is given in Appendix A.

2.1 Overview

The basis of every language implementation is a language definition. (See the Bibliography
for a list of the language definitions that we shall refer to in this book.) Users of the language
read the definition as a user manual: What is the practical meaning of the primitive elements?
How can they be meaningfully used? How can they be combined in a meaningful way? The
compiler writer, on the other hand, is interested in the question of which constructions are
permitted. Even if he cannot at the moment see any useful application of a construct, or if
the construct leads to serious implementation difficulties, he must implement it exactly as
specified by the language definition. Descriptions such as programming textbooks, which are
oriented towards the meaningful applications of the language elements, do not clearly define
the boundaries between what is permitted and what is prohibited. Thus it is difficult to make
use of such descriptions as bases for the construction of a compiler. (Programming textbooks
are also informal, and often cover only a part of the language.)

2.1.1 Syntax, Semantics and Pragmatics

The syntax of a language determines which character strings constitute well-formed programs
in the language and which do not. The semantics of a language describe the meaning of a
program in terms of the basic concepts of the language. Pragmatics relate the basic concepts

11
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of the language to concepts outside the language (to concepts of mathematics or to the objects
and operations of a computer, for example).

Semantics include properties that can be deduced without executing the program as well
as those only recognizable during execution. Following GRIFFITHS [1973], we denote these
properties static and dynamic semantics respectively. The assignment of a particular property
to one or the other of these classes is partially a design decision by the compiler writer. For
example, some implementations of ALGOL 60 assign the distinction between integer and real
to the dynamic semantics, although this distinction can normally be made at compile time
and thus could belong to the static semantics.

Pragmatic considerations appear in language definitions as unelaborated statements of
existence, as references to other areas of knowledge, as appeals to intuition, or as explicit
statements. Examples are the statements ‘{Boolean] values are the truth values denoted by the
identifiers true and false’ (Pascal Report, Section 6.1.2), ‘their results are obtained in the sense
of numerical analysis’ (ALGOL 68 Revised Report, Section 2.1.3.1.e) or ‘decimal numbers have
their conventional meaning’ (ALGOL 60 Report, Section 2.5.3). Most pragmatic properties
are hinted at through a suggestive choice of words that are not further explained. Statements
that certain constructs only have a defined meaning under specified conditions also belong
to the pragmatics of a language. In such cases the compiler writer is usually free to fix the
meaning of the construct under other conditions. The richer the pragmatics of a language, the
more latitude a compiler writer has for efficient implementation and the heavier the burden
on the user to write his program to give the same answers regardless of the implementation.

We shall set the following goals for our analysis of a language definition:

e Stipulation of the syntactic rules specifying construction of programs.

e Stipulation of the static semantic rules. These, in conjunction with the syntactic rules,
determine the form into which the analysis portion of the compiler transforms the source
program.

e Stipulation of the dynamic semantic rules and differentiation from pragmatics. These
determine the objects and operations of the language-oriented abstract machine, which
can be used to describe the interface between the analysis and synthesis portions of the
compiler: The analyzer translates the source program into an abstract target program
that could run on the abstract machine.

e Stipulation of the mapping of the objects and operations of the abstract machine onto
the objects and operations of the hardware and operating system, taking the pragmatic
meanings of these primitives into account. This mapping will be carried out partly by
the code generator and partly by the run-time system; its specification is the basis for
the decisions regarding the partitioning of tasks between these two phases.

2.1.2 Syntactic Properties

The syntactic rules of a language belong to distinct levels according to their meaning. The
lowest level contains the ‘spelling rules’ for basic symbols, which describe the construction
of keywords, identifiers and special symbols. These rules determine, for example, whether
keywords have the form of identifiers (begin) or are written with special delimiters ("BEGIN’,
.BEGIN), whether lower case letters are permitted in addition to upper case, and which
spellings (<=, .LE., 'NOT’ '"GREATER’) are permitted for symbols such as that cannot be
reproduced on all I/O devices. A common property of these rules is that they do not affect
the meaning of the program being represented. (In this book we have distinguished keywords
by using boldface type. This convention is used only to enhance readability, and does not
imply anything about the actual representation of keywords in program text.)
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The second level consists of the rules governing representation and interpretation of con-
stants, for example rules about the specification of exponents in floating point numbers or
the allowed forms of integers (decimal, hexadecimal, etc.) These rules affect the meanings of
programs insofar as they specify the possibilities for direct representation of constant values.
The treatment of both of these syntactic classes is the task of lexical analysis, discussed in
Chapter 6.

The third level of syntactic rules is termed the concrete syntax. Concrete syntax rules
describe the composition of language contructs such as expressions and statements from basic
symbols. Figure 2.1a shows the parse tree (a graphical representation of the application of
concrete syntax rules) of the Pascal statement ‘if a or b and ¢ then ... else ... . Because
the goal of the compiler’s analysis task is to determine the meaning of the source program,
semantically irrelevant complications such as operator precedence and certain keywords can
be suppressed. The language constructs are described by an abstract syntax that specifies
the compositional structure of a program while leaving open some aspects of its concrete
representation as a string of basic symbols. Application of the abstract syntax rules can be
illustrated by a structure tree (Figure 2.1b).

statement

IS

if expression then else

/ simple expression \

term or term
| T T

factor factor and factor

| | |
var‘iable vari‘able vari‘able
identifier iden‘tifier iden‘tifier
| ; c

a) Parse tree (application of concrete syntax rules)

/ statement
/ expression \ \\
or /

|

term term \
fa(‘:tor fac‘tor and factor
var‘iabl e variable vari‘able
identifier iden‘tifier identifier
a t‘) c

b) Structure tree (application of abstract syntax rules)

Figure 2.1: Concrete and Abstract Syntax
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2.1.3 Semantic Properties

Most current programming languages specify algorithms operationally, in contrast to ‘very
high level’ languages that allow the user to formally describe a problem and leave the imple-
mentation to the compiler. Essential semantic elements of operational languages are -

e Data objects and structures upon which operations take place
e Operations and construction rules for expressions and other operative statements

e Constructs providing flow of control, the dynamic composition of program fragments

Data objects appear as explicit constants, as values of variables and as results of opera-
tions. At any point in the execution of a program the totality of variable values represents
the state of the abstract machine. This state constitutes the environment for execution of
further operations.

Included in the set of operations are the access functions such as indexing of an array or
selection of a field of a record, and operations such as the addition or comparison of two values.
These operations do not alter the state of the abstract machine. Assignment is an example
of an operation with a side effect that alters the contents of a variable, a component of the
state of the abstract machine. Most programming languages contain a large number of such
state-changing operations, all of which may be regarded as assignment combined with other
operations. Usually these operations are formulated as statements without results. Most
COBOL ‘verbs’ designate such statements. Finally, operations include block entry and exit,
procedure call and return, and creation of variables. These operations, which we associate with
control of the state, change the state by creating and deleting objects (variables, parameters,
etc.) and altering the allowable access functions.

Flow of control includes conditional expressions or statements, case selection, iteration,
jumps and so forth. These elements appear in various forms in most programming languages,
and frequently take into account some special implementation possibility or practice. For
example, the conditional statement

if truth_value then s, else s,;
and the case selection
case truth_value of true : s;; false : s, end;

have identical effects in Pascal. As we shall see later, however, the two constructs would
probably be implemented differently.

In considering semantic properties, it is important for the compiler writer to systematically
collect the countless details such as properties of data objects, operations and side effects,
possibilities for iteration, and so forth, into some schema. The clarity and adequacy of this
schema determines the quality of the compiler because the compiler structure is derived from
it. A shoddy schema makes well-nigh impossible a convincing argument that the compiler
translates the source language fully and completely.

For many languages, including ALGOL 60, ALGOL 68, Pascal and Ada, good schemata
are comparatively easy to obtain because the language definitions are suitably structured.
Other language definitions take the form of a collection of language element descriptions with
many exception rules; a systematic treatment of such languages is often impossible.
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2.2 Data Objects and Operations

The most important characteristics of a programming language are the available data objects
and the operations that may be executed upon them. The term ‘object’ means a concrete
instance of an abstract value. Many such instances of the same value may exist at the same
time. The set of values possible in a language, such as numbers, character strings, records
and so forth, is usually infinite although a given program naturally uses only a finite number
of them.

Objects and values may be classified according to many criteria. For example, their
internal (to the computer) or external representation, the algorithm used to access them, or
the access rights might be used. Each such classification leads to an attribute of the object.
The most important classification is a partition of the set of values according to the applicable
operations; the corresponding attribute is called the type or mode of the value. Examples are
the numeric types integer and real, to which the basic arithmetic operations may be applied.
(The special role of zero in division is not covered by this classification.)

A rough subdivision of object types can be made on the basis of the possible access
functions. If an object can be accessed only in its entirety we say that its type is elementary.
If, however, the object consists of a collection of distinct components, which may be altered
individually, then we say that its type is composite. Thus if a programming language were to
explain floating point operations in terms of updating operations on fraction and exponent
individually, floating point values would be composite. This is not usually done; the floating
point operations can only yield complete floating numbers, and hence real is an elementary
type.

Every operation interprets its operands in a specified manner. The assignment of a type to
a value fixes this interpretation and admits only those operations for which this interpretation
is meaningful. As usual with such attributes, there are many possible choices for the binding
time — the point at which a particular attribute is ascribed to a particular object: If the type
is first fixed upon execution of an operation, and if practically any operation can be applied
to any object (so long as its length is appropriate), then we term the language typeless or
type-free; otherwise it is called a typed language. If the type of an object can be determined
explicitly from the program text, we speak of manifest type; the type is latent if it cannot be
determined until the program is executed. (A language whose types are manifest throughout
is sometimes called a strongly-typed language, while one whose types are latent is called
weakly-typed.) Objects with latent types must be provided with an explicit type indication
during execution. Most assembly languages are examples of typeless languages. In contrast,
ALGOL 60, FORTRAN and COBOL are languages with manifest types: All variables are
declared (either explicitly or implicitly) to have values of a certain type, and there are different
forms of denotation for constants of different types. SNOBOL4 has neither declarations nor
implied type specifications for its variables; on the contrary, the type may change during
execution. Thus SNOBOL4 has latent types. The union modes in ALGOL 68 and the variant
records of Pascal and Ada take an intermediate position. A variable of such a ‘discriminated
union’ has a latent type, but the possible value types may only be drawn from an explicitly-
stated set.

In a typeless language, the internal representation (‘coding’) of an object is the concern of
the programmer; the implementor of a typed language can fix the coding because he is fully
aware of all desired interpretations. Erroneous coding by the programmer is thus impossible.
Further, inconsistent creation or use of a data object can be detected automatically and
hence the class of automatically-detected errors is broadened. With manifest types such
errors appear during compilation, with latent types they are first detected during execution.
Moreover, in a language with latent types the erroneous creation of an object is only detected
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upon subsequent use and the necessary dynamic type checking increases the computation
time.

2.2.1 Elementary Types

Our purpose in this section and the next is to give an overview of the types usually found
in programming languages and explore their ‘normal’ properties. The reader should note in
particular how these properties may be deduced from the language definition.

The elementary types can be partitioned according to the (theoretical) size of their value
sets. A type is called finite if only a fixed number of values of this type exist; otherwise the
type is (potentially) infinite.

Finite types can be defined by enumeration of all of the values of the type. Examples
are the type Boolean whose value set is {true,false} and the type character, with the entire
set of characters permitted by an implementation as its value set. Almost all operations
and properties of a type with n values can be defined giving a 1-1 correspondence with the
natural numbers 0,...,n — 1 and then defining operations using these ordinal numbers. This
possibility does not imply that such a mapping is actually specified in every language; on the
contrary, finite types are introduced primarily to represent value sets for which a numerical
interpretation is meaningless. For example, the revised ALGOL 68 report defines no corre-
spondence between truth values and the integers values, but leaves its precise specification to
the implementor: ‘... this relationship is defined only to the extent that different characters
have different integral equivalents, and that there exists a ”largest integral equivalent”’ (Sec-
tion 2.1.3.1.g). This specification permits gaps in the sequence of corresponding integers, an
important point in many implementations.

In principle the value set of a finite type is unordered. If an ordering is needed, say to
define relational operators or a successor function, the ordering induced by the mapping to
natural numbers is used. For example, Pascal specifies that the relation false < true holds
and thus demands the mapping false — 0, true — 1 (although the ordering of Boolean
values is really irrelevant). Often the mere existence of an ordering is sufficient. For example,
the ALGOL 68 specification of character values permits the use of sorted tables or trees to
speed up searching, even though the user could not guarantee a particular ordering. Many
applications demand that some particular ordering (collating sequence) be defined on the set
of characters; the task of lexicographic ordering in a telephone book is a common example.
Different collating sequences may be appropriate for different problems. COBOL recognizes
this fact by allowing the user to provide different collating sequences for different programs
or for different operations within the same program.

The integers and floating point numbers belong to the class of infinite types. Most lan-
guage definitions rely upon the mathematical intuition of the reader for the definition of these
types. Some of our mathematical intuition is invalidated, however, because the machine rep-
resentations of these types are necessarily finite.

The important characteristics of integer type are that a successor function is defined on
the values, and that exact arithmetic is available. In contrast, a real value has no defined
successor (although a total ordering is defined) and arithmetic is inexact. Some of the familiar
axioms fail — for example, associativity is lost. In the representation of a floating point number
as a pair (s,e) such that v = s* b® is stored in a single word, additional range is obtained
at the cost of decreased precision. In comparison to the integer representation, the number
of significant digits in s has been shortened to obtain space for the exponent e. The radix b
is usually 2, 8, 10 or 16. Both a range and a precision must be specified to characterize the
floating point domain, while a range alone suffices for the integer domain. The specifications
for the two domains are independent of one another. In particular, it is often impossible to
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represent all valid integers exactly as floating point numbers because s is not large enough to
hold all integer values.

The number of significant digits and the size of the exponent (and similar properties of
other types) vary from computer to computer and implementation to implementation. Since
an algorithm’s behavior may depend upon the particular values of such parameters, the values
should be accessible. For this purpose many languages provide environment inquiries; some
languages, Ada for example, allow specifications for the range and precision of numbers in
the form of minimum requirements.

Restriction of the integer domain and similar specification of subranges of finite types is
often erroneously equated to the concept of a type. ALGOL 68, for example, distinguishes an
infinity of ‘sizes’ for integer and real values. Although these sizes define different modes in the
ALGOL 68 sense, the Standard Environment provides identical operators for each; thus they
are indistinguishable according to the definition of type given at the beginning of Section 2.2.
The distinction can only be understood by examination of the internal coding.

The basic arithmetic operations are usually defined by recourse to the reader’s mathe-
matical intuition. Only integer division involving negative operands requires a more exact
stipulation in a language definition. Number theorists recognize two kinds of integer division,
one truncating toward zero (-3 divided by 2 yields -1) and the other truncating toward nega-
tive infinity (-3 divided by 2 yields -2). ALGOL 60 uses the first definition, which also forms
the basis for most hardware realizations.

We have already seen that a correspondence between the values of a finite type and a
subset of the natural numbers can be defined. This correspondence may be specified by the
language definition, or it may be described but its definition left to the implementor. As
a general principle, similar relationships are possible between the value sets of other types.
For example, the ALGOL 68 Revised Report asserts that for every integer of a given length
there is an equivalent real of that length; the FORTRAN Standard implies a relation between
integer and real values by its definition of assignment, but does not define it precisely.

Even if two values of different types (say 2 and 2.0) are logically equivalent, they must
be distinguished because different operations may be applied to them. If a programmer is to
make use of the equivalence, the abstract machine must provide appropriate transfer (con-
version) operations. This is often accomplished by overloading the assignment operator. For
example, Section 4.2.4 of the ALGOL 60 Report states that ‘if the the type of the arithmetic
expression [in an assignment| differs from that associated with the variables and procedure
identifiers [making up the left part list], appropriate transfer functions are understood to be
automatically invoked’. Another way of achieving this effect is to say that the operator indi-
cation “:=’ stands for one of a number of assignment operations, just as ‘4+’ stands for either
integer or real addition.

The meaning of “:=" must be determined from the context in the above example. Another
approach to the conversion problem is to use the context to determine the type of value
directly, and allow the compiler to insert a transfer operation if necessary. We say that
the compiler coerces the value to a type appropriate for the context; the inserted transfer
operation is a coercion.

Coercions are most frequently used when the conversion is defined for all values of the type
being converted. If this is not the case, the programmer may be required to write an explicit
transfer function. In Pascal, for example, a coercion is provided from integer to real but not
from real to integer. The programmer must use one of the two explicit transfer functions
trunc or round in the latter case.

Sometimes coercions are restricted to certain syntactic positions. ALGOL 68 has elaborate
rules of this kind, dividing the complete set of available coercions into four classes and allowing
different classes in different positions. The particular rules are chosen to avoid ambiguity in
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the program. Ada provides a set of coercions, but does not restrict their use. Instead, the
language definition requires simply that each construct be unambiguously interpretable.
LAX provides Boolean, integer and real as elementary types. We omitted characters and
programmer-defined finite types because they do not raise any additional significant issues.
Integer division is defined to truncate towards zero to match the behavior of most hardware.
Coercion from integer to real is defined, but there is no way to convert in the opposite
direction. Again, the reason for this omission is that no new issues are raised by it.

2.2.2 Composite Types

Composite objects are constructed from a finite number of components, each of which may
be accessed by a selector. A composite type is formed from the types of the components by
a type constructor, which also defines the selectors. Programming languages usually provide
two sorts of composite objects: records (also known as structures) and arrays.

Records are composite objects with a fixed number of components called fields. Identifiers,
which cannot be computed by the program, are used as field selectors. The type of the
composite object is given by enumeration of the types and selectors of the fields. In some
languages (such as COBOL and PL/1) the description of a record type is bound to a single
object.

A record is used to collect related items, for example the name, address, profession and
other data about a single person. Often the number or form of the data may vary in such
cases. For example, the location of a point in space could be given in terms of rectangular
(x,y, z) or cylindrical (r, phi, z) coordinates. In a record of type ‘point’, variations in the form
of the data are thus possible. Pascal allows such a record with variants to be constructed:

type coordinates = (rectangular, cylindrical);
point = record
z : real;
case c : coordinates of
rectangular : (z,y : real);
cylindrical : (r,phi : real);
end;

The fields appearing in every record of the type are written first, followed by alternative sets
of fields; the ¢ appearing in the case construct describes which alternative set is actually
present.

A union mode in ALGOL 68 is a special case of a variant record, in which every variant
consists of exactly one field and the fixed part consists only of the variant selector. Syntacti-
cally, the construct is not described as a record and the variant selector is not given explicitly.
In languages such as APL or SNOBOL4, essentially all objects are specified in this manner.
An important question about such objects is whether the variant is fixed for the lifetime of a
particular object, or whether it forms a part of the state and may be changed.

Arrays differ from records in that their components may be selected via a computable,
one-to-one function whose domain is some finite set (such as any finite type or a subrange
p < i < g of the integers). In languages with manifest types, all elements of an array have the
same type. The operation a [ e ] (‘select the component of a corresponding to e’) is called
indexing. Most programming languages also permit multi-dimensional rectangular arrays, in
which the index set represents a Cartesian product I; X Iy X --- x I, over a collection of index
domains. Depending upon the time at which the number of elements is bound, we speak of
static (fixed at compile time), dynamic (fixed at the time the object is created) or flexible
(variable by assignment) arrays (cf. Section 2.5.3).
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One-dimensional arrays of Boolean values (bit vectors) may also be regarded as tabular
encodings of characteristic functions over the index set I. Every value of an array ¢ corre-
sponds to {i | c[i] = true}. In Pascal such arrays are introduced as ‘sets’ with type set of
indez_set; in Ada they are described as here, as Boolean arrays. In both cases, the opera-
tions union (represented by + or or), intersection (*, and), set difference (-), equality (= and
<>), inclusion (<, <=, >, >=) and membership (in) are defined on such sets. Difficulties
arise in specifying set constants: The element type can, of course be determined by looking
at the elements of the constant. But if sets can be defined over a subrange of a type, it is not
usually possible to determine the appropriate subrange just by looking at the elements. In
Pascal the problem is avoided by regarding all sets made up of elements of a particular scalar
type to be of the same type, regardless of the subrange specified as the index set. (Sets of
integers are regarded as being over an implementation-defined subrange.) In Ada the index
set is determined by the context.

Only a few programming languages provide operations (other than set operations) that
may be applied to a composite object as a whole. (APL has the most comprehensive collection
of such operations.) Processing of composite objects is generally carried out componentwise,
with field selection, indexing and component assignment used as access operations on the
composite objects. It may also be possible to describe groups of array elements, for example
entire rows or columns or even arbitrary rectangular index domains (a[%_-1:2.2, j7_-1:j5.2]
in ALGOL 68); this process is called slicing.

2.2.3 Strings

Strings are exceptional cases in most programming languages. In ALGOL 60, strings are
permitted only as arguments to procedures and can thus ultimately be used only as data
for code procedures (normally I/O routines). ALGOL 68 considers strings as flexible arrays,
and in FORTRAN 77 or PL/1 the size can increase only to a maximum value fixed when
the object is created. In both languages, single characters may be extracted by indexing; in
addition, comparison and concatenation may be carried out on strings whose length is known.
These latter operations consider the entire string as a single unit. In SNOBOL4 strings are
always considered to be single units: Assignment, concatenation, conversion to a pattern,
pattern matching and replacement are elementary operations of the language.

We omitted strings from LAX because they do not lead to any unique problems in compiler
construction.

2.2.4 Pointers

Records, arrays and strings are composite objects constructed as contiguous sequences of
elements. Composition according to the model of a directed graph is possible using pointers,
with which one node can point to another. In all languages providing arrays, pointers can be
represented by indices in an array. Some languages (such as ALGOL 68, Pascal and PL/1)
define pointers as a new kind of type. In PL/1 the type of the object pointed to is not
specified, and hence one can place an arbitrary interpretation upon the target node of the
pointer. In the other languages mentioned, however, the pointer type carries the type of the
object pointed to.

Pointers have the advantage of security over indices in an array: Indices can be confused
with other uses of integers, pointers cannot. Above all, however, pointers can be used to ref-
erence anonymous objects that are created dynamically. The number of objects thus created
need not be known ahead of time. With indices the array bounds fix the maximum number
of objects (except when the array is flexible).
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Pascal pointers can reference only anonymous objects, whereas in ALGOL 68 either named
or anonymous objects may be referenced. When named objects have at most a bounded
lifetime, it is possible that a pointer to an object could outlive the object to which it points.
Such dangling references will be discussed in Section 2.5.2.

In addition to the technical questions of pointer implementation, the compiler writer
should be concerned with special testing aids (such as printing programs that can traverse a
structure, outputting links in some reasonable way). The reason is that programs containing
pointers are usually more difficult to debug than those not containing pointers.

2.2.5 Type Equivalence

Whenever we use an object in a typed language (e.g. as an operand of an operation), we
must verify that the type of the object satisfies the requirements of the context and is thus
admissible. To do this we need a technique to compare types with one another and to
determine whether they are equivalent.

The question of type equivalence is easy to answer as long as there are no type declarations,
and no subranges of a type are treated as types. Under such circumstances we use teztual
equivalence: Two types are equivalent if their external representations are the same. Thus
for the elementary types Boolean, character, integer and real the same symbol is required.
Array types are equivalent if they have equivalent element types and the same number of
dimensions; the values of the bounds are compared only in languages with static arrays.
Pointers must point to objects of equivalent type. Procedures must have the same number of
parameters, and corresponding parameter and result types must be equivalent. For records,
it is usually required that both types and field selectors be equivalent and appear in the same
order. Therefore the following records are all of different types:

record a : real; b : integer end
record z : real; y : integer end
record y : integer; = : real end

When type declarations and pointers are both allowed, textual equivalence is no longer a
useful criterion. Attempting to extend the above definitions to recursive types leads to a
cycle in the test. For example, the equivalence of the following types depends upon the
equivalence of the second field which, in turn, depends upon the equivalence of the original

types:

type
m = record z : real; y : Tm end;
p =record z : real; y : Tp end;

To break the cycle, we may generalize textual equivalence to either structural equivalence or
name equivalence.

Structural equivalence is used in ALGOL 68. In this case, each type identifier (mode
indication) is assumed to be a shorthand notation for the right side of the type declaration.
Two types are equivalent if they are textually equivalent after all type identifiers have been
replaced by the right hand sides of their declarations. This process may introduce other type
identifiers, and the substitution must be repeated; clearly a recursive type has an infinite tex-
tual representation. In order to test for structural equivalence, these infinite representations
must be compared. In Section 9.2 we shall see that a practical decision procedure using finite
representations and working in polynomial time is available.

Name equivalence states that two types are equivalent if and only if they are denoted
by the same identifier, which identifies the same definition in each case. m and p above
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are different types under this definition, since m and p are distinct identifiers. The right
hand sides of the declarations of m and p are automatically different, since they are not
type identifiers. Name equivalence is obviously easy to check, since it only involves fixing the
identity of type declarations.

Name equivalence seldom appears in pure form. On the one hand it leads to a flood of type
declarations, and on the other to problems in linking to library procedures that have array
parameters. However, name equivalence is the basis for the definition of abstract data types,
where type declarations that carry the details of the representation are not revealed outside the
declaration. This is exactly the effect of name equivalence, whereas structural equivalence
has the opposite result. Most programming languages that permit type declarations use
an intermediate strategy. FEuclid uses structural equivalence locally; as soon as a type is
‘exported’, it is known only by a type identifier and hence name equivalence applies.

If the language allows subranges of the basic types (such as a subrange of integers in
Pascal) the question of whether or not this subrange is a distinct type arises. Ada allows
both: The subrange can be defined as a subtype or as a new type. In the second case, the
pre-defined operations of the base type will be taken over but later procedures requiring
parameters of the base type cannot be passed arguments of the new type.

The type equivalence rules of LAX embody a representative compromise. They require
textual equivalence as discussed above, but whenever a type is denoted by an identifier it is
considered elementary. (In other words, if the compiler is comparing two type specifications
for equality and an identifier appears in one then the same identifier must appear in the same
position in the other.) Implementation of these rules illustrate the compiler mechanisms
needed to handle both structure and name equivalence.

2.3 Expressions

Expressions (or formulas) are examples of composite operations. Their structure resembles
that of composite objects: They consist of a simple operation with operands, which are either
ordinary data objects or further expressions. In other words, an expression is a tree with
operations as interior nodes and data objects as leaves.

An expression written in linear infix notation may lead to distinct trees when interpreted
according to different language definitions (Figure 2.2). In low-level languages modeled upon
PL/360, the operators are strictly left-associative with no operator precedence, and parenthe-
ses are prohibited; APL uses right-associativity with no precedence, but permits grouping by
parentheses. Most higher-level languages employ the normal precedence rules of mathematics
and associate operators of the same precedence to the left. FORTRAN 77 (Section 6.6.4) is
an exception: ‘Once [a tree] has been established in accordance with [the precedence, associ-
ation and parenthesization] rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.” The phrase ‘mathemat-
ically equivalent’ implies that a FORTRAN compiler may assume that addition is associative,
even though this is not true for computer implementation of floating point arithmetic. (The
programmer can, however, always indicate the correct sequence by proper use of parentheses.)

The leaves of an expression tree represent activities that can be carried out indepen-
dently of all other nodes of the tree. Interior nodes, on the other hand, depend upon the
values returned by their descendants. The entire tree may thus be evaluated by the following
algorithm:
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Figure 2.2: Trees for a xb+c*d

repeat
Select an arbitrary leaf and carry out its designated activity (access to an object or
execution of an operation);

if the selected leaf is the root then terminate;

Transmit the result to the parent of the leaf and delete the leaf;

until termination

This evaluation algorithm performs the operations in some sequence permitted by the data
flow constraints embodied in the tree, but does not specify the order in which operands are
evaluated. It is based upon a principle known as referential transparency [QUINE, 1960] that
holds in mathematics: The value of an expression can be determined solely from the values of
its subexpressions, and if any subexpression is replaced by an arbitrary expression with the
same value then the value of the entire expression remains unchanged.

In programming languages, evaluation of an expression may additionally alter the state
of the underlying abstract machine through a side effect. If the altered state is used in
another part of the expression then the principle of referential transparency does not hold,
and different evaluation orders may yield different results.

Side effects are generally undesirable because they complicate program verification and
optimization. Unfortunately, it is often impossible to mechanically guarantee that no side
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effects are present. In Euclid an attempt was made to restrict the possibilities to the point
where the compiler could perform such a check safely. These restrictions include prohibition
of assignments to result parameters and global variables in functions, and prohibition of I/O
operations in functions.

Some side effects do not destroy referential transparency, and are thus somewhat less dan-
gerous. Section 6.6 of the FORTRAN 77 Standard formulates the weakest useful restrictions:
‘The execution of a function reference in a statement may not alter the value of any other
entity within the statement in which the function reference appears.’

In some expressions the value of a subexpression determines that of the entire expression.
Examples are:

a and (---) when a = false
bor (---) when b = true

¢ *(--+) when ¢ =10

If the remainder of the expression has no side effect, only the subexpression determining the
value need be computed. The FORTRAN 77 Standard allows this short circuit evaluation
regardless of side effects; the description is such that the program is undefined if side effects
are present, and hence it is immaterial whether the remainder of the expression is evaluated or
not in that case. The wording (Section 6.6.1) is: ‘If a statement contains a function reference
in a part of an expression that need not be evaluated, all entities that would have become
defined in the execution of that reference become undefined at the completion of evaluation
of the expression containing the function reference.’

ALGOL 60, ALGOL 68 and many other languages require, in principle, the evaluation
of all operands and hence preclude such optimization unless the compiler can guarantee that
no side effects are possible. Pascal permits short circuit evaluation, but only in Boolean
expressions (User Manual, Section 4a): ‘The rules of Pascal neither require nor forbid the
evaluation of the second part [of a Boolean expression, when the first part fixes the value]’.
Ada provides two sets of Boolean operators, one (and, or) prohibiting short circuit evaluation
and the other (and then, or else) requiring it.

LAX requires complete evaluation of operands for all operators except and and or. The
order of evaluation is constrained only by data flow considerations, so the compiler may
assume referential transparency. This simplifies the treatment of optimization. By requiring
a specific short circuit evaluation for and and or, we illustrate other optimization techniques
and also show how the analysis of an expression is complicated by evaluation order rules.

2.4 Control Structures

There are three possibilities for the composition of several actions: serial, collateral and
parallel. Serial execution is implied by any dependence of two actions upon one another.
Such dependence occurs when (say) one action uses the result of another; more generally, it
occurs in any case where the outcome depends upon the sequence in which the actions occur.
If the actions may be carried out serially or in parallel, or can be interleaved in time, then
we speak of collateral execution. Finally, we use the term parallel when either simultaneous
or interleaved execution is required.

When actions are composed serially, the sequence may be prescribed either implicitly or
explicitly. Most programming languages use the sequence in which the statements are written
as an implicit serial order. The semicolon separating two successive statements in ALGOL 60
and its successors is thus often called the ‘sequence operator’. For explicit control, we have
the following possibilities:
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Conditional clause

Case clause

Iteration (with or without a count)
e Jump, exit, etc.

Procedure call

Conditional clauses make the execution of a component S dependent upon fulfillment of
a Boolean condition. In many languages S may only take on one of a restricted number of
forms — in the extreme case, S may only be a jump.

The case clause is a generalization of the conditional clause in which the distinct values of
an expression are associated with distinct statements. The correspondence is either implicit
as in ALGOL 68 (the statements correspond successively to the values 1,2,3,...), or explicit
as in Pascal (the value is used as a case label for the corresponding statement). The latter
construct allows one statement to correspond with more than one value and permits gaps in
the list of values. It also avoids counting errors and enhances program readability.

Several syntactically distinct iteration constructs appear in many programming languages:
with or without counters, test at the beginning or end, etc. The inefficient ALGOL 60 rules
requiring the (arbitrarily complex) step and limit expressions to be re-evaluated for each
iteration have been replaced in newer languages by the requirement that these expressions be
evaluated exactly once. Another interesting point is whether the value of the counter may
be altered by assignment within the body of the iteration (as in ALGOL 60), or whether it
must remain constant (as in ALGOL 68). This last is important for many optimizations of
iterations, as is the usual prohibition on jumps into an iteration.

Many programming languages allow jumps with variable targets. Examples are the use
of indexing in an array of labels (the ALGOL 60 switch) and the use of label variables (the
FORTRAN assigned GOTO). While COBOL or FORTRAN jumps control only the succession
of statements, jumps out of blocks or procedures in ALGOL-like languages influence the
program state (see Section 2.5). Procedure calls also influence the state.

The ALGOL 60 and ALGOL 68 definitions explain the operation of procedure calls by
substitution of the procedure body for the call ( copy rule). This copying process could
form the basis for an implementation ( open subroutines), if the procedure is not recursive.
Recursion requires that the procedure be implemented as a closed subroutine, a model on
which many other language definitions are based. Particular difficulties await the writer of
compilers for languages such as COBOL, which do not distinguish the beginning and end of
the procedure body in the code. This means that, in addition to the possibility of invoking
the procedure by means of a call (PERFORM in COBOL), the statements could be executed
sequentially as a part of the main program.

Parallel execution of two actions is required if both begin from the same initial state and
alter this state in incompatible ways. A typical example is the parallel assignment z, y :=
y, z, in which the values are exchanged. To represent this in a sequential program, the
compiler must first extend the state so that the condition ‘identical starting states for both
actions’ can be preserved. This can be done here by introducing an auxiliary variable ¢, to
which z is assigned.

Another case of parallel execution of two actions arises when explicit synchronization is
embedded in these actions to control concurrent execution. The compiler must fall back upon
coroutines or parallel processing facilities in the operating system in order to achieve such
synchronization; we shall not discuss this further.

Collateral execution of two actions means that the compiler need not fix their sequence
according to source language constraints. It can, for example, exchange actions if this will
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lead to a more efficient program. If both actions contain identical sub-actions then it suffices
to carry out this sub-action only once; this has the same effect as the (theoretically possi-
ble) perfectly-synchronized parallel execution of the two identical sub-actions. If a language
specifies collateral evaluation, the question of whether the evaluation of f (z) in the assign-
ment a[2 + 1] := f(z) + ali + 1] can influence the address calculation for a[%Z + 1] by
means of a side effect is irrelevant. The compiler need only compute the address of a[7 + 1]
once, even if ¢ were the following function procedure:

function 7 : integer; begin k¥ := k + 1; 4 := k end;

In this case k will be incremented only once, a further illustration of side effects and the
meaning of the paragraph from the FORTRAN 77 Standard quoted at the end of Section 2.3.

2.5 Program Environments and Abstract Machine States

The operations of a programming language are applied to states of the abstract machine for
this language and transform those states. The state is represented by the combination of the
data objects and values existing at a particular point in time, the hierarchy of procedure calls
not yet completed, and the representation of the next operation in the program text. The set
of data objects belonging to a state (independent of their values), together with the procedure
call hierarchy, constitute the environment (present in that state). We can thus distinguish
three distinct schemata for state transitions:

e Specify a new successor operation (e.g. by means of a jump).
e Change the value of an existing data object by means of an assignment.
e Change the size of the state.

We have already discussed the first possibility in Section 2.4.

2.5.1 Constants, Variables and Assignment

The data objects in a programming language either have constant values or are variable.
Constants are either specified by denotations (numbers, characters, strings) or are made to
correspond to identifiers by giving a declaration. The latter are called symbolic constants, and
contain the manifest constants as a subclass. The value of a manifest constant is permanently
fixed and can be determined at compile time. A compiler could replace each occurrence of a
manifest constant identifier by its value, and then forget the identifier completely. (The con-
stant declarations of Pascal, for example, create manifest constants.) In addition to manifest
constants, a language may permit dynamic constants. These can be treated by the compiler
as variables to which a value is assigned when the variable is declared, and to which further
assignments are prohibited. The following ALGOL 68 identity declaration creates a dynamic
constant c:

int ¢ = if p then 3 *x z else y + 1 fi;

(If p, z and y are really manifest constants then the compiler could optimize by evaluating the
conditional statement and then treating ¢ as a manifest constant as well. This optimization
is called folding — see Chapter 13.)

In the simplest case, variables are data objects with the following properties:

e They are identified either by an identifier or a composite access path such as a pair
(identifier, index).
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e They possess a value (from a domain determined by their type).
e There exists an access function to use their value as an operand.
e There exists an access function/assignment to alter their value.

This model of an elementary wvariable explains the variable concepts in FORTRAN,
COBOL, ALGOL 60, and partially explains that of Pascal.

In many languages, the only assignment permitted to a variable of composite type is an
assignment to a component. For example, ALGOL 60 does not allow assignment of an entire
composite object and also prohibits composite objects as results of function procedures. A
composite object must, however, be considered basically as a unit. Thus any assignment to
a component is an assignment to the entire object.

A variable does not always retain the last assigned value until a new value is assigned.
Typical examples are the control variables in ALGOL 60 and FORTRAN iterations, whose
values are undefined upon normal termination of the iteration. These rules permit the com-
piler to advance the control variable either before or after the termination test. (Clearly
the two possibilities lead to different results and hence the value of the controlled variable
cannot be guaranteed. ALGOL 68 avoids this problem because the control variable is local
to the iteration body.) Another example is the undefinition of a COBOL record by the write
operation. This permits implementation of the write operation by either changing the buffer
pointer or by transferring data. The FORTRAN 66 Standard gives (in Section 10.2.3.1) a
further list of situations in which variables become undefined. A compiler writer should care-
fully examine the language definition for such rules, since they normally lead to optimization
possibilities.

The pointer objects discussed in Section 2.2.4 provide access paths to other objects. By
using pointers, an arbitrary number of access paths to a given object can be created. In the
special case of parameter transmission, additional access paths can be created even without
pointers (see Section 2.5.3). The following identity declaration from ALGOL 68 is an example
of the general case:

ref mz = ... ;

Here the right hand side must give an access path to an object; ¢ then identifies a new access
path to this object. In contrast to the ALGOL 60 name parameter, the identity of the object
is fixed at the time the identity declaration is executed. Some languages permit creation of
access paths with limited access rights: Assignments may be forbidden over certain access
paths or in certain contexts. For example, assignments to global parameters are forbidden
in Euclid functions. If such restrictions exist, adherence to them must be verified by the
compiler during semantic analysis.

Existence of several access paths to the same object complicates the data flow analysis
(analysis of assignment and use patterns) required to verify certain semantic constraints and
to check for the applicability of certain optimizations. If the compiler writer wishes to delay
an assignment, for example, he must be certain that an access to the new value will not be
attempted over a different access path. This complication is termed the aliasing problem.

The LAX identity declaration allows creation of an arbitrary number of new access paths
to any variable. It is, however, the only mechanism by which new access paths can be created.
This allows us to illustrate the aliasing problem in its full generality in one place, rather than
having it appear in several different constructs with possibly different constraints.

2.5.2 The Environment

The environment of a program fragment specifies not only which objects exist, but also
the access paths by which they may be reached. Changes in the accessibility (or wisibility)
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of objects are generally associated with procedure call and return, and for this reason the
procedure call hierarchy forms a part of the environment. We shall now consider questions of
lifetime and visibility; the related topic of procedure parameter transmission will be deferred
to Section 2.5.3.

That part of the execution history of a program during which an object exists is called
the extent of the object. The extent rules of most programming languages classify objects as
follows:

e Static: The extent of the object is the entire execution history of the program.

e Automatic: The extent is the execution of a specified syntactic construct (usually a
procedure or block).

e Unrestricted: The extent begins at a programmer-specified point and ends (at least
theoretically) at the end of the program’s execution.

e Controlled: The programmer specifies both the beginning and end of the extent by
explicit construction and destruction of objects.

Objects in COBOL and the blank common block of FORTRAN are examples of static
extent. Local variables in ALGOL 60 or Pascal, as well as local variables in FORTRAN sub-
programs, are examples of automatic extent. (Labeled common blocks in FORTRAN 66 also
have automatic extent, see Section 10.2.5 of the standard.) List elements in LISP and objects
created by the heap generator of ALGOL 68 have unrestricted extent, and the anonymous
variables of Pascal are controlled (created by new and discarded by dispose).

The possibility of a dangling reference arises whenever a reference can be created to an
object of restricted extent. To avoid errors, we must guarantee that the referenced object
exists at the times when references to it are actually attempted. A sufficient condition to make
this guarantee is the ALGOL 68 rule (also used in LAX) prohibiting assignment of references
or procedures in which the extent of the right-hand side is smaller than the reference to which
it is assigned. It has the advantage that it can be checked by the compiler in many cases,
and a dynamic run-time check can always be made in the absence of objects with controlled
extent. When a language provides objects with controlled extent, as do PL/1 and Pascal,
then the burden of avoiding dangling references falls exclusively upon the programmer.

LAX constant are the only object having static extent. Variables are generally automatic,
although it is possible to generate unrestricted variables. The language has no objects with
controlled extent, because such objects do not result in any new problems for the compiler.
Static variables were omitted because the techniques used to deal with automatic variables
apply to them essentially without change.

By the scope of an identifier definition we understand the region of the program within
which we can use the identifier with the defined meaning. The scope of an identifier definition
is generally determined statically by the syntactic construct of the program in which it is
directly contained. A range is a syntactic construct that may have identifier definitions
associated with it. In a block-structured language, inner ranges are not part of outer ranges.
Usually any range may contain at most one definition of an identifier. Exceptions to this
rule may occur when a single identifier may be used for distinct purposes, for example as
an object and as the target of a jump. In ALGOL-like languages the scope of a definition
includes the range in which it occurs and all enclosed ranges not containing definitions of the
same identifier.

Consider the field selection p.f. The position immediately following the dot belongs
to the scope of the declaration of p’s record type. In fact, only the field selectors of that
record type are permitted in this position. On the other hand, although the statement s
of the Pascal (or SIMULA) inspection with p do s also belongs to the scope of p’s record
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type declaration, the definitions from the inspection’s environment remain valid in s unless
overridden by field selector definitions. In COBOL and PL/1, f can be written in place of
p-f (partial qualification) if there is no other definition of f in the surrounding range.

The concept of static block structure has the consequence that items not declared in a
procedure are taken from the static surrounding of the procedure. A second possibility is that
used in APL and LISP: Nonlocal items of functions are taken from the dynamic environment
of the procedure call.

In the case of recursive procedure calls, identically-declared objects with nested extents
may exist at the same time. Difficulties may arise if an object is introduced (say, by parameter
transmission) into a program fragment where its original declaration is hidden by another
declaration of the same identifier. Figure 2.3 illustrates the problem. This program makes
two nested calls of p, so that two incarnations, g; and gs, of the procedure ¢ and two variables
41 and %9 exist at the same time. The program should print the values 1, 4 and 1 of %9, %1
and k. This behavior can be explained by using the contour model.

procedure outer;

var n, k : integer;
procedure p (procedure f; var j : integer);
label 1;
var 1 : integer;
procedure g¢;
label 2;
begin (x q *)
n :=n + 1; if n = 4 then gq;
n:=n+1;if n =7 then 2 : 5 := 5 + 1;
T =1 + 1;
end; (x q *)
begin (* p *)
1 := 0;

n n +1; if n = 2 then p (g, ) else j := 7 + 1;
if n = 3 then 1 : f;
T =1 + 1;
writeln(?’ 1 =, 7:1);
end; (x p *)
procedure empty; begin end;

begin (* outer *)

n :=1; k := 0;

p (empty, k);

writeln (O k=7, k:1);

end; (x outer x*)

Figure 2.3: Complex Procedure Interactions in Pascal

The contour model captures the state of the program execution as a combination of
the (invariant) program text and the structured set of objects (state) existing at respective
points in time. Further, two pointers, ip and ep belong to the state. ip is the instruction
pointer, which indicates the position in the program text. For block-structured languages
the state consists of a collection of nested local environments called contours. Each contour
corresponds to a range and contains the objects defined in that range. If the environment
pointer ep addresses a contour c, then all of the objects declared in ¢ and enclosing contours
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are accessible. The contour addressed by ep is called the local contour. The object identified
by a given identifier is found by scanning the contours from inner to outer, beginning at the
local contour, until a definition for the specified identifier is found.

The structure of the state is changed by the following actions:

e Construction or removal of an object.
e Procedure call or range entry.

e Procedure return or range exit.

e Jump out of a range.

When an object with automatic extent is created, it lies in a contour corresponding to
the program construct in which it was declared; static objects behave exactly like objects
declared in the main program with automatic extent. Objects with unrestricted extent and
controlled objects lie in their own contours, which do not correspond to program constructs.

Upon entry into a range, a new contour is established within the local contour and the
environment pointer ep is set to point to it. Upon range exit this procedure is reversed: the
local contour is removed and ep set to point to the immediately surrounding contour.

Upon procedure call, a new contour c is established and ep set to point to it. In contrast
to range entry, however, c¢ is established within the contour ¢’ addressed by ep at the time of
procedure declaration. We term ¢’ the static predecessor of ¢ to distinguish it from ¢”, the
dynamic predecessor, to which ep pointed immediately before the procedure call. The pointer
to ¢” must be stored in ¢ as a local object. Upon return from a procedure the local contour
of the procedure is discarded and the environment pointer reset to its dynamic predecessor.

To execute a jump into an enclosing range b, blocks and procedures are exited and the
corresponding contours discarded until a contour ¢ corresponding to b is reached such that
¢ contained the contour of the jump. ¢ becomes the new local contour, to which ep will
point, and 4p is set to the jump target. If the jump target is determined dynamically as a
parameter or the content of a label variable, as is possible in ALGOL 60, then that parameter
or variable must specify both the target address and the contour that will become the new
local contour.

Figures 2.4 and 2.5 show the contour model for the state existing at two points during
the execution of the program of Figure 2.3. Notice that several contours correspond to the
same range when a procedure is called recursively. Further, the values of actual parameters
of a procedure call should be computed before the environment pointer is altered. If this is
not done, the pointer for parameter computation must be restored (as is necessary for name
parameters in ALGOL 60).

In order to unify the state manipulation, procedures and blocks are often processed iden-
tically. A block is then a parameterless procedure called ‘on the spot’. The contour of a block
thus has a dynamic predecessor identical with its static predecessor. The lifetimes of local
objects in blocks can be determined by the compiler, and a static overlay structure for them
can be set up within the contour of the enclosing procedure. The main program is counted
as a procedure for this purpose. The scope rules are not altered by this transformation. Con-
tours for blocks can be dispensed with, and all objects placed in the contour of the enclosing
procedure. Arrays with dynamic bounds lead to difficulties with this optimization, since the
bounds can be determined only at the time of actual block entry.

The rules discussed so far do not permit description of either LISP or SIMULA. In LISP a
function f may have as its result a function g that accesses the local storage of f. Since this
storage must also exist during the call of g, the contour of f must be retained at least until
g becomes inaccessible. Analogously, a SIMULA class k (an object of unrestricted extent)
may have name parameters from the contour in which it was instantiated. This contour must
therefore be retained at least until & becomes inaccessible.
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We solve these problems by adopting a uniform retention strategy that discards an object
only when that object becomes inaccessible. Accessibility is defined relative to the current
contour. Whenever an object in a contour ¢ references another object in a different contour,
¢’, we implement that reference by an explicit pointer from ¢ to ¢’. (Such references include
the dynamic predecessors of the contour, all reference parameters, and any explicit pointers
established by the user.) A contour is accessible if it can be reached from the current contour
by following any sequence of pointers or by a downhill walk. The dangling reference problem
vanishes when this retention strategy is used.

2.5.3 Binding

An identifier b is termed bound (or local) in a range if this range contains a definition for b;
otherwise b is free (or global) in this range. As definitions we have:

e Declarations of object identifiers (including procedure identifiers)
e Definitions: Label definitions, type definitions, FORTRAN labeled common blocks, etc.

e Formal parameter definitions

In the first and second cases the defined value along with all of its attributes is obvious
from the definition. In the third case only the identifier and type of the defined value are
available via the program text. The actual parameter, the argument, will be associated with
the identifier by parameter transmission at the time of the procedure call. We distinguish
five essentially different forms of parameter transmission:

1. Value (as in ALGOL 60, SIMULA, Pascal, Ada, for example): The formal parameter
identifies a local variable of the procedure, which will be initialized with the argument
value at the procedure call. Assignment to the parameter does not affect the caller.

2. Result (Ada): The formal parameter identifies a local variable of the procedure with
undefined initial value. Upon return from the procedure the content of this local variable
is assigned to the argument, which must be a variable.

3. Value/Result (FORTRAN, Ada): The formal parameter identifies a local variable of
the procedure, which will be initialized with the argument value at the procedure call.
Upon return from the procedure the content of this local variable is assigned to the
argument if the argument is a variable. The argument variable may be fixed prior to
the call or redetermined upon return.

4. Reference (FORTRAN, Pascal, Ada): A reference to the argument is transmitted to
the procedure. All operations on the formal parameter within the procedure are carried
out via this reference. (If the argument is an expression but not a variable, then the
result is placed in a temporary variable for which the reference is constructed. Some
languages, such as Pascal, do not permit use of an expression as an argument in this
case.)

5. Name (ALGOL 60): A parameterless procedure p, which computes a reference to the
argument, is transmitted to the procedure. (If the argument is an expression but not a
variable then p computes the value of the expression, stores it in a temporary variable
h, and yields a reference to h.) All operations on the formal parameter first invoke p
and then operate via the reference yielded by p.

Call by value is occasionally restricted to a strict value transmission in which the formal
parameter identifies not a local variable, but rather a local constant. Call by name is explained
in many language definitions by textual substitution of the argument for the parameter.
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ALGOL 60 provides for argument evaluation in the environment of the caller through a
consistent renaming.

The different parameter mechanisms can all be implemented in terms of (strict) call by
value, if the necessary kinds of data are available. For cases (2)-(4), the language must
provide the concept of arbitrary references as values. Call by name also requires the concept
of procedures as values (of procedure variables). Only when these concepts are unavailable are
the transmission mechanisms (2)-(5) important. This is clear in the language SIMULA, which
(in addition to the value and name calls inherited from ALGOL 60) provides call by reference
for classes and strings. A more careful study shows that in truth this could be handled by
an ordinary value call for references. In ALGOL 68 the call by reference is stated in terms of
the strict call by value, by using an identity declaration to make the formal parameter fp an
alias of the argument ap:

ref int fp = ap

Expressions that do not yield references are not permitted as arguments if this explanation
of call by reference is used, since the right hand side of the identity declaration must yield a
reference.

LAX follows the style of ALGOL 68, explaining its argument bindings in terms of identity
declarations. This provides a uniform treatment of all parameter mechanisms, and also elim-
inates the parameter mechanism as a distinct means of creating new access paths. Finally,
the identity declaration gives a simple implementation model.

Many language definitions do not specify parameter transmission mechanisms explicitly.
The compiler writer must therefore attempt to delineate the possibilities by a careful con-
sideration of their effects. For example, both case (3) and case (4) satisfy the conditions of
the FORTRAN 66 Standard, but none of the others do. Ada generally requires case (1), (2)
or (3). For composite objects, however, case (4) is permitted as an alternative. Use of this
alternative is at the discretion of the implementor, and the programmer is warned that any
assumptions about the particular transmission mechanism invalidates the program.

Programs whose results depend upon the parameter transmission mechanism are generally
difficult to understand. The dependencies arise when an object has two access paths, say via
two formal parameters or via a global variable and a formal parameter. This can be seen in
the program of Figure 2.6a, which yields the results of Figure 2.6b for the indicated parameter
mechanisms.

In addition to knowing what value an identifier is bound to, it is important to know
when the binding takes place. The parameter transmission differences discussed above can,
to a large extent, be explained in terms of binding times. In general, we can distinguish the
following binding times (explained in terms of the identity declaration ref realz=a[4%, 7+37):

1. Binding at each access (corresponding to call by name): Upon each access to z the identity
of a[i, j + 3] is re-determined.

2. Binding at first access: Upon the first access to z the identity of a[7, 7 + 37 will be
determined. All assignments to 2 and 7 up to that point will have an effect.

3. Binding upon declaration (corresponding to call by reference): After elaboration of the
identity declaration the identity of al%, 5 + 37 is fixed. In several languages the
identifiers on the right-hand side must not be declared in the same range, to avoid
circular definitions.

4. Static binding: The identity of a[%, j + 37 is fixed throughout the entire program. In
this case a must have static extent and statically-determined size. The values of 7 and
j must be defined prior to program execution and be independent of it (hence they
must be constants).



2.5 Program Environments and Abstract Machine States 33

begin
int m:=1, n;
proc p = (7?7 int 5, 7?7 int k) int:
begin 7 := 7+ 1 ; m:=m+ k; j + k end;
n:=p (m, m + 3)
end

Note: ‘7?7’ depends upon the parameter mechanism.

a) An ALGOL 68 program

Mechanism | m | n | 5 | k& | Comment
Value 5| 6 | 2| 4 | Strict value is not possible due to the assignment to j.
Value/Result | 2 | 6 | 2 | 4 | Pure result is unreasonable in this example.
Reference 6110 | 6 | 4 | Only j is a reference parameter because an expression
is illegal as a reference parameter in ALGOL 68. Hence
k is a value parameter.
Name 7117|710

Note: m and n were evaluated at the end of the main program, 7 and k at the end of p.

b) The effect of different parameter mechanisms

Figure 2.6: Parameter Transmission

In this spectrum call by result would be classified as binding after access. Call by value
is a binding of the value, not of the reference.

Determination of identity is least costly at run time for static binding and most costly for
binding at access. During the analysis of the program, the compiler writer is most concerned
with gathering as much information as possible, to bind as early as he can. For this reason
static binding breaks into two subcases, which in general depend not upon the language but
upon other considerations:

4a. Binding at compilation time. The identity of the bound values is determined during
compilation.

4b. Binding at program initialization: The identity of files or of external procedures will be
determined during a pre-process to program execution.

In case 4a the knowledge of the bound values can be used in optimization. 4b permits
repeated execution of the program with different bindings without re-compilation.

Free identifiers, which are not defined in a procedure, must be explained in the context of
the procedure so that their meaning can be determined. The definitions of standard identifiers,
which may be used in any program without further declaration, are fitted into this scheme
by assuming that the program is embedded in a standard environment containing definitions
for them.

By an external entity we mean an entity identified by a free identifier with no definition
in either the program or the standard environment. A program with external entities cannot
be compiled and then directly executed. Another step, which obtains the objects associated
with external entities from a program library, must be introduced. We shall discuss this step,
the binding of programs, in Chapter 11. In the simplest case the binding can be separated
from the compilation as an independent terminal step. This separation is normally chosen
for FORTRAN implementations. One consequence is that the compiler has no complete
overview of the properties of external entities and hence cannot verify that they are used
consistently. Thus in FORTRAN it is not usually possible for the compiler to determine
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whether external subprograms and functions are called with the correct number and type
of parameters. For such checking, but also to develop the correct accesses, the compiler
must have specifications like those for formal parameters for every external entity. Many
implementations of ALGOL 60, Pascal, etc. provide that such specifications precede or be
included in independently compiled procedures. Since in these languages, as in many others,
separate compilation of language units is not specified by the language definition, the compiler
writer himself must design the handling of external values in conjunction with introduction
of these possibilities. Ada contains a far-reaching specification scheme for external entities.

2.6 Notes and References

We draw our examples from a number of languages. In order to avoid the necessity for
referencing the proper definition each time a language property is discussed, we give an
exhaustive list of the languages we use and their defining documents at the beginning of the
Bibliography.

Descriptions of languages in the ALGOL family are interpretive, as are those of FORTRAN
and COBOL. The description of PL/1 with the help of the Vienna definition method (VDL
[LucAs and WALK, 1969; WEGNER, 1972]) is likewise interpretive. Other definition methods
are the aziomatic [HOARE and WIRTH, 1973] and the denotational [GORDON, 1979; TENNENT,
1981].

Many languages are described by a given implementation. We have nothing against this,
provided that the implementation is stated in an abstract form such as that of EVALQUOTE,
the function that implements the kernel of LISP interpretively. Often, however, it is never
defined in a high-level manner and a new implementation of the same language is very diffi-
cult. The macro implementation of SNOBOL4, GRISWOLD [1972] although highly successful,
exhibits this problem.

We have associated the concept of type with the set of operations possible on a value. This
led us to conclude that size was a distinct property. Both ALGOL 68 and Pascal, however,
treat values of distinct sizes as having distinct types. HABERMANN [1973] gives a critical
assessment of this philosophy and its effect in Pascal.

We have only skimmed the properties of numeric types. KNUTH [1969] presents the
general view of floating point numbers and shows how floating point operations relate to
the corresponding mathematical operations on real numbers. A machine-oriented model that
relates the parameters of the number system to specific characteristics of the target machine
is given by BROWN [1977, 1981].

The contour model was originally described by DIJKSTRA [1960, 1963] as an implemen-
tation technique for ALGOL 60. JOHNSTON [1971] coined the name and introduced the
graphical representation used here. A formal proof that the contour model is equivalent to
consistent renaming and the copy rule as used in the definition of ALGOL 60 was given by
JONES and Lucas [1971].

Parallel processing, exception handling and some other features of modern languages have
been intentionally omitted from the overview given in this chapter.

Exercises

2.1 [HOUSDEN, 1975; MORRISON, 1982] Consider the manipulation of character string data
in a general purpose programming language.
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2.2

2.3

2.4

2.5

2.6

2.7

2.8

(a) What set of operations should be available on strings?

(b) Should strings be regarded as elementary or composite objects? Why?

(c) Should strings be regarded as objects of a separate type (or types), or as arrays
of characters? Support your position.

Suppose that Pascal were changed so that the structural equivalence rule (Section 2.2.5)
held for types and so that 1 could precede any type constructor. Show that the types
m and p given in the text are equivalent, and that they are also equivalent to the type
g defined as follows:

type ¢ = record

T : real;
y : Trecord
T : real;
y : Tq
end

end;

Why is the Boolean expression (z > -1) and (sqrt (1 + z) > y) meaningless in
Pascal, FORTRAN or ALGOL 60?7 Consider only structurally equivalent expressions
in the various languages, making any necessary syntactic changes. Give a similar
expression in Ada that is meaningful.

Give the rules for contour creation and destruction necessary to support the module
concept in Ada.

Consider a block-structured language such as SIMULA, in which coroutines are allowed.
Generalize the contour model with a retention strategy to handle the following situation:
If n coroutines are started in block b, all have contour ¢ as dynamic predecessor.
By means of call-by-name parameters, a coroutine can obtain access to an object o
belonging to c¢; on the other hand, contour ¢ can disappear (because execution of b
has terminated) long before termination of the coroutine. o is then nonexistent, but
the access path via the name parameter remains. What possible solutions do you see
for this problem?

The retention strategy discussed in connection with SIMULA in Exercise 2.5 could be
used to support parallel processing in ALGOL 68. Quote sections of the ALGOL 68
Report to show that a simpler strategy can be used.

What problems arise from result parameters in a language that permits jumps out of
procedures?

Consider a program in which several procedures execute on different processors in
a network. Kach processor has its own memory. What parameter mechanisms are
appropriate in such a program?
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Chapter 3

Properties of Real and Abstract
Machines

In this chapter we shall discuss the target machine properties relevant for code generation,
and the mapping of the language-oriented objects and operations onto objects and operations
of the target machine. Systematic code generation must, of course, take account of the pecu-
liarities and weaknesses of the target computer’s instruction set. It cannot, however, become
bogged down in exploitation of these special idiosyncrasies; the payoff in code efficiency will
not cover the implementation cost. Thus the compiler writer endeavors to derive a model of
the target machine that is not distorted by exceptions, but is as uniform as possible, to serve
as a base for code generator construction. To this end some properties of the hardware may
be ignored, or gaps in the instruction set may be filled by subroutine invocations or inline
sequences treated as elementary operations. In particular, the instruction set is extended by
the operations of a run-time system that interfaces input/output and similar actions to the
operating system, and attends to storage management.

Further extension of this idea leads to construction of abstract target machines imple-
mented on a real machine either interpretively or by means of a further translation. (Inter-
pretive abstract machines are common targets of code generation for microprocessors due to
the need for space efficiency.) We shall not attempt a systematic treatment of the goals, meth-
ods and criteria for the design of abstract target machines here; see the Notes and References
for further guidance.

3.1 Basic Characteristics

Most computers have machine languages that are typeless in the sense of Section 2.2: The
interpretation of an object is determined by the operations applied to it. Exceptions are
computers like the Burroughs 5000 and its descendants that associate ‘tag bits’ with each
word. The extra bits reduce the number of possible interpretations of the word, or even make
that interpretation unique.

Objects reside in storage of various classes. Access paths, characteristic of the particular
storage class, are used to access these objects as operands or results of operations. Storage
classes, access paths and operations together constitute a model defining the computer for
code generation purposes.

In this section we shall survey typical storage classes, access paths and operations, and
indicate how instructions may be encoded. The remainder of the chapter will show how these
facilities can be used to implement the source language concepts presented in Chapter 2.

37
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3.1.1 Storage Classes

Computer storage can usually be classified as follows for code generation purposes:

e Main Storage: Randomly-accessible array of identically-sized locations.
e Stack: Storage accessed in a last-in, first-out manner.
e Integer Accumulator: Storage on which integer arithmetic instructions operate.

e Floating point Accumulator: Storage on which floating point arithmetic instructions
operate.

e Base Register: Storage used in operand access functions to hold addresses.
e Index Register: Storage used in operand access functions to hold integer offsets.

e Program Counter: Storage used to hold the address of the next instruction to be exe-
cuted.

e Condition Code: Storage used to hold the result of a comparison or test instruction.

e Other Special Register (e.g. Stack Pointer, Programmable Boolean Flag).

Examples of this classification applied to typical machines are given in Figure 3.1.

Every computer provides at least the main storage and program counter classes. (Whether
main storage is virtual or real is of no concern.) A particular storage component may belong
to more than one class. For example, the base register and index register classes are identical
on most computers. On the IBM 370 these are the ‘general-purpose registers’, which also
serve as integer accumulators. Storage classes may also overlap without being identical, as in
the case of the Univac 1100 series. These computers have sixteen ‘index registers’ belonging
to the index and base register classes and sixteen ‘general-purpose registers’ belonging to the
integer accumulator and floating point accumulator classes. However, the two storage classes
overlap, with four registers belonging to both. These four registers may be accessed as index
registers or as general-purpose registers, and their properties depend upon the access path
used.

Whether a particular storage class exists, and if so what its properties are, is partially a
decision of the compiler writer. If, for example, he chooses to access a specific portion of the
main memory of the Motorola 68000 only via stack operations relative to register A7 then this
portion of the memory belongs to the storage class ‘stack’ and not the class ‘main storage’.

Main storage.

General registers R0,...,R15 serving as integer accumulators, base registers or index registers.
Register pairs (RO,R1),(R2,R3),...,(R14,R15) serving as integer accumulators.

Floating point registers FO,F2,F4,F6 serving as floating point accumulators.

Program counter

Condition code
a) IBM 370

Main storage Data registers DO0,...,D7 serving as integer accumulators or index registers.
Address registers A0,...,A7 serving as base or index registers.

Program counter PC

Condition code

Stack pointer A7
b) Motorola 68000

Figure 3.1: Storage Classes
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(Such a decision can be made differently for the generated code and the run-time system,
implying that the memory belongs to one class as far as the generated code is concerned and
another for the run-time system.) Also, since the properties of a storage class depend to a
certain extent upon the available access paths, a Motorola 68000 stack will differ from that
of a Burroughs 6700/7700.

Most storage classes consist of a sequence of numbered elements, the storage cells. (The
numbering may have gaps.) The number of a storage cell is called its address . Every access
path yields an algorithm, the effective address of the access path, for computing the address
of the storage cell being accessed. We speak of byte-oriented computers if the cells in the main
storage class have a size of 8 bits, otherwise (e.g. 16, 24, 32, 48 or 60 bits per cell) we term
the computer word-oriented . For a word-oriented computer the cell sizes in the main storage
and register classes are usually identical, whereas the registers of a byte-oriented computer
(except for some microprocessors) are 2, 4 or possibly 8 bytes long. In this case the storage
cell of the integer accumulator class is usually termed a word.

All storage is ultimately composed of bits. Some early computers (such as the IBM 1400
series) used decimal arithmetic and addressing, and many current computers provide a packed
decimal (4 bits per digit) encoding. None of these architectures, however, consider decimal
digits to be atoms of storage that cannot be further decomposed; all have facilities for accessing
the individual bits of the digit in some manner.

Single bits and bit sequences such as the decimal digits discussed above cannot be accessed
directly on most machines. Instead, the bit sequence is characterized by a partial-word access
path specifying the address of a storage cell containing the sequence, the position of the
sequence from the left or right boundary of this unit, and the size of the sequence. Often this
partial word access path must be simulated by means of shifts and logical operations.

Aggregates hold objects too large for a single storage cell. An aggregate will usually be
specified by the address of its first storage cell, and the cells making up the aggregate by their
addresses relative to that point. Often the address of the aggregate must be divisible by a
given integer, called the alignment. Figure 3.2 lists main storage operand sizes and alignments
for typical machines.

Operand Size (bits) Alignment
Byte 8 1
Halfword 16 2
Word 32 4
Doubleword 64 8
String up to 256 x 8 1
a) IBM 370 - Storage cell is an 8-bit byte
Operand Size (bits) Alignment
Bit 1 -
Digit 4 _
Byte 8 1
Word 16 2
Doubleword 32 2

b) Motorola 68000 - Storage cell is an 8-bit byte

Figure 3.2: Operand Sizes

Aggregates also appear in classes other than main storage. For example, the 16 general
purpose registers of the IBM 370 form a storage class of 4-byte cells addressed by the numbers
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0 through 15. Every register whose address is even forms the first element of a larger entity
(a register pair) used in multiplication, division and shift operations. When a single-length
operand for such an operation is supplied, it should be placed in the proper register of a
pair rather than in an arbitrary register. The other register of the pair is then automatically
reserved for the operation, and cannot be used for other purposes.

The entities of a particular level in a hierarchy of aggregates may overlap. This occurs,
for example, for the segments in the main storage class of the Intel 8086 (65536-byte blocks
whose addresses are divisible by 16) or the 4096-byte blocks addressable via a base or index
register in the IBM 370.

Operations on registers usually involve the full register contents. When an object whose
size is smaller than that of a register is moved between a register and storage of some other
class, a change of representation may occur. The value of the object must, however, remain
invariant. Depending upon the type of the object, it may be lengthened by inserting leading
or trailing zeros, or by inserting leading or trailing copies of the sign. When it is shortened,
we must guarantee that no significant information is lost. Thus the working length of an
object must be distinguished from the storage length.

3.1.2 Access Paths

An access path describes the value or location of an operand, result or jump target. We
classify an instruction as a 0-, 1-, 2-, or 3-address instruction according to the number of
access paths it specifies. Very seldom are there more than three access paths per instruction,
and if more do exist then they are usually implicit. (For example, in the MVCL instruction
of the IBM 370 the two register specifications R1 and R2 actually define four operands in
registers R1, R14+1, R2 and R2+1 respectively.)

Each access path specifies the initial element of an operand or result in a storage class.
Access paths to some of the storage classes (such as the stack, program counter, condition
code and special registers) are not normally explicit in the instruction. They will appear only
when there is some degree of freedom associated with their use, as in the PDP11 where any
register can be used as a stack pointer.

The most common explicit access paths involve one of the following computations:

e Constant. The value appears explicitly in the instruction.

e Register. The content of the register is taken as the value.

e Register+constant. The sum of the content of the register and a constant appearing
explicitly in the instruction is taken as the value.

e Register+register. The sum of the contents of two registers is taken as the value.

e Register+register+constant. The sum of the contents of two registers and a constant
appearing in the instruction is taken as the value.

The computed value may itself be used as the operand (immediate), it may be used as the
effective address of the operand in main storage (direct), or it may be used as the address of
an address (indirect). On some machines the object fetched from main storage in the third
case may specify another computation and further indirection, but this feature is rarely used
in practice. Figure 3.3 illustrates these concepts for typical machines.

The addresses of registers must almost always appear explicitly as constants in the instruc-
tion. In special cases they may be supplied implicitly, as when the content of the (unspecified)
program counter is added to a constant given in the instruction (relative addressing). If the
computed value is used as an address then the registers must belong to the base register
or index register class; the sum of the (unsigned) base address and (signed) index is often
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i: Operand is the byte i from the instruction.

d(m,n): Operand is the 24-bit value obtained by (Rm)+(Rn)+d. Only the low-order 24 bits of each
register are used, and the value is interpreted as positive. Overflow in the addition is ignored.
If m or n is 0 then the content of the register is assumed to be 0; the actual content of general
register 0 is not used.

m: Operand is the content of general register Rm.

m: Operand is the content of general register pair (Rm,Rm+1).

m: Operand is the content of floating point register Fm.

d(m,n): Operand is the content of a memory area whose address is the value computed as discussed
above.

Implicit access to the condition code and program counter.

Note: 0<i <28 0<d<22,0<m,n<2*
a) IBM 370

=il6: Operand is the word following the instruction.

=i32: Operand is the doubleword following the instruction.

i16: Operand is the value (PC)+il16.

i8(Am): Operand is the value (PC)+(Am)+i8.

i8(Dn): Operand is the value (PC)+(Dn)-+i8.

Am: Operand is the content of address register Am.

Dn: Operand is the content of data register Dn.

(Am): Operand is the content of a memory area whose address is the content of address register Am.

i16(Am): Operand is the content of a memory area whose address is the value of (Am)+il6.

i8(Am,Dn): Operand is the content of a memory area whose address is the value of (Am)+(Dn)+i8.

(Am)+: Operand is the content of a memory area whose address is the content of Am. Am is then
incremented by the operand length. The increment is never less than 2 for A7.

-(Am): Am is decremented by the operand length. Operand is then the content of a memory area
whose address is the content of Am. The decrement is never less than 2 for A7.

Implicit access to the condition code and program counter.

b) Motorola 68000
Figure 3.3: Access Paths

interpreted modulo the address size. The values of constants in instructions are frequently re-
stricted to nonnegative values, and often their maximum values are far less than the maximum
address. (An example is the restriction to the range [0,4095] of the IBM 370.)

Not all computers allow every one of the access paths discussed above; restrictions in the
combination (operation, access path) can also occur. Many of these restrictions arise from
the properties of the machine’s registers. We distinguish five architectural categories based
upon register structure:

e Storage-to-storage. All operands of a computational operation are taken from main
storage, and the result is placed into main storage (IBM 1400 series, IBM 1620). Storage-
to-storage operations appear as a supplementary concept in many processors.

e Stack. All operands of a computational operator are removed from the top of the stack,
and the result is placed onto the top of the stack (Burroughs 5000, 6000 and 7000 series,
ICL 2900 family). The stack appears as a supplementary concept in many processors.

e Single Accumulator. One operand of a computational operator is taken from the accu-
mulator, and the result is placed into the accumulator; all other registers, including any
accumulator extension, have special tasks or cannot participate in all operations (IBM
7040/7090, Control Data 3000 series, many process-control computers, Intel 8080 and
microprocessors derived from it).

e Multiple Accumulator. One operand of a computational operator is taken from one of
the accumulators, and the result is returned to that accumulator; long operands and
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results are accommodated by pairing the accumulators (DEC PDP11, Motorola 68000,
IBM 370, Univac 1100)

e Storage Hierarchy. All operands of a computational operator are taken from accumula-
tors, and the result is returned to an accumulator (Control Data 6000, 7000 and Cyber
series). This architecture is identical to the storage-to-storage architecture if we view
the accumulators as primary storage and the main storage as auxiliary storage.

3.1.3 Operations

Usually the instruction set of a computer provides four general classes of operation:

e Computation: Implements a function from n-tuples of values to m-tuples of values. The
function may affect the state. Example: A divide instruction whose arguments are a
single-length integer divisor and a double-length integer dividend, whose results are a
single-length integer quotient and a single-length integer remainder, and which may
produce a divide check interrupt.

e Data transfer: Copies information, either within one storage class or from one storage
class to another. Examples: A move instruction that copies the contents of one register
to another; a read instruction that copies information from a disc to main storage.

e Sequencing: Alters the normal execution sequence, either conditionally or uncondition-
ally. Examples: A halt instruction that causes execution to terminate; a conditional
jump instruction that causes the next instruction to be taken from a given address if a
given register contains zero.

e Environment control: Alters the environment in which execution is carried out. The
alteration may involve a transfer of control. Examples: An interrupt disable instruc-
tion that prohibits certain interrupts from occurring; a procedure call instruction that
updates addressing registers, thus changing the program’s addressing environment.

It is not useful to attempt to assign each instruction unambiguously to one of these classes.
Rather the classes should be used as templates to evaluate the properties of an instruction
when deciding how to implement language operations (Section 3.2.3).

It must be possible for the control unit of a computer to determine the operation and
all of the access paths from the encoding of an instruction. Older computer designs usually
had a single instruction size of, say, 24 or 36 bits. Fixed subfields were used to specify the
operation and the various access paths. Since not all instructions require the same access
paths, some of these subfields were unused in some cases. In an information-theoretic sense,
this approach led to an inefficient encoding.

Coding efficiency is increased in more modern computers by using several different instruc-
tion sizes. Thus the IBM 370 has 16, 32 and 48 bit (2, 4 and 6 byte) instructions. The first
byte is the operation code, which determines the length and layout of the instruction as well
as the operation to be carried out. Nearly all microprocessors have variable-size operation
codes as well. In this case the encoding process carried out by the assembly task may require
larger tables, but otherwise the compiler is not affected. Variable-length instructions may
also lead to more complex criteria of optimality.

On some machines one or more operation codes remain unallocated to hardware functions.
Execution of an instruction specifying one of these operation codes results in an interrupt,
which can be used to activate a subprogram. Thus these undefined operations can be given
meaning by software, allowing the compiler writer to extend the instruction set of the target
machine. Such programmable extension of the instruction set is sometimes systematically
supported by the hardware, in that the access paths to operands at specific positions are
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placed at the disposal of the subprogram as parameters. The XOP instruction of the Texas
Instruments 990 has this property. (TRAP allows programmable instruction set extension on
the PDP11, but does not make special access path provisions.)

3.2 Representation of Language Elements

In this and following sections we shall discuss the mapping of the language elements of Chap-
ter 2 onto the machine elements of Section 3.1. This mapping is really the specification of
the tasks of the code generator and the run-time system, and must be performed for each
language/machine pair.

3.2.1 Elementary Objects

A combination of space and instruction questions must be answered in order to determine the
mapping of elementary types such as integer, real, character, Boolean and other enumerations.
Implementation of the relevant basic operations is particularly important for Boolean values.

For integers, the first decision is whether to use a decimal (4 bits/digit) or binary encoding.
Decimal encoding implies that decimal operations exist (as on the IBM 370), or at least that
there is a facility to detect a carry (result digit>9) and to increment the next higher position
(as on many microprocessors). The values of variables have varying size with this encoding,
which complicates assignment operations. Decimal encoding is worth considering if very few
operations take place on each value (the cost of the translation from decimal to binary on input
and the reverse translation on output is greater than the expected gain from using binary
operations internally), or if the numeric incompatibility of binary and decimal arithmetic is
a significant problem (as with some financial applications).

Binary encodings are normally fixed-length, and hence when a binary encoding is chosen
we must fix the length of the representation in terms of the maximum source language integer.
Since most programming languages leave the range of integer values unspecified, we fall back
upon the rule of thumb that all addresses be representable as integers. This causes us to
consider integer representations of 16, 24 or 32 bits. The representation must at least include
all conceivable indexes; 16 bits will suffice for this purpose on small machines. We must
also consider available instructions. For example, on the IBM 370 we would rule out 16 bits
because no divide instruction is included for 16 bit operands and because the test to determine
whether intermediate 32-bit results could be represented in 16 bits would slow execution
considerably. The extra instructions would, in many cases, wipe out the savings resulting
from the 16-bit representation. Similar reasoning would eliminate the 24-bit representation
on most computers.

A binary encoding with n bits can represent 2" distinct values, an even number. Any
range of integers symmetric about 0, however, contains an odd number of values. This
basic mismatch leads to anomalous behavior of machine arithmetic. The exact nature of the
anomaly depends upon the representation chosen for negative numbers. A sign-magnitude or
diminished-radix complement (e.g. 1’s-complement) representation results in two zero values,
one positive and the other negative; a radix complement (e.g. 2’s-complement) representation
results in a ‘most negative’ number that has no positive counterpart. The extra-zero anomaly
is usually the more difficult of the two for the compiler writer. It may involve additional
instructions to ensure that comparisons yield the correct result, or complicated analysis to
prove that these instructions need not be generated.

Comparisons may prove difficult if they are not provided as machine instructions. Arith-
metic instructions must then be used, and precautions taken against erroneous results due
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to over- and underflow. For example, consider a machine with integers in the range [-
32767,32767]. If a > b is implemented as (¢« — b) > 0 then an overflow will occur when
comparing the values ¢ = 16384 and b = —16384. The comparison code must either antici-
pate and avoid this case, or handle the overflow and interpret the result properly. In either
case, a long instruction sequence may be required. Underflow may occur in floating point
comparisons implemented by a subtraction when the operand difference is small. Since many
machines deliver 0 as a result, without indicating that an underflow has occurred, anticipation
and avoidance are required.

Actually, the symptom of the floating point underflow problem is that a comparison asserts
the equality of two numbers when they are really different. We could argue that the inherent
inaccuracy of floating point operations makes equality testing a risky business anyway. The
programmer must thoroughly understand the algorithm and its interaction with the machine
representation before using equality tests, and hence we can inform him of the problem and
then forget about it. This position is defensible provided that we can guarantee that a
comparison will never yield an incorrect relative magnitude (i.e. it will never report a > b
when a is less than b, or vice-versa).

If, as in Pascal, subranges m..n of integers can be specified as types, the compiler writer
must decide what use to make of this information. When the usual integer range can be
exceeded (not possible in Pascal) this forces the introduction of higher-precision arithmetic
(in the extreme case, of variable-length arithmetic). For small subranges the size of the
range can be used to reduce the number of bits required in the representation, if necessary
by replacing the integer i by (i — lower_bound), although this last is not recommended. The
important question is whether arithmetic operations exist for the shorter operands, or at least
whether the conversion between working length and storage length can easily be carried out.
(Recall that no significant bits may be discarded when shortening the representation.)

The possibilities for mapping real numbers are constrained by the floating point operations
of the hardware or the given subroutine package. (If neither is available on the target machine
then implementation should follow the IEEE standard.) The only real choice to be made
involves the precision of the significand. This decision must be based upon the milieu in
which the compiler will be used and upon numeric problems whose discussion is beyond the
scope of this book.

For characters and character strings the choice of mapping is restricted to the specification
of the character code. Assuming that this is not fixed by the source language, there are two
choices: either a standard code such as the ISO 7-bit code (ASCII), or the code accepted
by the target computer’s operating system for input/output of character strings (EBCDIC
or other 6- or 8-bit code; note that EBCDIC varies from one manufacturer to another).
Since most computers provide quite efficient instructions for character translation, use of the
standard code is often preferable.

The representation of other finite types reduces to the question of suitably representing
the integers 0..n — 1, which we have already discussed. One exception is the Boolean values
false and true. Only a few machines are provided with instructions that access single bits.
If these instructions are absent, bit operations must be implemented by long sequences of
code (Figure 3.4). In such cases it is appropriate to implement Boolean variables and values
as bytes or words. Provided that the source language has not constrained their coding, the
choice of representation depends upon the realization of operations with Boolean operands or
Boolean results. In making this decision, note that comparison and relational operations occur
an order of magnitude more frequently than all other Boolean operations. Also, the operands
of and and or are much more frequently relations than Boolean variables. In particular, the
implementation of and and or by jump cascades (Section 3.2.3) introduces the possibilities
(false = 0, true # 0) and (false > 0, trueQ) or their inverses in addition to the classical
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(false = 0,true = 1). These possibilities underscore the use of more than one bit to represent
a Boolean value.

1 Bit The bit position is specified by two masks, M0=B’0...010...0° and
M1=B’1...101...1".
1 Byte Let 0 represent false, K represent true.
a) Possible representations for Boolean values

Construct Code, depending on representation
Byte Bit
T™™ MO,p
BO L1
NI Mlgq
q:=p MVC q,p B L2
L1 OI Mo0,q
L2 continuation
p:=not p XI K,p XTI  MO,p
T™M MO,p
g:=qorp oC q,p BZ L1
Ol MoOq
L1 continuation
T™™ MO,p
g:=qandp | NC q,p BO L1
NI MoO,q
L1 continuation

(The masks MO and M1 are those appropriate to the second operand of the instruction in which they appear.)

b) Code using the masks from (a)
Figure 3.4: Boolean Operations on the IBM 370

3.2.2 Composite Objects

For composite objects, we are interested in the properties of the standard representation and
the possibilities for reducing storage requirements.

An object a : array [m .. nJ] of M will be represented by a sequence of (n - m + 1)
components of type M. The address of element a[i] becomes:

address (a[m]) + (7 - m) * [M/ = address (al[0]) + 2 * [M/

Here [M/ is the size of an element in address units and address (a [ 0 J) is the ‘fic-
titious starting address’ of the array. The address of a[0] is computed from the location
of the array in storage; such an element need not actually exist. In fact, address (a [0])
could be an invalid address lying outside of the address space.

The usual representation of an object b : array [m .. ny,..., m .. nJ of M
occupies ky x ky * ... * k, * |M| contiguous memory cells, where k; =n; —m; + 1,5 =1,...,r.
The address of element biy,...,i,] is given by the following storage mapping function when

the array is stored in row-major order:
address (b[my,...,my]) + (i1 —my) * ko -+ s kp % |M| 4+ -+ + (i —my) * | M|
= address (b[0,...,0]) +iy x ko % ... x Ky % |[M| + -+ + 4, % | M|
By appropriate factoring, this last expression can be rewritten as:
address (b[0,...,0]) + ((-.. (41 * ko2 +i2) x ks + -+ +i,) x |M|
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If the array is stored in column-major order then the order of the indices in the polynomial

is reversed:
address (b[0,...,0]) + ((--. (¢p * kp—1 +ip—1) * kp—o + -+ + 1) * |M|

The choice of row-major or column-major order is a significant one. ALGOL 60 does not
specify any particular choice, but many ALGOL 60 compilers have used row-major order.
Pascal implicitly requires row-major order, and FORTRAN explicitly specifies column-major
order. This means that Pascal arrays must be transposed in order to be used as parameters
to FORTRAN library routines. In the absence of language constraints, make the choice that
corresponds to the most extensive library software on the target machine.

Access to b[iy, ...,%,| is undefined if the relationship m; < i; < n; is not satisfied for some
7 =1,...,r. To increase reliability, this relationship should be checked at run time if the
compiler cannot verify it in other ways (for example, that ¢; is the controlled variable of a
loop and the starting and ending values satisfy the condition). To make the check, we need
to evaluate a storage mapping function with the following fixed parameters (or its product
with the size of the single element):

r, address (b[0,...,0]),m1,...,mp, 01, ..., Ny
Together, these parameters constitute the array descriptor. The array descriptor must be
stored explicitly for dynamic and flexible arrays, even in the trivial case r = 1. For static
arrays the parameters may appear directly as immediate operands in the instructions for
computing the mapping function. Several array descriptors may correspond to a single array,
so that in addition to questions of equality of array components we have questions of equality
or identity of array descriptors.

An r dimensional array b can also be thought of as an array of r — 1 dimensional arrays.
We might apply this perception to an object ¢ : array[l..m, 1..n] ofinteger, representing it as
m one-dimensional arrays of type ¢t = array[l..n] ofinteger. The fictitious starting addresses
of these arrays are then stored in an object a : array[l..m] of1 ¢. To be sure, this descriptor
technique raises the storage requirements of ¢ from m *n to m * n + m locations for integers
or addresses; in return it speeds up access on many machines by replacing the multiplication
by n in the mapping function address(c[0,0]) + (i * n + j)  |integer| by an indexed memory
reference. The saving may be particularly significant on computers that have no hardware
multiply instruction, but even then there are contraindications: Multiplications occurring in
array accesses are particularly amenable to elimination via simple optimizations.

The descriptor technique is supported by hardware on Burroughs 6700/7700 machines.
There, the rows of a two-dimensional array are stored in segments addressed by special seg-
ment descriptors. The segment descriptors, which the hardware can identify, are used to
access these rows. Actual allocation of storage to the rows is handled by the operating sys-
tem and occurs at the first reference rather than at the declaration. The allocation process,
which is identical to the technique for handling page faults, is also applied to one-dimensional
arrays. Each array or array row is divided into pages of up to 256 words. Huge arrays can
be declared if the actual storage requirements are unknown, and only that portion actually
referenced is ever allocated.

Character strings and sets are usually implemented as arrays of character and Boolean
values respectively. In both cases it pays to pack the arrays. In principle, character string
variables have variable length. Linked lists provide an appropriate implementation; each list
element contains a segment of the string. List elements can be introduced or removed at will.
Character strings with fixed maximum length can be represented by arrays of this length.
When an array of Boolean values is packed, each component is represented by a single bit,
even when simple Boolean variables are represented by larger storage units as discussed above.

A record is represented by a succession of fields. If the fields of a record have alignment
constraints, the alignment of the entire record must be constrained also in order to guarantee
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that the alignment constraints of the fields are met. An appropriate choice for the alignment
constraint of the record is the most stringent of the alignment constraints of its fields. Thus
a record containing fields with alignments of 2, 4 and 8 bytes would itself have an alignment
of 8 bytes. Whenever storage for an object with this record type is allocated, its starting
address must satisfy the alignment constraint. Note that this applies to anonymous objects
as well as objects declared explicitly.

The amount of storage occupied by the record may depend strongly upon the order of
the fields, due to their sizes and alignment constraints. For example, consider a byte-oriented
machine on which a character variable is represented by one byte with no alignment constraint
and an integer variable occupies four bytes and is constrained to begin at an address divisible
by 4. If a record contained an integer field followed by a character field followed by a second
integer field then it would occupy 12 bytes: There would be a 3-byte gap following the
character field, due to the alignment constraint on integer variables. By reordering the fields,
this gap could be eliminated. Most programming languages permit the compiler to do such
reordering.

Records with variants can be implemented with the variants sharing storage. If it is
known from the beginning that only one variant will be used and that the value of the variant
selector will never change, then the storage requirement may be reduced to exactly that
for the specified variant. This requirement is often satisfied by anonymous records; Pascal
distinguishes the calls new(p) and new(p, variant_selector) as constructors for anonymous
records. In the latter case the value of the variant selector may not change, whereas in the
former all variants are permitted.

The gaps arising from the alignment constraints on the fields of a record can be eliminated
by simply ignoring those constraints and placing the fields one after another in memory. This
packing of the components generally increases the cost in time and instructions for field
access considerably. The cost almost always outweighs the savings gained from packing a
single record; packing pays only when many identical records are allocated simultaneously.
Packing is often restricted to partial words, leaving objects of word length (register length)
or longer aligned. On byte-oriented machines it may pay to pack only the representation of
sets to the bit level.

Packing alters the access function of the components of a composite object: The selector
must now specify not only the relative address of the component, but also its position within
the storage cell. On some computers extraction of a partial word can be specified as part of an
operand address, but usually extra instructions are required. This has the result that packed
components of arrays, record and sets may not be accessible via normal machine addresses.
They cannot, therefore, appear as reference parameters.

Machine-dependent programs sometimes use records as templates for hardware objects.
For example, the assembly phase of a compiler might use a record to describe the encoding of
a machine instruction. The need for a fixed layout in such cases violates the abstract nature
of the record, and some additional mechanism (such as the representation specification of
Ada) is necessary to specify this. If the language does not provide any special mechanism,
the compiler writer can overload the concept of packing by guaranteeing that the fields of a
packed record will be allocated in the order given by the programmer.

Addresses are normally used to represent pointer values. Addresses relative to the be-
ginning of the storage area containing the objects are often sufficient, and may require less
storage than full addresses. If, as in ALGOL 68, pointers have bounded lifetime, and the
correctness of assignments to reference variables must be checked at run time, we must add
information to the pointer from which its lifetime may be determined. In general the starting
address of the activation record (Section 3.3) containing the reference object serves this pur-
pose; reference objects of unbounded extent are denoted by the starting address of the stack.
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A comparison of these addresses for relative magnitude then represents inclusion of lifetimes.

3.2.3 Expressions

Because of the diversity of machine instruction sets, we can only give the general principles
behind the mapping of expressions here. An important point to remember throughout the
discussion, both here and in Section 3.2.4, is that the quality of the generated code is deter-
mined by the way it treats cases normally occurring in practice rather than by its handling
of the general case. Moreover, local code characteristics have a greater impact than any op-
timizations on the overall quality. Figure 3.5 shows the static frequencies of operations in
a large body of Pascal text. Note the preponderance of memory accesses over computation,
but remember that indexing generally involves both multiplication and addition. Remember
also that these are static frequencies; dynamic frequencies might be quite different because
a program usually spends about 90% of its time in heavily-used regions accounting for less
than 10% of the overall code.

Structure Tree Operator Percent of All Operators
Access a variable 27
Assign 13
Select a field of a record 9.7
Access a value parameter 8.1
Call a procedure 7.8
Index an array (each subscript) 6.4
Access an array 6.1
Compare for equality (any operands) 2.7
Access a variable parameter 2.6
Add integers 2.3
Write a text line 1.9
Dereference a pointer variable 1.9
Compare for inequality (any operands) 1.3
Write a single value 1.2
Construct a set 1.0
not 0.7
and 0.7
Compare for greater (any operands) 0.5
Test for an element in a set 0.5
or 0.4
All other operators 3.8

Figure 3.5: Static Frequencies of Pascal Operators [CARTER, 1982]

Single target machine instructions directly implement operations appearing in the struc-
ture tree only in the simplest cases (such as integer arithmetic). A node of the structure
tree generally corresponds to a sequence of machine instructions, which may appear either
directly in the generated code or as a subroutine call. If subroutines are used then they may
be gathered together into an interpreter consisting of a control loop containing a large case
statement. The operations are then simply selectors used to choose the proper case, and
may be regarded as instructions of a new (abstract) machine. This approach does not really
answer the question of realizing language elements on a target machine; it merely changes the
target machine, hopefully simplifying the problem.

A closed sequence is invariably slower than the corresponding open sequence because of
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the cost of the transfers in and out. It would therefore be used only if commensurate savings
in space were possible. Some care must be taken in evaluating the tradeoffs, because both
open and closed sequences usually involve setup code for the operands. It is easy to overlook
this code, making erroneous assumptions about the operand locations, and thereby arrive at
the wrong decision. Recall from Section 3.1.3 that it is sometimes possible to take advantage
of unused operation codes to access closed instruction sequences. Depending upon the details
of the hardware, the time overhead for this method may be either higher or lower than that
of a conventional call. It is probably most useful for implementing facilities that might be
provided by hardware. The typical example is floating point arithmetic on a microprocessor
with integer operations only. A floating point operation usually involves a long sequence of
instructions on such a machine (which may not even be capable of integer multiplication or
division), and thus the entry/exit overhead is negligible. If the user later adds a floating-
point chip, and controls it with the previously unused operation codes, no changes to the
code generator are required. Even when different operation codes are used the changes are
minimal.

An object, label or procedure is addressable if its effective address can be expressed by
the relevant access path of an instruction. For entities that are not addressable, additional
operations and temporary storage are required to compute the effective address. The allow-
able combinations of operation and access function exert a very strong influence upon the
code generation process because of this. On the Motorola 68000, for example, specification
of the operation can be largely separated from selection of the access path, and operand ad-
dressability is almost independent of the operator. Many IBM 370 instructions, on the other
hand, work only when the second operand is in a register. In other cases memory access is
possible, but only via a base register without indexing. This leads to the problem that an
operand may be addressable in the context of one operation but not in the context of another.

When an instruction set contains such asymmetries, the simplest solution is to define the
abstract machine for the source-to-target mapping with a uniform access function, reserving
the resources (usually one or two registers) needed to implement the uniform access function
for any instruction. Many code sequences require additional resources internally in any event.
These can often be standardized across the code sequences and used to provide the uniform
access function in addition. The only constraint on resources reserved for the uniform access
function is that they have no inter-sequence meaning; they can be used arbitrarily within a
sequence.

Consider the tree for an expression. The addressability of entities described by leaves
is determined by the way in which the environment is encoded in the machine state. (We
shall discuss possibilities for environment encoding in Section 3.3.) For entities described by
interior nodes, however, the addressability depends upon the code sequence that implements
the node. It is often possible to vary a code sequence, without changing its cost, to meet
the addressability requirements of another node. Figure 3.6 shows a typical example. Here
the constraints of the IBM 370 instruction set require that a multiplicand be in the odd-
numbered register of a pair, and that the even-numbered register of that pair be free. Similarly,
the optimum mechanism for converting a single-length value to double-length requires its
argument to be in the even register of the pair used to hold its result. An important part of
the source-to-target mapping design is the determination of the information made available
by a node to its neighbors in the tree, and how this information affects the individual code
sequences.

Interior nodes whose operations yield addresses, such as indexing and field selection nodes,
may or may not result in code sequences. Addressability is the key factor in this decision:
No code is required if an access function describing the node’s result can be built, and if
that access function is acceptable to the instruction using the result. The richer the set of
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R1,I

R1,J Result in R1

RO,K  Multiplicand from R1, product to (R0O,R1)
RO, Dividend from (RO,R1)

a) Code for the expression ((7 + j) * k/I)

SIS

L RO,I

A RO,J

A R0O,K  Result in RO

SRDA R0,32 Extend to double, result in (RO,R1)
D RO, Dividend from (RO,R1)

b) Code for the expression ((i + 7 + k) /1)

Figure 3.6: Optimum Instruction Sequences for the IBM 370

access functions, the more nodes can be implemented simply by access function restructuring.
In fact, it is often possible to absorb nodes describing normal value operations into access
functions that use their result. Figure 3.7 is a tree for b[i +12]. As we shall see in Section 3.3,
the local byte array b might have access function 36(13) on an IBM 370 (here register 13 gives
the base address of the local contour, and 36 is the relative byte location of b within that
contour). After loading the value of i into register 1, the effects of the index and addition
nodes can be combined into the access function 48(13,1). This access function (Figure 3.3a)
can be used to obtain the second argument in any RX-format instruction on the IBM 370.

(voeO
®)

® ()

Figure 3.7: Tree for a Typical Array Access

Some machines incorporate automatic incrementing or decrementing of a register content
into certain access functions. These facilities are easy to use in source-to-target mappings for
special purposes such as stack manipulation. Their general use, for example in combining the
increment of a loop control variable with the last use of that variable as an index, is much
more difficult because it leads to ‘combinatorial explosion’ in the number of cases that the
code generator must examine. Such optimizations should be provided by a separate process
(peephole optimization), rather than being incorporated into the source-to-target mapping.

Many Boolean expressions occur in contexts such as conditional statements and loops,
where the result is used only to determine the flow of control. Moreover, most of these ex-
pressions either are relations themselves or are composed of relations. On the majority of
computers a relation is evaluated by performing a comparison or arithmetic operation and
then executing a transfer of control based upon the result. The upshot is that such expres-
sions can be implemented most conveniently by omitting Boolean computations completely!
Figure 3.8 illustrates the concept, which is called a jump cascade.

The concept of a jump cascade is completely independent of the concept of short-circuit
evaluation discussed in Section 2.3. It appears that Figure 3.8 is performing short-circuit
evaluation because, for example, ¢ is not fetched unless the value of a is less than that of
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b. But fetching a simple variable has no side effect, and hence the short-circuit evaluation
is not detectable. If ¢ were a parameterless function with a side effect then it should be
invoked prior to the start of the code sequence of Figure 3.8b, and the ¢ in that code sequence
would represent temporary storage holding the function result. Thus we see that questions
of short-circuit evaluation affect only the relative placement of code belonging to the jump
cascade and code for evaluating the operands of the relations.

if (a <b) and (¢ = d) or (e > f) then statement;

a) A conditional

L Rl,a
C R1,b
BNL L10 Note condition reversal here
L Rl,c
C Rl1,d

BEQ L1 Condition is not reversed here
L10 L Rl,e

C R1,f
BNH L2 Reversed
L1 ... Code for statement
L2 ... Code following the conditional

b) IBM 370 code corresponding to (a)

Figure 3.8: Jump Cascades

3.2.4 Control Structures

A node representing a control structure generally results in several disjoint code sequences
rather than a single code sequence. The meanings of and relationships among the sequences
depend primarily upon the source language, and hence general schemata can be used to
specify them. Each of the disjoint sequences then can be thought of as an abstract machine
operation with certain defined properties and implemented individually.

The goto statement is implemented by an unconditional jump instruction. If the jump
leaves a block or procedure then additional operations, discussed in Section 3.3, are needed to
adjust the state. In expression-oriented languages, a jump out of an expression may require
adjustment of a hardware stack used for temporary storage of intermediate values. This
adjustment is not necessary when the stack is simply an area of memory that the compiler
manages as a stack, computing the necessary offsets at compile time. (Unless use of a hardware
stack permits cheaper access functions, it should be avoided for this reason.)

Schemata for common control structures are given in Figure 3.9. The operation ‘condi-
tion(expression,truelabel falselabel)’ embodies the jump cascade discussed in Section 3.2.3.
The precise mechanism used to implement the analogous ‘select’ operation depends upon the
set kyi...kp. Let kg, be the smallest and k4, the largest values in this set. If ‘most’ of
the values in the range [kmin, kmaz] are members of the set then ‘select’ is implemented as
shown in Figure 3.10a. Each element of target that does not correspond to an element of
ki ...k is set to ‘LO’. When the selector set is sparse and its span is large (for example, the
set 0, 5000, 10000), a decision tree or perfect hash function should be used instead of an array.
The choice of representation is strictly a space/time tradeoff, and must be made by the code



52

Properties of Real and Abstract Machines

generator for each case clause. The source-to-target mapping must specify the parameters to
be used in making this choice.

condition(e, L1, L2)

L1: clause
L2:
a) if e then clause;
condition(e, L1, L2)
L1: clause;
GOTO L
L2: clausey
L:
b) if e then clause; else clausesy;
select(e, k1, L1,..., ky, Ln, LO)
Ll: clause;
GOTO L
Ln: clause,
GOTO L
LO: clausey
L:
c) case e of ki: clausey; ...; ky: clause, else clausey;
GOTO L
L1l: clause
L:  condition(e, L1, L2)
L2:
d) while e do clause;
L1: clause
condition(e, L2, L1)
L2:

e) repeat clause until e

forbegin(i, e1, es, e3)
clause
forend (i, ez, €3)
f) for i := e; by ey to e3 do clause;

Figure 3.9: Implementation Schemata for Common Control Structures

By moving the test to the end of the loop in Figure 3.9d, we reduce by one the number of
jumps executed each time around the loop without changing the total number of instructions
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required. Further, if the target machine can execute independent instructions in parallel, this
schema, provides more opportunity for such parallelism than one in which the test is at the
beginning.

‘Forbegin’ and ‘forend’ can be quite complex, depending upon what the compiler can
deduce about the bounds and step, and how the language definition treats the controlled
variable. As an example, suppose that the step and bounds are constants less than 2'2, the
step is positive, and the language definition states that the value of the controlled variable is
undefined on exit from the loop. Figure 3.10b shows the best IBM 370 implementation for
this case, which is probably one of the most common. (We assume that the body of the loop
is too complex to permit retention of values in registers.) Note that the label LOOP is defined
within the ‘forbegin’ operation, unlike the labels used by the other iterations in Figure 3.9.
If we permit the bounds to be general expressions, but specify the step to be 1, the general
schema of Figure 3.10c holds. This schema works even if the value of the upper bound is the
largest representable integer, since it does not attempt to increment the controlled variable
after reaching the upper bound. More complex cases are certainly possible, but they occur
only infrequently. It is probably best to implement the abstract operations by subroutine
calls in those cases (Exercise 3.9).

target : array[kmin .. kmaz| of address;

k : integer;

k= e;

if & > kmin and k < kmaz then goto target [k] else goto LO;

a) General schema for ‘select’ (Figure 3.9c)

LA 1, e e; = constant < 2'2
LOOP ST 1,

. Body of the clause

L 1,

LA 2,e9 ey = constant < 2'2
LA 3,e3 e3 = constant < 212

BXLE 1,2,LOOP
b) IBM 370 code for special-case forbegin ... forend

1:=ep;t:=e3;

if + > ¢ then goto I3 else goto [2;
M:1:=1+1;

[2:... (* Body of the clause *)

if 1 <t then goto [1;

3 :

c¢) Schema for forbegin...forend when the step is 1
Figure 3.10: Implementing Abstract Operations for Control Structures

Procedure and function invocations are control structures that also manipulate the state.
Development of the instruction sequences making up these invocations involves decisions
about the form of parameter transmission, and the construction of the activation record — the
area of memory containing the parameters and local variables.

A normal procedure invocation, in its most general form, involves three abstract opera-
tions:

Callbegin: Obtain access to the activation record of the procedure.
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Transfer: Transfer control to the procedure.
Callend: Relinquish access to the activation record of the procedure.

Argument computation and transmission instructions are placed between ‘callbegin’ and
‘transfer’; instructions that retrieve and store the values of result parameters lie between
‘transfer’ and ‘callend’. The activation record of the procedure is accessible to the caller
between ‘callbegin’ and ‘callend’.

In simple cases, when the procedure calls no other procedures and does not require complex
parameters, the activation record can be deleted entirely and the parameters treated as local
variables of the environment statically surrounding the procedure declaration. The invocation
then reduces to a sequence of assignments to these variables and a simple subroutine jump. If,
as in the case of elementary functions, only one or two parameters are involved then they can
be passed in registers. Note that such special treatment leads to difficulties if the functions
are invoked as formal parameters. The identity of the procedure is not fixed under those
circumstances, and hence special handling of the call or parameter transmission is impossible.

Invocations of formal procedures also cause problems if, as in ALGOL 60, the number
and types of the parameters is not statically specified and must be verified at execution time.
These dynamic checks require additional instructions not only at the call site, but also at the
procedure entry. The latter instructions must be avoided by a normal call, and therefore it
is useful for the procedure to have two distinct entry points — one with and one without the
tests.

Declarations of local variables produce executable code only when some initialization is
required. For dynamic arrays, initialization includes bounds computation, storage allocation,
and construction of the array descriptor. Normally only the bounds computation would be
realized as in-line code; a library subroutine would be invoked to perform the remaining tasks.

At least for test purposes, every variable that is not explicitly initialized should be im-
plicitly assigned an initial value. The value should be chosen so that its use is likely to lead
to an error report; values recognized as illegal by the target machine hardware are thus best.
Under no circumstances should 0 be used for implicit initialization. If it is, the programmer
will too easily overlook missing explicit initialization or assume that the implicit initialization
is a defined property of the language and hence write incorrect programs.

Procedure and type declarations do not usually lead to code that is executed at the site
of the declaration. Type declarations only result in machine instructions if array descriptors
or other variables must be initialized. As with procedures, these instructions constitute a
subprogram that is not called at the point of declaration.

ALGOL 68 identity declarations of the form mid = expression are consistently replaced
by initialized variable declarations mid' := expression. Here id' is a new internal name, and
every applied occurrence of id is consistently replaced by 7d’ . The initialization remains the
only assignment to id’. Simplification of this schema is possible when the expression can be
evaluated at compile time and all occurrences of #d replaced by this value.

The same schema describes argument transmission for the reference and strict value mech-
anisms, in particular in ALGOL 68. Transmission of a reference parameter is implemented
by initialization of an internal reference variable: ref m parameter = argument becomes ref
m variable := argument.

We have already met the internal transformation used by the value and name mechanisms
in Section 2.5.3. In the result and value/result mechanisms, the result is conveniently assigned
to the argument after return. In this way, transmission of the argument address to the
procedure is avoided. When implementing value/result transmission for FORTRAN, one
should generate the result assignment only in the case that the argument was a variable.
(Note that if the argument address is transmitted to the procedure then the caller must
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always treat the argument as a variable. If the programmer uses a constant, the compiler
must either flag it as an error or move the constant value to a temporary storage location
and transmit the address of that temporary.)

For function results, the compiler generally produces temporaries of suitable type at the
call site and in the function. Within the function, the result is assigned to the local temporary.
Upon return, as in the case of a result parameter, the local temporary is copied into the global
temporary. The global temporary is only needed if the result cannot be used immediately.
(An example of this case is the value of cos(z) in cos(z) + sin(y).)

Results delivered by function procedures can, in simple cases, be returned in registers. (For
compatibility with jump cascades, it may be useful for a Boolean function to encode its result
by returning to two different points.) Transmission of composite values as function results
can be difficult, especially when these are arrays whose sizes are not known to the caller. This
means that the caller cannot reserve storage for the result in his own environment a priori;
as a last resort such objects may be left on the heap (Section 3.3.3).

3.3 Storage Management

Until now we have dealt with the representation of single objects in memory; in this section we
shall discuss management of storage for collections of objects, including temporary variables,
during their lifetimes. The important goals are the most economical use of memory and the
simplicity of access functions to individual objects. Source language properties govern the
possible approaches, as indicated by the following questions (see also Section 2.5.2):

e Is the exact number and size of all objects known at compilation time?

e [s the extent of an object restricted, and what relationships hold between the extents
of distinct objects (e.g. are they nested)?

e Does the static nesting of the program text control a procedure’s access to global objects,
or is access dependent upon the dynamic nesting of calls?

3.3.1 Static Storage Management

We speak of static storage management if the compiler can provide fixed addresses for all
objects at the time the program is translated (here we assume that translation includes
binding), i.e. we can answer the first question above with ‘yes’. Arrays with dynamic bounds,
recursive procedures and the use of anonymous objects are prohibited. The condition is
fulfilled for languages like FORTRAN and BASIC, and for the objects lying on the outermost
contour of an ALGOL 60 or Pascal program. (In contrast, arrays with dynamic bounds can
occur even in the outer block of an ALGOL 68 program.)

If the storage for the elements of an array with dynamic bounds is managed separately,
the condition can be forced to hold in this case also. That is particularly interesting when we
have additional information that certain procedures are not recursive, for example because
recursivity must be noted specially (as in PL/1) or because we have determined it from
analysis of the procedure calls. We can then allocate storage statically for contours other
than the outermost.

Static storage allocation is particularly valuable on computers that allow access to any
location in main memory via an absolute address in the instruction. Here, static storage cor-
responds exactly to the class of objects with direct access paths in the sense of Section 3.2.2.
If, however, it is unknown during code generation whether or not an object is directly ad-
dressable (as on the IBM 370) because this depends upon the final addressing carried out
during binding, then we must also access statically-allocated objects via a base register. The
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only advantage of static allocation then consists of the fact that no operations for storage
reservation or release need be generated at block or procedure entry and exit.

3.3.2 Dynamic Storage Management Using a Stack

As we have already noted in Section 2.5.2, all declared values in languages such as Pascal and
SIMULA have restricted lifetimes. Further, the environments in these languages are nested:
The extent of all objects belonging to the contour of a block or procedure ends before that of
objects from the dynamically enclosing contour. Thus we can use a stack discipline to manage
these objects: Upon procedure call or block entry, the activation record containing storage for
the local objects of the procedure or block is pushed onto the stack. At block end, procedure
return or a jump out of these constructs the activation record is popped off of the stack. (The
entire activation record is stacked, we do not deal with single objects individually!)

An object of automatic extent occupies storage in the activation record of the syntactic
construct with which it is associated. The position of the object is characterized by the base
address, b, of the activation record and the relative location offset), R, of its storage within
the activation record. R must be known at compile time but b cannot be known (otherwise
we would have static storage allocation). To access the object, b must be determined at run
time and placed in a register. R is then either added to the register and the result used
as an indirect address, or R appears as the constant in a direct access function of the form
‘register+constant’.

Every object of automatic extent must be decomposable into two parts, one of which has
a size that can be determined statically. (The second part may be empty.) Storage for the
static parts is allocated by the compiler, and makes up the static portion of the activation
record. (This part is often called the first order storage of the activation record.) When a
block or procedure is activated, the static part of its activation record is pushed onto the
stack. If the activation record contains objects whose sizes must be determined at run time,
this determination is carried out and the activation record extended. The extension, which
may vary in size from activation to activation, is often called the second order storage of the
activation record. Storage within the extension is always accessed indirectly via information
held in the static part; in fact, the static part of an object may consist solely of a pointer to
the dynamic part.

An array with dynamic bounds is an example of an object that has both static and
dynamic parts. In most languages, the number of dimensions of an array is fixed, so the size
of the array descriptor is known at compile time. Storage for the descriptor is allocated by the
compiler in the static part of the activation record. On encountering the declaration during
execution, the bounds are evaluated and the amount of storage needed for the array elements
is determined. The activation record is extended by this amount and the array descriptor is
initialized appropriately. All accesses to elements of the array are carried out via the array
descriptor.

We have already noted that at compile time we do not know the base address of an
activation record; we know only the range to which it belongs. From this we must determine
the base address, even in the case where recursion leads to a number of activation records
belonging to the same range. The range itself can be specified by its block nesting depth, bnd,
defined according to the following rules based on the static structure of the program:

e The main program has bnd = 1.
e A range is given bnd = t + 1 if and only if the immediately enclosing range has bnd = t.

Bnd = t indicates that during execution of the range the state consists of a total of ¢
nested contours.
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If, as in all ALGOL-like languages, the scopes of identifiers are statically nested then
at every point in the execution history of a program there is at most one activation record
accessible at a given nesting depth. The base address of a particular activation record can
then be found by noting the corresponding nesting depth at compile time and setting up a
mapping s : nestingdepth — baseaddress during execution. The position of an object in the
fixed part of the activation record is fully specified by the pair (bnd, R); we shall therefore
speak of ‘the object (bnd, R)’.

The mapping s changes upon range entry and exit, procedure call and return, and jumps
out of blocks or procedures. Updating s is thus one of the tasks (along with stack pointer
updating and parameter or result transmission) of the state-altering operations that we met
in Section 2.5.2. We shall describe them semi-formally below, assuming that the stack is
described by:

k : array[0 .. upper_limit] of storage_cell; k_top : 0 .. upper_limit;
We assume further that a storage cell can hold exactly one address, and we shall treat address
variables as integer variables with which we can index k.

The contour nesting and pointer to dynamic predecessor required by the contour model
are represented by address values stored in each activation record. Together with the re-
turn address, and possibly additional information depending upon the implementation, they
constitute the ‘administrative overhead’ of the activation record. A typical activation record
layout is shown in Figure 3.11; the corresponding state change operations are given in Figure
3.12. We have omitted range entry/exit operations. As noted in Section 2.5.2, procedures and
blocks can be treated identically by regarding a block as a parameterless procedure called ‘on
the spot’, or contours corresponding to blocks can be eliminated and objects lying upon them
can be placed on the contour of the enclosing procedure. If blocks are to be given separate
activation records, the block entry/exit operations are identical to those for procedures except
that no return address is saved on entry and ip is not set on exit. Jumps out of blocks are
treated exactly as shown in Figure 3.12c in any case.

Second-order storage

Return Address
Pointer to Dynamic Predecessor | First-order storage
Pointer to Static Predecessor

S =N

Figure 3.11: Typical Activation Record Layout

The procedure and jump addresses indicated by the comments in Figures 3.12a and c
are supplied by the compiler; the environment pointers must be determined at run time. If
a procedure is invoked directly, by stating its identifier, then it must lie within the current
environment and its static predecessor can be obtained from the stack by following the chain
of static predecessors until the proper block nesting depth is reached:

environment := ep;
for i := bndcaller downto bndprocedure do
environment := k[environment];
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The value (bndcaller - bndprocedure) compile time and is usually small, so the loop is
sometimes ‘unrolled’ to a fixed sequence of environment := k[environment]| operations.

k[k_top] := (* static predecessor of the procedure *);
k[k_top + 1] := ep; (* dynamic predecessor *)
k[k_top + 2] := ip; (* return address *)

ep := k_top; (* current environment *)
k_top := k_top 4+ 7size”; (* first free location *)

ip := (* procedure code address *)

a) Procedure entry

k_top := ep;
ep := k[k-top + 1]; (* back to the dynamic predecessor *)
ip == k[k_top + 2];

b) Procedure exit

k_top := ep;
ep := (* target environment of the jump *);
while k[k_top + 1] # ep do
k_top := k[k_top + 1]; (* leave all intermediate environments *)
ip := (* target address of the jump *);

¢) Jump out of a procedure

Figure 3.12: Environment Change Operations

When a procedure is passed as a parameter and then the parameter is called, the static
predecessor cannot be obtained from the stack because the called procedure may not be in
the environment of the caller. (Figures 2.3 and 2.5 illustrate this problem.) Thus a procedure
parameter must be represented by a pair of addresses: the procedure entry point and the
activation record address for the environment statically enclosing the procedure declaration.
This pair is called a closure . When a procedure parameter is invoked, the address of the
static predecessor is obtained from the closure that represents the parameter. Figure 3.13
shows the stack representing the contours of Figure 2.5; note the closures appearing in the
activation records for procedure p.

Jumps out of a procedure also involve changing the state (Figure 3.12c). The mechanism
is essentially the same as that discussed above: If the label is referenced directly then it lies in
the current environment and its environment pointer can be obtained from the stack. A label
variable or label parameter, however, must be represented by a closure and the environment
pointer obtained from that closure.

Access to any object in the environment potentially involves a search down the chain of
static predecessors for the pointer to the activation record containing that object. In order to
avoid the multiple memory accesses required, a copy of the addresses can be kept in an array,
called a display, indexed by the block nesting depth. Access to the object (bnd, R) is therefore
provided by display[bnd] + R; we need only a single memory access, loading display[bnd] into
a base register, to set up the access function.

The Burroughs 6000/7000 series computers have a 32-register display built into the hard-
ware. This limits the maximum block nesting depth to 32, which is no limitation in practice.
Even a restriction to 16 is usually no problem, but 8 is annoying. Thus the implementation
of a display within the register set of a multiple-register machine is generally not possible,
because it leads to unnatural restrictions on the block nesting depth. The display can be



3.3 Storage Management 59

22

location after 1 : f
12 Activation record for procedure ¢
19 5
1=0
11 (reference to 7)
5 (¢’s environment)
entry point address for ¢ Activation record for procedure p
location after p(q,1)
5
12 0
1=2
4 (reference to k)
0 (empty’s environment,)
entry point address for empty | Activation record for procedure p
location after p(empty, k)
0

ot
o)

S| =
I

olo|o| ||
Ni=!

Activation record for procedure outer

0
Note:
k_top = 22
ep =19
1p = address of label 2

Figure 3.13: Stack Configuration Corresponding to Figure 2.5

allocated to a fixed memory location, or we might keep only a partial display (made up of the
addresses of the most-frequently accessed activation records) in registers. Which activation
record addresses should be kept is, of course, program-dependent. The current activation
record address and that of the outermost activation record are good choices in Pascal; the
latter should probably be replaced with that of the current module in an implementation of
any language providing modules.

If any sort of display, partial or complete, is used then it must be kept up to date as the
state changes. Figure 3.14 shows a general procedure for bringing the display into synchronism
with the static chain. It will alter only those elements that need alteration, halting when the
remainder is guaranteed to be correct. In many cases the test for termination takes more
time than it saves, however, and a more appropriate strategy may be simply to reload the
entire display from the static chain.

Note that the full generality of update_display is needed only when returning from a pro-
cedure or invoking a procedure whose identity is unknown. If a procedure at level bndnew in
the current addressing environment is invoked, the single assignment display[bndnew] := a
suffices. (Here a is the address of the new activation record.) Display manipulation can
become a significant overhead for short procedures operating at large nesting depths. Recog-
nition of special cases in which this manipulation can be avoided or reduced is therefore an
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important part of the optimization of such procedures.

procedure update_display (bndnew, bndold : integer; a : address)
(* Make the display consistent with the static chain
On entry -
bndnew = nesting depth of the new activation record
a = address of the new activation record
bndold = nesting depth of the current activation record
On exit -
The display specifies the environment of the new contour
*)
var
1 : integer;
h : address;
begin (* update_display *)

1 := bndnew;

h := a;

while display[i] # h or 7 < bndold do
begin

display[i] := h;
2 :=41 - 1; h := k[h];
end

end; (*x update_display *)

Figure 3.14: Setting the Display

In SIMULA and Ada, as in all languages that contain coroutines and concurrently-
executing tasks, activation record creation and destruction need not follow a strict stack
discipline. Each coroutine or task corresponds to a set of activation records, and these sets
are growing and shrinking independently. Thus each coroutine or task requires an indepen-
dent stack, and these stacks themselves follow a stack discipline. The result is called a tree or
cactus stack and is most easily implemented in a segmented virtual memory. Implementation
in a linear memory is possible by fixing the sizes of the component stacks, but this can only
be done when limitations can be placed upon recursion depth and spawning of further tasks.

3.3.3 Dynamic Storage Management Using a Heap

If none of the questions stated at the beginning of Section 3.3 lead to sufficient reduction in the
lifetime and visibility of objects, the last resort is to allocate storage on a heap: The objects
are allocated storage arbitrarily within an area of memory. Their addresses are determined at
the time of allocation, and they can only be accessed indirectly. Examples of objects requiring
heap storage are anonymous objects such as those created by the Pascal new function and
objects whose size changes unpredictably during their lifetime. (Linked lists and the flexible
arrays of ALGOL 68 belong to the latter class.)

Notice that the static and dynamic chain pointers were the only interconnections among
the activation records discussed in Section 3.3.2. The use of a stack storage discipline is not
required, but simply provides a convenient mechanism for reclaiming storage when a contour
is no longer relevant. By storing the activation records on a heap, we broaden the possibilities
for specifying the lifetimes of objects. This is the way in which the uniform retention strategy
mentioned at the end of Section 2.5.2 is implemented. Storage for an activation record is
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released only if the program fragment (block, procedure, class) to which it belongs has been
left and no pointers to objects within this activation record exist.

Heap allocation is particularly simple if all objects required during execution can fit into
the designated area at the same time. In most cases, however, this is not possible. Either
the area is not large enough or, in the case of virtual storage, the working set becomes too
large. A detailed discussion of heap storage management policies is beyond the scope of this
book (see Section 3.5 for references to the relevant literature). We shall only sketch three
possible recycling strategies for storage and indicate the support requirements placed upon
the compiler by these strategies.

If a language provides an explicit ‘release’ operation, such as Pascal’s dispose or PL/1’s
free, then heap storage may be recycled by the user. This strategy is simple for the compiler
and the run-time system, but it is unsafe because access paths to the released storage may
still exist and be used eventually to access recycled storage with its earlier interpretation.
The release operation, like the allocation operation, is almost invariably implemented as a
call on a support routine. Arguments that describe the size and alignment of the storage area
must be supplied to these calls by the compiler on the basis of the source type of the object.

Automatic reclamation of heap storage is possible only if the designers of a language
have considered this and made appropriate decisions. The key is that it must be possible
to determine whether or not a variable contains an address. For example, only a variable
of pointer type may contain an address in a Pascal program. A special value, nil, indicates
the absence of a pointer. When a pointer variable is created, it could be initialized to nal.
Unfortunately, Pascal also provides variant records and does not require such records to have
a tag field indicating which variant is in force. If one variant contains a pointer and another
does not, it is impossible to determine whether or not the corresponding variable contains a
pointer. Detailed discussion of the tradeoffs involved in such a decision by a language designer
is beyond the scope of this text.

Storage can be recycled automatically by a process known as garbage collection, which
operates in two steps:

e Mark. All accessible objects on the heap are marked as being accessible.

e Collect. All heap storage is scanned. The storage for unmarked objects is recycled, and
all marks are erased.

This has the advantage that no access paths can exist to recycled storage, but it requires
considerable support from the compiler and leads to periodic pauses in program execution. In
order to carry out the mark and collect steps, it must be possible for the run-time system to
find all pointers into the heap from outside, find all heap pointers held within a given object
on the heap, mark an object without destroying information, and find all heap objects on a
linear sweep through the heap. Only the questions of finding pointers affect the compiler;
there are three principal possibilities for doing this:

1. The locations of all pointers are known beforehand and coded into the marking algo-
rithm.

2. Pointers are discovered by a dynamic type check. (In other words, by examining a
storage location we can discover whether or not it contains a pointer.)

3. The compiler creates a template for each activation record and for the type of every
object that can appear on the heap. Pointer locations and (if necessary) the object
length can be determined from the template.
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Pointers in the stack can also be indicated by linking them together into a chain, but this
would certainly take too much storage on the heap.

Most LISP systems use a combination of (1) and (2). For (3) we must know the target type
of every pointer in order to be able to select the proper template for the object referenced.
This could be indicated in the object itself, but storage would be saved if the template carried
the number or address of the proper template as well as the location of the pointer. In this
manner we also solve the problem of distinguishing a pointer to a record from the pointer to
its first component. Thus the template for an ALGOL 68 structure could have the following
structure:

e Length of the structure (in storage units)
e For each storage unit, a Boolean value ‘reference’
e For each reference, the address of the template of the referenced type.

If dynamic arrays or variants are allowed in records then single Boolean values indicating
the presence of pointers are no longer adequate. In the first case, the size and number of
components are no longer known statically. The template must therefore indicate the location
of descriptors, so that they can be interpreted by the run-time system. In the second case the
position of the variant selector and the different interpretations based upon its value must be
known. If, as in Pascal, variant records without explicit tag fields are allowed, then garbage
collection is no longer possible.

Garbage collection also requires that all internal temporaries and registers that can contain
references must be identified. Because this is very difficult in general it is best to arrange the
generated code so that, whenever a garbage collection might occur, no references remain in
temporaries or registers.

The third recycling strategy requires us to attach a counter to every object in the heap.
This counter is incremented whenever a reference to the object is created, and decremented
whenever a reference is destroyed. When the counter is decremented to its initial value of 0,
storage for the object can be recycled because the object is obviously inaccessible. Mainte-
nance of the counters results in higher administrative and storage costs, but the overheads are
distributed. The program simply runs slower overall; it does not periodically cease normal
operation to reclaim storage. Unfortunately, the reference counter method does not solve all
problems:

e Reference counts in a cyclic structure will not become 0 even after the structure as a
whole becomes inaccessible.

e If a counter overflows, the number of references to the object is lost.

A complete solution requires that the reference counters be backed up by a garbage col-
lector.

To support storage management by reference counting, the compiler must be able to iden-
tify all assignments that create or destroy references to heap objects. The code generated for
such assignments must include appropriate updating of the reference counts. Difficulties arise
when variant records may contain references, and assignments to the tag field identifying the
variant are allowed: When such an assignment alters the variant, it destroys the reference
even though no direct manipulation of the reference has taken place. Similar hidden destruc-
tion occurs when there is a jump out of a procedure that leads to deletion of a number of
activation records containing references to heap objects. Creation of references is generally
easier to keep track of, the most difficult situation probably being assignment of a composite
value containing references as minor components.
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3.4 Mapping Specifications

The results of the analysis discussed in the earlier sections of this chapter should be em-
bodied in a document called a mapping specification (Figure 3.15) for the particular source
language/target machine pair. It should not only give the final results, but also the reasoning
that led to them. Even when a particular choice was obvious, a brief statement of its basis
should be made. For example, one normally chooses the representation of integer values to
be that assumed by the hardware ‘add integer’ instruction; a single sentence stating this fact
should appear in the specification.

L TO M MAPPING SPECIFICATION
1 The Abstract M

1.1 Storage Classes
One subsection per storage class (see Section 3.1.1).

1.2 Access Paths
One subsection per access path (see Section 3.1.2).

1.3 Instructions
One subsection per operation class (see Section 3.1.3).

2 Storage Mapping

2.1 Primitive Data Types
One subsection per primitive data type of L (see Section 3.2.1).

2.2 Composite Data Types
One subsection per composite data type of L (see Section 3.2.2).

2.3 Computation State
One subsection describing register usage, one describing the use of space for code
and constants, and one per storage area type (e.g. static, stack, heap - see Sec-
tion 3.3) required by L.

3 Operation Mapping

3.1 Routine Invocation
One subsection per operation (e.g. procedure call, procedure entry, formal call,
jump out of a procedure) required by L. Block entry/exit should also be covered
when L requires that these operations manipulate the computation state.

3.2 Control Structures
One subsection per control structure of L (see Section 3.2.4).

3.3 Expressions

3.3.1 Attributes
Information to be exchanged among the nodes of an expression (see Sec-
tion 3.2.3).

3.3.2 Encodings
Encoding of each L operation as a sequence of instructions and access paths
from the abstract M, as a function of the information exchanged among ex-
pression nodes.

Figure 3.15: Outline of a Mapping Specification
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Section 1 of the mapping specification relies heavily on the manufacturer’s manual for
the target machine. It describes the machine as it will be seen by the code generator, with
anomalies smoothed out and omitted operations (to be implemented by code sequences or
subroutines) in place. The actual details of realizing the abstraction might be included, or this
information might be the subject of a separate specification. We favor the latter approach,
because the abstraction should be almost entirely language-independent. It is clear that
the designer must decide which facilities to include in the abstract machine and which to
implement as part of the operation mapping. We cannot give precise criteria for making this
choice. (The problem is one of modular decomposition, with the abstraction constituting a
module and the operation encoding using the facilities of that module.)

The most difficult part of Section 2 of the mapping specification is Section 2.3, which
is tightly coupled to Section 3.1. Procedure mechanisms advocated by the manufacturer
are often ill-suited to the requirements of a given language. Several alternative mechanisms
should be explored, and detailed cost estimates prepared on the basis of some assumptions
about the relative numbers of calls at various static nesting depths and accesses to variables.
It is imperative that these assumptions be carefully stated, even though there is only tenuous
justification for them; unstated assumptions lead to conflicting judgements and usually to
a suboptimal design. Also, if measurements later indicate that the assumptions should be
changed, the dependence of the design upon them is clearly stated.

Control structure implementation can be described adequately using notation similar to
that of Figure 3.9. When a variety of information is exchanged among nodes of an expres-
sion, however, description of the encoding for each node is complicated. The best notation
available seems to be the extended-entry decision table, which we discuss in this context in
Section 10.3.2.

A mapping specification is arrived at by an iterative process, one that should be allotted
sufficient time in scheduling a compiler development project. The cost is dependent upon
the complexities of both the source language and the target machine. In one specific case,
involving a Pascal implementation for the Motorola 68000, two man-months of effort was
required over a six-month period. One person should be responsible for the specification, but
at least one other (and preferably several) should be involved in frequent critical reviews. The
objective of these reviews should be to test the reasoning based upon the stated assumptions,
making certain that it has no flaws. Challenging the assumptions is less important unless
specific evidence against them is available.

Sections 2.1 and 2.2 of the mapping specification should probably be written first. They
are usually straightforward, and give a basis on which to build. Sections 2.3 and 3.1 should be
next. As indicated earlier, these sections interact strongly and involve difficult decisions. The
remainder of Section 3 is tedious, but should be carried out in full detail. It is only by being
very explicit here that one learns the quirks and problems of the machine, and discovers the
flaws in earlier reasoning about storage mapping. Section 1 should be done last, not because
it is the least important, but because it is basically a modification of the machine manual in
the light of the needs generated by Section 3.

3.5 Notes and References

The question of mapping programming language constructs onto hardware has been con-
sidered piecemeal by a number of authors. TANENBAUM [1976] gives a good overview of the
issues involved, and further information can be gleaned from specific abstract machine designs
RICHARDS [1971]; TANENBAUM [1978]; HADDON and WAITE [1978]. Floating point abstrac-
tions are discussed by BROWN [1977, 1981] and CoDpYy and WAITE [1980] and a standard
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has been defined by a committee of IEEE [STEVENSON, 1981]. MCLAREN [1970] provides a
comprehensive discussion of data structure packing and alignment. RANDELL and RUSSELL
[1964] detail the implementation of activation record stacks and displays in the context of
ALGOL 60; HIiLL [1976] updates this treatment to handle the problems of ALGOL 68.

Static storage management is not the only possible strategy for FORTRAN implementa-
tions. Both the 1966 and 1978 FORTRAN standards restrict the extent of objects, and thus
permit dynamic storage management via a stack. We have not pursued the special storage al-
location problems of COMMON blocks and EQUIVALENCE statements here; the interested
reader is referred to Chapter 10 of the book by AHO and ULLMAN [1977] and the original
literature cited there.

Our statements about the probability of access to objects at various nesting depths are
debatable because no really good statistics exist. These probabilities are dependent upon the
hierarchical organization of the program, and may vary considerably between applications
and system programs.

The fact that a procedure used as a parameter must carry its environment with it ap-
pears in the original treatment of LISP [MCCARTHY, 1960]. LANDIN [1964] introduced the
term ‘closure’ in connection with his mechanization of Lambda expressions. More detailed
discussions are given by MOSEs [1970] and WAITE [1973a]. HiILL [1976] applied the same
mechanism to the problem of dynamic scope checking in ALGOL 68.

An overall treatment of storage management is beyond the scope of this book. KNUTH
[1968a] provides an analysis of the various general strategies, and a full discussion of most
algorithms known at the time. A general storage management package that permits a wide
range of adaptation was presented by Ross [1967]. The most important aspect of this package
is the interface conventions, which are suitable for most storage management modules.

Both general principles of and algorithms for garbage collection and compaction (the
process of moving blocks under the user’s control to consolidate the free space into a single
block) are covered by WAITE [1973a]. WEGBREIT [1972] discusses a specific algorithm with
an improved worst-case running time.

Several authors [DEUTSCH and BOBROW, 1976; BARTH, 1977; MORRIS, 1978] have shown
how to reduce the cost of reference count systems by taking special cases into account. CLARK
and GREEN [1977] demonstrated empirically that over 90% of the objects n typical LISP
programs never have reference counts greater than 1, a situation in which the technique
operates quite efficiently.

Exercises

3.1 List the storage classes and access paths available on some machine with which you are
familiar. Did you have difficulty in classifying any of the machine’s resources? Why?

3.2 Consider access to data occupying a part of a word on some machine with which you
are familiar. Does the best code depend upon the bit position within the word? Upon
the size of the accessed field? Try to characterize the set of ‘best’ code sequences. What
information would you need to choose the proper sequence?

3.3 [STEELE, 1977] Consider the best code for implementing multiplication and division of
an integer by a power of 2 on some machine with which you are familiar.

(a) Would multiplication by 2 best be implemented by an add, a multiply or a shift?
Give a detailed analysis, taking into account the location and possible values of
the multiplicand.



Properties of Real and Abstract Machines

(b) If you chose to use a shift for division, would the proper result be obtained when
the dividend was negative? Explain.

(c) If your machine has a condition code that is set as a side effect of arithmetic
operations, would it be set correctly in all of the cases discussed above?

3.4 For some computer with which you are familiar, design encodings for the elementary
types boolean, integer, real of Pascal. Carefully defend your choice.

3.5 Consider the representation of a multi-dimensional array.

(a) In what manner can a user of ALGOL, FORTRAN or Pascal determine whether
the elements are stored in row- or column-major order?

(b) Write optimum code for some computer with which you are familiar that imple-
ments the following doubly-nested loop over an object of type array [1..m, 1..n]
of integer stored in row-major order. Do not alter the sequence of assignments
to array elements. Compare the result with the same code for an array stored in
column-major order.

for 7 :=1 to m do
for j :=1 to n do
a [, j] := 0;
(c) Explain why a test that the affective address of an array element falls within

the storage allocated to the array is not sufficient to guarantee that the access is
defined.

3.6 Carefully describe the implementation of the access function for an array element (Sec-
tion 3.2.2) in each of the following cases:

(a) The fictitious starting address lies outside of the address space of the computer.
(b) The computer provides only base registers (i.e. the registers involved in the access
computation of Section 3.1.3 cannot hold signed values).

3.7 Consider a computer requiring certain data items to be stored with alignment 2, while
others have no alignment constraints. Give an algorithm that will rearrange any arbi-
trary record to occupy minimum storage. Can this algorithm be extended to a machine
whose alignment constraints require addresses divisible by 2, 4 and 87

3.8 Give a mapping of a Pascal while statement that places the condition at the begin-
ning and has the same number of instructions as Figure 3.9d. Explain why there is
less opportunity for parallel execution in your mapping than in Figure 3.9d. Under
what circumstances would you expect your expansion to execute in [ess time than Fig-
ure 3.9d?7 What information would the compiler need in order to decide between these
schemata on the basis of execution time?

3.9 Consider the mapping of a BASIC FOR statement with the general form:
FOR I= €1 TO €2 STEP €3

NEXT I

Give implementations of forbegin and forend under each of the following conditions:

(a) e1=1, es=10, e3=1
(b) 61:1, 62:10, 63:7



3.5 Notes and References 67

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

(c) e1=10, ea=1, e3=-3
(d) 61:10, 62:1, 63:1
(e) e1=A, es=B, e3=C

Does your answer to (e) work when A is the largest negative integer representable on
the target machine? When B is the largest positive representable integer? If not, what
is the cost of repairing this defect? Would you consider this cost acceptable in the light
of the probability of such bounds?

For some machine with which you are familiar, compare the cost of access to statically-
allocated objects, objects allocated at fixed locations in an activation record, elements
of dynamic arrays and objects allocated on the heap. Be sure to account for any
necessary base register loads.

The state change operations summarized in Figure 3.12 are actually implemented by a
combination of code at the call site, code in the procedure or block, and common code
in system subprograms. Consider their realization on some machine with which you
are familiar.

(a) Operations at the call site should be minimized, at least when the procedure is
called directly. What is the minimum code you can use? (You may change the
activation record layout of Figure 3.11 arbitrarily to suit your implementation.)

(b) How do you handle the fact that a given procedure may be called either directly or
as a parameter? Show that the environment is properly initialized in both cases.

(c) Compare the cost of using a display with that of using simply static and dynamic
pointers. On the basis of your answer to Exercise 3.8, determine the break-even
point for a display in terms of number of variable accesses.

Code the display update routine of Figure 3.4 for some machine with which you are
familiar. What average nesting depth constitutes the break-even point for the early
termination test? On the basis of your own experience, should the test be included or
not?

Under what circumstances is it impossible to compare the extents of two objects by
comparing their addresses?

For some machine with which you are familiar, design a schema for representing type
templates. Be sure to handle variant records and dynamic arrays.

Suppose that a machine provides no ‘undefined’ value. What values would you propose
to use as implicit initializations for Pascal boolean, integer and real variables? Explain
your choices.

Under what circumstances would you consider transmitting arguments and results in
registers? Illustrate your answer with several real machines.

Consider the following LAX fragment:

declare
procedure p (a : array [ ] of integer); ...;
procedure q : array [ ] of integer;

begin p (q) end;
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(a) Explain why this fragment is illegal.

(b) Suppose that the fragment were legal, and had the obvious effect: Procedure ¢
creates an array, which is then passed to procedure p. Discuss a storage man-
agement strategy for the array elements. Where should the storage be allocated?
Can we avoid copying the array? What tradeoffs are involved?



Chapter 4

Abstract Program Representation

Decomposition of the compilation process leads to interfaces specified by abstract data types,
and the basic purposes of these interfaces are largely independent of the source language and
target machine. Information crossing an interface between major compilation tasks consti-
tutes a representation of the program in an intermediate language. This representation may
or may not be embodied in a concrete data structure, depending upon the structure and goals
of a particular compiler. Similarly, the characteristics of a particular compiler may make it
useful to summarize the properties of objects in tables stored separately from the program
text.

The general characteristics of each interface stem from the modular decomposition of the
compiler discussed in Chapter 1. In this chapter we consider several important intermediate
languages and tables in detail. By determining the content and possible realization of these
interfaces, we place more concrete requirements upon the major compilation tasks.

4.1 Intermediate Languages

Our decomposition leads to four intermediate languages: the token sequence, the structure
tree, the computation graph and the target tree. A program is transformed from one to the
other in the order given, and they will be presented here in that order.

4.1.1 Token Sequence

Chapter 2 pointed out that a source program is composed of a sequence of basic symbols.
These basic symbols, rather than the characters from which they are formed, are the relevant
units of the source text. We shall use the term symbol to denote the external representation
of a basic symbol (or an encoding thereof); a token is the internal representation.

LAX symbols are described in Section A.1. Production A.1.0.1 classifies them as identi-
fiers, denotations and delimiters respectively. Comments are not basic symbols, and therefore
do not appear in the token sequence.

We can characterize the information carried by one token in terms of the type declarations
shown in Figure 4.1. Location encodes the information required to relate an error message
to the source language listing. Section 12.1.3 discusses error reporting mechanisms in detail,
and hence we leave the specification of the type coordinates open until then.

Most syntactic classes (encoded by members of the enumerated type tokens) contain only
a single symbol. Tokens representing such symbols need specify only the syntactic class. Only
identifiers and denotations require additional information.

69
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type
tokens = ( (* classification of LAX tokens *)
identifier, (* A.1.0.2 *)
integer_denotation, (* A.1.0.6 *)
floating point_denotation, (* A.1.0.7 *)
plus, ..., equivalent, (* specials: A.1.0.10 *)
and_kw, ..., while kw); (* keywords: A.1.0.11 *)

abstract_token = record
location : coordinates; (* for error reports *)
case classification : tokens of
identifier : (sym : symbol);
integer_denotation : (intv : integer_value);
floating point_denotation : (fptv : real_value);
end;

Figure 4.1: LAX Abstract Token

A LAX identifier has no intrinsic meaning that can be determined from the character string
constituting that identifier. As a basic symbol, therefore, the only property distinguishing
one identifier from another is its external representation. This property is embodied in the
sym field of the token. Section 4.2.1 will consider the type symbol, and explain how the
external representation is encoded.

The field intv or fptv is a representation of the value denoted by the source language
denotation that the token abstracts. There are several possibilities, depending upon the goals
of the particular compiler; Section 4.2.2 considers them in detail.

4.1.2 Structure Tree

A structure tree is a representation of a compilation unit in terms of source concepts. It is an
ordered tree (in the sense of Section B.1) whose structure is that of an abstract syntax of the
source language. Additional information is attached to the nodes during semantic analysis and
the beginning of code generation. We call this information attributes, and, to emphasize the
attribution, the augmented tree is sometimes termed an attributed structure tree. Important
attributes are the identity of the internal object corresponding to an identifier, the types
of the operands and result of an expression, or the operation corresponding to an operator
indication (e.g. the distinction between integer and real addition, both originally specified by
“4+).

Each node of the structure tree corresponds to a rule of the language definition. Because
the structure tree follows the abstract rather than the concrete syntax, some rules will never
have corresponding nodes in any structure tree. Furthermore, the concrete syntax may use
several names for a single construct of the abstract syntax. Figure 4.2 illustrates these con-
cepts with an example from LAX. The nodes of the tree have been labelled in Figure 4.2a
with the corresponding rules from Appendix A. A single rule in Appendix A may incorporate
many definitions for the same construct, and we have appended lower-case letters to the rule
number in order to distinguish these definitions. Thus ‘A.4.0.9b’ is the second alternative for
rule A.4.0.9 — sum ::= sum addop term. Expression, assignment, disjunction, and so
forth are different names appearing in the concrete syntax for the expression construct of the
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abstract syntax. This means that any node corresponding to a rule defining any of these will
have the attributes of an expression attached to it. Figure 4.2b indicates which of the names
defined by rules used in Figure 4.2a are associated with the same abstract syntax construct.

A402
\
A40.16a /-0%\
A102 A4016a  A4010a  A40163
A102 A102

a) Structure

erpression, assignment, disjunction, conjunction,
comparison, relation, sum, term, factor, primary:
primode , postmode: entity

name :
mode : entity

eqop, relop, addop, mulop, unop:
rator: operation

itdentifier:
sym: symbol
ent: entity

b) Attributes

Figure 4.2: Structure Tree for x :=y + 2

The sym attribute of an identifier is just the value of the sym field of the corresponding
token (Figure 4.1). This attribute is known as soon as the node to which it is attached is
created. We call such attributes intrinsic. All of the other attributes in the tree must be
computed. The details of the computations will be covered in Chapters 8 and 9; here we
merely sketch the process.

Ent characterizes the object (for example, a particular integer variable) corresponding to
the identifier sym. It is determined by the declarations valid at the point where the identifier
is used, and gives access to all of the declarative information. Section 4.2.3 discusses possible
representations for an entity.

The mode attribute of a name is the type of the object named. In our example it can
be obtained directly from the declarative information made accessible by the ent attribute
of the descendant node. In any case, it is computed on the basis of attributes appearing
in the ‘A.4.0.16a’ node and its descendants. The term synthesized is used to describe such
attributes.

Two types are associated with each expression node in the tree. The first, primode, is the
type determined without regard to the context in which the expression is embedded. This
is a synthesized attribute, and in our example the primode of an expression defined by an
‘A.4.0.15b’ node is simply the mode of the name below it. The second type, postmode, is the
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type demanded by the context in which the expression is embedded. It is computed on the
basis of attributes of the expression node, its siblings, and its ancestors. Such attributes are
called inherited.

If primode # postmode then either a semantic error has occurred or a coercion is neces-
sary. For example, if 4y and z in Figure 4.2 were declared to be of types boolean and real
respectively then there is an error, whereas if they were declared to be integer and real
then a coercion would be necessary.

Three classes of operation, creation, access and assignment are necessary to manipulate
the structure tree. A creation operation establishes a new node of a specified type. Assignment
operations are used to interconnect nodes and to set attribute values, while access operations
are used to extract this information. With these operations we can build trees, traverse them
computing attribute values, and alter their structure. Structure tree operations are invoked
as the source program is parsed, constructing the tree and setting intrinsic attribute values.
One or more additional traversals of the completed tree may be necessary to establish all
attribute values. In some cases the structure of the tree may be altered during attribute
computation. Chapter 8 explains how the necessary traversals of the structure tree can be
derived from the dependence relations among the attributes. (Figure 4.3 shows some basic
traversal strategies.)

process node A;
if node A is not a leaf then
process all subtrees of A from left to right;

a) Prefix traversal

if node A is not a leaf then
process all subtrees of A from left to right;
process node A;

b) Postfix Traversal

process node A;
while subtrees of A remain do
begin
process next (to the right) subtree of A;
process node A;
end;

c) Hybrid traversal
Figure 4.3: Traversal Strategies

The result of processing a structure tree is a collection of related information. It may
be possible to produce this result without ever actually constructing the tree. In that case,
the structure and attributes of the tree were effectively embedded in the processing code.
Another possibility is to have an explicit data structure representing the tree. Implementation
constraints often prevent the compiler from retaining the entire data structure in primary
memory, and secondary storage must be used. If the secondary storage device is randomly-
addressable, only the implementation of the structure tree operations need be changed. If
it is sequential, however, constraints must be placed upon the sequences of invocations that
are permitted. An appropriate set of constraints can usually be derived rather easily from a
consideration of the structure tree traversals required to compute the attributes.

Any of the traversal strategies described by Figure 4.3 could be used with a sequential
storage device: In each case, the operation ‘process node A’ implies that A is the currently-
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accessible element of the device. It may be read, altered, and written to another device.
The remaining operations advance the device’s ‘window’, making another element accessible.
Figure 4.4 illustrates the correspondence between the tree and the sequential file. The letters
in the nodes of Figure 4.4a stand for the attribute information. In Figures 4.4b and 4.4c, the
letters show the position of this information on the file. Figure 4.4d differs from the others
in that each interior node is associated with several elements of the file. These elements
correspond to the prefiz encounter of the node during the traversal (flagged with ‘(’), some
number of infizx encounters (flagged with ‘"), and the postfix encounter (flagged with ¢)’).
Information from the node could be duplicated in several of these elements, or divided among
them.

a) A tree

debghtfca
b) Postfix linearization
abdecfgh

c) Prefix linearization

abdbebacfgfhfca
cCc 5 ), CcC 45 )))
d) Hybrid linearization

Figure 4.4: Linearization by Tree Traversal

The most appropriate linearization of the tree on the basis of tree traversals and tree
transformations is heavily dependent upon the semantic analysis, optimization and code gen-
eration tasks. We shall return to these questions in Chapter 14. Until then, however, we shall
assume that the structure tree may be expressed as a linked data structure.

4.1.3 Computation Graph

A computation graph is an abstract representation of a compilation unit in terms of target
concepts. It is a directed graph whose nodes correspond to target operations and whose edges
describe control and data flow. The access to identified variables and intermediate results are
not represented.

Each node of the computation graph specifies a single abstract target machine operation.
In addition to the operation, the node specifies its successor(s) and an appropriate set of
operands. An operand may be another computation graph node (indicating the result of
that node’s computation), an identified variable (indicating the address of that variable), or a
constant (indicating the value of that constant). Figure 4.5 is a computation graph describing
the algorithm of Figure 1.1a in terms of an abstract target machine based on Exercise 1.3.

Note that the accumulator is never mentioned in Figure 4.5. This is indicative of the ab-
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stract nature of the computation graph: It uses target operations, but not target instructions,
separating operations from access paths. Moreover, the concept of a value has been separated
from that of a variable. As we shall see in Chapter 13, this is a crucial point for common
subexpression recognition.

SUB
i
j
INEG
SUB SUB
i i
J J
STORE STORE
j i

Figure 4.5: A Computation Graph

Figure 4.1.3 describes the array assignment a[i] := a[j], assuming a byte-addressed target
machine and an array with 4-byte elements. The address computation described at the
beginning of Section 3.2.2 appears explicitly. Address (a[0]) is represented by the identifier
a and the PA operation adds an integer to an address, yielding an address.

Computation graphs are often linearized as sequences of tuples. The tuples are implicitly
linked in the order of the sequence, and hence the last field of the nodes in Figures 4.5 and 4.1.3
can be dropped. An explicit JMP operation is introduced to allow arbitrary linkage. ‘Triples’
(Figure 4.6) and ‘quadruples’ are examples of this technique. The only difference between
them is that in the latter the node identification is given explicitly while in the former it is
assumed to be the index of the node in the sequence. Figure 4.7 shows a more convenient
notation for human consumption.

4.1.4 Target Tree

The target tree forms the interface between code generation and assembly. Its structure
and most of the attribute values for its nodes are established during code generation; some
attribute values may be added during assembly. The structure of the tree embodies code
sequence information, while the attributes specify particular machine instructions and address
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ADR ADR
a a
VAL VAL
4 4
— = MUL MUL
i j
PA PA
STI LDI
|

i

Note: PA adds an integer to an address, yielding an address
captionConstant Operations and Array Access

Triple Operation Operands
1 VAL i
2 VAL j
3 SUB (1) (2
4 JZERO (3) (19)
5 VAL ]
6 VAL i
7 SUB (5)  (6)
8 JNEG (7))  (14)
9 VAL ]
10 VAL i
11 SUB (9) (10)
12 STORE j (11)
13 JMP (1)
14 VAL i
15 VAL j
16 SUB (14) (15)
17 STORE i (16)
18 JMP (1)

Note: (t) is a reference to triple ¢

Figure 4.6: Triple Representation of Figure 4.5
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ty:e 1 ty: g 71

to ity x4 t5:ty x4

ts:a+ts tg:a-+ts
t7:t3::t6

Figure 4.7: Human-Readable Representation of Figure 4.1.3

computations. These characteristics are largely independent of both the source language and
the target computer.

The operations necessary to manipulate the target tree fall into the same classes as those
necessary to manipulate the structure tree. As with the structure tree, memory constraints
may require that the target tree be placed in secondary memory. The most reasonable lin-
earization to use in this case is one corresponding closely to the structure of a normal symbolic
assembly language.

Figure 4.8 gives a typical layout for a target tree node. Machine_op would be a variant
record that could completely describe any target computer instruction. This record might
have fields specifying the operation, one or more registers, addresses and addressing modes.
Similarly, constant_specification must be capable of describing any constant representable
on the target computer. For example, the specification of a literal constant would be similar
to that appearing in a token (Figure 4.1 and Section 4.2.2); an address constant would be
specified by a pointer to an expression node defining the address. In general, the amount of
space to be occupied by the constant must also be given.

type
instructions = ( (* Classification of target abstractions *)
operation, (* machine instruction *)
constant, (* constant value *)
label, (* address definition *)
sequence, (* code sequence *)
ecpression); (* address expression *)

target_node = 1 t_node_block;
t_node_block = record
link : target_node;
case classification : instructions of
operation : (instr : machine_op);
constant : (value : constant_specification);
label : (addr : address);
sequence : (seq, origin : target_node);
expression : (rator : expr_op; rand 2 : target_node);
end;

Figure 4.8: Target Code Node

A label is an address constant. The label node is placed in a code sequence at some
arbitrary point, and represents the address at that point. When this address is used as an
operand in an address expression, one of the operands of the expression node is a pointer to
the label node. The addr field is an example of an attribute whose value is established during
assembly: It specifies the actual machine address, in a form that can be used as an expression
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operand. It is important to stress that this attribute is not set by the code generator; the
code generator is responsible only for establishing the label node and any linkages to it.

A target program may consist of an arbitrary number of code sequences, each of which
consists of instructions and/or data placed contiguously in the target computer memory. Each
sequence appears in the target tree as a list of operation, constant and label nodes rooted
in a sequence node. If the origin field of the sequence node specifies an address expression
then the sequence begins at the address which is the value of that expression. Thus the
placement of a sequence can be specified relative to another sequence or absolutely in the
target computer memory. In the absence of an origin expression, a sequence will be placed
in an arbitrary position that guarantees no overlap between it and any other sequence not
based upon it. (A sequence s; is based upon a sequence s when the origin expression of s;
depends upon a label node in s or in some sequence based upon s,.) Related code sequences
whose origin expressions result in gaps between them serve to reserve uninitialized storage,
while overlapping sequences indicate run-time overlays.

Address expressions may contain integers and machine addresses, combined by the four
basic integer operations with the normal restrictions for subexpressions having machine ad-
dresses as operands. The code generator must guarantee that the result of an address ex-
pression will actually fit into the field in which it is being used. For some machines, this
guarantee cannot be made in general. As a result, either restrictions must be placed upon the
expressions used by the code generator or the assembler must take over some aspects of the
code generation task. Examples of the latter are the final selection of an instruction from a
set whose members differ only in address field size (e.g. short vs. long jumps), and selection
of a base register from a set used to access a block of memory. Chapter 11 will consider such
problems in detail.

4.2 Global Tables

We extract specific information from the token sequence, structure tree, computation graph or
target tree and represent it in special tables to simplify the program representation, to speed
up search processes, or to avoid many repetitions of the same data. In particular, we often
replace variable-length data by fixed-length keys and thereby simplify storage management.

4.2.1 Symbol Table

The purpose of the symbol table is to provide a unique, fixed-length encoding for the identifiers
(and possibly the keywords) occurring in a program. In most programming languages the
number of possible identifiers, and hence the length of the encoding, is very large. Since only
a tiny fraction of the possible identifiers occur in any particular program, a much shorter
encoding suffices and the symbol table must uniquely map the identifiers into this encoding.
If the entire set of identifiers is not known a priori then such a mapping can be achieved only
by comparing each input character string against those already encountered.
A symbol table module provides three basic operations:

e initialize: Enter the standard identifiers.
e give_symbol (identifier_string) symbol: Obtain the encoding of a specified identifier.
e give_string (symbol) identifier_string: Obtain the identifier having a specified encoding.

Additional operations for delivering identifiers in alphabetical order are necessary if cross-
reference tables are to be produced.
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Although the symbol table is used primarily for identifiers, we advocate inclusion of key-
words as well. No separate recognition procedure is then required for them. With this
understanding, we shall continue to speak of the symbol table as though its only contents
were identifiers.

The symbol is used later as a key to access the identifier’s attributes, so it is often encoded
as a pointer to a table containing those attributes. A pointer is satisfactory hen only one such
table exists and remains in main storage. Positive integers provide a better encoding when
several tables must be combined (as for separate compilation in Ada) or moved to secondary
storage. In the simplest case the integers chosen would be 1,2,...

Identifiers may be character strings of any length. Since it may be awkward to store
a table of strings of various lengths, many compilers either fix the maximum length of an
identifier or check only a part of the identifier when computing the mapping. We regard
either of these strategies as unacceptable. Clearly the finite size of computer memory will
result in limitations, but these should be placed on the total number of characters rather
than the length of an individual identifier. Failure to check the entire identifier may result in
incorrect analysis of the source program with no indication to the programmer.

The solution is to implement the symbol table as two distinct components: a string table
and a lookup mechanism. The string table is simply a very large, packed array of characters,
capable of holding all of the distinct identifiers appearing in a program. It is implemented
using a conventional virtual storage scheme (Exercise 4.4), which provides for allocation of
storage only as it is needed. The string forms of the identifiers are stored contiguously in this
array, and are specified by initial index and length.

In view of the large number of entries in the symbol table (often resulting mainly from
standard identifiers), hash techniques are preferable to search trees for implementing the
lookup mechanism. The length of the hash table must be specified statically, before the
number of identifiers is known, so we choose the scheme known as ‘open hashing’ or ‘hash
with chaining’: A computation is performed on the string to select one of M lists, which is
then searched sequentially. If the computation distributes the strings uniformly over the lists,
then the length of each will be approximately (number of distinct identifiers)/M. By making
M large enough the lengths of the lists can be reduced to one or two items.

The first decision to be made is the choice of hash function. It should yield a relatively
smooth distribution of the strings across the M lists, evaluation should be rapid, and it must
be expressible in the implementation language. One computation that gives good results is
to express the string as an integer and take the residue modulo M. M should be a prime
number not close to a power of the number of characters in the character set. For example,
M = 127 would not be a good choice if we were dealing with a 128-character set; M = 401,
on the other hand, should prove quite satisfactory.

There are two problems with the division method: It is time-consuming for strings whose
integer representations exceed the single-length integer range of the implementation language,
and it cannot be expressed at all if the implementation language is strongly typed. To solve
the former, we generally select some substring for the hash computation. Heads or tails of
the string are poor choices because they tend to show regularities (SUM1, SUM2, SUM3
or REDBALL, BLUEBALL, BLACKBALL) that cause the computation to map too many
strings into the same list. A better selection is the center substring:

if |s| < n then s else substr (s, (|s| —n) div 2,n);
(Here s is the string, |s| is the length of s and n is the length of the longest string representable
as a single-length integer. The function substr(s, f,1) yields the [-character substring of s
beginning at the f* character.)

The constraints of a strongly-typed implementation language could be avoided by provid-
ing a primitive transfer function to convert a sufficiently short string into an integer for type
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checking purposes. It is important that this transfer function not involve computation. For
example, if the language provides a transfer function from characters to integers, a transfer
function from strings to integers could be synthesized by a loop. This approach defeats the
whole purpose of the hashing function, however, by introducing a time-consuming computa-
tion. It would probably be preferable to use a single character to select the list in this case
and accept a longer search!

Comparison of the input identifier with the symbols already present in the table can be
speeded up by a variety of quick checks, the simplest of which is comparison of string lengths.
Whether or not such checks are useful depends upon the precise costs of string comparison
and string table access.

In a multi-pass compiler, the lookup mechanism may be discarded after the lexical analysis
has converted identifiers to symbols. The string table must, however, be retained for later
tasks such as module linking.

4.2.2 Constant Table

Literal constant values appearing in the program must be retained and possibly manipulated
during compilation. Compile-time computation involving numeric operations must be carried
out using the semantics of the target machine. In other words, integer operations must
conform to the range of the target machine’s integer arithmetic, and floating point operations
must conform to its radix, range, precision and rounding characteristics. Because of this,
we regard the constant table as an abstract data type: It defines a set of values, and any
computations involving these values must be carried out by operations that the constant table
provides.

We distinguish three conceptually distinct representations of a constant: the character
representation appearing in the source program, the internal representation defined by the
constant table, and the representation required by the target machine. The constant table
module provides conversion operations to accept source representations and return inter-
nal representations, and to accept internal representations and return target representations.
Source-to-internal conversions are invoked during lexical analysis, while internal-to-target con-
versions are invoked during assembly. Although the three representations are conceptually
distinct, two or more of them may be physically identical in a particular compiler. For exam-
ple, a LAX floating point constant might have identical internal and target representations.

The constant table module could use a string table of the form introduced in the previous
section to store string constants. Since identical string constants occur rarely in a program,
no search is needed to enter strings into the table; each is simply inserted as it is encountered.
A fixed-length encoding then consists of a string table index and length, which the constant
table module delivers as the internal value of the constant. In a multi-pass compiler the string
table could reside in secondary storage except during lexical analysis and assembly.

In addition to conversions, the constant table module must provide computational and
comparison operations for the internal representations. These operations are used not only
for manipulating denotations that appear in the source program, but also for carrying out all
computations and comparisons of program-defined values during semantic analysis and code
generation. For example, consider the Pascal type constructor array [[..u] of m. During
semantic analysis, constant table operations are used to verify that the lower bound does not
exceed the upper; during code generation they are used to compute the size and alignment
of the array.

The requirements of semantic analysis and code generation determine the set of operations
that must be provided. In general, these operations should duplicate the behavior of the
equivalent operations on the target machine. For example, a character comparison should
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follow the target machine collating sequence. The range of integer values, however, must
normally be larger than that of the target machine. Suppose that we compile a program
containing the type constructor of the previous paragraph for the PDP11 (mazint = 32767).
Suppose further that [ = —5000, v = 5000 and m is real. This is a perfectly legal declaration
of an array that will easily fit into the 65536-byte memory of the PDP11, but computation
of its size in bytes (40004) overflows the PDP11’s integer range.

If the compiler is being executed on the target machine, this requirement for increased
range implies that the computational and comparison operations of the constant table must
use a multiple-precision representation. KNUTH [1969] describes in detail how to implement
such a package.

Although, as shown above, overflow of the target machine’s arithmetic range is legitimate
in some cases, it is often forbidden. When the user writes an expression consisting only of
constants, and that expression overflows the range of the target machine, the overflow must
be detected if the expression is evaluated by the compiler. This leads to a requirement that
the constant table module provide an overflow indicator that is set appropriately by each
computational operator to indicate whether or not the computation would overflow on the
target machine. Regardless of the state of the overflow indicator, however, the constant table
should yield the (mathematically) correct result.

In most programming languages, a particular numeric value can be expressed in many
different ways. For example, each of the following LAX floating point numbers expresses the
value ‘one thousand’:

1000000E-3 1.0E3 .001E6 1000.0

The source-to-internal conversion operators of the constant module should accept only
a standardized input format. Nonzero integers are normally represented by a sequence of
digits, the first of which is nonzero. A suitable representation for nonzero floating point
numbers is the pair (significand, exponent), in which the significand is a sequence of digits
without leading or trailing zeros and the exponent is suitably adjusted. The significand can be
interpreted either as an integer or a normalized decimal fraction. ‘One thousand’ would then
be represented either as ("1’,3) or as ("1’,4) respectively. A fractional significand is preferable
because it can be truncated or rounded without changing the exponent. Zero is represented
by (’0’,0). In Section 6.2 we shall show how the standardized format is obtained by the lexical
analyzer.

If no floating point arithmetic is provided by the constant table then the significand can
be stored in a string table. The internal representation is the triple (string table index,
significand length, adjusted exponent). When compile-time floating point operations are
available, floating point numbers are converted to an internal representation of appropriate
accuracy for which the arithmetic of the target machine can be simulated exactly. (Note that
decimal arithmetic is satisfactory only if the target machine also uses decimal arithmetic.)

4.2.3 Definition Table

Types, variables, procedures and parameters are examples of entities: components of the
program whose attributes are established by declaration. Most of the leaves of the structure
tree represent uses of entities, at which the entity’s attributes must be made available. A
definition table abstracts the entities, avoiding the need to explicitly reproduce all of the
attributes of an entity at each of the leaves representing its uses. There is one definition
table entry for each declared entity, and this entry holds all attributes of that entity. A leaf
representing the use of an entity contains a reference to the definition table.

We must emphasize that a definition table merely restates structure tree information in
a more compact and accessible form. (Section 8.3.2 will show how to partially automate the
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choice of information to be included in a definition table.) Thus each form of the structure
tree has, at least conceptually, an associated definition table. Transformations of the structure
tree imply corresponding transformations of the definition table. Whether the definition table
is actually transformed, or a new definition table is built from the transformed tree, is an
implementation decision that depends upon two factors:

e The relative costs of transformation and reconstruction.
e The relationship between the traversal needed to reconstruct the information and the
traversal using that information.

When assessing the relative costs, we must be certain to consider the extra storage required
during the transformation as well as the code involved.

The second factor mentioned above may require some elaboration: Consider the definition
table used during semantic analysis and that used during code generation. Although the
structure tree may be almost the same for these two processes, the interesting attributes of
defined objects are usually quite different. During semantic analysis we are concerned with
source properties; during code generation with target properties. Thus the definition tables
for the two processes will differ. Suppose further that our code generation strategy requires
a single depth-first, left-to-right traversal of the structure tree given that the definition table
15 available.

If the definition table can be rebuilt during a single depth-first, left-to-right traversal of the
structure tree, and every attribute becomes available before it is needed for code generation,
then rebuilding can be combined with code generation and the second factor noted above
does not lead to increased costs. When this condition is not satisfied, the second factor does
increase the rebuilding cost and this must be taken into account. It may then be cheaper to
transform the definition table between the last semantic analysis traversal and the first code
generation traversal. (The attribute dependency analysis presented in Section 8.2 is used to
decide whether the condition is satisfied.)

A definition table is generally an unstructured collection of entries. Any arbitrary entry
can be accessed via a pointer in order to read an attribute or assign a new value. In a one-pass
compiler, a stack strategy could also be used: At every definition a new entry is pushed onto
the top of the stack, and at the end of a range all definitions found in the range are popped.
This organization has the advantage that only relevant entries must be held in storage.

Copies of some of the more-frequently accessed attributes of an entity may be included in
each leaf representing a use of that entity. The choice of such attributes depends upon the
particular compiler design; we shall return to this question several times, in Chapters 9, 10
and 14. It may be that these considerations lead to including all attributes in the leaf. The
definition table then ceases to exist as a separate data structure.

4.3 Notes and References

Postfix, triples, and quadruples are often discussed in isolation as ‘internal forms’ of the
program, without reference to the structures they represent (see GRIES [1971] for example).
Such discussions tend to bog down in a morass of special cases and extensions once they move
beyond the treatment of arithmetic expressions. We believe that thinking in terms of a tree
helps the compiler designer to concentrate on the important relationships present in the text
and to arrive at a more coherent representation. Once this has been derived, a variety of
linearizations may be used depending upon the particular compiler design.

Most authors lump the various tables discussed in Section 4.2 into a single dictionary,
which they often call ‘the symbol table’ [GRIES, 1971; BAUER and EICKEL, 1976; AHO and
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ULLMAN, 1977]. The concept of separate tables seems to be restricted to descriptions of multi-
pass compilers, as a mechanism for reducing main storage requirements [NAUR, 1964]. This
is not invariably true, however, especially when one considers the literature on ALGOL 68
[PECK, 1971] In his description of a multi-pass Pascal compiler, HARTMANN [1977] uses sep-
arate tables both to reduce core requirements and to provide better compiler structure.

Lookup mechanisms have concerned a large number of authors; the most comprehensive
treatment is that of Knuth. KNuTH [1973] He gives details of a variety of mechanisms,
including hashing, and shows how they compare for different applications. It appears that
hashing is the method of choice for symbol table implementation, but there may be some
circumstances in which binary trees are superior [PALMER et al., 1974]. For symbol tables
with a fixed number of known entries (e.g. keywords) CICHELLI [1980] and CERCONE et al.
[1982] describe a way of obtaining a hash function that does not have any collisions and hence
requires no collision resolution.

Exercises

4.1 [SALE, 1971; McILROY, 1974] Specify abstract tokens for FORTRAN 66.

4.2 Specify a target_node (Figure 4.1.3) suitable for some machine with which you are
familiar.

4.3 TIs a symbol table needed to map identifiers in a compiler for Minimal Standard BASIC?
Explain.

4.4 Tmplement a string table module, using a software paging scheme: Statically allocate an
array of pointers (a ‘page table’) to blocks of fixed size (‘pages’). Initially no additional
blocks are allocated. When a string must be stored, try to fit it into a currently-
allocated page. If this cannot be done, dynamically allocate a new page and place a
pointer to it in the page table. Carefully define the interface to your module.

4.5 Implement a symbol table module that provides a lookup mechanism, and uses the
module of Exercise 4.4 to store the identifier string.

4.6 Identifier strings are specified in the module of Exercise 4.5 by the pair (string table
index, length). On a computer like the DEC PDP11, this specification occupies 8 bytes.
Comment on the relative merits of this scheme versus one in which identifier strings
are stored directly if they are no longer than k bytes, and a string table is used for
those whose length exceeds k. What should the value of k£ be for the PDP117 Would
this scheme be appropriate for a multipass compiler?

4.7 Consider the FORTRAN expression ‘X * 3.1415926535897932385 * Y’. Assume that
no explicit type has been given for X, and that Y has been declared DOUBLE PRE-
CISION.

(a) Should the constant be interpreted as a single or double precision value? Explain.

(b) For some machine with which you are familiar, estimate the relative errors in the
single and double precision representations of the constant.

(c) Explain the relevance of this example to the problem of selecting the internal
representation to be provided by the constant table for floating point numbers.



Chapter 5

Elements of Formal Systems

Formal grammars, in particular context-free grammars, are the tools most frequently used
to describe the structure of programs. They permit a lucid representation of that structure
in the form of parse trees, and one can (for the most part mechanically) specify automata
that will accept all correctly-structured programs (and only these). The automata are easy
to modify so that they output any convenient encoding of the parse tree.

We limit our discussion to the definitions and theorems necessary to understand and use
techniques explained in Chapters 6 and 7, and many theorems are cited without proof. In the
cases where we do sketch proofs, we restrict ourselves to the constructive portions upon which
practical algorithms are based. (We reference such constructions by giving the number of the
associated theorem.) A formally complete treatment would exceed both the objectives of and
size constraints on this book. Readers who wish to delve more deeply into the theoretical
aspects of the subject should consult the notes and references at the end of this chapter.

5.1 Descriptive Tools

In this section we first review the standard mathematical notation used to describe sets of
strings. We then introduce some formal systems for the production of such sets and with these
define certain classes of languages. Finally, we discuss the representation of the structure of
strings by means of trees and give a complete example.

5.1.1 Strings and Rewriting Systems

We begin with a vocabulary (or alphabet), V: A finite, nonempty set of symbols having no
discernible structure. (At least we take no notice of further structure on the level of abstraction
we are considering.) One example of a vocabulary is the set of characters available on a
particular computer, others are the set of basic symbols defined by a particular language (e.g.
identifier, integer, 4+, begin) and the set of syntactic terms we use to describe the structure
of a program. We may attach semantic significance to some of the symbols in the vocabulary,
without explaining them further by means of the formal systems introduced in this chapter.

The set of all finite strings z;...x,, n > 1, formed by concatenating elements of V is
denoted by V. V* denotes V't augmented by adding the empty string (which contains no
symbols). We shall denote the empty string by e€; it is both a left and right identity for
concatenation: ey = ye = x, x € V*. The count, n, of symbols in a string x = z1...x, is
called the length of x, and is denoted by |x|. Thus |e| = 0.

83
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5.1 DEFINITION
Let x = aw,a,w € V*. The string « is called a head, and the string w a tail, of x. If « # ¢
(w # €) then it is a proper head (tail) of . O

Each subset of V* is called a language over vocabulary V. The elements of a language are
called sentences. Interesting languages generally contain infinitely many sentences, and hence
cannot be defined by enumeration. We therefore define each such language, L, by specifying
a process that generates all of its sentences, and no other elements of V*. This process may
be characterized by a binary, transitive relation =% over V*, such that L = {x | ¢ =1 x}
for a distinguished string ¢ € V*. We term the relation =1 a derivative relation.

5.2 DEFINITION
A pair (V,=71) consisting of a vocabulary V and a derivative relation =7, is called a formal
system. [l

A derivative relation usually cannot be defined by enumeration either. We shall concern
ourselves only with relations that can be described by a finite set of pairs (o, 7) of strings
from V*. We call such pairs productions, and write them as ¢ — 7. The transitive closure of
the finite relation described by these productions yields a derivative relation. More precisely:

5.3 DEFINITION
A pair (V, P), consisting of a vocabulary V' and a finite set, P, of productions o — 7 (0,7 €
V*) is called a general rewriting (or Semi-Thue) system. O

5.4 DEFINITION

A string x is directly derivable from a string 7 (symbolically m = x) by a general rewriting
system (V, P) if there exist strings o, 7, p, v € V* such that 7 = pov, x = prv and 0 — 7
is an element of P. O

5.5 DEFINITION

A string x is derivable from a string 7 (symbolically 7 =T x) by a general rewriting system
(V, P) if there exist strings pg,...,pn € V*(n > 1) such that = = pg, p, = x and p;—1 = p;,
i1 =1,...,n. The sequence py, ..., py, is called a derivation of length n. O

We write m =* x to indicate that either m = y or # =T y. If x is (directly) derivable from
7, we also say that y is (directly) reducible to w. Without loss of generality, we shall assume
that derivations 7 =T 7 of a string from itself are impossible.

5.1.2 Grammars

Using the general rewriting system defined by Figure 5.1, it is possible to derive from E
every correct algebraic expression consisting of the operators + and *, the variable ¢, and
the parentheses (). Many other strings can be derived also, as shown in Figure 5.2. In the
remainder of this chapter we shall concentrate on rewriting systems in which the vocabulary is
made up of two disjoint subsets: T, a set of terminals, and N, a set of nonterminals (syntactic
variables). We will ultimately be interested only in those strings derivable from a distinguished
nonterminal (the aziom or start symbol) and consisting entirely of terminals. (Thus we speak
of generative systems. One could instead consider analytic systems in which the axiom is
derived from a string of terminals. We shall return to this concept with Definitions 5.12
and 5.20.)
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{E7 T7 F’ —"_7 *7 (7 )7 IL}
a) The vocabulary V

{E—-T, E—-E+T,
T—F, T—TxF,
F—i, F—(BE)}

b) The productions P

Figure 5.1: A General Rewriting System (V, P)

E=T
T=TxF
T+« F=T=x%1

a) Some immediate derivations

E=*Txi (length 3)
E=*i+ixi (length 8)
TiE =* iii (length 5)
TiE =* TiE  (length 0)
E=*T (length 1)

b) Additional derivations

Figure 5.2: Derivations

5.6 DEFINITION

A quadruple G = (T, N, P, Z) is called a grammar for the language L(G) = {x € T* | Z =" x}
if T and N are disjoint, (T'U N, P) is a general rewriting system, and Z is an element of N.
We say that two grammars G and G’ are equivalent if L(G) = L(G"). O

Figure 5.3 illustrates these concepts with two grammars that generate algebraic expressions
in the variable 7. These grammars are equivalent according to Definition 5.6.
Grammars may be classified by the complexity of their productions:

5.7 DEFINITION (CHOMSKY HIERARCHY)
The grammar G = (T, N, P,Z) is a

type 0 grammar if each production has the form ¢ — 7, c € V' and 7 € V*.

type 1 (context-sensitive) grammar if each production has the form pAv — pxv, p,v € V=,
AceNand ye V™.

type 2 (context-free) grammar if each production has the form A — x, A € N and x € V*.

type 3 (regular) grammar if each production has either the form A — a, A € N and a €
T U {e} or the form A - aB, A,B€ N anda €T. O

If a grammar that generates a language is context-sensitive (context-free, regular), then we
also term the language itself context-sensitive (context-free, regular). Regular and context-
free grammars are the most interesting to compiler writers. The former are usually used to
describe the basic symbols (e.g. identifiers, constants) of a language, while the latter describe
the structure of a program. From now on, we restrict our attention to these two grammar
classes.

Although we admit e-productions (productions whose right-hand side consists of the empty
string) in context-free grammars, we are interested only in languages that do not include the
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T:{—"_?*? (?)?/L}

N={E,T,F}

P={E—-T, E—-E+T,
T—F, T-—=TxF,
F—i F—(E)}

Z=F
a) A grammar incorporating (V, P) from Figure 5.1
T={+,%(,)i}
N={E,E'.T,T',F}
P={E—>T, E—TFE,
E' —+T, E' —+TF',
T — F, T — FT’,
T —*F, T —*FT',
F — 1, F — (BE)}
Z=F

b) A grammar incorporating another general rewriting system

Figure 5.3: Equivalent Grammars

empty string. Such languages can always be described by e-free grammars — grammars without
e-productions. Therefore e-productions will only be used when they result in more convenient
descriptions.

We assume further that every symbol in the vocabulary will appear in the derivation of
at least one sentence. Thus the grammar will not contain any useless symbols. (This is
not always true for actual descriptions of programming languages, as illustrated by the LAX
definition of Appendix A.)

5.1.3 Derivations and Parse Trees

Each production in a regular grammar can have at most one nonterminal on the right-hand
side. This property guarantees — in contrast to the context-free grammars — that each sen-
tence of the language has exactly one derivation when the grammar is unambiguous (Defini-
tion 5.11).

Figure 5.4a is a regular grammar that generates the non-negative integers and real numbers
if n represents an arbitrary sequence of digits. Three derivations according to this grammar
are shown in Figure 5.4b. Each string except the last in a derivation contains exactly one
nonterminal, from which a new string must be derived in the next step. The last string consists
only of terminals. The sequence of steps in each derivation of this example is determined by
the derived sentence.

The situation is different for context-free grammars, which may have any number of non-
terminals on the right-hand side of each production. Figure 5.5 shows that several derivations,
differing only in the sequence of application of the productions, are possible for a given sen-
tence. (These derivations are constructed according to the grammar of Figure 5.3a.)

In the left-hand column, a leftmost derivation was used: At each step a new string was
derived from the leftmost nonterminal. Similarly, a rightmost derivation was used in the
right-hand column. A nonterminal was chosen arbitrarily at each step to produce the center
derivation.

A grammar ascribes structure to a string not by giving a particular sequence of derivation
steps but by showing that a particular substring is derived from a particular nonterminal.
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= {na'a+a_aE}

{07 F7 I? X7 S7 U}

= {C—n,C—nF,C—.I,
F—.I F—ES,
I—-n,I—>nX,
X - ES,
S—-n, S—>+U,S— —U,
U—n}

zZ = C

a) A grammar for real constants

c C C
n I nF
no nd
n.nX
n.nkS
n.nkE +U
nnk +n

Y=z N
I

b) Three derivations according to the grammar of (a)

Figure 5.4: Derivations According to a Regular Grammar

For example, in Figure 5.5 the substring ¢ * ¢ is derived from the single nonterminal T'. We
interpret this property of the derivation to mean that i % ¢ forms a single semantic unit: an
instance of the operator * applied to the i’s as operands. It is important to realize that the
grammar was constructed in a particular way specifically to ascribe a semantically relevant
structure to each sentence in the language. We cannot be satisfied with any grammar that
defines a particular language; we must choose one reflecting the semantic structure of each
sentence. For example, suppose that the rules £ — E + T and T — T * F of Figure 5.3a
had been replaced by E — E T and T — T + F respectively. The modified grammar would
describe the same language, but would ascribe a different structure to its sentences: It would
imply that additions should take precedence over multiplications.

E E E

E+T E+T E+T
T+T E+TxF E+TxF
F4+T T+T+«F FE+Tx1
1+ T T+FxF E+Fxiq
1+TxF THFxi E4ix1
1+ FxF F+Fxi THixi
1+ixF {4+ Fx1 F+ixq
1+1%1 14+1%1 14+ 1%1

Figure 5.5: Derivations According to a Context-Free Grammar

Substrings derived from single nonterminals are called phrases:

5.8 DEFINITION

Consider a grammar G = (T, N, P, Z). The string x € V' is a phrase (for X) of uxv if and
only if Z =* uXv =% puxv (u,v € V¥, X € N). It is a simple phrase of uxv if and only if
Z =" uXv = uxv. O

Notice that a phrase need not consist solely of terminals.
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Each of the three derivations of Figure 5.5 identifies the same set of simple phrases. They
are therefore equivalent in the sense that they ascribe identical phrase structure to the string
i+ 1 x 4. In order to have a single representation for the entire set of equivalent derivations,
one that makes the structure of the sentence obvious, we introduce the notion of a parse tree
(see Appendix B for the definition of an ordered tree):

5.9 DEFINITION
Consider an ordered tree (K, D) with root kg and label function f : K — M. Let ky,..., ky,

(n > 0) be the immediate successors of ky. (K, D) is a parse tree according to the grammar
(T, N, P, Z) if the following conditions hold:

(a) M CVU{e}

(b) f(ko) =Z

(c) Z — f(kr)... f(hn) € P

(d) if f(k;) € T,or if n =1 and f(k;) =€, then k; is a leaf

(e) if f(k;) € N then k; is the root of a parse tree according to the grammar (T, N, P, f(k;))
O

Figure 5.6 is a tree for ¢ 4+ ¢ * ¢ according to the grammar of Figure 5.3a, as can be shown by
recursive application of Definition 5.9.

Figure 5.6: The Parse Tree for 7 + i * ¢

We can obtain any string in any derivation of a sentence from the parse tree of that
sentence by selecting a minimum set of nodes, removal of which will break all root-to-leaf
paths. (Such a set of nodes is called a cut — see Definition B.8.) For example, in Figure 5.6
the set {T,+,T, x, F'} (the third row of nodes, plus ‘4’ from the second row) has this property
and T 4+ T x F' is the fourth step in the center derivation of Figure 5.5.

5.10 THEOREM

In a parse tree according to a grammar G = (T, N, P, Z), a set of nodes (k1,...,ky,) is a cut
if and only if Z =* f(ky) ... f(kn). O

A parse tree specifies the phrase structure of a sentence. With the grammars given so far,
only one parse tree corresponds to each sentence. This may not always be true, however, as
illustrated by Figure 5.7. The grammar of Figure 5.7a describes the same language as that
of Figure 5.3a, but many sentences have several parse trees.

5.11 DEFINITION

A sentence is ambiguous if its derivations may be described by at least two distinct parse trees
(or leftmost derivations or rightmost derivations). A grammar is ambiguous if there is at least
one ambiguous sentence in the language it defines; otherwise the grammar is unambiguous. O
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T = {+,*,i}

N ={E}
P={F—+E+E,E—ExEFE—1i}
Z =F

a) An ambiguous grammar

(B)
® & ®» E
@ ® & ©» ®
@ @

b) Two parse trees for i + 4 * i

C—m  (—m

Figure 5.7: Ambiguity

Figure 5.7b shows two parse trees for ¢ + 4 * 7 that are essentially different for our purposes
because we associate two distinct sequences of operations with them. If we use an ambiguous
grammar to describe the language (and this may be a useful thing to do), then either the
ambiguity must involve only phrases with no semantic relevance or we must provide additional
rules for removing the ambiguity.

5.1.4 Extended Backus-Naur Form

Appendix A uses a notation known as extended Backus-Naur form (EBNF) to describe LAX.
This notation allows us to describe a grammar in a more compact form. Moreover, as we shall
see in Chapter 7, a parser can be derived easily from the specification of a language written
in EBNF. In this section we illustrate the techniques we have been discussing by giving a
formal definition of EBNF; an informal description appears at the beginning of Appendix A.

Figure 5.8a is the grammar for EBNF. When a specification is written in EBNF, character
strings are used to represent the elements of T as indicated in Figure 5.8b. A complete
specification for EBNF itself appears in Figure 5.8c. Given a specification such as that of
Figure 5.8c, we can derive one or more grammars that define the same language. In this
manner we establish the ‘meaning’ of the specification.

The derivation proceeds from a parse tree (K, D) of the given specification according to
the grammar of Figure 5.8a. In addition to the label function f from Definition 5.9, we define
h: K — LUI, where L is the set of identifiers and literals appearing in the specification and
I is a set of unique identifiers. L and I are disjoint; h associates an element of L with every
leaf of K and an element of I with every non-leaf node. An element of L may be associated
with any number of leaves, but there is a 1-1 correspondence between non-leaf nodes and
elements of .

LU is the vocabulary of the grammar that we shall derive from the EBNF specification.
All elements of I are nonterminals of the grammar, as are identifiers appearing on the left
of “:=" in an EBNF rule. All literals and identifiers not appearing on the left of ‘::=’ are
terminals. Formally:

R={h(k) | (K',k) € D, f(K') = rule, f(k) = identifier}
T=L-R
N=RUI
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T ={identifier, literal, is, or, lpn, rpn, Lbk, rbk, plus, star,
period, separator}
N={specification, rule, expression, tertiary, secondary, primary,unit, atom}
P={specification — rule, specification — specification rule,
rule — tdentifier 15 expression period,
erpression — tertiary, expresston — expression separator atom,
tertiary — secondary, tertiary — tertiary or secondary,
secondary — primary, secondary — secondary primary,
primary — unit, primary — untt star, primary — unit plus,
primary — lbk expression rbk,
unitt — atom, unit — lpn expression Tpn,
atom — identifier, atom — literal}
Z = specification

a) Grammar for EBNF

identifier: Sequence of letters, digits and underscores.

literal: String delimited by apostrophes.

lpn: ( rpn: ) lbk: [ Tbk:] 181 1=

or: | star: * plus: + period: . separator: ||
b) Representation used in this book for EBNF terminals

spectfication::= rule + .

rule = tidentifier =’ expression .’
ezpression = (primary + || ') | ezpression ’||" atom .
primary n=wunit [ |47 ] | [ expression ] .
unit = atom | ’(’ expression ’) .

atom = identifier |literal .

c) A possible EBNF specification for EBNF
Figure 5.8: Extended Backus-Naur Form

Here R is the set of rule identifiers. If the EBNF specification is well-formed then there will
be exactly one element of R that does not appear on the right of ‘::=’ in any rule. This
element is the axiom of the derived grammar:

Z =re(R—{hk)| (K, k) e D,f(k')=atom})

A set of productions can be derived from every non-leaf node of the parse tree, and P is
the union of those sets. Consider each subtree formed from a non-leaf node £y and its ordered
immediate successors ki, ko, ..., k,. The derived productions depend upon the structure of
the subtree (given by a production of Figure 5.8a) and the labels of the nodes in the subtree
as follows:

For subtree derive the production set

rule — identifier is ezpression period {h(ki) — h(ks)}

ezpression— erpression separator atom {h(ko) = h(k1), h(ko) = h(ko)h(ks)h(k1)}
tertiary — tertiary or secondary {h(ko) = h(k1), h(ko) — h(ks3)}
secondary — secondarTy primary {h(ko) = h(ki)h(k2)}

primary  — unit star {h(ko) — €, h(ko) = h(ko)h(k1)}

primary  — unit plus {h(ko) — h(kl) h(ko) = h(ko)h(k1)}
primary  — lbk ezpression rbk {h(ko) — €, h(ko) = h(k2)}

unit — lpn exzpression Tpn {h(ko) — h(k2)}

Derive the empty set of productions for any subtree with h(kg) = specification, and
derive {h(ko) — h(k1)} for any subtree not yet mentioned.
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The grammar derived from Figure 5.8c by this process will have more productions than
Figure 5.8a. The extra productions can be removed by a simple substitution: If B € N
occurs exactly twice in a grammar, once in a production of the form A — pBr and once
in a production of the form B — 8 (u,3,v € V*), then B can be eliminated and the two
productions replaced by A — pfBr. After all such substitutions have been made, the resulting
grammar will differ from Figure 5.8a only in the representation of vocabulary symbols.

5.2 Regular Grammars and Finite Automata

A grammar specifies a process for generating sentences, and thus allows us to give a finite
description of an infinite language. The analysis phase of the compiler, however, must recog-
nize the phrase structure of a given sentence: It must parse the sentence. Assuming that the
language has been described by a grammar, we are interested in techniques for automatically
generating a recognizer from that grammar. There are two reasons for this requirement:

e [t provides a guarantee that the language recognized by the compiler is identical to that
defined by the grammar.

e [t simplifies the task of the compiler writer.

We shall use automata, which we introduce as special cases of general rewriting systems,
as models for the parsing process. In this section we develop a theoretical basis for regular
languages and finite automata, and then extend the concepts and algorithms to context-free
languages and pushdown automata in Section 5.3. The implementation of the automata is
covered in Chapters 6 and 7.

5.2.1 Finite Automata

5.12 DEFINITION

A finite automaton (finite state acceptor) is a quintuple A = (T,Q, R, qo, F'), where @ is a
nonempty set, (T'U @, R) is a general rewriting system, ¢p is an element of @) and F' is a
subset of . The sets T' and (Q are disjoint. Each element of R has the form ¢t — ¢', where
q and ¢ are elements of @ and ¢ is an element of T. We say that A accepts a set of strings
L(A) ={r €T* | @ =" q,q € F}. Two automata, A and A’ are equivalent if and only if
L(A) = L(A"). O

We can conceive of the finite automaton as a machine that reads a given input string out of a
buffer one symbol at a time and changes its internal state upon absorbing each symbol. @ is
the set of internal states, with gg being the initial state and F' the set of final states. We say
that a finite automaton is in state ¢ when the current string in the derivation has the form
qr. It makes a transition from state ¢ to state ¢ if 7 = tx and ¢t — ¢ is an element of R.
Each state transition removes one symbol from the input string.

5.13 THEOREM
For every regular grammar, G, there exists a finite automaton, A, such that L(A) = L(G).O

The proof of this theorem is an algorithm to construct A, given G = (T,N,P,Z). Let
A=(T,NU{f},R,Z,F), f ¢ N. R is constructed from P by the following rules:

1. f X -t (X € N,t €T) is a production of P then let Xt — f be a production of R.

2. f X - tY (X,Y € N,t € T) is a production of P then let Xt — Y be a production of
R.
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T={n,.,+,—, E}

Q:{C7 F7 I? X7 S7 U7 q}

R={Cn—q,Cn—F,C. -1,
F.— I, FE— S,
In—q,In— X,

XE — S,
Sn—q, S+—->U, S— = U,
Un — q}

qo= C

F={q}

Figure 5.9: An Automaton Corresponding to Figure 5.4a

Further, F = {f} U{X | X — € € P}. Figure 5.9 is an automaton constructed by this
process from the grammar of Figure 5.4a.

One can show by induction that the automaton constructed in this manner has the follow-
ing characteristic: For any derivation Z7xy =* Xy =* ¢ (t,x € T*,X € N,7x € L(A),q €
F), the state X specifies the nonterminal symbol of G that must have been used to derive
the string y. Clearly this statement is true for the initial state Z if 7x belongs to L(G). It
remains true until the final state ¢, which does not generate any further symbols, is reached.
With the help of this interpretation it is easy to prove that each sentence of L(G) also belongs
to L(A) and vice-versa.

Figure 5.9 is an unsatisfactory automaton in practice because at certain steps — for exam-
ple in state I with input symbol n — several transitions are possible. This is not a theoretical
problem since the automaton is capable of producing a derivation for any string in the lan-
guage. When implementing this automaton in a compiler, however, we must make some
arbitrary decision at each step where more than one production might apply. An incorrect
decision requires backtracking in order to seek another possibility. There are three reasons
why backtracking should be avoided if possible:

e The time required to parse a string with backtracking may increase exponentially with
the length of the string.

e If the automaton does not accept the string then it will be recognized as incorrect. A
parse with backtrack makes pinpointing the error almost impossible. (This is illustrated
by attempting to parse the string n.nE + +n with the automaton of Figure 5.9 trying
the rules in the sequence in which they are written.)

e Other compiler actions are often associated with state transitions. Backtracking then
requires unraveling of actions already completed, generally a very difficult task.

In order to avoid backtracking, additional constraints must be placed upon the automata
that we are prepared to accept as models for our recognition algorithms.

5.14 DEFINITION
An automaton is deterministic if every derivation can be continued by at most one move. [

A finite automaton is therefore deterministic if the left-hand sides of all rules are distinct. It
can be completely described by a state table that has one row for each element of ) and one
column for each element of T. Entry (¢, t) contains ¢’ if and only if the production ¢t — ¢’ is
an element of R. The rows corresponding to gy and to the elements of F' are suitably marked.
Backtracking can always be avoided when recognizing strings in a regular language:
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5.15 THEOREM
For every regular grammar, G, there exists a deterministic finite automaton, A, such that

L(4) = L(G). O

Following construction 5.13, we can derive an automaton from a regular grammar G =
(T,N,P,Z) such that, during acceptance of a sentence in L(G), the state at each point
specifies the element of NV used to derive the remainder of the string. Suppose that the pro-
ductions X — tU and X — tV belong to P. When t is the next input symbol, the remainder
of the string could have been derived either from U or from V. If A is to be deterministic,
however, R must contain exactly one production of the form X¢ — ¢/. Thus the state ¢’
must specify a set of nonterminals, any one of which could have been used to derive the
remainder of the string. This interpretation of the states leads to the following inductive
algorithm for determining @), R and F of a deterministic automaton A = (T, Q, R, qo, F). (In
this algorithm, g represents a subset N, of NU{f}, f ¢ N):

1. Initially let @ = {qo} and R = 0, with N,, = {Z}.

2. Let ¢ be an element of () that has not yet been considered. Perform steps (3)-(5) for each
teT.

3. Let next(q,t) = {U | 3X € N, such that X — tU € P}.

4. If there is an X € N, such that X — ¢ € P then add f to next(q,t) if it is not already
present; if there is an X € N, such that X — € € P then add f to IV, if it is not already
present.

5. If next(q,t) # 0 then let ¢’ be the state representing Ny = next(q,t). Add ¢’ to @ and
gt — ¢’ to R if they are not already present.

6. If all states of () have been considered then let F' = {¢q | f € N,} and stop. Otherwise
return to step (2).

You can easily convince yourself that this construction leads to a deterministic finite
automaton A such that L(A) = L(G). In particular, the algorithm terminates: All states
represent subsets of N U {f}, of which there are only a finite number.

To illustrate this procedure, consider the construction of a deterministic finite automaton
that recognizes strings generated by the grammar of Figure 5.4a. The state table for this
grammar, showing the correspondence between states and sets of nonterminals, is given in
Figure 5.10a. You should derive this state table for yourself, following the steps of the
algorithm. Begin with a single empty row for gy and work across it, filling in each entry
that corresponds to a valid transition. Each time a distinct set of nonterminal symbols is
generated, add an empty row to the table. The algorithm terminates when all rows have been
processed.

5.16 THEOREM
For every finite automaton, A, there exists a regular grammar, G, such that L(G) = L(A).O

Theorems 5.15 and 5.16 together establish the fact that finite automata and regular grammars
are equivalent. To prove Theorem 5.16 we construct the production set P of the grammar
G = (T,Q, P,qp) from the automaton (T, Q, R, qo, F') as follows:

P={q—td |qt—>qd €R}U{g—€|qeF}

5.2.2 State Diagrams and Regular Expressions

The phrase structure of the basic symbols of the language is usually not interesting, and in
fact may simply make the description harder to understand. Two additional formalisms, both
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n . + — F
qo | 91 | 92 {C}
q 72 q | {f, F}
@ | @ {1}
a3 | g5 96 | g6 {S}
g4 q3 {fa X}
g5 {f}
% | G5 {U}

a) The state table
T ={n,.,+,— E}

Q = {QOaQIaq23q3aq4aQ5aQG}

P = {qn — q1, - = q2,
Q- — 92, 1 B — g3,
q2n — g4,
g3n — gs, g3+ — g6, 43— — g,
@B — gs,

g6n — G5}

F ={q,q, 05}

b) The complete automaton

Figure 5.10: A Deterministic Automaton Corresponding to Figure 5.4a

of which avoid the need for irrelevant structuring, are available for regular languages. The
first is the representation of a finite automaton by a directed graph:

5.17 DEFINITION

Let A = (T,Q, R, qo, F) be a finite automaton, D = {(¢,q') | 3t,qt — ¢ € R}, and f :
(q,¢") = {t | gt = ¢’ € R} be a mapping from D into the powerset of T. The directed graph
(Q, D) with edge labels f((q,q")) is called the state diagram of the automaton A. O

Figure 5.11a is the state diagram of the automaton described in Figure 5.10b. The nodes
corresponding to elements of F' have been represented as squares, while the remaining nodes
are represented as circles. Only the state numbers appear in the nodes: 0 stands for gq, 1 for
q1, and so forth.

In a state diagram, the sequence of edge labels along a path beginning at gy and ending at
a state in F' is a sentence of L(A). Figure 5.11a has exactly 12 such paths. The corresponding
sentences are given in Figure 5.11b.

A state diagram specifies a regular language. Another characterization is the regular
expression:

5.18 DEFINITION
Given a vocabulary V, and the symbols E, €, +, %, ( and ) not in V. A string p over
VUA{E,e,+,*,(,)} is a reqular expression over V if

1. p is a single symbol of V' or one of the symbols E or ¢, or if
2. p has the form (X +Y), (XY) or (X)* where X and Y are regular expressions. O
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a) State diagram

n .n n.n
nEn nE+n nE-n
.nEn .nE+n .nE-n
nnEn n.nE+4n n.nE-n

b) Paths

Figure 5.11: Another Description of Figure 5.10b

Every regular expression results from a finite number of applications of rules (1) and (2). It
describes a language over V: The symbol E describes the empty language, ¢ describes the
language consisting only of the empty string, v € V' describes the language {v}, (X +Y) =
{wlweXorweY}, (XY)={xy|x € X,y €Y} The closure operator (*) is defined by
the following infinite sum:

X'=e+ X+ XX+ XXX +...

As illustrated in this definition, we shall usually omit parentheses. Star is unary, and takes
priority over either binary operator; plus has a lower priority than concatenation. Thus
W + XY™ is equivalent to the fully-parenthesized expression (W + (X (Y™))).

Figure 5.12 summarizes the algebraic properties of regular expressions. The distinct rep-
resentations for X* show that several regular expressions can be given for one language.

X+Y = Y+X (commutative)
(X+Y)+Z = X+ (Y+Z) (associative)
(XY)Z = X(YZ)
XY+2) = XY+XZ (distributive)
(X+Y)Z = XZ+YZ
X+E = E+X=X (identity)
Xe = e X=X
XE = EX=F (zero)
X+X = X (idempotent)
X' = e+ XX*
X* = X+X*
€ = €
Ex = ¢

Figure 5.12: Algebraic Properties of Regular Expressions

The main advantage in using a regular expression to describe a set of strings is that it
gives a precise specification, closely related to the ‘natural language’ description, which can
be written in text form suitable for input to a computer. For example, let [ denote any single
letter and d any single digit. The expression [(I + d)* is then a direct representation of the
natural language description ‘a letter followed by any sequence of letters and digits’.
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The equivalence of regular expressions and finite automata follows from:

5.19 THEOREM
Let R be a regular expression that describes a subset, S, of T*. There exists a deterministic
finite automaton, A = (T, Q, P, qo, F') such that L(A) = S. O

The automaton is constructed in much the same way as that of Theorem 5.15: We create a
new expression R’ by replacing the elements of T' occurring in R by distinct symbols (multiple
occurrences of the same element will receive distinct symbols). Further, we prefix another
distinct symbol to the altered expression; if R = FE, then R' consists only of this starting
symbol. (As symbols we could use, for example, natural numbers with 0 as the starting
symbol.) The states of our automaton correspond to subsets of the symbol set. The set
corresponding to the initial state ¢y consists solely of the starting symbol. We inspect the
states of () one after another and add new states as required. For each ¢ € Q and each t € T',
let ¢’ correspond to the set of symbols in R’ that replace ¢ and follow any of the symbols of
the set corresponding to ¢. If the set corresponding to ¢’ is not empty, then we add gt — ¢’
to P and add {¢'} to @ if it is not already present. The set F' of final states consists of all
states that include a possible final symbol of R'.

Figure 5.13 gives an example of this process. Starting with gy = {0}, we obtain the state
table of Figure 5.13b, with states qi, g2 and g3 as final states. Obviously this is not the
simplest automaton which we could create for the given language; we shall return to this
problem in Section 6.2.2.

R =I(+dx*
R =01(2+3)*

a) Modifying the Regular Expression

1 d
q | 71 {0}
@1 | 2| g3 | {1} (final)
@ | ¢ | g3 | {2} (final)
3 | g2 | g3 | {3} (final)

b) The resulting state table

Figure 5.13: Regular Expressions to State Tables

5.3 Context-Free Grammars and Pushdown Automata

Regular grammars are not sufficiently powerful to describe languages such as algebraic ex-
pressions, which have nested structure. Since most programming languages contain such
structures, we must change to a sufficiently powerful descriptive method such as context-free
grammars. Because regular grammars are a subclass of context-free grammars, one might
ask why we bother with regular languages at all. As we shall see in this section, the analysis
of phrase structure by means of context-free grammars is so much more costly that one falls
back upon the simpler methods for regular grammars whenever possible.

Here, and also in Chapter 7, we assume that all context-free grammars (7, N, P, Z) contain
a production Z — S. This is the only production in which the axiom Z appears. (Any
grammar can be put in this form by addition of such a production.) We assume further
that the terminator # follows each sentence. This symbol identifies the condition ‘input
text completely consumed’ and does not belong to the vocabulary. Section 5.3.3 assumes
further that the productions are consecutively numbered. The above production has the
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number 1, n is the total number of productions and the ¢th production has the form X; — x;,
Xi = Ti1..-Tim. The length, m, of the right-hand side is also called the length of the
production. We shall denote a leftmost derivation X =* Y by X = Y and a rightmost
derivation by X =2V,

We find the following notation convenient for describing the properties of strings: The
k-head k : w of w gives the first min(k, |w| + 1) symbols of w#. FIRSTj(w) is the set of
all terminal k-heads of strings derivable from w. The set EF Fj(w) (‘e-free first’) contains all
strings from FIRST)(w) for which no e-production A — e was applied at the last step in
the rightmost derivation. The set FOLLOW),(w) comprises all terminal k-heads that could
follow w. By definition FOLLOW}(Z) = {#} for any k. Formally:

{w# when |w| < k
k:w=

a  when w=ayand |a| =k
FIRSTy(w) = {7 | v € T* such that w =" v,7 =k : v}
EFF,(w) = {1 € FIRST}(w) | #A € N,v € T* such that w =7 Arv = v}

FOLLOW(w) = {7 | 3v € V* such that Z =" pwv, 7 € FIRST,(v)}

We omit the index k& when it is 1. These functions may be applied to sets of strings, in
which case the result is the union of the results of applying the function to the elements of its
argument. Finally, if «v is a string and €2 is a set of strings, we shall define a2 = {aw | w € 2}.

5.3.1 Pushdown Automata

For finite automata, we saw that the state specifies the set of nonterminal symbols of G
that could have been used to derive the remainder of the input string. Suppose that a finite
automaton has reached the first right parenthesis of the following expression (which can be
derived using a context-free grammar):

(a1 + (ag+ (- + (am)-..))

It must then be in a state specifying some set of nonterminal symbols that can derive exactly m
right parentheses. Clearly there must be a distinct state for each m. But if m is larger than the
number of states of the automaton (and this could be arranged for any given number of states)
then there cannot be a distinct state for each m. Thus we need a more powerful automaton,
which can be obtained by providing a finite automaton with a stack as an additional storage
structure.

5.20 DEFINITION

A pushdown automaton is a septuple A = (T,Q, R, qv, F, S, so), where (T UQ U S,R) is a
general rewriting system, gy is an element of ), F' is a subset of @), and s( is an element of
S or sg = €. The sets T and @ are disjoint. Each element of R has the form ogar — o'¢'T,
where o and ¢’ are elements of S*, ¢ and ¢’ are elements of @), a is an element of T or a = e,
and 7 is an element of T*. O

@, qo and F have the same meaning as the corresponding components of a finite automaton. S
is the set of stack symbols, and sg is the initial content of the stack. The pushdown automaton
accepts a string 7 € T™ if soqo7 =" ¢ for some ¢q € F'. If each sentence is followed by #, the
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pushdown automaton A defines the language L(A) = {7 | soqo7# =" q#,q9 € F,7 € T*}. (In
the literature one often finds the requirement that o be an element of S rather than S*; our
automaton would then be termed a generalized pushdown automaton. Further, the definition
of ‘accept’ could be based upon either the relation sgqy7™ =* oq, 0 € §*, ¢ € F, or the relation
S0qoT =" q, q arbitrary. Under the given assumptions these definitions prove to be equivalent
in power.)

We can picture the automaton as a machine with a finite set () of internal states and a
stack of arbitrary length. If we have reached the configuration si ... s,q7 in a derivation, then
the automaton is in state ¢, 7 is the unread part of the input text being analyzed, and s; ... s,
is the content of the stack (s; is the bottom item and s, the top). The transitions of the
automaton either read the next symbol of the input text (symbol-controlled) or are spontaneous
and do not shorten the input text. Further, each transition may alter the topmost item of
the stack; it is termed a stacking, unstacking or replacing transition, respectively, if it only
adds items, deletes items, or changes them without altering their total number.

The pushdown automaton can easily handle the problem of nested parentheses: When it
reads a left parenthesis from the input text, it pushes a corresponding symbol onto the stack;
when it reads the matching right parenthesis, that symbol is deleted from the stack. The
number of states of the automaton plays no role in this process, and is independent of the
parenthesis nesting depth.

5.21 THEOREM

For every context-free grammar, G, there exists a pushdown automaton, A, such that L(A) =
L(G). O

As with finite automata, one proves this theorem by construction of A. There are two con-
struction procedures, which lead to distinct automata; we shall go into the details of these
procedures in Sections 5.3.2 and 5.3.3 respectively. The automata constructed by the two
procedures serve as the basic models for two fundamentally different parsing algorithms.

A pushdown automaton is not necessarily deterministic even if the left sides of all pro-
ductions are distinct. For example, suppose that o1g7 — o'¢'t" and o9q7 — 0" ¢"7" are two
distinct productions and o9 is a proper tail of o;. Thus 07 = 0oy and both productions are
applicable to the configuration cooq7y. If we wish to test formally whether the productions
unambiguously specify the next transition, we must make the left-hand sides the same length.
Determinism can then be tested, as in the case of finite automata, by checking that the left-
hand sides of the productions are distinct. We shall only consider cases in which the state ¢
and k lookahead symbols of the input string are used to determine the applicable production.

Unfortunately, it is not possible to sharpen Theorem 5.21 so that the pushdown automa-
ton is always deterministic; Theorem 5.15 for regular grammars cannot be generalized to
context-free grammars. Only by additional restrictions to the grammar can one guarantee
a deterministic automaton. Most programming languages can be analyzed deterministically,
since they have grammars that satisfy these restrictions. (This has an obvious psychologi-
cal basis: Humans also find it easier to read a deterministically-analyzable program.) The
restrictions imposed upon a grammar to obtain a deterministic automaton depend upon the
construction procedure. We shall discuss the details at the appropriate place.

5.3.2 Top-Down Analysis and LL(k) Grammars

Let G = (T,N,P,Z) be a context-free grammar, and consider the pushdown automaton
A= (T,{q},R,q,{q},V,Z) with V =T UN and R defined as follows:

R={tqt > q|teT}U{Bq—by...bq| B—by...b, € Pn>0,Be N,b;eV}
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T = {+,%/(),i}
Q@ = {q¢}
R = {Eq—Tq, Eq— T+Eq,
Tqg— Fq, Tq — F*T\q,
Fq—iq, Fq —)E(q,
+q+ = q, *¢* = ¢, (¢(— ¢, )a)— ¢, igi = ¢}
qgo = q
F o= {q}
S = {+*%(),,ETF}

Sop = FE
Figure 5.14: A Pushdown Automaton Constructed from Figure 5.3a

Stack | Input Leftmost derivation
Eqlitixi | B
TH+FEq|i+ixi | E+T
T+Tgq|i+ixt | TH+T
T+Fq|it+i*xi | F4+T
THiqg|i+ixi |i+T
T+ q | +ixt
Tq|ix1
FxTql|ix1 1+ T x F
Fx«xFq|ixi 1+ FxF
Fxiq|ixs 1+ix F
Fxq | %
Faql:
1q |1 1+1x1
q

Figure 5.15: Top-Down Analysis

This automaton accepts a string in L(G) by constructing a leftmost derivation of that string
and comparing the symbols generated (from left to right) with the symbols actually appearing
in the string.

Figure 5.14 is a pushdown automaton constructed in this manner from the grammar of
Figure 5.3a. In the left-hand column of Figure 5.15 we show the derivation by which this
automaton accepts the string ¢ 4+ ¢ x ¢. The right-hand column is the leftmost derivation of
this string, copied from Figure 5.5. Note that the automaton’s derivation has more steps due
to the rules that compare a terminal symbol on the stack with the head of the input string
and delete both. Figure 5.16 shows a reduced set of productions combining some of these
steps with those that precede them.

The analysis performed by this automaton is called a top-down (or predictive) analysis
because it traces the derivation from the axiom (top) to the sentence (bottom), predicting
the symbols that should be present. For each configuration of the automaton, the stack
specifies a string from V* used to derive the remainder of the input string. This corresponds
to construction 5.13 for finite automata, with the stack content playing the role of the state
and the state merely serving to mark the point reached in the input scan.

We now specify the construction of deterministic, top-down pushdown automata by means
of the LL(k) grammars introduced by LEWIS and STEARNS [1969]:
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R ={Eq—Tq, Eq— T+ Eq
Tq— Fq, Tq— F xTq,
Fqi — q, Fq(—)Eq,
+q+ = g, *qx = ¢, )q) = q}
Figure 5.16: Reduced Productions for Figure 5.14

5.22 DEFINITION
A context-free grammar G = (T, N, P, Z) is LL(k) for given k > 0 if, for arbitrary derivations

Z =" pAx = pox =" py Y €T, v,x eV, AeN
Z =L pAy = pwy =" py ¥ eT*, weV*
(k:v=kFk:4) implies v = w. O

5.23 THEOREM
For every LL(k) grammar, G, there exists a deterministic pushdown automaton, A, such that
L(A) = L(G). O

A reads each sentence of the language L(G) from left to right, tracing a leftmost derivation
and examining no more than k input symbols at each step. (Hence the term ‘LL(k)’.)

In our discussion of Theorem 5.13, we noted that each state of the finite automaton
corresponding to a given grammar specified the nonterminal of the grammar that must have
been used to derive the string being analyzed. Thus the state of the automaton characterized a
step in the grammar’s derivation of a sentence. We can provide an analogous characterization
of a step in a context-free derivation by giving information about the production being applied
and the possible right context: Each state of a pushdown automaton could specify a triple
(p, 4, 82), where 0 < j < n, gives the number of symbols from the right-hand side of production
Xp = Tp1...Tpp, already analyzed and €2 is the set of k-heads of strings that could follow
the string derived from X,. This triple is called a situation, and is written in the following
descriptive form:

(Xp = pov;Qu==mop1...2p 5,V =Tpjq1-..Tpn,

The dot (which is assumed to be outside of the vocabulary) marks the position of the analysis
within the right-hand side. (In most cases Q contains a single string. We shall then write it
without set brackets.)

Given a grammar (T, N, P, Z), we specify the states () and transitions R of the automaton
inductively as follows:

1. Initially let @ = {qo} and R =), with go = [Z — S;#]. (Note that FOLLOW}(Z) =
{#}.) The initial state is gp, which is also the initial stack content of A. (We could
have chosen an arbitrary state as the initial stack content.) The automaton halts if this
state is reached again, the stack is empty, and the next input symbol is the terminator
#.

2. Let ¢ = [X — peov; Q] be an element of @ that has not yet been considered.

3. If v = € then add ge — € to R if it is not already present. (The notation g7 — 7 is
shorthand for the set of spontaneous unstacking transitions ¢'q7 — ¢'T with arbitrary
7

4. Mfv =ty for some t € T and y € V* let ¢ =[X — utey;Q]. Add ¢’ to Q and gt — ¢
to R if they are not already present.
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5. If v = Bry for some B € N and v € V¥, let ¢ = [X — uBe;Q] and H = {[B —
o3 FIRST,(v)] | B = Bi € P}. (Thus 1 < ¢ < m if there are m productions with
left-hand side B.) Set Q := QU {¢'} UH and R := RU{qr; — ¢hi7; | h; € H,
T; € FIRSTk(Bi’yQ)}.

6. If all states in ) have been examined, stop. Otherwise, return to step (2).

The construction terminates in all cases, since the set of situations is finite. One can
show that the resulting automaton is deterministic if and only if G is an LL(k) grammar, and
therefore the construction provides a test for the LL(k) property.

Consider the grammar of Figure 5.17a. We can apply Construction 5.23 with £ = 3 to
show that this grammar is LL(3), obtaining the states of Figure 5.17b and the transitions of
Figure 5.17c.

P={Z-X,
X =Y, X —>bYa,
Y —=¢Y —ca}

a) An LL(3) grammar

Qo =[Z— eX;H#] @ =Y = cea;#]
q =72 = Xe;#] g0 = [X — bY ea;#|
@ =X = oY #] g1 =[Y — ec;a#]

3 =[X o ebYa;#] q2 =[Y = eca;a#]
g = [X = Ye; #] q13 = [Y — cae; #]

e =Y = ec #] qua = [X — bY ae; #]
ge [Y — oCa; #] q15 [Y — ce; a#]

g7 =[X—obeYa;#] qs =[Y — cea;a#]
gs =Y — ce; #] g7 = [Y — cae;a#]

b) States of the automaton, with the situations they represent

R = {qoc# — quqzc#, qreadt — qroquica#
qoca# — qrqecadt,  qreaa = qrogiacaa,
qobca — q1q3bca, qs — €,
q1 — €, Qo — q13,

QcH# — quqscHt, q100 — q14,
qQ2caft — quqeca#t, qiic — qis,

q3b — qr, q12€¢ — 416, 413 — €,
q4 — €, qi4 — €,

gsC — gs, q15 — €,

g6C — q9, q16a = q17, q17 —> € }

c¢) Production set of the Automaton
Figure 5.17: Constructing a Deterministic Top-Down Automaton

With k£ = 2 the construction leads to identical states. In state g7, however, we obtain the
following transitions:

grca — qi10q11€a, grca — q104912Ca

The automaton is therefore nondeterministic and hence the grammar is LL(3), but not LL(2).
The example also shows that the lookahead symbols are examined only at spontaneous, stack-
ing transitions that correspond to entry into a new production. As soon as such a transition
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is executed, the reading of terminal symbols and the decision to terminate the production
with an unstacking transition proceeds without further lookahead.

There exist grammars that do not have the LL(k) property for any k. Among the possible
reasons is the occurrence of left recursive nonterminals — nonterminals A for which a derivation
A = Aw, w # ¢, is possible. In a predictive automaton, left recursive nonterminals lead to
cycles that can be broken only by examining a right context of arbitrary length. They can,
however, be eliminated through a transformation of the grammar.

5.24 THEOREM
An LL(k) grammar can have no left recursive nonterminal symbols. O

5.25 THEOREM
For every context-free grammar G = (T, N, P, Z) with left recursive nonterminals, there exists
an equivalent grammar G' = (T, N', P', Z) with no left recursive nonterminals. O

Let the elements of N be numbered consecutively: N = {X,...,X,}. If we choose the
indices such that the condition ¢ < j holds for all productions X; — Xj;w then G has no left
recursive nonterminals. If such a numbering is not possible for G, we can guarantee it for G’
through the following construction:

1. Let N' = N, P' = P. Perform steps (2) and (3) fori =1,...,n.

2. For j =1,...,i—1replace all productions X; - Xw € P' by {X; — xjw| X; = x; € P'}.
(After this step, X; =T X~ implies ¢ < j.)

3. Replace the entire set of productions of the form X; — X;w € P’ (if any exist) by the
productions {B; — wB; | X; — X;w € P'} U{B; — €}, adding a new symbol B; to N'.
At the same time, replace the entire set of productions X; — x, x # X;v, by X; — xB;.
The symbols added during this step will be given numbers n 4+ 1,n + 2,...,

If the string w in the production X; — X;w does not begin with X, 7 <4 then we can
replace X; — X;w by {B; —» w, B; - wB;} and X; — x by {X; — x, X; — xB;} in step (3).
This approach avoids the introduction of e-productions; it was used to obtain the grammar
of Figure 5.3b from that of Figure 5.3a.

Note that left recursion such as E — T, E — E + T is used in the syntax of arithmetic
expressions to reflect the left-association of the operators. This semantic property can also be
seen in the transformed productions ¥ — TE', E' — +TE', E' - ¢,butnotin £ - T, E —
T + E. In EBNF the left associativity of an expression can be conveniently represented by
E == T (+ T)x

One of the constructions discussed above results in e-productions, while the other does
not. We can always eliminate e-productions from an LL(k) grammar, but by doing this we
may increase the value of k:

5.26 THEOREM
Given an LL(k) grammar G with e-productions. There exists an LL(k + 1) grammar without
e-productions that generates the language L(G) — {€}. O

Conversely, k£ can be reduced by introducing e-productions:

5.27 THEOREM
For every e-free LL(k + 1) grammar G, k > 0, there exists an equivalent LL(k) grammar with
e-productions. O
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The proof of Theorem 5.27 rests upon a grammar transformation known as left-factoring,
illustrated in Figure 5.18. In Figure 5.18a, we cannot distinguish the productions X — Yec¢
and X — Yd by examining any fixed number of symbols from the input text: No matter
what number of symbols we choose, it is possible for Y to derive a string of that length in
either production.

P={Z— X,
X —=Ye X-—>Yd,
Y —a, Y = bY'}

a) A grammar that is not LL(k) for any k

P={Z-X,
X 5YX,
X —e X' —d,
Y —a, Y = bY'}

b) An equivalent LL(1) grammar
Figure 5.18: Left Factoring

We avoid the problem by deferring the decision. Since both productions begin with Y,
it is really not necessary to distinguish them until after the string derived from Y has been
scanned. The productions can be combined by ‘factoring out’ the common portion, as shown
in Figure 5.18b. Now the decision is made at exactly the position where the productions
begin to differ, and consequently it is only necessary to examine a single symbol of the input
string.

In general, by deferring a decision we obtain more information about the input text we
are analyzing. The top-down analysis technique requires us to decide which production to
apply before analyzing the string derived from that production. In the next section we shall
present the opposite technique, which does not require a decision until after analyzing the
string derived from a production. Intuitively, this technique should handle a larger class of
grammars because more information is available on which to base a decision; this intuition can
be proven correct. The price is an increase in the complexity of both the analysis procedure
and the resulting automaton, but in practice the technique remains competitive.

5.3.3 Bottom-Up Analysis and LR(k) Grammars

Again let G = (T, N, P, Z) be a context-free grammar, and consider the pushdown automaton
A= (T,{q},R,q,{q},V,e) with V =T UN, and R defined as follows:

R={x1..0n¢q > Xq| X = z1...0n € P} U{qt = tq | t €T} U{Zq— q}

This automaton accepts a string in L(G) by working backward through a rightmost derivation
of the string.

Figure 5.19 is a pushdown automaton constructed in this manner from the grammar of
Figure 5.3a. In the left-hand column of Figure 5.20, we show the derivation by which this
automaton accepts the string ¢ + ¢ * ¢. The right-hand column is the reverse of the rightmost
derivation of this string, copied from Figure 5.5. The number of steps required for the
automaton’s derivation can be decreased by combining productions as shown in Figure 5.21.
(This reduction is analogous to that of Figure 5.16.)

The analysis performed by this automaton is called a bottom-up analysis because of the
fact that it traces the derivation from the sentence (bottom) to the axiom (top). In each
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T = {+,%(,),i}
R={Tq— Eq, E4+Tq — Eq,
Fq—Tq, TxFq— Tq,
ig— Fq, (E)qg = Fgq,
g+ = +q, qx = xq, q(— (¢, q) =)g, qi —ig,
Eq — q}
S={+,%(),4ETF}

Figure 5.19: A Pushdown Automaton Constructed from Figure 5.3a

Stack Input Reverse rightmost derivation
qli+ixi | i+ix1
T q | Fixt
F oq| +ixq F x4
T q| +ix1 T+ixt
E q| +ix1 E+4ixi
E+ q|ix1
E+1i q| %t
E+F q| i E+ Fxq
E+T q| *i E+Txq
E+Tx ql|1
E+Tx1 ¢q
E+T«xF g E+TxF
E+T g¢q E+T
E ¢ E

L=

Figure 5.20: Bottom-Up Analysis

configuration of the automaton the stack contains a string from S*, from which the portion
of the input text already read can be derived. The state merely serves to mark the point
reached in the input scan. The meaningful information is therefore the pair (p, o), where
p € S* denotes the stack contents and o € T denotes the remainder of the input text.

The pairs (p, o) that describe the configurations of an automaton tracing such a derivation
may be partitioned into equivalence classes as follows:

5.28 DEFINITION

For p = 1,...,n let X, — x, be the p" production of a context-free grammar G =
(T,N, P, Z). The reduction classes, Rj, j =0,...,n are defined by:

Ry = {(p,0) | p= py,0 = vw such that Z =% pAw, A = v+ e}

R, ={(p,0) | p=pxp, Z=" pXpo}

R ={Tq— Eq, E+Tq— Egq,
Fq—Tq, TxFq— Tgq,
qi — Fq, (Eq) = Fq,
q+ — +q, ¢+ — xq, q(— (q,
Eq— q}

Figure 5.21: Reduced Productions for Figure 5.17
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‘A = o denotes the relation ‘A =% o and the last step in the derivation does not take the
form Ba = «o’.

The reduction classes contain all pairs of strings that could appear during the bottom-up
parse of a sentence in L(G) by the automaton described above. Further, the reduction class
to which a pair belongs characterizes the transition carried out by the automaton when that
pair appears as a configuration. There are three possibilities:

1. (p,0) € Ry. The simple phrase x is not yet completely in the stack; the transition gt — tq
with t = 1 : o is applied (shift transition).

2. (p,o) € Ry, 1 < p < n. The simple phrase x is complete in the stack and the reduce
transition Xxpq — Xpq is applied. (For p = 1 the transition Zq — ¢ occurs and the
automaton halts.)

3. (p,0) ¢ Rj, 0 < j <n. No further transitions are possible; the input text does not belong
to L(G).

A pushdown automaton that bases its decisions upon the reduction classes is obviously
deterministic if and only if the grammar is unambiguous.

Unfortunately the definition of the sets R; uses the entire remainder of the input string
in order to determine the reduction class to which a pair (p, o) belongs. That means that our
bottom-up automaton must inspect an arbitrarily long lookahead string to make a decision
about the next transition, if it is to be deterministic. If we restrict the number of lookahead
symbols to k, we arrive at the following definition:

5.29 DEFINITION
For some k > 0, the sets R;, j =0,...,n, are called k-stack classes of a grammar G if:

R ={(p,7) | I(p,0) € Rj such that T =k : 0}
O

If the k-stack classes are pairwise-disjoint, then the pushdown automaton is deterministic
even when the lookahead is restricted to £ symbols. This property characterizes a class of
grammars introduced by KNUTH [1965]:

5.30 DEFINITION
A context-free grammar G = (T, N, P, Z) is LR(k) for given k > 0 if, for arbitrary derivations

Z=RjAw=pxw peViweT*, A xeP
Z =R )BY =y’ eV W €T, B—yeP

(lpx| + k) » pxw = (|px| + k) : p'yw” implies p = p', A= B and x = 1. O

The automaton given at the beginning of this section scans the input text from left to right,
tracing the reverse of a rightmost derivation and examining no more than & input symbols
at each step. (Hence the term "LR(k)”.)

5.31 THEOREM
A context-free grammar is LR(k) if and only if its k-stack classes are pairwise-disjoint. O

On the basis of this theorem, we can test the LR(k) property by determining the intersection
of the k-stack classes. Unfortunately the k-stack classes can contain infinitely many pairs
(p,7): The length restriction permits only a finite number of strings 7, but the lengths of the
stack contents are unrestricted. However, we can give a regular grammar G for each k-stack
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class R; such that L(G;) = {(p&T) | (p,7) € Rj}. Since algorithms exist for determining
whether two regular languages are disjoint, this construction leads to a procedure for testing
the LR(k) property.

5.32 THEOREM

Let G = (T,N, P, Z) be a context-free grammar, and let k > 0. Assume that & is not an
element of the vocabulary V' = TUN. There exists a set of regular grammars Gj, 5 = 0,...,n
such that L(G;) = {p&T | (p,T) € Rj 1} O

The regular grammars that generate the k-stack classes are based upon the situations intro-
duced in connection with Theorem 5.23:

W={X—>peviw | X - puv e Pwe FOLLOW,(X)}

These situations are the nonterminal symbols of the regular grammars. To define the gram-
mars themselves, we first specify a set of grammars that generate the k-stack classes, but are
not regular:

G = (VU{&,#},W,P' UP"UP;,[Z — oS;#])

The productions in P'UP” build the p components of the k-stack class. They provide the finite
description of the infinite strings. Productions in P; attach the 7 component, terminating the
k-stack class:

P ={X 5 pevyw - v[X > urey;w] |veV}
P"={[X - peBy;w] = [B—ef;7] | B— € P,7 € FIRST)(yw)}
Py={[X = peviw] = &7 |v#¢e,1 € EFF(vw)}

P,={[Xp, = xpow] > &w}p=1,...,n

Remember that the lengths of 7 and w are limited to &£ symbols, so the number of possible
strings &7 and &w is finite. If we regard these strings as single terminal symbols, productions
in P and P}, j = 0,...,n, are allowable in a regular grammar. Productions in P" are not
allowable, however, since they are of the form A — B, A, B € N. Thus G; is not regular.

It is always possible to rewrite a grammar so that it contains no productions such as those
in P". The key is the closure of a nonterminal:

H(A)={A}lU{B|C—-BeP, CecH(A)}
The procedure for rewriting the grammar is:

1. Select an A € N for which H(A) # {A}.
2. Set P=P—{A— B|BeN}.
3. Set P=PU{A—-pB|B—pe€P,BeH(A),B3¢N}.

The algorithm terminates when no selection can be made in step (1).

We obtain G from G;- by applying this algorithm. The strings 8 are all of the form
v[...], &7 or &w, and therefore all introduced productions satisfy the conditions for a regular
grammar.



5.3 Context-Free Grammars and Pushdown Automata 107

5.33 THEOREM
For every LR(k) grammar G there exists a deterministic pushdown automaton A such that

L(4) = L(G). O

Let G = (T, N, P, Z). We base the construction of the automaton on the grammars G, effec-
tively building a machine that simultaneously generates the k-stack classes and checks them
against the reverse of a rightmost derivation of the string. Depending upon the particular
k-stack class, the automaton pushes the input symbol onto the stack or reduces some number
of stacked symbols to a nonterminal. The construction algorithm generates the necessary
situations as it goes, and uses the closure operation discussed above ‘on the fly’ to avoid
considering productions from P”. As in the construction associated with Theorem 5.15, a
state of the automaton must specify a set of situations, any one of which might have been
used in deriving the current k-stack class. It is convenient to restate the definition of a closure
directly in terms of a set of situations M:

H(M)=MU{[B —e3;7] | IX - peBy;w]€e HM),B — € P,1 € FIRST,(yw)}
The elements of Q and R are determined inductively as follows:

1. Initially let @ = {qo} and R = 0, with ¢o = H({[Z — S; #]}).

2. Let ¢ be an element of @@ that has not yet been considered. Perform steps (3)-(5) for each
veV.

3. Let basis(q,v) = {[X = prey;w] | [X — pevy;w] € q}.

4. If basis(q,v) # 0, then let next(q,v) = H(basis(q,v)). Add ¢’ = next(q,v) to Q if it is
not already present.

5. If basis(q,v) # 0 and v € T then set

R—RU {qv = qq'} ifk<1
' {qut = q¢'T | [X = pevy;w] € q,7 € FIRST; 1(yw)} otherwise

6. If all elements of () have been considered, perform step (7) for each ¢ € @ and then stop.
Otherwise return to step (2).

7. For each [X — yeo;w] € ¢, where x =21 ... 2, 8¢t R:= RU{q1...qnqw — q1¢'w |
(X — ex;w] € q,qir1 = next(q,z;)(i = 1,...,n — 1),q = next(qn,zn),d =
next(qi, X)}

The construction terminates in all cases, since only a finite number of situations [X —
X ® 7v; w] exist.

Figure 5.22 illustrates the algorithm by applying it to the grammar of Figure 5.17a with
k = 2. In this example k = 1 would yield the same set of states. (For k =0, ¢4 and g would
be coalesced, as would g7 and ¢g.) Nevertheless, a single lookahead symbol is not sufficient to
distinguish between the shift and reduce transitions in state 6. The grammar is thus LR(2),
but not LR(1).

We shall conclude this section by quoting the following theoretical results:

5.34 THEOREM
For every LR (k) grammar with k > 1 there exists an equivalent LR (1) grammar. O

5.35 THEOREM
Every LL(k) grammar is also an LR(k) grammar. O
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qo: [Z — e X;#] qgi: Y = ce;#]
(X — oY #] [Y — cea;#]
(X — obY a; #]
Y — ec; #] g5: [X — bY ea;#]
Y — eca; #] g6 [Y — ce;a#]
q1:  [Z — Xe;#] [Y — cea;a#]
q2: [X — Ye;#] qgr: Y — cae; #]
gs: [X —>beYa;#] qg: [X — bYae;#]
[Y — ec;a#] qo: [Y — cae;at]
[

Y — eca;a#t]
a) States

R = {qobc — qogsc,
qQocH# — qoqat,
qoca — qoq4a,
qsca — q3gsa,
qaaft — quqrt,
gsaft — qsqs7,
Q600 — 464y @,
QH# = Qq1#,
Q0947 — qog2#,
93960t — q3qsa#f,
q09497H# — q0q27#,
90939598 — Qo1 7,
93969904 — q3q5a#}

b) Transitions

Figure 5.22: A Deterministic Bottom-Up Automaton for Figure 5.17a

5.36 THEOREM
There exist LR(k) grammars that are not LL(k') for any k'. O

5.37 THEOREM
There exists an algorithm that, when given an LR(k) grammar G, will decide in a finite
number of steps whether there exists a k' such that G is LL(K'). O

As a result of Theorem 5.34 we see that it might possibly be sufficient to concern ourselves
only with LR(1) grammars. (As a matter of fact, the transformation underlying the proof
of this theorem is unsuitable for practical purposes.) The remaining theorems support our
intuitive thoughts at the end of Section 5.3.2.

5.4 Notes and References

The basic symbols of a programming language are often described by arbitrary context-free
productions, as illustrated by the LAX definition of Appendix A.1. This description does not
provide a suitable starting point for mechanical construction of a lexical analyzer, and must
therefore be recast by hand in terms of a regular set or regular grammar.

Our interpretation of finite automata and pushdown automata as special cases of general
rewriting systems follows SALOMAA [1973]. By this means we avoid a special definition of
concepts such as configurations or transitions of an automaton.
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BNF notation was first used to describe ALGOL 60 [NAUR, 1963]. Many authors have
proposed extensions similar to our EBNF, using quoted terminals rather than bracketed
nonterminals and having a regular expression capability. EBNF definitions are usually shorter
than their BNF equivalents, but the important point is that they are textual representations
of syntax charts [JENSEN and WIRTH, 1974; ANSI, 1978a]. This means that the context-free
grammar can actually be developed and described to the user by means of pictures.

Pushdown automata were first examined by SAMELSON and BAUER [1960] and applied
to the compilation of a forerunner of ALGOL 60. Theoretical mastery of the concepts and
the proofs of equivalence to general context-free grammars followed later. Our introduction
of LR(k) grammars via reduction classes follows the work of LANGMAACK [1971]. AHO and
ULLMAN [1972] (and many other books dealing with formal languages) cover essentially the
same material as this chapter, but in much greater detail. The proofs that are either outlined
here or omitted entirely can be found in those texts.

Exercises

5.1 Prove that there is no loss of generality by prohibiting formal systems in which a
derivation m =T 7 of a string from itself is possible.

5.2 Choose some useless nonterminal from the LAX definition and briefly justify its inclu-
sion in Appendix A.

5.3 Give an intuitive justification of Theorem 5.10.

5.4 Write a program to examine a finite automaton A and return the accepted language
L(A) in closed form as a regular expression.

5.5 Regular expressions Xi,..., X, can also be defined implicitly via systems of regular
equations of the form:

XZ-:ai,g—i—ai,le—l—---—i—ai,an, 1=1,...,n

Here the a;; are known regular expressions. State the conditions under which such a
system has a unique solution, and give an algorithm to compute this solution. (Hint:
For b # €, the equation X = aX + b has the solution b*a.)

5.6 Give an explanation of the need for ‘=R in Definition 5.28.

5.7 Prove that the algorithm for rewriting G' to remove productions of the form A — B,
A, B € N results in a grammar G’ such that L(G) = L(G").
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Chapter 6

Lexical Analysis

Lexical analysis converts the source program from a character string to a sequence of
semantically-relevant symbols. The symbols and their encoding form the intermediate lan-
guage output from the lexical analyzer.

In principle, lexical analysis is a subtask of parsing that could be carried out by the normal
parser mechanisms. To separate these functions, the source language grammar G must be
partitioned into subgrammars Gy, G1,Go,... such that G1,G9,... describe the structure
of the basic symbols and G describes the structure of the language in terms of the basic
symbols. L(G) is then obtained by replacing the terminal symbols of G by strings from
L(G4),L(Gy),. ..

The separation of lexical analysis from parsing gives rise to higher organizational costs
that can be justified only by realizing greater savings in other areas. Such savings are possible
in table-driven parsers through reduction in table size. Further, basic symbols usually have
such a simple structure that faster procedures can be used for the lexical analysis than for
the general parsing.

We shall first discuss the partitioning of the grammar and the desired results of lexical
analysis, and then consider implementation with the help of finite automata.

6.1 Modules and Interfaces

In this section we devote ourselves to the ‘black box’ aspects of lexical analysis: Decomposition
of the grammar and with it the definition of the tasks of lexical analysis, arriving at the
interface between the lexical analyzer and the remainder of the compiler.

6.1.1 Decomposition of the Grammar

Delimiters (keywords, meaningful special characters and combinations of special characters),
identifiers and constants together are termed basic symbols. In sharp contrast to other lan-
guage elements, their structure and representation may be arbitrarily changed (say by in-
troducing French or German keywords or by representing ‘<’ by *.LT.”) without altering the
power of the language. Further, the structure of the basic symbols can generally be described
with regular grammars or regular expressions.

The productions of Section A.1 describe the basic symbols of LAX. (Conversion to a
regular grammar is left to the reader.) The productions A.1.0.1, A.1.0.9-12 are superfluous
because only the nonterminals ¢dentifier and constant, single keywords, special characters
and special character combinations (other than ‘(*’) occur in the remainder of the grammar.

111
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In many languages the grammar for basic symbols (symbol grammar) is not so easily de-
termined from the language definition, or it results in additional difficulties. For example,
the ALGOL 60 Report defines keywords, letters, digits, special characters and special char-
acter combinations as basic symbols; it does not include identifiers, numbers and strings in
this category. This description must be transformed to meet the requirements of compiler
construction. In PL/1, as in other languages in which keywords are lexically indistinguish-
able from identifiers, context determines whether an identifier (e.g. IF) is to be treated as a
keyword or a freely-chosen identifier. Two symbol grammars must therefore be distinguished
on the basis of context; one accepts identifiers and not keywords, the other does the converse.
An example of similar context-dependence in FORTRAN is the first identifier of a statement:
In an assignment it is interpreted as the identifier of a data object, while in most other cases
it is interpreted as a keyword. (Statement classification in FORTRAN is not an easy task —
see the discussion by SALE [1971] for details.)

Even if it is necessary to consult context in order to determine which symbols are possible
at the given point in the input text, a finite automaton often suffices. The automaton in this
case has several starting states corresponding to the distinct symbol grammars. We shall not
pursue this point further.

6.1.2 Lexical Analyzer Interface

The lexical analyzer is organized as a module with several local state variables and implements
the following elementary operations:
o initialize_lexical_analysis
e next_token
o yrapup_lezical_analysis
The central operation nezt_token is used by the parser to obtain the next token in the
token sequence (Section 4.1.1). (A coroutine, activated for each token, might be used instead
of a procedure.) If the parser does not interact directly with the lexical analyzer, then a file
of tokens must be constructed by calls to next_token. The parser obtains the tokens by
reading this file. Even if direct calls are possible, such a file is necessary when the parsing is
done in several passes (as for ALGOL 68).
The lexical analyzer itself uses the following elementary operations:

e next_character (Source program input module)
e report_lezical_error (Error module)

e tdentify_symbol (Symbol table module)

e enter_constant (Constant table module)

The information flow involving the lexical analyzer module is shown in Figure 6.1.

The lexical analyzer reads the input text one character at a time by executing the
nezt_character operation. Both the transition to a new line (if it is significant) and the
encounter with the end of the input text are represented by characters in order to preserve the
uniformity of the interface. (If nezt_character is executed again after the end of the input
text has been encountered then it continues to deliver the termination character.) Usually
next_character is the most frequently executed operation in the entire compiler, and thus
strongly influences the speed of compilation. We shall consider the implementation of this
operation in detail in Section 6.2.3.

The error reporting module is invoked when lexical errors (unrecognized input charac-
ters and violations of the basic symbol grammar) are encountered. This module will then
determine the continuation of lexical analysis (Section 12.2.3).

When a sequence of characters has been identified as a basic symbol, the lexical analyzer
will either create a token describing it or will restart in a new state. Different representations
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Source program Symbol table
input

Lexical analyser Constant table

Parser Error handler

Figure 6.1: Lexical Analyzer Interface

of the same basic symbol are resolved at this point. For example, if we were to allow the
symbol ‘<’ to be written ‘LESS’ or ‘LT’ also, all three would lead to creation of the same
token. The operation identtfy_symbol is used during token creation to perform the mapping
discussed in Section 4.2.1. If the basic symbol is a literal constant, rather than an identifier,
the enter_constant operation is used instead of identify_symbol (Section 4.2.2).

6.2 Construction

We assume that the basic symbols are described by some set of regular grammars or regular
expressions as discussed in Section 6.1.1. According to Theorem 5.15 or Theorem 5.19 we
can construct a set of finite automata that accept the basic symbols. Unfortunately, these
automata assume the end of the string to be known a priori; the task of the lexical analyzer is
to extract the next basic symbol from the input text, determining the end of the symbol in the
process. Thus the automaton only partially solves the lexical analysis problem. To enhance
the efficiency of the lexical analyzer we should use the automaton with the fewest states from
the set of automata that accept the given language. Finally, we consider implementation
questions.

In order to obtain the classification for the basic symbol (Figure 4.1) we partition the
final states of the automaton into classes. Each class either provides the classification directly
or indicates that it must be found by using the operation identsfy_symbol. The textual
representation of constants, and the strings used to interrogate the symbol table, are obtained
from the input stream. The automaton is extended for this purpose to a finite-state transducer
that emits a character on each state transition. (In the terminology of switching theory, this
transducer is a special case of a Mealy machine.) The output characters are collected together
into a character string, which is then used to derive the necessary information.

6.2.1 Extraction and Representation

A semicolon is an ALGOL 60 basic symbol, and is not a head of any other basic symbol. When
an ALGOL 60 lexical analysis automaton reaches the final state corresponding to semicolon,
it can halt and accept the semicolon. The end of the accepted string has been determined,
and the input pointer is positioned for the next symbol. A colon is also an ALGOL 60 basic
symbol, but it is a head of :=. Therefore the automaton must look ahead when it reaches
the final state corresponding to colon. A more complex lookahead is required in the case of
FORTRAN, where a digit sequence d is a basic symbol and also a head of the basic symbol
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d.E1. Since .EQ. is also a basic symbol, the automaton must look ahead three characters (in
certain cases) before it can determine the end of the symbol string.

By applying the tests of Section 5.3.3 to the original grammar G, we could determine (for
fixed k) whether a k-character lookahead is sufficient to resolve ambiguity. Because of the
effort involved, this is usually not done. Instead, we apply the principle of the longest match:
The automaton continues to read until it reaches a state with no transition corresponding to
the current input character. If that state is a final state, then it accepts the symbol scanned
to that point; otherwise it signals a lexical error. The feasibility of the principle of the longest
match is determined by the representation of the symbols (the grammars G1,Go,...) and by
the sequences of symbols permitted (the grammar Gy).

The principle of the longest match in its basic form as stated above is unsuitable for a large
number of grammars. For example, an attempt to extract the next token from ‘3.EQ.4’ using
the rules of FORTRAN would result in a lexical error when ‘Q’ was encountered. The solution
is to retain information about the most-recently encountered final state, thus providing a ‘fall-
back’ position. If the automaton halts in a final state, then it accepts the symbol; otherwise
it restores the input stream pointer to that at the most-recently encountered final state. A
lexical error is signaled only if no final state had been encountered during the scan.

We have tacitly assumed that the initial state of the automaton is independent of the
final state reached by the previous invocation of nezt_token. If this assumption is relaxed,
permitting the state to be retained from the last invocation, then it is sometimes possible to
avoid even the limited backtracking discussed above (Exercise 6.3). Whether this technique
solves all problems is still an open question.

The choice of a representation for the keywords of a language plays a central role in de-
termining the representations of other basic symbols. This choice is largely a question of
language design: The definitions of COBOL, FORTRAN and PL/1 (for example) prescribe
the representations and their relationship to freely-chosen identifiers. In the case of AL-
GOL 60 and its descendants, however, these characteristics are not discussed in the language
definitions. Here we shall briefly review the possibilities and their consequences.

The simplest possibility is the representation of keywords by reserved words — ordinary
identifiers that the programmer is not permitted to use for any other purpose. This approach
requires that identifiers be written without gaps, so that spaces and newlines can serve as
separators between identifiers and between an identifier and a number. Letters may appear
within numbers, and hence they must not be separated from the preceding part of the number
by spaces. The main advantage of this representation is its lucidity and low susceptibility to
typographical errors. Its main disadvantage is that the programmer often does not remember
all of the reserved words and hence incorrectly uses one as a freely-chosen identifier. Further,
it is virtually impossible to modify the language by adding a new keyword because too many
existing programs might have used this keyword as a freely-chosen identifier.

If keywords are distinguished lexically then it is possible to relax the restrictions on place-
ment of spaces and newlines. There is no need for the programmer to remember all of the
keywords, and new ones may be introduced without affecting existing programs. The rules
for distinguishing keywords are known as stropping conventions; the most common ones are:

e Underlining the keyword.

e Bracketing the keyword by special delimiters (such as the apostrophes used in the DIN
66006 standard for ALGOL 60).

e Prefixing the keyword with a special character and terminating it at the first space,
newline or character other than a letter or digit.

e Using upper case letters for keywords and lower case for identifiers (or vice-versa).
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All of these conventions increase the susceptibility of the input text to typographical errors.
Some also require larger character sets than others or relatively complex line-imaging routines.

6.2.2 State Minimization

Consider a completely-specified finite automaton A = (T, Q, R, qo, F') in which a production
gt — ¢' exists for every pair (q,t), ¢ € Q, t € T. Such an automaton is termed reduced when
there exists no equivalent automaton with fewer states.

6.1 THEOREM
Theorem: For every completely-specified finite automaton A = (T, Q, R, qo, F') there exists a

reduced finite automaton A’ = (T, Q', R', ¢{,, F') with L(A') = L(A). O

To construct A’ we first delete all states g for which there exists no string w such that
gow =* q. (These states are termed unreachable.) We then apply the refinement algorithm
of Section B.3.2 to the state diagram of A, with the initial partition {q | ¢ € F'}, {q | ¢ ¢ F}.
Let Q' be the set of all blocks in the resulting partition, and let [¢] denote the block to which
q € Q belongs. The definition of A’ can now be completed as follows:

R' ={[g]t = [¢]lgt = ¢’ € R}
4 = [qo]
F' ={[qllq € F}

As an example, consider the automaton of Figure 5.13, which recognized the regular
expression [(l 4+ d)+. The initial partition consists of two blocks {¢o} and {q1,q2,¢3} and is
not refined, leading to the automaton of Figure 6.2. We would have achieved the same result
if we had begun with the regular expression (A+B+---+Z)(A+B+---+Z+0+---+9)x*.

@ | >@Id

Figure 6.2: Reduced Automaton Accepting [(I + d)x*

In order to apply the algorithm of Section B.3.2 to this example we must complete the
original automaton, which permits only [ as an input character in state gg. To do this we
introduce an ‘error state’, g, and transitions gt — ¢, for all pairs (¢,t),q € Q,t € T, not
corresponding to transitions of the given automaton. (In the example, god — ¢, suffices.) In
practice, however, it is easier to modify the algorithm so that it does not require explicit error
transitions.

If ¢ denotes any character other than the quote, then the regular expression ”” + 7 (¢ +
"”)(c 4+ 77)*” describes the characters and strings of Pascal. Figure 6.3a shows the automaton
constructed from this expression according to the procedure of Theorem 5.19, and the reduced
automaton is shown in Figure 6.3b.

In our application we must modify the equivalence relation still further, and only treat
final states as equivalent when they lead to identical subsequent processing. For an automaton
recognizing the symbol grammar of LAX, we divide the final states into the following classes:

o Identifiers or keywords
e Special characters
e Combinations of special characters
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b) Reduced

Figure 6.3: Finite Automata Accepting ‘""" + "(c + "")(c + "")*"’

e Integers
e Floating point numbers
e Floating point numbers with exponents

This results in the reduced automaton of Figure 6.4. Letters denote the following character
classes:

e a = all characters other than "’
e o/ = all characters other than '*’ or ’)’

e d = digits
o [ = letters
° 8 — 7+7 7_7 1%k 7<7 7>7 7/]\7 7;7 7,7 7)7 7[7 7]7

Figure 6.4 illustrates several methods of obtaining the code corresponding to a basic
symbol. States, 1, 6, 7, 9, and 12-18 all provide the code directly. Identzfy_symbol must
be used in state 4 to distinguish identifiers from keywords. In state 19 we might also use
identify_symbol, or we might use some other direct computation based on the character
codes.

The state reduction in these examples could be performed by hand with no display of
theory, but the theory is required if we wish to mechanically implement a lexical analyzer
based upon regular expressions.

6.2.3 Programming the Lexical Analyzer

In order to extract the basic symbol that follows a given position p in the input stream we must
recognize and delete irrelevant characters such as spaces and newlines, use the automaton to
read the symbol, and fix the terminal position p’.

Superfluous spaces can be deleted by adding transitions ¢'’ — ¢ to all states ¢ in which
such spaces are permitted. Since newlines (card boundaries or carriage returns) are input
characters if they are significant, we can handle them in the same way as superfluous spaces
in many languages.
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Figure 6.4: Finite Automaton Accepting LAX Basic Symbols

There are two possibilities from which to choose when programming the automaton:

e Representing the transition table as a matrix, so that the program for the automaton
has the general form:

while basic_symbol_not_yet_complete do
state := tablel[state, next_character];

e Programming the transition table as a case clause for each state.

The first method is generally expensive in terms of memory. For LAX we need a 20 x 57
matrix, even without considering characters that may occur only in comments. We can reduce
the size of this matrix by grouping together all characters that are treated uniformly by the
lexical analyzer and provide one column for each such character class. The class to which a
character belongs is then obtained from an array indexed by the character. This array makes
the remainder of the compiler relatively independent of changing character sets and their
encoding, thus increasing its machine-independence. For LAX the classes are: {letters other
than E}, {E}, {digits}, {-}, {(h, D} £ {+ b {h {=h {/} L} £3 {<>1 [1}, {space
tab newline}, {terminator (#)}, {characters allowed only in comments}; the matrix size is
then 20 x 18. The storage requirements can often be reduced still further, possibly by means
of techniques introduced in the next chapter.

In contrast to the matrix representation, mechanical implementation of the transition
table by case clauses can be carried out only at great cost. Hand coding is rather simple,
however, and one usually obtains a much smaller lexical analyzer. Steps can also be taken to
speed up execution of the most-frequently performed transitions.
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The simplest way to provide output from the automaton is to add the input character
to a string — empty at the start of the basic symbol — during each state transition. This
strategy is generally inadequate. For example, the quotes bounding a Pascal character or
string denotation should be omitted and any doubled internal quote should be replaced by
a single quote. Thus more general actions may need to be taken at each state transition. It
usually suffices, however, to provide the following four options:

e Add (some mapping of) the input character to the output string.
e Add a given character to the output string.

e Set a pointer or index to the output string.

e Do nothing.

Figure 6.5 illustrates three of these actions applied to produce output from the automaton
of Figure 6.3b. A slash separates the output action from the input character; the absence of
a slash indicates the ‘do nothing’ action.

© ;

Figure 6.5: Finite Transducer for Pascal Strings

In order to produce the standard representation of floating point numbers (see Sec-
tion 4.2.2), we require three indices to the characters of the significand:

beg: Initially indexes the first character of the significand, finally indexes the first nonzero
digit.

pnt: Indexes the first position to the right of the decimal point.

lim: Initially indexes the first position to the right of the significand, finally indexes the first
position to the right of the last nonzero digit.

By moving the indices beg and lim, the leading and trailing zeros are removed so that the
significand is left over in standard form. If e is the value of the explicit exponent, then the
adjusted exponent €' is given by:

e/ := e+ (pnt —beg) significand interpreted as a fraction
e/ := e+ (pnt —lim) significand interpreted as an integer

The standard representation of a floating point zero is the pair ('0’,0). This representation
is obtained by taking a special exit from the standardization algorithm if beg becomes equal
to lim during the zero-removal process.

Many authors suggest that the next_character operation be implemented by a proce-
dure. We have already pointed out that the implementation of nezt_character strongly
influences the overall speed of the compiler; in many cases simple use of a procedure leads to
significant inefficiency. For example, Table 6.6 shows the results of measuring lexical analysis
times for three translators running on a Control Data 6400 under KRONOS 2.0. RUN 2.3 is a
FORTRAN compiler that reads one line at a time, storing it in an array; the next_character
operation is implemented as a fetch and index increment in-line. The COMPASS 2.0 assem-
bler implements some instances of nexzt_character by procedure calls and others by in-line
references, while the Pascal compiler uses a procedure call to fetch each character. The two
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test programs for the FORTRAN compiler had similar characteristics: Fach was about 5000
lines long, composed of 30-40 heavily-commented subprograms. The test program for COM-
PASS contained 900 lines, about one-third of which were comments, and that for Pascal (the
compiler itself) had 5000 lines with very few comments.

Lexical Analysis Time

Translator Program Microseconds Fraction of
per character total compile time
RUN 2.3 Page Formatter 3.56 14%
without comments 3.44 9%
Flowchart Generator 3.3 11.5%
COMPASS 2.0 I/O Package 5.1 21%
Pascal 3.4 Pascal Compiler 35.6 39.6%

Figure 6.6: Lexical Analysis on a Control Data 6400 [DUNN, 1974]

Further measurements on existing compilers for a number of languages indicate that the
major subtasks of lexical analysis can be rank-ordered by amount of time spent as follows:

. Skipping spaces and comments.

. Collecting identifiers and keywords.
. Collecting digits.

. All other tasks.

N R

In many cases there are large (factor of at least 2) differences in the amount of time spent
between adjacent elements in this hierarchy. Of course the precise breakdown depends upon
the language, compiler, operating system and coding technique of the user. For example, skip-
ping a comment is trivial in FORTRAN; on the other hand, an average non-comment card
in FORTRAN has 48 blank columns out of the 66 allocated to code KNUTH [1971a]. Taken
together, the measurements discussed in the two paragraphs above lead to the conclusion that
the lexical analyzer should be partitioned further: Tasks 1-3 should be incorporated into a
scanner module that implements the nexzt_character operation, and the finite automaton
and its underlying regular grammar (or regular expression) should be defined in terms of
the characters digit_string, identifier, keyword, etc. This decomposition drastically re-
duces the number of invocations of nezt_character, and also the influence of the automaton
implementation upon the speed of the lexical analyzer.

Tasks 1-3 are trivial, and can be implemented ‘by hand’ using all of the coding tricks and
special instructions available on the target computer. They can be carefully integrated with
the I/0O facilities provided by the operating system to minimize overhead. In this way, serious
inefficiencies in the lexical analyzer can be avoided while retaining systematic construction
techniques for most of the implementation.

6.3 Notes and References

The fact that the basic symbols are regular was first exploited to generate a lexical analyzer
mechanically in the RWORD System [JOHNSON et al., 1968; GRIES, 1971]. More recently,
DEREMER [1974] has proposed the use of a modified LR technique (Section 5.3.3) for this
generation. LESK [1975] describes how such a system can be linked to the remainder of a
compiler.

Lexical analyzer generators are still the exception rather than the rule. The analyzers
used in practice are simple, and hand coding is not prohibitively expensive. There are also
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many indications that the hand-coded product provides significant savings in execution time
over the products of existing generators. Many of the coding details (table formats, output
actions, limited backtrack and character class tradeoffs) are discussed by WAITE [1973a] in
his treatment of string-directed pattern matching.

Two additional features, macros and compiler control commands (compiler options,
compile-time facilities) complicate the lexical analyzer and its interface to the parser. Macro
processing can usually be done in a separate pre-pass. If, however, it is integrated into the
language (as in PL/M or Burroughs Extended ALGOL) then it is a task of the lexical an-
alyzer. This requires additional information from the parser regarding the scope of macro
definitions.

We recommend that control commands always be written on a separate line, and be easily
recognizable by the lexical analyzer. They should also be syntactically valid, so that the parser
can process them if they are not relevant to lexical analysis. Finally, it is important that there
be only one form of control command, since the user should not be forced to learn several
conventions because the compiler writer decides to process commands in several places.

Exercises

6.1 Derive a regular grammar from the LAX symbol grammar of Appendix A.l. Derive a
regular expression.

6.2 [SALE, 1971; McILrOY, 1974] Consider the definition of FORTRAN 66.

(a) Partition the grammar as discussed in Section 6.1.1. Explain why you distin-
guished each of the symbol subgrammars G;.

(b) Carefully specify the lexical analyzer interface. How do you invoke different symbol
subgrammars?

6.3 Consider the following set of tokens, which are possible in a FORTRAN assignment
statement [MCILROY, 1974] (¢dentifier is constructed as usual, d denotes a nonempty
sequence of digits, and s denotes either ‘+’ or ‘-’):

FoE R (), =
.TRUE. .FALSE.

.AND. .OR. .NOT.

.LT. .LE. .EQ. .NE. .GE. .GT.
tdentifier

dd. dd.d

dEd d.Ed d.dEd .dEd

dEsd d.Esd d.dEsd .dEsd

Assume that any token sequence is permissible, and that the ambiguity of “***’

be resolved in any convenient manner.

may

(a) Derive an analysis automaton using the methods of Section 5.2, and minimize the
number of states by the method of Section B.3.3.

(b) Derive an analysis automaton using the methods given by AHO and CORASICK
[1975], and minimize the number of states.

(c) Describe in detail the interaction between the parser and the automaton derived
in (b). What information must be retained? What form should that information
take?
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(d) Can you generalize the construction algorithms of Aho and Corasick to arbitrary
regular expression inputs?

6.4 Write a line-imaging routine to accept an arbitrary sequence of printable characters,
spaces and backspace characters and create an image of the input line. You should
recognize an extended character set which includes arbitrary underlining, plus the fol-
lowing overstruck characters:

c overstruck by / interpreted as ‘cents’
= overstruck by / interpreted as ‘not equal’

(Note: Overstrikes may occur in any order.) Your image should be an integer array,
with one element per character position. This integer should encode the character (e.g.
‘cents’) resulting in that position from the arbitrary input sequence.

6.5 Write a program to implement the automaton of Figure 6.4 as a collection of case
clauses. Compile the program and compare its size to the requirements for the transi-
tion table.

6.6 Attach output specifications to the transitions of Figure 6.4. How will the inclusion of
these specifications affect the program you wrote for Exercise 6.57 Will their inclusion
change the relationship between the program size and transition table size significantly?

6.7 Consider the partition of a lexical analyzer for LAX into a scanner and an automaton.

(a) Restate the symbol grammar in terms of identifier, digit_string, etc. to
reflect the partition. Show how this change affects Figure 6.4.

(b) Carefully specify the interface between scanner and automaton.

(c) Rewrite the routine of Exercise 6.5, using the interface defined in (b). Has the
overall size of the lexical analyzer changed? (Don’t forget to include the scan-
ner size!) Has the relationship between the two possible implementations of the
automaton (case clauses or transition tables) changed?

(d) Measure the time required for lexical analysis, comparing the implementation of
(c) with that of Exercise 6.5. If they differ, can you attribute the difference to any
specific feature of your environment (e.g. an expensive procedure mechanism)? If
they do not differ, can you explain why?

6.8 Suppose that LAX is being implemented on a machine that supports both upper and
lower case letters. How would your lexical analyzer change under each of the following
assumptions:

(a) Upper and lower case letters are indistinguishable.

(b) Upper and lower case may be mixed arbitrarily in identifiers, but all occurrences of
a given identifier must use the same characters. (In other words, if an identifier is
introduced as ArrayStze then no identifier such as arraysize can be introduced
in the same range.) Keywords must always be lower case.

(c) As (b), except that upper and lower case may be mixed arbitrarily in keywords,
and need not always be the same.

(d) Choose one of the schemes (a)-(c) and argue in favor of it on grounds of program
portability, ease of use, documentation value, etc.
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Chapter 7

Parsing

The parsing of a source program determines the semantically-relevant phrases and, at the
same time, verifies syntactic correctness. As a result we obtain the parse tree of the program,
at first represented implicitly by the sequence of productions employed during the derivation
from (or reduction to) the axiom according to the underlying grammar.

In this chapter we concern ourselves with the practical implementation of parsers. We
begin with the parser interface and the appropriate choice of parsing technique, and then
go into the construction of deterministic parsers from a given grammar. We shall consider
both the top-down and bottom-up parsing techniques introduced in Section 5.3.2 and 5.3.3.
Methods for coding parsers by hand and for generating them mechanically will be discussed.

7.1 Design

To design a parser we must define the grammar to be processed, augment it with connection
points (points at which information will be extracted) and choose the parsing algorithm.
Finally, the augmented grammar must be converted into a form suited to the chosen parsing
technique. After this preparation the actual construction of the parser can be carried out
mechanically. Thus the process of parser design is really one of grammar design, in which we
derive a grammar satisfying the restrictions of a particular parsing algorithm and containing
the connection points necessary to determine the semantics of the source program.

Even if we are given a grammar for the language, modifications may be necessary to obtain
a useful parser. We must, of course, guarantee that the modified grammar actually describes
the same language as the original, and that the semantic structure is unchanged. Structural
syntactic ambiguity leading to different semantic interpretations can only be corrected by
altering the language. Other ambiguities can frequently be removed by deleting productions
or restricting their applicability depending upon the parser state.

7.1.1 The Parser Interface

A parser accepts a sequence of basic symbols, recognizes the extant syntactic structure, and
outputs that structure along with the identity of the relevant symbols. If the syntactic
structure is not error-free, the parser invokes the error handler to report errors and to aid
in recovery so that processing can continue. (The details of the recovery mechanism will be
discussed in Section 12.2.2.) Figure 7.1 shows the information flow involved in the parsing
process.

Three possible interface specifications are suggested by Figure 7.1, depending upon the
overall organization of the compiler. The most common is for the parser module to provide

123
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Lexical Tokens P Connection | Semantic
analyzer arser points analyzer

Error Sythesized
reports tokens

Error
handler

Figure 7.1: Parser Information Flow

the operation parse_program. It invokes the lexical analyzer’s nezt_symbol operation for
each basic symbol, and reports each connection point by invoking an appropriate operation
of some other module. (We term this invocation a parser action.) Control of the entire
transduction process resides within the parser in this design. By moving the control out of
the parser module, we obtain the two alternative designs: The parser module provides either
an operation parse_symbol that is invoked with a token as an argument, or an operation
next_connection that is invoked to obtain a connection point specification.

It is also possible to divide the parsing over more than one pass. Properties of the language
and demands of the parsing algorithm can lead to a situation where we need to know the
semantics of certain symbols before we can parse the context of the definitions of these
symbols. ALGOL 68, for example, permits constructs whose syntactic structure can be
recognized by deterministic left-to-right analysis only if the complete set of type identifiers is
known beforehand. When the parsing is carried out in several passes, the sequence of symbols
produced by the lexical analyzer will be augmented by other information collected by parser
actions during previous passes. The details depend upon the source language.

We have already considered the interface between the parser and the lexical analyzer, and
the representation of symbols. The parser looks ahead some number of symbols in order to
control the parsing. As soon as it has accepted one of the lookahead symbols as a component
of the sentence being analyzed, it reads the next symbol to maintain the supply of lookahead
symbols. Through the use of LL or LR techniques, we can be certain that the program is
syntactically correct up to and including the accepted symbol. The parser thus need not
retain accepted symbols. If the code for these symbols, or their values, must be passed on
to other compiler modules via parser actions, these actions must be connected directly to
the acceptance of the symbol. We shall term connection points serving this purpose symbol
connections.

We can distinguish a second class of connection point, the structure connection. It is
used to connect parser actions to the attainment of certain sets of situations (in the sense
of Section 5.3.2) and permits us to trace the phrases recognized by the parser in the source
program. Note carefully that symbol and structure connections provide the only information
that a compiler extracts from the input text.

In order to produce the parse tree as an explicit data structure, it suffices to provide
one structure connection at each reduction of a simple phrase and one symbol connection at
acceptance of each symbol having a symbol value; at the structure connections we must know
which production was applied. We can fix the connection points for this process mechanically
from the grammar. This process has proved useful, particularly with bottom-up parsing.

Parser actions that enter declarations into tables or generate code directly cannot be fixed
mechanically, but must be introduced by the programmer. Moreover, we often know which
production is to be applied well before the reduction actually takes place, and we can make
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good use of this knowledge. In these cases we must explicitly mark the connection points
and parser actions in the grammar from which the parser is produced. We add the symbol
encoding (code and value) taken from the lexical analyzer as a parameter to the symbol
connections, whereas parser actions at structure connections extract all of their information
from the state of the parser.

Ezpression ::= Term ('+’ Term % Addop)* .
Term = Factor (" Factor % Mulop)* .
Factor = "Identifier’ & Ident | ’(’ Ezpression ’) .

a) A grammar for expressions

Addop: Output ”7+”
Mulop: Output ”*”
Ident: Output the identifier returned by the lexical analyzer

b) Parser actions to produce postfix

Figure 7.2: Connection Points

Figure 7.2 illustrates a grammar with connection points. The character % marks structure
connections, the character & symbol connections. Following these characters, the parser
action at that point is specified. Definitions of the parser actions are given in Figure 7.2b.
The result of these specifications is a translation of arithmetic expressions from infix to postfix
form.

The processes for parser generation to be described in Sections 7.2 and 7.3 can inter-
pret symbol and structure connections introduced explicitly into the grammar as additional
nonterminals generating the null string. Thus the connection points do not require special
treatment; only the generated parsing algorithm must distinguish them from symbols of the
grammar. In addition, none of the transformations used during the generation process alters
the invocation sequence of the associated parser actions.

The introduction of connection points can alter the properties of the grammar. For ex-
ample, the grammar whose productions are {Z — S, S — abc, S — abd} is LR(0). The
modified grammar {Z — S, S — a&Abc, S — a&Bbd} no longer possesses this property:
After reading a it is not yet clear which of the parser actions should be carried out.

If a grammar does not have a desired property before connection points are introduced,
then their inclusion will not provide that property. This does not, however, prohibit a parser
action from altering the state of the parser and thus simulating some desirable property. For
example, one can occasionally distinguish among several possible state transitions through
the use of semantic information and in this manner establish an LL property not previously
present. More problems are generally created than avoided by such ad hoc measures, however.

7.1.2 Selection of the Parsing Algorithm

The choice of which parsing technique to use in a compiler depends more upon the economic
and implementation viewpoint than upon the source language and its technical properties.
Experience with a particular technique and availability of a program to construct the parser
(or the cost of developing such a program) are usually stronger criteria than the suitability of
the technique for the given source language. The reason is that, in many cases, the grammar
for a language can be modified to satisfy the restrictions of several parsing techniques.

As we have previously stressed, the parser should work deterministically under all cir-
cumstances. Only in this way can we parse correct programs in a time linearly dependent
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upon program length, avoiding backtrack and the need to unravel parser actions. We have
already pointed out the LL and LR algorithms as special cases of deterministic techniques
that recognize a syntactic error at the first symbol, ¢, that cannot be the continuation of a
correct program; other algorithms may not discover the error until attempting to reduce the
simple phrase in which ¢ occurs. Moreover, LR(k) grammars comprise the largest class whose
sentences can be parsed using deterministic pushdown automata. In view of these properties
we restrict ourselves to the discussion of LL and LR parsing algorithms. Other techniques
can be found in the literature cited in Section 7.4.

Usually the availability of a parser generator is the strongest motive for the choice between
LL and LR algorithms: If one has such a generator at one’s disposal, then the technique it
implements is given preference. If no parser generator is available, then an LL algorithm
should be selected because the LL conditions are substantially easier to verify by hand. Also
a transparent method for obtaining the parser from the grammar exists for LL but not for
LR algorithms. By using this approach, recognizers for large grammars can be programmed
relatively easily by hand.

LR algorithms apply to a larger class of grammars than LL algorithms, because they
postpone the decision about the applicable production until the reduction takes place. The
main advantage of LR algorithms is that they permit more latitude in the representation of
the grammar. As the example at the end of Section 7.1.1 shows, however, this advantage may
be neutralized if distinct structure connections that frustrate deferment of a parsing decision
must be introduced. (Note that LL and LR algorithms behave identically for all language
constructs that begin with a special keyword.)

We restrict our discussion to parsers with only one-symbol lookahead, and thus to LL(1)
and LR(1) grammars. Experience shows that this is not a substantial restriction; program-
ming languages are usually so simply constructed that it is easy to satisfy the necessary
conditions. In fact, to a large extent one can manage with no lookahead at all. The main
reason for the restriction is the considerable increase in cost (both time and space) that must
be invested to obtain more lookahead symbols in the parser generator and in the generated
parser.

When dealing with LR grammars, not even the restriction to the LR(1) case is sufficient
to obtain practical tables. Thus we use an LR(1) parse algorithm, but control it with tables
obtained through a modification of the LR(0) analyzer.

7.1.3 Parser Construction

LL and LR parsers are pushdown automata. Given a grammar G = (T, N, P,Z), we can
use either construction 5.23 (LL) or construction 5.33 (LR) to derive a parsing automaton
A= (T,Q,R,q0,{q9},Q,q0). Toimplement this automaton, we must represent the transitions
of R in a convenient form so that we can determine the next transition quickly and at the
same time keep the total storage requirement reasonable.

For this purpose we derive a transition function, f(q,v), from the production set R. It
specifies which of the possible actions (e.g. read a symbol, reduce according to a production
from P, report an error) should be taken in state ¢ when the input string begins with the
element v € T'. In the LR case we also define f(q,v) for v € N; it then specifies the action to
be taken in state ¢ after a reduction to v. The transition function may be represented by a
(transition) matrix.

Some of the entries of f(g,7) may be unreachable, regardless of the terminal string input
to the parser. (We shall give examples in Section 7.3.1.) Because these entries can never be
reached, the actions they specify are irrelevant. In the terminology of sequential machines,
these entries are don’t-cares and the transition function is incompletely specified. The presence
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of don’t-cares leads to possible reduction in table size by combining rows or columns that differ
only in those elements.

The transition function may be stored as program fragments rather than as a matrix.
This is especially useful in an LL parser, where there are simple rules relating the program
fragments to the original grammar.

Parser generation is actually compilation: The source program is a grammar with em-
bedded connection points, and the target program is some representation of the transition
function. Like all compilers, the parser generator must first analyze its input text. This
analysis phase tests the grammar to ensure that it satisfies the conditions (LL(1), LR(1),
etc.) assumed by the parser. Some generators, like ‘error correcting’ compilers, will attempt
to transform a grammar that does not meet the required conditions. Other transformations
designed to optimize the generated parser may also be undertaken. In Sections 7.2 and 7.3
we shall consider some aspects of the ‘semantic analysis’ (condition testing) and optimization
phases of parser generators.

Grammar Type Test Parser generation
LL(1) n? n?

Strong LL(k) nk+1 nk+1

LL(k‘) n2k 2nk+(k+1)10gn
SLR(I) n2 gn-+logn

SLR(IC) nk+2 2n+klogn

LR,(k) n2(k+1) 2nk+1+k10gn

Table 7.1: Computational Complexity of Parser Generation [HUNT et al., 1975]

Table 7.1 summarizes the computational complexity of the parser generation algorithms
presented in the remainder of this chapter. (The parameter n is the sum of the lengths of the
right-hand sides of all productions.) It should be emphasized that the expressions of Table 7.1
represent asymptotic bounds on execution time. All of the bounds given are sharp, since in
every case grammars exist whose parsers require an amount of table space proportional to
the time bound specified for parser construction.

7.2 LL(1) Parsers

LL(1) parsers are top-down pushdown automata that can be obtained by construction 5.23.
We shall first sharpen the definition of an LL grammar and thereby simplify the construction
of the automaton. Next we explain the relationship between a given LL(1) grammar and the
implementation of the pushdown automaton. Finally we develop the algorithms for an LL(1)
parser generator. We defer the problem of error handling until Section 12.2.2.

7.2.1 Strong LL(k) Grammars
Consider an LL(k) grammar G = (T, N, P, Z) and a left derivation:

Z =Y nAv = iy w,YyET* A€ NyveV*

According to Definition 5.22, we can predict the next applicable production A — x if 4 and
k : ~ are given. The dependence upon p is responsible for the fact that, in construction 5.23,
we must carry along the right context w in the situation [A — « e f;w]. Without this
dependence we could use the following in place of step 5 of the construction algorithm:
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5. If v = By for some B € N andy € V* let ¢ = [X — pBe~v;Q] and H = {[B —
¢3;; FOLLOW(B)] | B — f; € P}. Set Q := QU {¢}UH, and R := RU {q7 —
¢hi7 | hi € H,7 € FIRST, (3 FOLLOW;(B))}.

In this way, situations distinct only in the right context always belong to the same
state. This simplification is made possible by the strong LL(k) grammars introduced by
ROSENKRANTZ and STEARNS [1970]:

7.1 DEFINITION
A context free grammar G = (T, N, P, Z) is called a strong LL(k) grammar for given k < 0
if, for arbitrary derivations

Z =L pAx = pox =* py u,y ET v, x e Vi, AEN
Z iL MIAXI = /JIC()XI :>>k /,L,’yl /JI”Y, c T*’w’xl c V*
(k:v=k:) implies v = w. O

The grammar with P = {Z — aAab,Z — bAbb,A — a,A — €} is LL(2), as can be seen
by writing down all derivations. On the other hand, the derivations Z = aAab = aab and
Z = bAbb = babb violate the conditions for strong LL(2) grammars.

The dependence upon pu, the stack contents of the automaton, is reflected in the fact that
two distinct states ¢ = [X — pev;w] and ¢ = [X — p e v;w'], identical except for the
right context, can occur in construction 5.23 and lead to distinct sequences of transitions.
Without this dependence the further course of the parse is determined solely by X — pe v,
and FOLLOW}(X) cannot distinguish the right contexts w,w’.

7.2 THEOREM (LL(1) CONDITION)

A context free grammar G is LL(1) iff for two productions X — x, X — X', x # X' implies
that FIRST(xFOLLOW (X)) and FIRST (' FOLLOW (X)) are disjoint. O

To prove Theorem 7.2 we assume a ¢ € T that is an element of both FIRST (x FOLLOW (X))
and FIRST (x' FOLLOW (X)). Then one of the following cases must hold:

1. t € FIRST(x), t € FIRST(x')

2. € € FIRST(x), t € FIRST(y'), t € FOLLOW (X)
3. e € FIRST(X'), t € FIRST(x), t € FOLLOW (X)
4. e € FIRST(x), € € FIRST(X'), t € FOLLOW (X)

With the aid of the definition of FOLLOW we can easily see that each of these cases
contradicts Definition 5.22 for & = 1. Thus G is not an LL(1) grammar; in fact, in case
(4) the grammar is ambiguous. If, on the other hand, the grammar does not fulfill the
specifications of Definition 5.22, then one of the above cases holds and the grammar does not
satisfy the LL(1) condition. (Note that Theorem 5.24 may be derived directly from the LL(1)
condition.)

If the grammar is e-free, the LL(1) condition can be simplified by omitting FOLLOW (X).
Obviously it is fulfilled if and only if G is a strong LL(k) grammar. Thus Theorem 7.3 follows
from Theorem 7.2:

7.3 THEOREM
Every LL(1) grammar is a strong LL(1) grammar. O

Theorem 7.3 cannot be generalized to k < 1, as illustrated by the LL(2) grammar with
P ={Z — aAab,Z — bAbb,A — a, A — €} cited above. The simplification of pushdown
automata mentioned at the beginning of the section thus applies only to the LL(1) case; it is
not applicable to LL(k) grammars with & < 1.
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7.2.2 The Parse Algorithm

A matrix representation of the transition function for the LL(1) case does not provide as much
insight into the parsing process as does the conversion of the productions of the grammar to
recursive procedures. We shall thus begin our treatment by discussing the technique known
as recursive descent.

In a recursive descent parser we use a position in the parser to reflect the state of the
automaton. The stack therefore contains locations at which execution of the parser may
resume. When a state represents a situation [X — p e Brjw], B € N, we must enter
information into the stack about the following state [X — uB e v;w] before proceeding to
the consideration of the production B — (. If we are using a programming language that
permits recursive procedures, we may associate a procedure with each nonterminal B and use
the standard recursion mechanism of the language to implement the automaton’s stack.

With this approach, the individual steps in construction 5.23 lead to the program schemata
shown in Figure 7.3. These schemata assume the existence of a global variable symbol con-
taining the value of the last symbol returned by the lexical analyzer, which is reset by a call
to next_symbol.

Transition set Program schema
q—E€ q: end
gt — ¢ q : if symbol = t then next_symbol else error;q : ...
qg: X:;q :...
proc X :
begin
case symbol of
qty — ¢'qity t1 : begin ¢ : ... end;
Gtm = ¢ @mitm ty : begin ¢, : ... end
otherwise error
end
end

Figure 7.3: Program Schemata for an LL(1) Parser

Consider the grammar of Figure 7.4a, which, like the grammar of Figure 5.3b, satisfies the
LL(1) condition. By construction 5.23, with the simplification discussed in Section 7.2.1, we
obtain the pushdown automaton whose states are shown in Figure 7.4b and whose transitions
appear in Figure 7.4c. Figure 7.5 shows a parser for this grammar implemented by recursive
descent. As suggested, the procedures correspond to the nonterminals of the grammar. We
have placed the code to parse the axiom on the end as the main program. The test of the
lookahead symbol in state ¢; guarantees that the iput has been completely processed.

This systematically-constructed program can be simplified, also systematically, as shown
in Figure 7.6a. The correspondence between the productions of Figure 7.4a and the code of
Figure 7.6a results from the following transformation rules:

1. Every nonterminal X corresponds to a procedure X; the axiom of the grammar corre-
sponds to the main program.

2. The body of procedure X consists of a case clause that distinguishes the productions
with X as left-hand side. Every nonterminal on the right-hand side of a production is
converted to a call of the corresponding procedure. Every terminal leads to a call of
next_symbol, after the presence of the terminal has been verified.

3. In case none of the expected terminals is present, the error handler is invoked.



130 Parsing

If an empty production occurs for a nonterminal, this alternative can, in principle, be
deleted. Thus the procedure corresponding to E; could also be written as shown in Fig-
ure 7.6b. Any errors would then be detected only after return to the calling procedure. In
Section 12.2.2 we shall see that the quality of error recovery is degraded by this strategy.

Z - F
E — FE;
Ei — ¢ | + FE,q
a) The grammar

qo : [Z—)OE] qgs : [E1—>O+FE1]

q1: [Z — Ee] qo: [F —ie]

q2 : [E — .FEl] qi10 : [ ( )]

qs : [E —F e El] qi1 - [El — + e FEl]

qa : [F—“Z] q12:  [F— (Ee)]

g [F—e(E)]  qz: [E1— +Fek]

Qg6 : [E — FEl.] qi4 : [ ( )Q]

qr . [El — 06] q15 - [El — +FEIO]

b) The states of the parsing automaton

qo’ — q1q2t, qo(— q1q2(,
q1 — €,
q2t — q3q4t, 32(— g365(,
GaH# = w@r#, @) — 4q7), @t — gedst,
Q4’i — g9,
a5(— qi0,
g — €,
qr — €,
qs+ — q11,
q9 — €,
q10t — q12421, q1o(— q12¢2(,
q11% — q1394%, q11(— q1395(,
q12) = qi4,
qu3# — qusqr#,  q3) = qi5q7), Q3+ — qusgs+,
q14 — €,
qi5 — €

¢) The transitions of the parsing automaton

Figure 7.4: A Sample Grammar and its Parsing Automaton

If we already know that a grammar satisfies the LL(1) condition, we can easily use these
transformations to write a parser (either by mechanical means or by hand). With additional
transformation rules we can generalize the technique sufficiently to convert our extended BNF
(Section 5.1.3) and connection points. Some of the additional rules appear in Figure 7.7.
Figure 7.8 illustrates the use of these rules.
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procedure parser;
procedure E; forward;
procedure F;
begin (* F *)
case symbol of

i
begin
(x q4: =) if symbol =
(* gg: %)
end;
z(z :
begin
(x g5: %) if symbol =
(* d1p* *) E,;
(x qo: *) if symbol =
CRVIVERL))
end
otherwise error
end;
end; (* F *)

procedure EI;
begin (*x E1 *)
case symbol of

W, ) (kg %)
)+) .
begin
(x gg: *) if symbol
(kg %) Fj
(* gi3: *) El;
(* gi5: %)
end
otherwise error
end;
end; (x E1 *)

procedure E;
begin (* E *)

(% go: *) F;
(x gq: *) E1;
(* qde - *)
end; (x E %)

begin (* parser *)

(*x qp: *) Ej;

(x g;: %) if symbol <> ’#’ then
end; (* parser x)

Figure 7.5: A Recursive Descent Parser for the Grammar of Figure 7.4

’i? then nezxt_symbol else error;

> (? then next_symbol else error;

?)? then nezt_symbol else error;

= ’+’ then nezt_symbol else error;

error;



132 Parsing

procedure parser;
procedure E; forward;
procedure F;
begin (x F x)
case symbol of
i’ : next_symbol;

J(J:
begin
next_symbol;
E;
if symbol = ’)’ then nezt_symbol else error;
end
otherwise error
end;

end; (x F x)
procedure EI;

begin (x E1 x)

case symbol of

)#7 s )) ) .
T4 begin nezt_symbol; F; E1 end
otherwise error

end;

end; (x E1 %)
procedure E;
begin F; E1 end;
begin (¥ parser *)
E;
if symbol <> ’#’ then error;
end; (* parser *)
a) Errors detected within E1
procedure EI;
begin (x E1 x)
if symbol = ‘+’ then begin nezt_symbol; F; E1 end;
end; (* E1 x%)
b) Errors detected after exit from E1

Figure 7.6: Figure 7.5 Simplified
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Element Program schema
Option [z] if symbol in FIRST(z) then z;
Closure x+ repeat 2 until not (symbol in FIRST(x))
T while symbol in FIRST (z) do z;
List z||d |z

while symbol in FIRST(d) do
begin d; x end;

Connection t&Y | if symbol =t then

begin Y; nezt_symbol end

else error;

VA Z
Figure 7.7: Extension of Figure 7.3

expression ::= term('+' term % addop)*.
term == "i' & ident |'(' expression’).

a) Grammar (compare Figure 7.2a)

procedure parser;
procedure term; forward;
procedure ezpression ;
begin (* expression *)
term;
while symbol = ’+’ do
begin next_symbol; term; addop end;
end; (* expression *)
procedure term;
begin (* term *)
case symbol of
’i’: begin ident; next_symbol end;

>(’: begin
next_symbol ;
erpression;
if symbol = ’)’ then next_symbol else error;
end
otherwise error
end;

end; (x term x*)
begin (* parser *)
erpression;
if symbol <> ’#’ then error;
end (* parser *)

b) Parser
Figure 7.8: Parser for an Extended BNF Grammar

Recursive descent parsers are easy to construct, but are not usually very efficient in either
time or storage. Most grammars have many nonterminals, and each of these leads to the
dynamic cost associated with the call of and return from a recursive procedure. The proce-
dures that recognize nonterminals could be implemented substantially more efficiently than
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arbitrary recursive procedures because they have no parameters or local variables, and there
is only a single global variable. Thus the alteration of the environment pointer on procedure
entry and exit can be omitted.

An interpretive implementation of a recursive descent parser is also possible: The control
program interprets tables generated from the grammar. Every table entry specifies a basic
operation of the parser and the associated data. For example, a table entry might be described
as follows:

type parse_table_entry = record

operation : integer; (* Transition *)
lookahead : set of symbol_code; (* Input or lookahead symbol *)
next : integer (* Parse table index x)

end;

States corresponding to situations that follow one another in a single production follow
one another in the table. Figure 7.9 specifies a recursive descent interpreter assuming that
parse_table is an array of parse_table_entry.

Alternatives (1)-(5) of the case clause in Figure 7.9 supply the program schemata for
qt — ¢, q — € and qt; — ¢'q;t; introduced in Figure 7.3. As before, the transition gt; —
q'q;t; is accomplished in two steps (alternative 3 followed by either 4 or 5). The situations
represented by the alternatives are given as comments. Alternative 6 shows one of the possible
optimizations, namely the combination of selecting a production X — yx; (alternative 4)
with acceptance of the first symbol of x; (alternative 1). Further optimization is possible
(Exercise 7.6).

7.2.3 Computation of FIRST and FOLLOW Sets

The first step in the generation of an LL(1) parser is to ensure that the grammar G =
(T, N, P, Z) satisfies the LL(1) condition. To do this we compute the FIRST and FOLLOW
sets for all X € N. For each production X — x € P we can then determine the director
set W = FIRST(xFOLLOW (X)). The director sets are used to verify the LL(1) condition,
and also become the lookahead sets used by the parser. With the computation of these sets,
the task of generating the parser is essentially complete. If the grammar does not satisfy the
LL(1) condition, the generator may attempt transformations automatically (for example, left
recursion removal and simple left factoring) or it may report the cause of failure to the user
for correction.

The following algorithm can be used to compute FIRST(X) and initial values for the
director set W of each production X — .

1. Set FIRST(X) empty and repeat steps (2)-(5) for each production X — .

2. Let x=21...2,, i =0and W = {#}. If n =0, go to step 5.

3. Seti:=i+1and W := WUFIRST(z;). (If z; is an element of T', FIRST (z;) = {=:};
if FTRST (z;) is not available, invoke this algorithm recursively to compute it.) Repeat
step 3 until either ¢ = n or # is not an element of FIRST (z;).

4. If # is not an element of FIRST (z;), set W := W — {#}.

5. Set FIRST(X) := FIRST(X)UW.

Note that if the grammar is left recursive, step (3) will lead to an endless recursion and
the algorithm will fail. This failure can be avoided by marking each X when the computation
of FIRST(X) begins, and clearing the mark when that computation is complete. If step (3)
attempts to invoke the algorithm with a marked nonterminal, then a left recursion has been
detected.
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procedure parser;
var current: integer;

stack: array [1 .. maz_stack] of integer;
stack_pointer: O .. maz_stack;

begin (* parser *)

current := 1; stack_pointer := 0;

repeat

with parse_table [current] do
case operation of
1: (x X —petv %)
if symbol in lookahead then
begin next_symbol; current := current + 1 end
else error;
2: (x X — xe x)

begin
current := stack[stack_pointer];
stack_pointer := stack_pointer - 1;
end;

3: (* X — pueBr x)
begin
if stack_pointer = maz_stack then abort;
stack_pointer := stack_pointer + 1;
stack [stack_pointer] := current + 1;
current := next;
end;

4: (x X — ey, (not the last alternative) *)
if symbol in lookahead then
current := current + 1
else current := nezxt;
5: (* X — ey, (last alternative) *)
if symbol in lookahead then
current := current + 1
else error;
6: (x X — ety, (not the last alternative) *)
if symbol in lookahead then
begin next_symbol; current := current + 1 end
else current := next
end;
until current = 1;
if symbol <> ’#’ then error;
end; (* Parser )

Figure 7.9: An Interpretive LL(1) Parser
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This algorithm is executed exactly once for each X € N. If # is not in W at the
beginning of step 5 then W is the complete director set for the production X — x. Otherwise
the complete director set for X — x is (W — {#}) U FOLLOW (X).

Efficient computation of FOLLOW (X) is somewhat trickier. The problem is that some
elements can be deduced from single rules, while others reflect interactions among rules.
For example, consider the grammar of Figure 7.4a. We can immediately deduce that
FOLLOW (F) includes FIRST(E,), because of the production Ey — +FE; Since E; =* ¢,
FOLLOW (F) also contains FOLLOW (E;), which includes FOLLOW (E) because of the
production £ — FFE;.

Interaction among the rules can be represented by the relation LAST:

7.4 DEFINITION
Given a context free grammar G = (T, N, P, Z). For any two nonterminals A, B, A LAST B
ifft B— pAv e P and v =" e. O

This relation can be described by a directed graph F = (N, D), with D = {(A4,B) |
A LAST B}. If there is a path from node A to node B in F, then FOLLOW (A) is a
subset of FOLLOW (B); all nodes in a strongly connected region of F' have identical fol-
low sets. The general strategy for computing follow sets is thus to compute provisional sets
FOL(X) ={t| A - uXv € P;t € FIRST(v)} — {#} based only upon the relationships
among symbols within productions, and then use F' to combine these sets.

We can easily compute the graph F' and the set FOL(X) by scanning the production
backward and recalling that A =* eif # isin FIRST(A). Since F is sparse (|D| << |[N x N|),
it must be represented by an edge list rather than an adjacency matrix if the efficiency of the
remaining computation is to be maintained.

The next step is to form the strongly connected regions of F' and derive the directed
acyclic graph F' = (N', D') of these regions:

D" ={(A",B') | (A,B) € D such that A is in the strongly connected region A" and B is
in the region B'}

F' can be constructed efficiently by using the algorithm of Section B.3.2 to form the regions
and then constructing the edges in one pass over F. At the same time, we can compute the
initial follow sets FOL(A’) of the strongly connected regions A’in N’ by taking the union of
all FOL(A) such that A is a nonterminal in the region A’.

The final computation of FOLLOW (A’) is similar to our original computation of
FIRST(A):

1. Tnitially, FOLLOW (A') = FOL(A') for A’ # Z', and FOLLOW (Z') = {#).
2. For each immediate successor, B, of A’ add FOLLOW (B') to FOLLOW (A’).

If FOLLOW (B') is not already available, then invoke this algorithm recursively to
compute it.

This algorithm also operates upon each element of N’ exactly once. For each production
X — x with # in W, we now obtain the final director sets by setting W := (W — {#}) U
FOLLOW (X") (X' is the strongly connected region containing X).

7.3 LR Parsers

Using construction 5.33, we can both test whether a grammar is LR(1) and construct a parser
for it. Unfortunately, the number of states of such a parser is too large for practical use.
Exactly as in the case of strong LL(k) grammars, many of the transitions in an LR(1) parser



7.3 LR Parsers 137

are independent of the lookahead symbol. We can utilize this fact to arrive at a parser with
fewer states, which implements the LR(1) analysis algorithm but in which reduce transitions
depend upon the lookahead symbol only if it is absolutely necessary.

We begin the construction with an LR(0) parser, which does not examine lookahead
symbols at all, and introduce lookahead symbols only as required. The grammars that we
can process with these techniques are the simple LR(1) (SLR(1)) grammars of DEREMER
[1969]. (This class can also be defined for arbitrary k£ < 1.) Not all LR(1) grammars are also
SLR(1) (there is no equivalence similar to that between ordinary and strong LL(1) grammars),
but the distinction is unimportant in practice except for one class of problems. This class
of problems will be solved by sharpening the definition of SLR(1) to obtain lookahead LR(1)
(LALR(1)) grammars.

The verifications of the LR(1), SLR(1) and LALR(1) conditions are more laborious than
verification of the LL(1) condition. Also, there exists no simple relationship between the
grammar and the corresponding LR pushdown automaton. LR parsers are therefore employed
only if one has a parser generator. We shall first discuss the workings of the parser and in
that way derive the SLR(1) and LALR(1) grammars from the LR(0) grammars. Next we
shall show how parse tables are constructed. Since these tables are still too large in practice,
we investigate the question of compressing them and show examples in which the final tables
are of feasible size. The treatment of error handling will be deferred to Section 12.2.2.

7.3.1 The Parse Algorithm

Consider an LR (k) grammar G = (T, N, P, Z) and the pushdown automaton A = (T, Q, R, qo,
{90}, @, qo0) of construction 5.33. The operation of the automaton is most easily explained
using the matrix form of the transition function:

(1

if vy € T* and quy — q¢'y € R or
if v € N and ¢’ = next(q,v) (shift transition)
flg,v) =4 X —-x if [X = xe;v] € q (reduce transition)
HALT  ifv=4#and [Z — Se;#] € ¢
( ERROR  otherwise

This transition function is easily obtained from construction 5.33: All of the transitions
defined in step (5) deliver shift transitions with one terminal symbol, which will be accepted;
the remaining transitions result from step (7) of the construction. We divide the transition
P1...Pmqw — p1q'w referred to in step (7) into two steps: Because [X — xe;v] is in ¢ we
know that we must reduce according to the production X — x and remove m = |x| states
from the stack. Further we define f(p1, X) = next(p1, X) = ¢’ to be the new state. If w = #
and [Z — Se; #] € ¢ then the pushdown automaton halts.

Figure 7.10 gives an example of the construction of a transition function for £ = 0. We
have numbered the states and rules consecutively. ‘+2’ indicates that a reduction will be
made according to rule 2; ‘“*’ marks the halting of the pushdown automaton. Because k = 0,
the reductions are independent of the following symbols.

Figure 7.10c shows the transition function as the transition diagram of a finite automaton
for the grammars of Theorem 5.32. The distinct grammars correspond to distinct final states.
As an LR parser, the automaton operates as follows: Beginning at the start state 0, we make
a transition to the successor state corresponding to the symbol read. The states through
which we pass are stored on the stack; this continues until a final state is reached. In the final
state we reduce by means of the given production X — x, delete |x| states from the stack
and proceed as though X had been ‘read’.
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(1) Z—E
(2) E-E+F (3)E—F
(4) F —i (5) F — (E)

a) The grammar

i () + # E F
1 2

+2 42 +2 +2 +2
+5 +5 +5 +5 +5
b) The transition table

0| 3 4 . .

1] . . . ) *

21 4+3 3 +3 +3 +3

3| +4 +4 +4 +4 +4

41 3 4 . . . 6 2
5| 3 4 . . . 7
6 8 )

7

8

c¢) The transition diagram

Figure 7.10: An Example of an LR(0) Grammar

The only distinction between the mode of operation of an LR(k) parser for £ > 0 and the
LR(0) parser of the example is that the reductions may depend upon lookahead symbols. In
the final states of the automaton, reductions will take place only if the context allows them.

Don’t-care entries with f(q,v) = FERROR, i.e. entries such that there exists no word y
with qoqox# =" wquvy# with suitable stack contents w, may occur in the matrix representa-
tion of the transition function. Note that all entries (¢, X), X € N, with f(¢,X) = ERROR
are don’t-cares. By the considerations in step (3) of construction 5.33, no error can occur in
a transition on a nonterminal; it would have been recognized at the latest at the preceding
reduction. (The true error entries are denoted by ‘.’, while don’t-cares are empty entries in
the matrix representation of f(q,v).)

7.3.2 SLR(1) and LALR(1) Grammars

Figure 7.11a is a slight extension of that of Figure 7.10a. It is not an LR(0) grammar, as
Figure 7.12 shows. (A star before a situation means that this situation belongs to the basis of
the state; the lookahead string is omitted.) In states 2 and 9 we must inspect the lookahead
symbols to decide whether to reduce or not. Figure 7.11b gives a transition matrix that
performs this inspection.

The operation of the parser can be seen from the example of the reduction of i+ (i +1)#
(Figure 7.13). The ‘Next Symbol’ column is left blank when the parser does not actually
examine the lookahead symbol. This example shows how, by occasional consideration of a
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(1) Z—E

2) E-E+T (3) E—-T

4 T—-TxF () T—F

(6) F —i (1) F— (E)

a) The grammar
i () + * # E T F

0 4 ) . . . 1 2 3
1 . 6 . *
2 . o3 43T 43
3 +5 +5 +5 +5 +5 +5
4 +6 +6 +6 +6 +6 +6
) 4 ) 8 2 3
6 4 5 9 3
7 4 ) . . 10
8 11 6 . .
9 . .o +2 42 7T F2
10| +4 +4 +4 +4 +4 +4
11| +7 +7 +7 +7 47 47

b) The transition table

Figure 7.11: A Non-LR/(0) Grammar

lookahead symbol, we can also employ an LR(0) parser for a grammar that does not satisfy
the LR(0) condition. States in which a lookahead symbol must be considered are called
inadequate. They are characterized by having a situation [X — xe] that leads to a reduction,
and also a second situation. This second situation leads either to a reduction with another
production or to a shift transition.

DEREMER [1971] investigated the class of grammars for which these modifications lead to
a parser:

7.5 DEFINITION
A context free grammar G = (T, N, P, Z) is SLR(1) iff the following algorithm leads to a
deterministic pushdown automaton.

The pushdown automaton A = (T, Q, R, qo,{qo}, @, qo) will be defined by its transition
function f(q,v) rather than the production set R. The construction follows that of construc-
tion 5.33. We use the following as the closure of a set of situations:

H(M)=MU{]Y —eou] | X — xoYy| € HM)}

1. Initially let Q = {qo}, with qo = H({[Z — eS]}).
2. Let ¢ be an element of @ that has not yet been considered. Perform steps (3)-(4) for
eachv e V.

3. Let basis(q,v) ={[X = pvey] | [X — pevy| € ¢}.

4. If basis(q,v) # 0, then let next(q,v) = H(basis(q,v)). Add ¢’ = next(q,v) to Q if it is
not already present.

5. If all elements of @ have been considered, perform step (6) for each ¢ € @ and then
stop. Otherwise return to step (2).

6. For all v € V, define f(q,v) by:
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next(q,v) if [X = pevy] €q

X —>x  if[X — ye] €qand v € FOLLOW (X)
HALT ifv=#and [Z — Se] € ¢

ERROR otherwise

flg,v) =

O

This construction is almost identical to construction 5.33 with £k = 0. The only difference is
the additional restriction v € FOLLOW (X) for the reduction (second case).

SLR(1) grammars cover many practically important language constructs not expressible
by LR(0) grammars. Compared to the LR(1) construction, the given algorithm leads to
substantially fewer states in the automaton. (For the grammar of Figure 7.11a the ratio is
22:12). Unfortunately, even SLR(1) grammars do not suffice for all practical requirements.

State  Situation v f(q,v)
0 * [Z— oE] E 1
[E — oE + T
[E — oT] T 2
[T — oT % F]
[T — oF] F 3
[F — o] i 4
[F — o(E)] ( 5
1 * [Z— Ee %  HALT
* [E>Ee +T] + 6
2 * [E— T #,),+ reduce 3
* [T —Te xF] * 7
3 * [T — Fe] reduce 5
4 * [F —ie] reduce 6
5 % [F— (eE)] E 8
[E — oFE + T
[E — oT] T 2
[T — oT % F]
[T — oF] F 3
[F — o7 1 4
[F— o(E)] ( 5
6 * [E— E+eT| T 9
[T — oT % F]
[T — oF] F 3
[F — o7 1 4
[F— o(E)] ( 5
7 * [T —TxeF)] F 10
[F — o7 1 4
[F— o(E)] ( 5
8 * [F— (Ee)] ) 11
* [E—>FEe +T] + 6
9 * [E—E+Te #,),+ reduce?2
¥ [T —>Te xF] * 7
10 * [T — T« Fe] reduce 4
11 * [F — (E)e] reduce 7

Figure 7.12: Derivation of the Automaton of Figure 7.11b
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Right derivation Stack  Next Reduce by  Next
before transition Symbol Production State
d4ix (i +19)# 0 i 4
iotix (1 4+0)# 0,4 6 3
F.+ix(i+19)# 0,3 5 2
T.4ix*(i+1i)# 0,2 + 3 1
E +ix(i+i)# 0,1 + 6
E+.ix(i+i)# 0,1,6 i 4
E+ix(i+i)# 0,1,6,4 6 3
E+F. x(i+10)# 0,1,6,3 5 9
E+T. «(i+10)# 0,1,6,9 * 7
E+Tx*.(i+i)# 0,1,6,9,7 ( 5
E+Tx(i+1i)# 0,1,6,9,7,5 i 4
E+Tx*(i.+1i)# 0,1,6,9,7,5,4 6 3
E+Tx(F. +i)# 0,1,6,9,7,5,3 5 2
E+Tx(T.+i)# 0,1,6,9,7,5,2 + 3 8
E+Tx(E. +0)# 0,1,6,9,7,5,8 + 6
E+Tx(E+.9)# 0,1,6,9,7,5,8,6 i 4
E+Tx(E+i)# 01,6,9,75.8,6,4 6 3
E+Tx(E+F.)# 0,1,6,9,7,58,6,3 ) 9
E+Tx(E+T.)# 0,1,6,9,7,58,6,9 ) 2 8
E+Tx(E)# 0,1,6,9,7,5,8 ) 11
E+Tx(E)# 0,1,6,9,7,5,8,11 7 10
E+TxF# 0,1,6,9,7,10 4 9
E+T# 0,1,6,9 # 2 1
E.# 0,1 # HALT
7.3

Figure 7.13: A Sample Parse by the Automaton of Figure 7.11b

The problem arises whenever there is a particular sequence of tokens that plays different roles
in different places. In LAX, for example, an identifier followed by a colon may be either a label
(A.2.0.6) or a variable serving as a lower bound (A.3.0.4). For this reason the LAX grammar is
not SLR(1), because the lookahead symbol > does not determine whether identifier should
be reduced to name (A.4.0.16), or a shift transition building a label_de finition should take
place.

If the set of lookahead symbols for a reduction could be partitioned according to the
state then we could solve the problem, as can be seen from the example of Figure 7.14. The
productions of Figure 7.14a do not fulfill the SLR(1) condition, as we see in the transition
diagram of Figure 7.14b. In the critical state 5, however, a reduction with lookahead symbol
¢ need not be considered! If ¢ is to follow B then b must have been read before, and we would
therefore have had the state sequence 0, 3, 7 and not 0, 2, 5. The misjudgement arises through
states in which all of the symbols that could possibly follow B are examined to determine
whether to reduce B — d, without regard to the symbols preceding B. We thus refine the
construction so that we do not admit all lookahead symbols in FOLLOW (X) when deciding
upon a reduction X — x, but distinguish on the basis of predecessor states lookahead symbols
that can actually appear.

We begin by defining the kernel of an LR(1) state to be its LR(0) situations:

kernel(q) ={[X = pev] | [X = pev;Q] € ¢}
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(1) Z—A
(2) A—aBb (3) A—adc (4) A—bBc (5b) A—bdd
(6) B—d
a) The grammar
#
HALT
+2 +3 +4 +5
b) The SLR(1) transition diagram
a b c d # A B
0 2 3 . . . 1
1 *
2 ) 4
3 . 7 6
4 8 .
) +6 9
6 . 10
7 . +6 +6 11 .
8 | +2 +2 42 42 42
9 +3 +3 +3 +3 +3
10| +4 +4 +4 +4 +4
111 +5 +5 +5 +5 +5

c) The LALR(1) transition table

Figure 7.14: A Non-SLR(1) Grammar

Construction 7.5 above effectively merges states of the LR(1) parser that have the same kernel,
and hence any lookahead symbol that could have appeared in any of the LR(1) states can
appear in the LR(0) state. The set of all such symbols forms the ezact right context upon
which we must base our decisions.

7.6 DEFINITION

Let G = (T, N, P, Z) be a context free grammar, ) be the state set of the pushdown automaton
formed by construction 7.5, and @' be the state set of the pushdown automaton formed by
construction 5.33 with & = 1. The exact right context of an LR(0) situation [X — pev]ina
state g € @) is defined by:

ERC(q,[X = pev])={te T | 3¢ € Q such that g = kernel(¢') and [X — pev;t] €¢'}
O

Theorem 5.31 related the LR(k) property to non-overlapping k-stack classes, so it is not
surprising that the definition of LALR(1) grammars involves an analogous condition:
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7.7 DEFINITION

Let G = (T,N,P,Z) be a context free grammar and @ be the state set of the pushdown
automaton formed by construction 7.5. G is LALR(1) iff the following sets are pairwise
disjoint for all ¢ € Q, p € P:

Sgo={t|[X 2 pev)eqrv#etec EFF(vERC(q,[X — pev]))}
Sqp = ERC(q, [ Xp = xpe])

O

Although Definition 7.6 implies that we need to carry out construction 5.33 to determine the
exact right context, this is not the case. The following algorithm generates only the LR(0)
states, but may consider each of those states several times in order to build the exact right
context. FKach time a shift transition into a given state is discovered, we propagate the right
context. If the propagation changes the third element of any triple in the state then the entire
state is reconsidered, possibly propagating the change further. Formally, we define a merge
operation on sets of situations as follows:

merge(A,B) ={[X - pev; AUQ| | [X s pev;Al€ A [X —» pev;Q] € B}
The LALR(1) construction algorithm is then:

1. Initially let Q@ = {qo}, with g0 = H({[Z — S;{#}]})-

2. Let ¢ be an element of @ that has not yet been considered. Perform steps (3)-(5) for
eachv eV.

3. Let basis(q,v) = {[X = urey;Q] | [X — pevy; Q] € q}.

4. If basis(q,v) # 0 and there is a ¢’ € Q such that kernel(q') = kernel(H (basis(q,v)))
then let next(q,v) = merge(H (basis(q,v)),q'). If next(q,v) # ¢ then replace ¢’ by
next(q,v) and mark ¢’ as not yet considered.

5. If basis(q,v) # 0 and there is no ¢’ € @Q such that kernel(q') = kernel(H (basis(q,v)))
then let next(q,v) = H (basis(q,v)). Add ¢" = next(q,v) to Q.

6. If all elements of @ have been considered, perform step (7) for each ¢ € @ and then
stop. Otherwise return to step (2).

7. For all v € V define f(q,v) as follows:

next(q,v) if basis(q,v) # 0

X =y if [ X = xe;Q] €q,ve
HALT if v=+# and [Z — Se; {#}] € ¢
ERROR  otherwise

flg,v) =

Figure 7.14c shows the LALR(1) automaton derived from Figure 7.14a. Note that we
can only recognize a B by reducing production 6, and this can be done only with b or ¢ as
the lookahead symbol (see rows 5 and 7 of Figure 7.14¢). States 4 and 6 are entered only
after recognizing a B, and hence the current symbol must be b or ¢ in these states. Thus
Figure 7.14c has don’t-care entries for all symbols other than b and c in states 4 and 6.

7.3.3 Shift-Reduce Transitions

For most programming languages 30-50% of the states of an LR parser are LR(0) reduce
states, in which reduction by a specific production is determined without examining the
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context. In Figure 7.12 these states are 3, 4, 10 and 11. We can combine these reductions
with the stacking of the previous symbol to obtain a new kind of transition — the shift-reduce
transition — specifying both the stacking of the last symbol of the right-hand side and the
production by which the next reduction symbol is to be made. Formally:

If f(¢,v) = X — x (or f(¢',v) = HALT) is the only possible action (other than ERROR)
in state ¢’ then redefine f(g,v) to be ‘shift reduce X — x’ for all states ¢ with f(q,v) = ¢
and for all v € V. Then delete state ¢'.

With this simplification the transition function of Figure 7.11 can be written as shown in
Figure 7.15.

i () + * # E T F
1 2

01-6 . -5
1 . 6 . *

2 +3 +3 7 43

5|-6 5 . 8 -5
6|-6 5 . 9 -5
716 5 . . -4
8| . . -1 6 . .

9 . . 42 +2 7 +2

Figure 7.15: The Automaton of Figure 7.11 Recast for Shift-Reduce Transitions

(The notation remains the same, with the addition of —p to indicate a shift-reduce tran-
sition that reduces according to the p'® production.)

Introduction of shift-reduce transitions into a parsing automaton for LAX reduces the
number of states from 131 to 70.

7.3.4 Chain Production Elimination

A chain production A — B is a semantically meaningless element of P with a right-hand side
of length 1. In this section we shall denote chain productions by A —¢ B and derivations
using only chain productions by A =¢ B (instead of A =* B). Any productions not explicitly
marked are not chain productions. Chain productions are most often introduced through
the description of expressions by rules like sum ::= term [ sum addop term. They also
frequently arise from the collection of single concepts into some all-embracing concept (as in
A.3.0.1, for example).

Reductions according to chain productions are completely irrelevant, and simply waste
time. Thus elimination of all chain productions may speed up the parsing considerably.
During the parse of the statement A := B in LAX, for example, we must reduce 11 times
by productions of length 1 before reaching the form name ‘:=’ ezpression, which can be
recognized as an assignment. Of these reductions, only the identification of an identifier as
a name (A.4.0.16) has relevant semantics. All other reductions are semantically meaningless
and should not appear in the structure tree.

We could remove chain productions by substitution, a process used in conjunction with
Theorem 5.25. The resulting definition of the LR parser would lead to far too many states,
which we must then laboriously reduce to a manageable number by further processing. A
more satisfactory approach is to try to eliminate the reductions by chain productions from
the parser during construction. In many cases this technique will also lower the number of
states in the final parser.

The central idea is to simultaneously consider all chain productions that could be intro-
duced in a given parser state. Suppose that a state ¢ contains a situation [X — p e Av;t]
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and A =1 B. We must first reduce to B, then to A. If however, the derivation A =T B
consists solely of chain productions then upon a reduction to B we can immediately reduce
to A without going through any intermediate steps.

Construction 7.7, when applied to Figure 7.16a

(1) Z—E
2) E-E+T (3) E—=T
4) T—Txi (5) T—i

a) The grammar

+4
on #,+,*

c) After elimination of the chain production (3) £ — T
Figure 7.16: A Simple Case of Chain Production Elimination

(a simplified version of Figure 7.11a), yields a parser with the state diagram given in
Figure 7.16b. If we reach state 2, we can reduce to E given the lookahead symbol #, but we
could also reduce to Z immediately. We may therefore take either the actions of state 1 or
those of state 2. Figure 7.16c shows the parser that results from merging these two states.

Note that in Figure 7.16b the actions for states 1 and 2 do not conflict (with the excep-
tion of the reduction E — T being eliminated). This property is crucial to the reduction;
fortunately it follows automatically from the LR(1) property of the grammar: Suppose that
for A # B, A =°¢ C and B =° C. Suppose further that some state ¢ contains situations
[X — peAy;, ] and [Y — o e Bd; A]. The follower condition ‘FIRST(vy, ) and FIRST(6A)
disjoint’ must then hold, since otherwise it would be impossible to decide whether to reduce C
to A or B in state f(q, C'). Consideration of state 0 in Figure 7.16b with A=FE, B=C=1T
illustrates that the follower condition is identical to the absence of conflict required above.

Situations involving chain productions are always introduced by a closure operation. In-
stead of using these chain production situations when establishing a new state, we use the
situations that introduced them. This is equivalent to saying that reduction to the right-hand
side of the chain production should be interpreted as reduction to the left-hand side. Thus
the only change in construction 7.7 comes in computation of basis(q,v):

3’. Let basis(q,v) ={[Y — cae§; Al | [X — pevy;, |,[Y = oead; Al € q,a = v} —{[4 —
Be: Q] | A —° B}.
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As an example of the process, assume that the productions £ — T and T' — F in
the grammar of Figure 7.11a are chain productions. Figure 7.17 shows the derivation of an
LALR(1) automaton that does not reduce by these productions. (Compare this derivation
with that of Figure 7.12.)

State  Situation v f(q,v)
0 * [Z— eE;{#}] E 1
[E — oF + T; {#+}]
[E — oT; {#+}] T 2
[T—>0T*F {# + *}]
[T — oF; {# + *}] F 2
[F — o0 {# + x}] 7 3
[F — o(E); {# + *}] ( 4
1 * [Z — Ee;{#1}] # HALT
* [E—>E-+T{#+}] + 5
2 * [Z — Fe; {#}] # HALT
* [E—>E0 + T {#+}] + 5
T = Te x Fy {# + x}] * 6
3 F [F—ie{# +%)}] reduce 6
4 % [F — (eE); {# + *)}] E 7
[E — oFE +T;{)+}]
[E — oT; {)+}] T 8
[T — oT x F; {) + *}]
[T — oF;{) + *}] F 8
[F — oi;{) + x}] 1 3
[F — o(E); {) + *}] ( 4
5 * [E— E+ eT;{#+)}] T 9
[T — oT x F; {# + x)}]
[T — oF; {# + *)}] F 9
[F—)oz {# + %)} i 3
[F — o(E); {# + *)}] ( 4
6 T = TxeF; {# + %)} F 10
[F—)oz {# + %)} 1 3
[F — o(E); {# + *)}] ( 4
7T ¥ [F— (Ee);{# +x)}] ) 11
* [E— Ee +T;{)+}] + 5
8 * [F = (Be){#+x)}] ) 11
* [E— Ee +T;{)+}] + 5
¥ [T —Te xF;{)+x*}] * 6
9 * [E— E+Te;{#+)}] #)+ reduce 2
¥ T —Te *F{#—i—*)}] * 6
10 * [T —TxFe;{#+x)}] reduce 4
11 * [F — (E)e;{# + %)} reduce 7

Figure 7.17: Chain Production Elimination Applied to Figure 7.11

7.3.5 Implementation

In order to carry out the parsing practically, a table of the left sides and lengths of the right
sides of all productions (other than chain productions), as well as parser actions to be invoked
at connection points, must be known to the transition function. The transition function is



7.3 LR Parsers 147

partitioned in this way to ease the storage management problems. Because of cost we store
the transition function as a packed data structure and employ an access routine that locates
the value f(q,v) given (q,v). Some systems work with a list representation of the (sparse)
transition matrix; the access may be time consuming if such a scheme is used, because lists
must be searched.

The access time is reduced if the matrix form of the transition function is retained, and the
storage requirements are comparable to those of the list method if as many rows and columns
as possible are combined. In performing this combination we take advantage of the fact that
two rows can be combined not only when they agree, but also when they are compatible
according to the following definition:

7.8 DEFINITION
Consider a transition matrix f(q,v). Two rows ¢q,q¢' € Q are compatible if, for each column
v, either f(q,v) = f(¢',v) or one of the two entries is a don’t-care entry. O

Compatibility is defined analogously for two columns v,/ € V. We shall only discuss the
combination of rows here.

We inspect the terminal transition matrix, the submatrix of f(q,v) with v € T, separately
from the nonterminal transition matrix. Often different combinations are possible for the two
submatrices, and by exploiting them separately we can achieve a greater storage reduction.
This can be seen in the case of Figure 7.18a, which is an implementation of the transition
matrix of Figure 7.17. In the terminal transition matrix rows 0, 4, 5 and 6 are compatible,
but none of these rows are compatible in the nonterminal transition matrix.

In order to increase the number of compatible rows, we introduce a Boolean failure matrix,
F[q,t], g € Q, t € T. This matrix is used to filter the access to the terminal transition matrix:

f(q,t) = if Flq,t] then error else entry_in_the_transition_matriz;

For this purpose we define F[q,t] as follows:

{true if f(q,t) = ERROR

F[qa t] = .

false otherwise

Figure 7.18b shows the failure matrix derived from the terminal transition matrix of Fig-
ure 7.18a. Note that the failure matrix may also contain don’t-care entries, derived as dis-
cussed at the end of Section 7.3.2. Row and column combinations applied to Figure 7.18b
reduce it from 9 x 6 to 4 x 4.

With the introduction of the failure matrix, all previous error entries become don’t-care
entries. Figure 7.18c shows the resulting compression of the terminal transition matrix.
The nonterminal transition matrix is not affected by this process; in our example it can be
compressed by combining both rows and columns as shown in Figure 7.18d. Each matrix
requires an access map consisting of two additional arrays specifying the row (column) of the
matrix to be used for a given state (symbol). For grammars of the size of the LAX grammar,
the total storage requirements are generally reduced to 5-10% of their original values.

We have a certain freedom in combining the rows of the transition matrix. For ex-
ample, in the terminal matrix of Figure 7.18a we could also have chosen the grouping
{(0,4,5,6,9),(1,2,7,8)}. In general these groupings differ in the final state count; we must
therefore examine a number of possible choices. The task of determining the minimum num-
ber of rows reduces to a problem in graph theory: We construct the (undirected) incompati-
bility graph I = (Q, D) for our state set @, in which two nodes g and ¢’ are connected if the
rows are incompatible. Minimization of the number of rows is then equivalent to the task of
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coloring the nodes with a minimum number of colors such that any pair of nodes connected
by a branch are of different colors. (Graph coloring is discussed in Section B.3.3.) Further
compression may be possible as indicated in Exercises 7.12 and 7.13.

i () + * # E T F

01-6 4 . . . . 1 2 2
1 o *

2 5 6

41-6 4 7 8 8
5(-6 4 9 9
6|-6 4 . . -4
7 -7 5

8 -7 5 6 .

9 +2 +2 6 +2

a) Transition matrix for Figure 7.17 with shift-reduce transitions
i)+ x g
false false true true true  true

true  false false
true  true true false false false
false false true true true  true
false false true true true  true
false false true true true  true

false false true
true  true false false false true
true  true false false false false

O 00~ O Ui N — O

b) Uncompressed failure matrix for (a)
i () o+ #

01245678 [6 4 -7 5 6 *
9 +2 +2 6 +2

c) Compressed terminal transition matrix

E TF
012 [1 2
4 7 8
5 9
6,7,8,9 4

d) Compressed nonterminal transition matrix

Figure 7.18: Table Compression

7.4 Notes and References

LL(1) parsing in the form of recursive descent was, according to MCCLURE [1972], the most
frequently-used technique in practice. Certainly its flexibility and the fact that it can be
hand-coded contribute to this popularity.

LR languages form the largest class of languages that can be processed with deterministic
pushdown automata. Other techniques (precedence grammars, (m,n)-bounded context gram-
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mars or Floyd-Evans Productions, for example) either apply to smaller language classes or do
not attain the same computational efficiency or error recovery properties as the techniques
treated here. Operator precedence grammars have also achieved significant usage because one
can easily construct parsers by hand for expressions with infix operators. AHO and ULLMAN
[1972] give quite a complete overview of the available parsing techniques and their optimal
implementation.

Instead of obtaining the LALR(1) parser from the LR(1) parser by merging states, one
could begin with the SLR(1) parser and determine the exact right context only for those states
in which the transition function is ambiguous. This technique reduces the computation time,
but unfortunately does not generalize to an algorithm that eliminates all chain productions.

Construction 7.7 requires a redundant effort that can be avoided in practice. For example,
the closure of a situation [X — p e Bv;Q] depends only upon the nonterminal B if the
lookahead set is ignored. The closure can thus be computed ahead of time for each B € N,
and only the lookahead sets must be supplied during parser construction. Also, the repeated
construction of the follower state of an LALR(1) state that develops from the combination
of two LR(1) states with distinct lookahead sets can be simplified. This repetition, which
results from the marking of states as not yet examined, leaves the follower state (specified
as a set of situations) unaltered. It can at most add lookahead symbols to single situations.
This addition can also be accomplished without computing the entire state anew.

Our technique for chain production elimination is based upon an idea of PAGER [1974].
Use of the failure matrix to increase the number of don’t-care entries in the transition matrix
was first proposed by JOLIAT [1973, 1974].

Exercises

7.1 Consider a grammar with embedded connection points. Explain why transformations
of the grammar can be guaranteed to leave the invocation sequence of the associated
parser actions invariant.

7.2 State the LL(1) condition in terms of the extended BNF notation of Section 5.1.3.
Prove that your statement is equivalent to Theorem 7.2.

7.3 Give an example of a grammar in which the graph of LAST contains a cycle. Prove
that FOLLOW (A) = FOLLOW (B) for arbitrary nodes A and B in the same strongly
connected subgraph.

7.4 Design a suitable internal representation of a grammar and program the generation
algorithm of Section 7.2.3 in terms of it.

7.5 Devise an LL(1) parser generation algorithm that accepts the extended BNF notation
of Section 5.1.3. Will you be able to achieve a more efficient parser by operating upon
this form directly, or by converting it to productions? Explain.

7.6 Consider the interpretive parser of Figure 7.9.

(a) Define additional operation codes to implement connection points, and add the
appropriate alternatives to the case statement. Carefully explain the interface
conventions for the parser actions. Would you prefer a different kind of parse
table entry? Explain.

(b) Some authors provide special operations for the situations [X — pe B] and [X —
p o tB]. Explain how some recursion can be avoided in this manner, and write
appropriate alternatives for the case statement.



150

Parsing

7.7

7.8

7.9

7.10

7.11

7.12

(c)

(d)
(e)

Once the special cases of (b) are recognized, it may be advantageous to provide
extra operations identical to 4 and 5 of Figure 7.9, except that the conditions are

reversed. Why? Explain.
Recognize the situation [X — p e ¢] and alter the code of case 4 to absorb the

processing of the 2 operation following it.
What is your opinion of the value of these optimizations? Test your predictions
on some language with which you are familiar.

Show that the following grammar is LR(1) but not LALR(1):
Z — A,

A—aBecB,A— B, A— D,

B—b B— Ff,

D — dE,

E — FcA, E — FcE,

F—=b

Repeat Exercise 7.5 for the LR case. Use the algorithm of Section 7.3.4.

Show that FIRST(A) can be computed by any marking algorithm for directed graphs
that obtains a ‘spanning tree’, B, for the graph. B has the same node set as the original
graph, GG, and its branch set is a subset of that of G.

Consider the grammar with the following productions:
Z = AXd, Z — BX, Z — C,

A— B, A—C,

B = CXb,

C —c,

X —e

(a)
(b)

Derive an LALR(1) parser for this grammar.
Delete the reductions by the chain productions A — B and A — C.

Use the techniques discussed in Section 7.3.5 to compress the transition matrix pro-
duced for Exercise 7.8.

[ANDERSON et al., 1973] Consider a transition matrix for an LR parser constructed by
one of the algorithms of Section 7.3.2.

(a)
(b)

(c)

Show that for every state g there is exactly one symbol z(q) such that f(¢',a)
implies a = z(q).

Show that, in the case of shift-reduce transitions introduced by the algorithms
of Sections 7.3.3 and 7.3.4, an unambiguous symbol z(A — x) exists such that
f(gq,a) = ‘shift and reduce A — x’ implies a = z(A — x).

Show that the states (and shift-reduce transitions) can be numbered in such a
way that all states in column ¢ have sequential numbers ¢y + ¢, 2 = 0,1,... Thus
it suffices to store only the relative number ¢ in the transition matrix; the base
co is only given once for each column. In exactly the same manner, a list of the
reductions in a row can be assigned to this row and retain only the appropriate

index to this list in the transition matrix.
Make these alterations in the transition matrix produced for Exercise 7.8 before

beginning the compression of Exercise 7.11, and compare the result with that
obtained previously.
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7.13 BELL [1974] Consider an m X n transition matrix, ¢, in which all unspecified entries
are don’t-cares. Show that the matrix can be compressed into a p X ¢ matrix ¢, two
length-m arrays f and u, and two length-n arrays g and v by the following algorithm:
Initially f; =g = 00,1 <i<m,1<j <mn,and k = 1. If all occupied columns of
the i*" row of ¢ uniformly contain the value r, then set f; := k, k := k + 1, u; :=r
and delete the i** row of ¢. If the j' column is uniformly occupied, delete it also and
set gj :== k, k := k+ 1, vj := r. Repeat this process until no uniformly-occupied row
or column remains. The remaining matrix is the matrix ¢. We then enter the row
(column) number in ¢ of the former i row (j column) into u; (v;). The following
relation then holds:

tij = if f; < g then u;
else if f; < g; then v;
else (* fi = g; = 00 *) cu ;3
(Hint: Show that the size of ¢ is independent of the sequence in which the rows and
columns are deleted.)
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Chapter 8

Attribute Grammars

Semantic analysis and code generation are based upon the structure tree. Each node of the
tree is ‘decorated’ with attributes describing properties of that node, and hence the tree
is often called an attributed structure tree for emphasis. The information collected in the
attributes of a node is derived from the environment of that node; it is the task of semantic
analysis to compute these attributes and check their consistency. Optimization and code
generation can be also described in similar terms, using attributes to guide the transformation
of the tree and ultimately the selection of machine instructions.

Attribute grammars have proven to be a useful aid in representing the attribution of the
structure tree because they constitute a formal definition of all context-free and context-
sensitive language properties on the one hand, and a formal specification of the semantic
analysis on the other. When deriving the specification, we need not be overly concerned with
the sequence in which the attributes are computed because this can (with some restrictions) be
derived mechanically. Storage for the attribute values is also not reflected in the specification.
We begin by assuming that all attributes belonging to a node are stored within that node in
the structure tree; optimization of the attribute storage is considered later.

Most examples in this chapter are included to show constraints and pathological cases;
practical examples can be found in Chapter 9.

8.1 Basic Concepts of Attribute Grammars

An attribute grammar is based upon a context-free grammar G = (N, T, P, Z). It associates a
set A(X) of attributes with each symbol, X, in the vocabulary of G. Each attribute represents
a specific (context-sensitive) property of the symbol X, and can take on any of a specified set
of values. We write X.a to indicate that attribute a is an element of A(X).

Each node in the structure tree of a sentence in L(G) is associated with a particular
set of values for the attributes of some symbol X in the vocabulary of G. These values
are established by attribution rules R(p) = {X;.a + f(X;.b,..., X}.c)} for the productions
p: Xg — X1...X, used to construct the tree. Each rule defines an attribute X;.a in terms
of attributes X;.b,..., Xj.c of symbols in the same production. (Note that in this chapter
we use upper-case letters to denote vocabulary symbols, rather than using case to distinguish
terminals from nonterminals. The reason for this is that any symbol of the vocabulary may
have attributes, and the distinction between terminals and nonterminals is generally irrelevant
for attribute computation.)

In addition to the attribution rules, a condition B(X;.a,...,X;.b) involving attributes of
symbols occurring in p may be given. B specifies the context condition that must be fulfilled
if a syntactically correct sentence is correct according to the static semantics and therefore
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rule assignment ::= name ’:=’ expression.
attribution
name.environment < assignment.environment;
expression.environment <— assignment.environment;
name.postmode <— name.primode;
expression.postmode <—
if name.primode = ref_int_type then int_type else real_type fi;

rule ezpression ::= name addop name.
attribution
name[1].environment < ezpression.environment ;
name[2] . environment < expression.environment;
erpresstion.primode <—
if coercible (name[1].primode, int_type) and
coercible (name[2].primode, int_type)
then int_type else real_type fi;
addop.mode < expression.primode;
name[1].postmode < expression.primode;
name [2] .postmode < ezpression.primode;
condition coercible (ezpression.primode, erpression.postmode) ;

rule addop ::= ’+’.
attribution
addop.operation <
if addop.mode = int_type then int_addition else real_addition fi;

rule name ::= <dentifier.
attribution

name.primode < defined_type (identifier.symbol, name.environment);
condition coercible (name.primode, name.postmode) ;

Figure 8.1: Simplified LAX Assignment

translatable. We could also regard this condition as the computation of a Boolean attribute
consistent, which we associate with the left-hand side of the production.

As an example, Figure 8.1 gives a simplified attribute grammar for LAX assignments.
Each p € P is marked by the keyword ruleand written using EBNF notation (restricted to
express only productions). The elements of R(p) follow the keyword attribution. We use a
conventional expression-oriented programming language notation for the functions f, and ter-
minate each element with a semicolon. Particular instances of an attribute are distinguished
by numbering multiple occurrences of symbols in the production (e.g. name[1], name[2])
from left to right. Any condition is also marked by a keyword and terminated by a semicolon.

In order to check the consistency of the assignment and to further identify the + operator,
we must take the operand types into account. For this purpose we define two attributes,
primode and postmode, for the symbols ezpression and name, and one attribute, mode,
for the symbol addop. Primode describes the type determined directly from the node and its
descendants; postmode describes the type expected when the result is used as an operand by
other nodes. Any difference between primode and postmode must be resolved by coercions.
The Boolean function coercible (t1,t2) tests whether type ¢; can be coerced to to.
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assignmen
name; expressio
I pa K

identifierq namey addop  nameg

identifiero, '+ identifierg

a) Syntactic structure tree

assignment.environment
tdentifier;.symbol

b) Attribute values given initially (i = 1,...,3)

namej . environment
name; . environment
name; .postmode
expression.primode
addop.mode
addop.operation

erpression.environment
name; . primode
erpression.postmode
name; condition

name; . postmode

name; condition

name; . primode

ezpression condition

c¢) Attribute values computed (i = 2, 3)
Figure 8.2: Analysis of z :=y + 2

Figure 8.2 shows the analysis of = := y + z according to the grammar of Figure 8.1.
(Assignment . environment would be computed from the declarations of z, y and z, but here
we show it as given in order to make the example self-contained.) Attributes on the same
line of Figure 8.2c can be computed collaterally; every attribute is dependent upon at least
one attribute from the previous line. These dependency relations can be expressed as a graph
(Figure 8.3). Each large box represents the production whose application corresponds to the
node of the structure tree contained within it. The small boxes making up the node itself
represent the attributes of the symbol on the left-hand side of the production, and the arrows
represent the dependency relations arising from the attribution rules of the production. The
node set of the dependency graph is just the set of small boxes representing attributes; its
edge set is the set of arrows representing dependencies.

environment

A 4 I ; A 4 A 4
| env l pri I post | | environment I primode l postmodel
A A /N

assignment

Figure 8.3: Attribute Dependencies in the Tree for z :=y + 2

expression
name A 4 * L Z L 4 I A 4
symbol I env I pri I poal I model oper I I env I pri I poﬂl
I in 7}
Identifier name addop name
symbol symbol
identifier identifier
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We must know all of the values upon which an attribute depends before we can compute
the value of that attribute. Clearly this is only possible if the dependency graph is acyclic.
Figure 8.3 is acyclic, but consider the following LAX type definition, which we shall discuss
in more detail in Sections 9.1.2 and 9.1.3:

type t = record (real z, ref t p);

We must compute a type attribute for each of the identifiers ¢, x and p so that the
associated type is known at each use of the identifier. The type attribute of ¢ consists of
the keyword record plus the types and identifiers of the fields. Now, however, the type of p
contains an application of ¢, implying that the type identified by ¢ depends upon which type
a use of ¢ identifies. Thus the type ¢ depends cyclically upon itself. (We shall show how to
eliminate the cycle from this example in Section 9.1.3.)

Let us now make the intuition gained from these examples more precise. We begin with
the grammar G, a set of attributes A(X) for each X in the vocabulary of G, and a set of
attribution rules R(p) (and possibly a condition B(p)) for each p in the production set of G.

8.1 DEFINITION

An attribute grammar is a 4-tuple, AG = (G, A, R,B). G = (T, N, P, Z) is a reduced context
free grammar, A = Uy v A(X) is a finite set of attributes, R = |J,cp R(p) is a finite
set of attribution rules, and B = (J,cp B(p) is a finite set of conditions. A(X) N A(Y) #
() implies X =Y. For each occurrence of X in the structure tree corresponding to a sentence
of L(G), at most one rule is applicable for the computation of each attribute a € A(X). O

8.2 DEFINITION

For each p : X9 — X;...X,, € P the set of defining occurrences of attributes is AF(p) =
{Xi.a | Xj.a < f(...) € R(p)}. An attribute X.a is called derived or synthesized if there
exists a production p : X — x and X.a is in AF(p); it is called inherited if there exists a
production ¢ : Y — uXv and X.a € AF(q). O

Synthesized attributes of a symbol represent properties resulting from consideration of the
subtree derived from the symbol in the structure tree. Inherited attributes result from con-
sideration of the environment. In Figure 8.1, the name.primode and addop.operation at-
tributes were synthesized; name. environment and addop.mode were inherited.

Attributes such as the value of a constant or the symbol of an identifier, which arise in
conjunction with structure tree construction, are called intrinsic. Intrinsic attributes reflect
our division of the original context-free grammar into a parsing grammar and a symbol gram-
mar. If we were to use the entire grammar of Appendix A as the parsing grammar, we could
easily compute the symbol attribute of an ¢dentfier node from the subtree rooted in that
node. No intrinsic attributes would be needed because constant values could be assigned
to left-hand side attributes in rules such as letter ::= ’a’. Thus our omission of intrinsic
attributes in Definition 8.2 results in no loss of generality.

8.3 THEOREM
The following sets are disjoint for all X in the vocabulary of G:

AS(X)={X.a|3p: X - x€Pand X.a € AF(p)}
AI(X)={X.a|3q:Y - uXv e P and X.a € AF(q)}

Further, there exists at most one rule X.a < f(...) in R(p) for eachp € P and a € A(X).O
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Suppose that an attribute a belonged to both AS(X) and AI(X). Some derivation Z =*
oY1 = opXvr = ouxvt =* w (w € L(G)) would then have two different rules for computing
the value of attribute o at node X. But this situation is prohibited by the last condition of
Definition 8.1. It can be shown that Theorem 8.3 is equivalent to that condition.

Definition 8.1 does not guarantee that a synthesized attribute ¢ € A(X) will be com-
putable in all cases, because it does not require that X.a be an element of AF(p) for every
production p : X — x. A similar statement holds for inherited attributes.

8.4 DEFINITION
An attribute grammar is complete if the following statements hold for all X in the vocabulary

of G:

Forallp: X — x € P,AS(X) C AF(p)
Forallg: Y — uXv e P,AI(X) C AF(q)
AS(X)UAI(X) = A(X)

Further, if Z is the axiom of G then AI(Z) is empty. O

As compiler writers, we are only interested in attribute grammars that allow us to compute
all of the attribute values in any structure tree.

8.5 DEFINITION

An attribute grammar is well-defined if, for each structure tree corresponding to a sentence
of L(G), all attributes are effectively computable. A sentence of L(G) is correctly attributed
if, in addition, all conditions yield true. O

It is clear that a well-defined attribute grammar must be complete. A complete attribute
grammar is well-defined, however, only if no attribute can depend upon itself in any structure
tree. We therefore need to formalize the dependency graph introduced in Figure 8.3.

8.6 DEFINITION
For each p: Xg — X1 ... X, € P the set of direct attribute dependencies is given by

The grammar is locally acyclic if the graph of DD P(p) is acyclic for each p € P. O

We often write (X;.a,X;.b) € DDP(p) as X;.a — X;.b € DDP(p), and follow the same
convention for the relations defined below. If no misunderstanding can occur, we omit the
specification of the relation. In Figure 8.3 the arrows are the edges of DD P(p) for a particular
.

We obtain the complete dependency graph for a structure tree by ‘pasting together’ the
direct dependencies according to the syntactic structure of the tree.

8.7 DEFINITION

Let S be the attributed structure tree corresponding to a sentence in L(G), and let Ky ... K,
be the nodes corresponding to application of p : Xo — X;...X,. We write K;.a — K;.b if
Xi.a = X;.b € DDP(p). Theset DT(S) = {K;.a — K;.b}, where we consider all applications
of productions in S, is called the dependency relation over the tree S. O

8.8 THEOREM
An attribute grammar is well-defined if and only if it is complete and the graph of DT(S) is
acyclic for each structure tree S corresponding to a sentence of L(G). g
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If AG is a well-defined attribute grammar (WAG) then a nondeterministic algorithm can be
used to compute all attribute values in the attributed structure tree for a sentence in L(G): We
provide a separate process to compute each attribute value, which is started after all operands
of the attribution rule defining that value have been computed. Upon completion of this
process, the value will be available and hence other processes may be started. Computation
begins with intrinsic attributes, which become available as soon as the structure tree has been
built. The number of processes depends not upon the grammar, but upon the number of nodes
in the structure tree. Well-definedness guarantees that all attributes will be computed by this
system without deadlock, independent of the precise construction of the attribute rules.

Before building a compiler along these lines, we should verify that the grammar on which it
is based is actually WAG. Unfortunately, exponential time is required to verify the conditions
of Theorem 8.8. Thus we must investigate subclasses of WAG for which this cost is reduced.

It is important to note that the choice of subclass is made solely upon practical consid-
erations; all well-defined attribute grammars have the same formal descriptive power. The
proof of this assertion involves a ‘hoisting’ transformation that is sometimes useful in molding
a grammar to a pre-specified tree traversal: An inherited attribute of a symbol is removed,
along with all synthesized attributes depending upon it, and replaced by a computation in
the parent node. We shall see an example of this transformation in Section 8.2.3.

8.2 Traversal Strategies

A straightforward implementation of any attribute evaluation scheme will fail in practice
because of gigantic storage requirements for attribute values and correspondingly long com-
putation times. Only by selecting an evaluation scheme that permits us to optimize memory
usage can the attribute grammar technique be made practical for compiler construction. Sec-
tion 8.3.2 will discuss optimizations based upon the assumption that we can determine the
sequence of visits to a particular node solely from the symbol corresponding to that node.
We shall require that each production p : Xy — X;...X,, € P be associated with a fixed
attribution algorithm made up of the following basic operations:

e Evaluate an element of R(p).
e Move to child node i (i =1,...,n).
e Move to parent node.

Conceptually, a copy of the algorithm for p is attached to each node corresponding to an
application of p. Evaluation begins by moving to the root and ends when the algorithm for
the root executes ‘move to parent’.

We first discuss algorithms based upon these operations — what they look like and how
they interact — and characterize the subclass of WAG for which they can be constructed. We
then examine two different construction strategies. The first uses the attribute dependencies
to define the tree traversal, while the second specifies a traversal a priori. We only discuss
the general properties of each strategy in this section; implementation details will be deferred
to Section 8.3.

8.2.1 Partitioned Attribute Grammars

Because of the properties of inherited and synthesized attributes, the algorithms for two
productions p : X — x and ¢ : Y — pXv must cooperate to evaluate the attributes of an
interior node of the structure tree. Inherited attributes would be computed by rules in R(q),
synthesized attributes by rules in R(p). The attribution of X represents the interface between
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Evaluate name. environment

Move to name

Evaluate ezpression.environment
Move to ezpression

Evaluate name.postmode

Move to name

Evaluate ezpression.postmode
Move to ezpression

Move to parent

a) Procedure for assignment ::= name =’ ezpression

Evaluate name[1] . environment
Move to name[1]

Evaluate name[2] . environment
Move to name[2]

Evaluate ezpression.primode
Move to parent

Evaluate name[1].postmode
Move to name[1]

Evaluate addop.mode

Move to addop

Evaluate name[2].postmode
Move to name[2]

Evaluate condition

Move to parent

b) Procedure for ezpression ::= name addop name

Evaluate name.primode
Move to parent
Evaluate condition
Move to parent

c¢) Procedure for name ::= identifier

Figure 8.4: Evaluation Procedures for Figure 8.1

the algorithms for p and ¢. In Figure 8.3, for example, the algorithms for ezpression ::= name
addop name and assignment ::= name :=’ expression are both involved in computation
of attributes for the ezpression node. Because all computation begins and ends at the
root, the general pattern of the (coroutine) interaction would be the following: The algorithm
for ¢ computes values for some subset of AI(X) using a sequence of evaluation instructions.
It then passes control to the algorithm for p by executing ‘move to child 7’. After using a
sequence of evaluation operations to compute some subset of AS(X), the algorithm for p
returns by executing ‘move to parent’. (Of course both algorithms could have other attribute
evaluations and moves interspersed with these; here we are considering only computation of
X’s attributes.) This process continues, alternating computation of subsets of AI(X) and
AS(X) until all attribute values are available. The last action of each algorithm is ‘move to
parent’.

Figure 8.4 gives possible algorithms for the grammar of Figure 8.1. Because a symbol like
ezpression can appear in several productions on the left or right sides, we always identify
the production for the child node by giving only the left-hand-side symbol. We do not answer
the question of which production is really used because in general we cannot know. For the
same reason we do not specify the parent production more exactly.
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The attributes of X constitute the only interface between the algorithms for p and gq.
When the algorithm for ¢ passes control to the algorithm for p by executing ‘move to child ¢’,
it expects that a particular subset of AS(X) will be evaluated before control returns. Since the
algorithms must work for all structure trees, this subset must be evaluated by every algorithm
corresponding to a production of the form X — . The same reasoning holds for subsets of
AI(X) evaluated by algorithms corresponding to productions of the form ¥ — uXwv.

8.9 DEFINITION

Given a partition of A(X) into disjoint subsets A4;(X), ¢ = 1,...,m(X) for each X in the
vocabulary of G, the resulting partition of the entire attribute set A is admissible if, for all
X, A;(X) is a subset of AS(X) for i = m,m — 2,... and A;(X) is a subset of AI(X) for
i=m-—1,m—3,... A;(X) may be empty for any i. O

8.10 DEFINITION

An attribute grammar is partitionable if it is locally acyclic and an admissible partition exists
such that for each X in the vocabulary of G the attributes of X can be evaluated in the
order Ay(X),...,An(X). An attribute grammar together with such a partition is termed
partitioned. O

Since all attributes can be evaluated, a partitionable grammar must be well-defined.

A set of attribution algorithms satisfying our constraints can be constructed if and only
if the grammar is partitioned. The admissible partition defines a partial ordering on A(X)
that must be observed by every algorithm. Attributes belonging to a subset A;(X) may be
evaluated in any order permitted by DD P(p), and this order may vary from one production
to another. No context switch across the X interface occurs while these attributes are being
evaluated, although context switches may occur at other interfaces. A move instruction
crossing the X interface follows evaluation of each subset.

The grammar of Figure 8.1 is partitioned, and the admissible partition used to construct
Figure 8.4 was:

Ai(ezpression) ={environment} Ai(name) ={environment}
As(ezpression) ={primode} As(name) ={primode}
As(ezpression) ={postmode} As(name) ={postmode}
Ay(ezpression) ={} Ay(name) ={}

A1 (addop) ={mode }

As(addop) ={operation}

Ay is empty in the cases of both ezpression and name because the last nonempty subset
in the partition consists of inherited attributes, while Definition 8.9 requires synthesized
attributes. At this point the algorithm actually contains a test of the condition, which we
have already noted can be regarded as a synthesized attribute of the left-hand-side symbol.
With this interpretation, it would constitute the single element of A4 for each symbol.

8.2.2 Derived Traversals

Let us now turn to the questions of how to partition an attribute grammar and how to derive
algorithms from an admissible partition that satisfies Definition 8.10, assuming no a priori
constraints upon the tree traversal. For this purpose we examine dependency graphs, with
which the partitions and algorithms must be compatible.

Suppose that X.a is an element of A;(X) and X.b is an element of A;(X) in an admissible
partition, and i > j. Clearly Kx.a — Kx.b cannot be an element of DT'(S) for any structure
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tree S, because then X.b could not be calculated before X.a as required by the fact that
i > j. DDP(p) gives direct dependencies for all attributes, but the graph of DT'(S) includes
indirect dependencies resulting from the interaction of direct dependencies. These indirect
dependencies may lead to a cycle in the graph of DT'(S) as shown in Figure 8.5. We need a
way of characterizing these dependencies that is independent of the structure tree.

p
1
I
A 4 | 1

T || Tf

r S

Figure 8.5: A Cycle Involving More Than One Production

In a locally acyclic grammar, dependencies between attributes belonging to AF(p) can be
removed by rewriting the attribution rules:

Xia <« f(...,X;.b,...) becomes X;a < f(...,9(...),...)
Xj.b <—g() Xj.b <—g()

In Figure 8.3 this transformation would, among other things, replace the dependency
expression.primode — addop.mode by name[1].primode — addop.mode and name[2].
primode — addop.mode. Dependencies that can be removed in this way may require that
the attributes within a partition element A;(X) be computed in different orders for different
productions, but they have no effect on the usability of the partition itself (Exercise 8.3).

8.11 DEFINITION
For each p: Xo — X1 ... X,, € P, the normalized transitive closure of DDP(p) is

NDDP(p) = DDP(p)" — {(Xi.a, X;.b) | X;.a, X;.b € AF(p)} 0

The dependencies arising from interaction of nodes in the structure tree are summarized
by two collections of sets, IDP and IDS. IDP(p) shows all of the essential dependencies
between attributes appearing in production p, while ID.S(X) shows those between attributes
of symbol X.

8.12 DEFINITION
The induced attribute dependencies of an attribute grammar (G, A, R, B) are defined as fol-
lows:

1. For allp € P, IDP(p) := NDDP(p).
2. For all X in the vocabulary of G,

IDS(X) := {(X.a,X.b) | 3¢ such that (X.a, X.b) € IDP(q)"}

3. Forallp: Xg —» X;...X,, € P,
IDP(p) := IDP(p) UIDS(Xo) U--- UIDS(X,,)
4. Repeat (2) and (3) until there is no change in any IDP or IDS. O
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rule Z ::= X. (* Production 1 *)
attribution
X.a < 1;

rule X ::= s Y. (* Production 2 *)
attribution

X.b « Y.f;

Y.c < X.a;

Y.d < Y.e;

rule X ::=t Y. (x Production 3 *)
attribution

X.b < Y.e;

Y.c « Y.f;

Y.d < X.a;

rule Y ::= u. (* Production 4 *)
attribution

Y.e «— 2;

Y.f <« Y.d;

rule Y ::= ». (* Production 5 *)
attribution
Y.e < Y.c;
Y.f < 3;
a) Rules

IDS(X) = {a — b}
IDS(Y)={c—ed— f,e—=d,f — ¢}

b) Induced dependencies for symbols

Figure 8.6: A Well-Defined Grammar

IDP(p) and IDS(X) are pessimistic approximations to the desired dependency relations.
Any essential dependency that could be present in any structure tree is included in IDP(p)
and IDS(X), and all are assumed to be present simultaneously. The importance of this point
is illustrated by the grammar of Figure 8.6, which is well-defined but not partitioned. Both
¢ — e and d — f are included in IDS(Y') even though it is clear from Figure 8.7 that only
one of these dependencies could occur in any structure tree. A similar situation occurs for
e — d and f — c¢. The result is that IDS(Y") indicates a cycle that will never be present in
any DT.

The pessimism of the indirect dependencies is crucial for the existence of a partitioned
grammar. Remember that it must always be possible to evaluate the attributes of X in
the order specified by the admissible partition. Thus the order must satisfy all dependency
relations simultaneously.
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Figure 8.7: Dependency Graphs DT(s)

8.13 THEOREM

If an attribute grammar is partitionable then the graph of IDP(p) is acyclic for every p € P
and the graph of IDS(X) is acyclic for every X in the vocabulary of G. Further, if a — b is
in IDS(X) then a € A;(X) and b € A;(X) impliesi < j. O

Note that Theorem 8.13 gives a necessary, but not sufficient, condition for a partitionable
grammar. The grammar of Figure 8.8 illustrates the reason, and provides some further
insight into the properties of partitionable grammars.

Given the rules of Figure 8.8, a straightforward computation yields IDS(X) = {a —
b,c — d}. Three of the five admissible partitions of {a, b, ¢, d} satisfy Theorem 8.13:

{a}{bH{cHd}

{cHd}Ha}{b}

{a,c}{b,d}
Figure 8.9 gives the dependency graphs for the two structure trees that can be derived ac-
cording to this grammar. Simple case analysis shows that none of the three partitions can be
used to compute the attributes of X in both trees. For example, consider the first partition.
Attribute a must be computed before attribute d. In the first tree X[1].d must be known for
the computation of X[2].a, so the sequence must be X[1].a, X[1].d, X[2].a, X[2].d. This is
impossible, however, because X[2].d — X[1].a is an element of NDDP(Z — sXX).

When we choose a partition, this choice fixes the order in which certain attributes may
be computed. In this respect the partition acts like a set of dependencies, and its effect may
be taken into account by adding these dependencies to the ones arising from the attribution
rules.
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rule Z ::= s X X.
attribution
X[1].a < X[2].d;
X[1].c + 1;
X[2].a < X[1].d;
X[2].c + 2;

rule Z ::=t X X.
attribution
X[1].a + 3;
X[1].c + X[2].b;
X[2].0 < 4;
X[2].c «< X[1].b;

rule X ::= u.
attribution
X.b < X.a;
X.d « X.c;

Figure 8.8: An Attribute Grammar That Is Not Partitioned

8.14 DEFINITION
Let A1(X),...,An(X) be an admissible partition of A(X). For each p: Xy — X;...X,, in
P the set of dependencies over the production p is:

DP(p) =IDP(p) U{(X;.a,X;.b) | a € Aj(XZ'),b € Ap(X;),0<i<n,j <k} O

8.15 THEOREM
Given an admissible partition for an attribute grammar, the grammar is partitioned if and
only if the graph of DP(p) is acyclic for each p € P. O

Unfortunately, Theorem 8.15 does not lead to an algorithm for partitioning an at-
tribute grammar. Figure 8.10 is a partitioned grammar, but the obvious partition A;(X) =
{b}, A2(X) = {a} causes cyclic graphs for both DP(1) and DP(2). In order to avoid the
problem we must use A;(X) = {a}, A2(X) = {b}, A3(X) = {}. A backtracking procedure
for constructing the partition begins with the dependency relations of IDS(X) and considers
pairs of independent attributes (a, b), one of which is inherited and the other synthesized. It
adds a — b to the dependencies currently assumed and immediately checks all DP graphs
for cycles. If a cycle is found then the dependency b — a is tested. If this also results in
a cycle then the procedure backtracks, reversing a previously assumed dependency. Because
this procedure involves exponential cost, it is of little practical interest.

As in the case of parser construction, where pragmatic considerations forced us to use
subclasses of the LL(k) and LR(k) grammars, the cost of obtaining an appropriate partition
forces us to consider a subclass of the partitioned grammars. The following definition yields
a nonbacktracking procedure for obtaining a partition that evaluates each attribute at the
latest point consistent with 7DS(X).

8.16 DEFINITION
An attribute grammar is ordered if the following partition of A results in a partitioned gram-
mar:
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Z = sXX

A 4 ll 1 l
la[bc]d] lal[bfc]d]
LT L1 LT L1
X:i=u X:=u

Z =tXX

I v 1
la[bc]d] lalbc]d]
LT L1 LT L1
X:i=u X:i=u

Figure 8.9: DT Graphs for Figure 8.8

Here m is the smallest n such that Tj,_1(X) UT,(X) = A(X), T_1(X) = Tp(X) = 0, and for
k<0

Tor—1(X) ={a € AS(X) | a = b€ IDS(X) implies b € T}(X),

J < (2k—-1)}
Tor(X) = {a € AI(X) | a — b€ IDS(X) implies b € Tj(X), j

< (
< 2k}
O

This definition requires that all T;(X) actually exist. Some attributes remain unassigned to
any T;(X) if (and only if) the grammar is locally acyclic and some DS contains a cycle.

For the grammar of Figure 8.10, construction 8.16 leads to the ‘obvious’ partition discussed
above, which fails. Thus the grammar is not ordered, and we must conclude that the ordered
grammars form a proper subclass of the partitionable grammars.

Suppose that a partitioned attribute grammar is given, with partitions A, (X), ..., A, (X)
for each X in the vocabulary. In order to construct an attribution algorithm for a production
p: Xog — Xi...X,, we begin by defining a new attribute c; ; corresponding to each subset
A;(X;) of attributes not computed in the context of p. (These are the inherited attributes
Ai(Xp),i=m—1,m—3,... of the left-hand side and the synthesized attributes A;(X;),j #
0,2 =m,m —2,... of the right-hand side symbols.) For example, the grammar of Figure 8.1
is partitioned as shown at the end of Section 8.2.1. In order to construct the attribution
algorithm of Figure 8.4b, we must define new attributes as shown in Figure 8.11a.

Every occurrence of an attribute from A;(X;) is then replaced by ¢; j in DP(p) UDDP(p),
as illustrated by Figure 8.11b. D P(p) alone does not suffice in this step because it was derived
(via IDP(p)) from NDDP(p), and thus does not reflect all dependencies of DDP(p). In
Figure 8.11b, for example, the dependencies ezpression.primode — name[i].postmode
(1 =1,2) are in DDP but not DP.

Figure 8.11b has a single node for each ¢; ; because each partition contains a single at-
tribute. In general, however, partitions will contain more than one attribute. The resulting
graph still has only one node for each ¢; ;. This node represents all of the attributes in 4;(X}),
and hence any relation involving an attribute in A;(X;) is represented by an edge incident
upon this node.
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rule Z ::=s X V. (* Production 1 *)
attribution

X.b « Y.d;

Y.c « 1;

Y.e < X.a;

rule Z ::=t X V. (* Production 2 *)
attribution

X.b « Y.f;

Y.c < X.a;

Y.e «— 2;

rule X ::= u. (* Production 3 *)
attribution
X.a <« 3;

rule Y ::= v. (* Production 4 *)
attribution

Y.d < Y.c;

Y.f < Y.e;

Figure 8.10: A Partitioned Grammar

The graph of Figure 8.11b describes a partial order. To obtain an attribution algorithm,
we augment the partial order with additional dependencies, consistent with each other and
with the original partial order, until the nodes are totally ordered. Figure 8.11c shows such
additional dependencies for Figure 8.11b. The total order defines the algorithm: Each element
that is an attribute in AF(p) corresponds to a computation of that attribute, each element
¢;,o corresponds to a move to the parent, and each element ¢; ; (j > 0) corresponds to a move
to the j* child. Finally, a ‘move to parent’ operation is added to the end of the algorithm.
Figure 8.4b is the algorithm resulting from the analysis of Figure 8.11.

The construction sketched above is correct if we can show that all attribute dependencies
from IDP(p) and DDP(p) are accounted for and that the interaction with the moves between
nodes is proper. Since IDP(p) is a subset of DP(p), problems can only arise from the merging
of attributes that are not elements of AF(p). We distinguish five cases:

X;.a — X;.b € IDP(p), a¢ AF(p),b¢ AF(p)
Xi.a = X;.b€ IDP(p), a€ AF(p),b¢ AF(p)
X;.a — X;.b € IDP(p), a¢ AF(p), b€ AF(p)
Xi.a— X;.b€ IDP(p), i#j,a¢ AF(p)

Xi.a — X;.b € IDP(p), i#j,b¢ AF(p)

In the first case the dependency is accounted for in all productions ¢ for which a and b
are elements of AF(q). In the second and third cases X;.a and X;.b must belong to different
subsets A,(X;) and As(X;). The dependency manifests itself in the ordering condition r < s
or s < r, and will not be disturbed by collapsing either subset. In the fourth case we compute
X;.b only after all of the attributes in the subset to which Xj;.a belongs have been computed;
this is simply an additional restriction. The fifth case is excluded by Definition 8.11: Xj;.a —
X;.b cannot be an element of DD P(p) because X.b is not in AF(p); it cannot be an element
of any IDS because i # j.
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c1,0 = {expression. environment }
c30 = {expression.postmode}
2,1 = {name[1].primode}

e = {}

c22 = {addop.operation}

c2,3 = {name[2].primode }

ca = {}

a) New attributes

o T

name [1].environment Co2 name [2].environment

!

addop.mode

c!l/' T T CZY,S
\ expression.primode /
v v N

Y
name| 1].postmode C30 name| 2].postmode
Ca1 \ condition / C43

b) Graph defining DP(p) U DDP(p)

c2,1 — name[2] . environment
c3,0 — name[1].postmode
€4, — addop.mode
c2,2 — name[2] .postmode
c4,3 — condition
c¢) Additional dependencies used to establish a total order

Figure 8.11: Deriving the Algorithm of Figure 8.4b

When an algorithm begins with a visit ¢;;, this visit may or may not actually be carried
out. Suppose that the structure tree has been completed before the attribution is attempted.
The traversal then begins at the root, and every algorithm will be initiated by a ‘move to child
i’. Now if the first action of the algorithm is ¢; g, i.e. a move to the parent to compute inherited
attributes, this move is superfluous because the child is only invoked if these attributes are
available. Hence the initial ¢ o should be omitted. The situation is reversed if the tree is
being processed bottom-up, as when attribution is merged with a bottom-up parse: An initial
¢;; that causes a move to the leftmost subtree should be omitted.

Semantic conditions are taken care of in this schema by treating them as synthesized
attributes of the left-hand side of the production. They can be introduced into an algorithm
at any arbitrary point following computation of the attributes upon which they depend.
In practice, conditions should be evaluated as early as possible to enhance semantic error
recovery and reduce the lifetime of attributes.



168 Attribute Grammars

8.2.3 Pre-Specified Traversals

Overall compiler design considerations may indicate use of one or more depth-first, left-to-
right and or right-to-left traversals for attribute evaluation. This allows us to linearize the
structure tree as discussed in Section 4.1.2 and make one or more passes over the linearized
representation. (For this reason, attribute grammars that specify such traversals are called
multi-pass attribute grammars. We shall discuss the left-to-right case in detail here, leaving
the analogous right-to-left case to the reader.

8.17 DEFINITION

An attribute grammar is LAG(1) if, for every node corresponding to an application of p :
XU — X1 PN Xn € P, the attributes in AI(X()), AI(XI), AS(Xl), AI(XQ), ce ,AS(Xn),
AS(Xp) can be computed in that order. O

An LAG(1) grammar is partitioned, with the partition being A;(X) = AI(X), A3(X) =
AS(X) for all X. Further constraints on the order of evaluation within a production are
introduced to force processing of the symbols from left to right.

8.18 THEOREM
An attribute grammar is LAG(1) if and only if it is locally acyclic and, for all p : Xy —
Xi...X, € P, X;.a — X;.b € DDP(p) implies one of the following conditions:

oj:(]

e i=0anda€ AI(Xy)

o 1 <1<y

e 1 <i=jandac AI(X;) O

Note that Theorem 8.18 makes use only of DDP(p); it does not consider induced attribute
dependencies. This is possible because every induced dependency that would affect the com-
putation must act over a path having a ‘top’ node similar to that in Figure 8.5: An inherited
attribute of a symbol depends directly upon a synthesized attribute of the same symbol. This
case is prohibited, however, by the conditions of the theorem.

LAG(1) grammars are inadequate even in comparatively simple cases, as can be seen by
considering the grammar of Figure 8.1. The production for assignment satisfies the condi-
tions of Theorem 8.18, but that for ezpression does not because both name[1].postmode
and name[2].postmode depend upon ezpression.primode. We can repair the problem in
this example by applying the ‘hoisting’ transformation mentioned at the end of Section 8.1:
Delete the inherited attribute postmode and move the condition using it upward. A similar
change is required to move the operator identification upward (Figure 8.12).

If one tree traversal does not suffice to compute all attributes, a sequence of several
traversals might be used. This idea is actually much older and more general than that of
attribute grammars. We have already met it in Section 1.3: ‘Any language requires at least one
pass over the source text, but certain language characteristics require more.” (The procedure
determine_traversals discussed below describes, in terms of attributes, the fundamental
mechanism by which the number of passes of a compiler is determined.) The difference
between LAG and RAG appears in the same section as the distinction between forward and
backward passes.

All attributes in the structure tree of a sentence derived from any arbitrary well-defined
attribute grammar can be evaluated with an unlimited number of traversals, but the cost of
determining dynamically whether another traversal is necessary is roughly as high as that of
the nondeterministic evaluation procedure in Section 8.1. Here we are interested in cases for
which the number of traversals can be determined from the grammar alone, independent of
any structure tree.
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rule assignment ::= name ’:=’ expression.
attribution
name.environment <— assignment.environment;
expression.environment <— assignment.environment;
condition
coercible (
expression.primode,
if name.primode = ref_int_type then int_type
else real_type fi);

rule ezpression ::= name addop name.
attribution
name[1].environment < ezpression.environment;
name[2] . environment <— ezxpression.environment;
erpression.primode <—
if coercible (name[1].primode, int_type) and
coercible (name[2].primode, int_type)
then <nt_type
else real_type
fi;
addop.operation <
if ezpression.primode = int_type then int_addition
else real_addition
fi;
condition
coercible (name[1].primode, expression.primode) and
coercible (name[2].primode, expression.primode) ;

rule addop ::= ’+7.
rule name ::= identifier.
attribution

name.primode <—
defined_type (identifier.symbol ,name.environment) ;

Figure 8.12: Transformation of Figure 8.1

8.19 DEFINITION

An attribute grammar is LAG(k) if and only if for each X in the vocabulary a partition
AI(X) =AL(X)U---UAI(X)
AS(X)=AS1(X)U---UASK(X)

exists such that for all productions p : X; — Xj...X,, the attributes in Al (Xy),
AIl(Xl), ey ASl(Xn), ASl(Xo), AIQ(X()), ey AIk(X()), ey ASk(Xo) can be computed in
that order. [l

Note that this reduces to Definition 8.17 for k = 1.

The set of partitions taken together form an admissible partition of the attribute set A
with m(X) = 2k for every X. We can think of the sets AI;(X) and AS;(X) as belonging to
an LAG(1) grammar with AI;(X) and AS;(X)(j < i) as intrinsic attributes. This reasoning
leads to the following LAG(k) condition which closely parallels Theorem 8.18:
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8.20 THEOREM

An attribute grammar is LAG(k) if and only if it is locally acyclic and a partition A =
Ay U -+ U Ay exists such that for all p : Xg — X1...X,, € P, X;.a = X;.b € DDP(p),
a € Ay(X;), be Ay(X;) implies one of the following conditions:

o u<w

e y=wvandj=0

e u=vandi=0anda€ AI(Xy)

euyu=vandl<i<j

e u=vandl<i=jandac AI(X;) O

function determine_traversals : integer;
(* Test an attribute grammar for the LAG(k) property

On entry-
Attribute grammar (G; 4; R; B) is defined as in Section 8.1
Sets 4, AS (X) and AF (p) are defined as in Section 8.1
Set NDDP (p) is defined as in Section 8.2.2

If the grammar is LAG(k)

then on exit- determine_traversals = k

else on exit- determine_traversals = -1
*)
var
k: integer; (* current traversal number *)
candidates, (* possibly evaluable in the current traversal x)

later: attribute_set; (* not evaluable in the first k traversals x*)
candidates_unchanged: boolean;

begin (* determine_traversals *)
k :=0; later := 4; (* no attributes evaluable in 0 traversals *)
repeat (* determine the next 4, *)
k :=k + 1; candidates := later; later := (;
repeat (* delete those unevaluable in traversal k *)
candidates_unchanged := true;

for all productions p : X, — X,... X, do

for all X;.b € (AF(p) N candidates) do

for all X,.a € A do
;-a — X;.b € NDDP (p) then
if X,.a € later or 5 # 0 and
(2 > 5 or (¢ =0o0r 2 = 7) and
a € AS(X,)) then
begin
candidates := candidates - {X;.b};
later := later U {X,;.b};

candidates_unchanged := false;
end;
until candidates_unchanged;
4, := candidates;
until later = () or candidates = )
if later = () then determine_traversals := k
else determine_traversals := - 1;

end; (x determine_traversals *)
Figure 8.13: Testing the LAG(k) Property
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Theorem 8.20 leads directly to a procedure for determining the partition and the value
of k from a locally acyclic grammar (Figure 8.13). For £k = 1,2,... this procedure assumes
that all remaining attributes belong to Ay and then deletes those for which this assumption
violates the theorem. There are two distinct stopping conditions:

e No attribute is deleted. The number of traversals is & and the partition is Ay, ..., Ag.
e All attributes are deleted. The conditions of Theorem 8.20 cannot be met and hence
the attribute grammar is not LAG(k) for any k.

Analogous constructions are possible for RAG(k) grammars and for the alternating evalu-
able attribute grammars (AAG(k)). With the latter class, structure tree attributes are evalu-
ated by traversals that alternate in direction: The first is left-to-right, the second right-to-left,
and so forth. We leave the derivation of these definitions and theorems, plus the necessary
processing routines, to the reader.

It is important to note that the algorithm of Figure 8.13 and its analogs for RAG(k) and
AAG(k) assign attributes to the first traversal in which they might be computed. These
algorithms give no indication that it might also be possible to evaluate an attribute in a later
traversal without delaying evaluation of other attributes or increasing the total number of
traversals.

rule Z ::= X.
attribution
X.b <« 1;

rule X ::= W X.
attribution
X[1].a < W.c;
X[2].b « X[1].b;
W.d < X[2].a;

rule X ::= ’s’.
attribution

X.a < X.b;
rule ¥ ::= ’t’.
attribution

W.c < W.d;

Figure 8.14: An RAG(1) Grammar That Is Not LAG(k)

Figure 8.14 is RAG(1) but not LAG(k) for any k. Each left-to-right traversal can only
compute the value of one X.a because of the dependency relation involving the preceding
nonterminal W. Hence the number of traversals is not fixed, but is the depth of the recur-
sion. A single right-to-left traversal suffices to compute all X.a, however, because traversal
of W’s subtree follows traversal of X[2]’s. If we combine two such attribute relationships
with opposite dependencies then we obtain an AAG(2) grammar that is neither LAG(k) nor
RAG(k) for any k (Figure 8.15).

It is, of course, possible to construct an appropriate partition for a multi-pass grammar
by hand. The development usually proceeds as follows: On the basis of given properties of
the language one determines the minimum number of traversals required, partitions the at-
tributes accordingly, and then constructs the attribute definition rules to make that partition
valid. The ‘hoisting’ transformation referred to earlier is often used implicitly during rule
construction.
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rule Z ::= X.
attribution
X.b <« 1;

rule X ::=W X VY.
attribution
X[1].a < W.c;
X[1].e < Y.g;
X[2].b « X[1].b;
W.d <« X[2].a;
Y.f < X[2].e;

rule X ::= ’s’.
attribution

X.a < X.b;

X.e «— X.b;
rule ¥ ::= ’t’.
attribution

W.c < W.d;
rule ¥ ::= ’u’.
attribution

Y.g < Y.f;

Figure 8.15: An AAG(2) Grammar That Is Neither LAG(k) Nor RAG(k)

The disadvantage of this technique is that it is based upon an initial opinion about the
number of traversals and the assignment of attributes to traversals that may turn out to be
wrong. For example, one may discover when constructing the rules that an attribute can
only be computed if additional arguments are available, or even that important attributes are
missing entirely. Experience shows that small changes of this kind often have disastrous effects
on the basic structure being built. Considering the cost involved in developing a semantic
analyzer — an attribute grammar for LAX is barely 30 pages, but specifications for complex
languages can easily grow to well over 100 pages — such effects cannot be tolerated. It is more
advisable to construct an attribute grammar without regard to the number of traversals.
Only when it is certain that all aspects of the language have been covered correctly should
substitutions and other alterations to meet a constraint upon the number of traversals be
undertaken. The greater part of the grammar will usually be unaffected by such changes.

As soon as a partition of the attribute set satisfying Definition 8.17 or 8.19 is available, it
is simple to derive an algorithm via the technique discussed at the end of the last section.

8.3 Implementation Considerations

Section 8.2 showed methods for constructing attribute evaluation algorithms from attribute
grammars. Here we concern ourselves with the implementation of these algorithms. First we
assume that the structure tree appears as a linked data structure providing storage for the
attributes, and later we show how to reduce the storage requirements.

8.3.1 Algorithm Coding

Our evaluation procedures are coroutines that transfer control among themselves by executing
the basic operations ‘move to child 4" and ‘move to parent’. They might be coded directly,
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class ezpression;

begin comment Declarations of primode, postmode and environment end;
class name;

begin comment Declarations of primode, postmode and environment end;
class addop ;

begin comment Declarations of mode and operation end;

expression class p2;
begin ref (name) X1; ref (addop) X2; ref (name) X3;
comment Initialization of X1, X2 and X3 needed here;
detach;

X1.environment := environment;
resume (X1) ;
X3.environment := environment;

resume (X3) ;
primode := if ...;
detach;
X1.postmode := primode;
resume (X1) ;
X2.mode := primode;
resume (X2) ;
X3.postmode := primode;
resume (X3) ;
if ...; comment Evaluate the condition;
detach;
end;
Figure 8.16: SIMULA Implementation of Figure 8.4b

transformed to a collection of recursive procedures, or embodied in a set of tables to be
interpreted. We shall discuss each of these possibilities in turn.

The coroutines can be coded directly in SIMULA as classes, one per symbol and one
per production. Each symbol class defines the attributes of the symbol and serves as a
prefix for classes representing productions with that symbol on the left side. This allows us
to obtain access to a subtree having a particular symbol as its root without knowing the
production by which it was constructed. Terminal nodes ¢ are represented only by the class
t. Each production class contains pointer declarations for all of its descendants X7 ... X,,. A
structure tree is built using statements of the form node :- new p (or node :- new t)
to create nodes and assignments of the form node.z; :- subnode to link them. Since a side
effect of new is execution of the class body, the first statement of each class body is detach
(return to caller). (Intrinsic attributes could be initialized by statements preceding this first
detach.) Figure 8.16 gives the SIMULA coding of the procedure from Figure 8.4b.

Figure 8.17 gives an implementation using recursive procedures. The tree is held in a
data structure made up of the nodes defined in Figure 8.17a. When a node corresponding to
application of p : Xy — X; ... X, is created, its fields are initialized as follows:

Xop=p
x_p; = pointer to node representing X;,i =1,...,n

The body of a coroutine is broken at the detach statements, with each segment forming
one branch of the case statement in the corresponding procedure. Then detach is imple-
mented by simply returning; resume (X;) is implemented by sproc_s (z_p;, k), where sproc_s
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type
tree_pointer = {tree_node;
tree_node = record
case symbols of

s: (* one per symbol in the vocabulary *)
(... (* storage for attributes of S *)
case s_p : integer of
p : (% one per production p : S — X; ... X, *)

(z_p : array [1..n] tree_pointer);

end;
a) General structure of a node

procedure pproc_p (t : tree_pointer; k : integer);
(* one procedure per production *)
begin (x pproc_p *)
case k of
0 :
(*x actions up to the first detach *)
(* successive segments *)
end;
end; (*x pproc_p *)

b) General structure of a production procedure

proceduresproc_s (t : tree_pointer; k : integer);
(* one procedure per symbol *)
begin (* sproc_s x*)
case t1.s_p of
p : pproc_p (t, k); (* one case element per production *)

end;
end; (*x sproc_s *)
¢) General structure of a symbol procedure

Figure 8.17: Transformation of Coroutines to Procedures

is the procedure corresponding to symbol X; and k is the segment of that procedure to be ex-
ecuted. Figure 8.18 shows the result of applying the transformation to Figure 8.16. We have
followed the schema closely in constructing this example, but in practice the implementation
can be greatly simplified.

A tabular implementation, in which the stack is explicit, can be derived from Figure 8.17.
It involves a pushdown automaton that walks the structure tree, invoking evaluate in much
the same way that the parsing automata of Chapter 7 invoke parser actions to report connec-
tion points. In each case the automaton communicates with another processor via a sequence
of simple data items. Thus the implementations of the automaton and the communicating
processor are quite distinct, and different techniques may be used to carry them out. The
number of actions is usually very large, and when deciding how to handle them one must take
account of any restrictions imposed by the implementation language and its compiler.

Figure 8.19 shows how the pushdown automaton is implemented. Each entry in the table
corresponds to an element of some algorithm and there is an auxiliary function, segment,
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such that segment (k,p) is the index of the first entry for the £ segment of the algorithm
for production p. If the element corresponds to Xj;.a then it specifies the computation in
some appropriate manner (perhaps as a case index or procedure address); otherwise it simply
contains the pair of integers defining the visit. Because the selectors for a visit must be
extracted from the table, rather than being built into the procedure, the tree node must be
represented as shown in Figure 8.19b.

type
tree_pointer = {tree_node;
tree_node = record
case symbols of
erpression :
(ezpression_environment : environment ;
erpression_primode, expresston_postmode:type_specification;
case ecrpression_2 : integer of
2 : (z_2 : array [1..3] of tree_pointer);...

name :
(name_environment : environment ;
name_primode, name_postmode : type_specification; ...);
addop
(addop_mode : type_specification;...);
end;

procedure sproc_ezpression (t : tree_pointer; k : integer);
begin (* sproc_expression *)

case t1.expression_2 of

2 : pproc_ 2 (t, k);
end;
end; (x sproc_expression *)
procedure pproc_2 (t : tree_pointer; k : integer);
begin (* pproc_2 *)
case k of

0 : (* construction of subtrees *);

1 : begin
t1.z_1[1]1.name_environment :
sproc_name (tt.z_1[1], 1);
t1.z_1[3]1.name_environment :
sproc_name (t1.z_1[3], 1);
t1.ezpression_primode := if ...;

end;

2 : begin
tt.z_1[1].name_postmode := tt.ezxzpression_primode;
sproc_name (t1.z_1[1], 2);
t1.z_1[2].name_postmode := tt.ezxzpression_primode;
sproc_addop (tt.z_1[2], 1);
t1.z_1[3].addop_postmode := t1.exzpression_primode;
sproc_name (tt.z_1[3], 2);
if ...

end;
end;
end; (x pproc_2 *)

t1.ezpression_environment ;

t1.expression_environment ;

Figure 8.18: Transformation of Figure 8.16
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Simplifications in the general coding procedure are possible for LAG(k),RAG(k) and
AAG(k) grammars. When k£ = 1 the partition for each X is A4;(X) = AI(X), Ax(X) =
AS(X), so no intermediate detach operations occur in the coroutines. This, in turn, means
that no case statement is required in the production procedures or in the interpretive model.
For k£ > 1 there are k + 1 segments in each procedure proc- p, corresponding to the ini-
tialization and k traversals. It is best to gather together the procedures for each traversal
as though dealing with a grammar for which £ = 1, and then run them sequentially. When
parsing by recursive descent, the tree construction, the calculation of intrinsic attributes and
the first tree traversal can be combined with the parsing.

type
table_entry = record
case is_computation : boolean of

true : (* R,. X;.a *)
(rule : attribute_computation);
fa'l’se : (% Csegment_number, child *)

(segment_number, child : integer)
end;

a) Structure of a table entry

type
tree_pointer = 1 tree_node;
tree_node = record
production :@ integer;
X : array/[1..maz_right_hand_side] of tree_pointer
end;

b) Structure of a tree node

procedure interpret;
label 1;
var t : tree_pointer;
state, next : integer;
begin (* interpret *)
t := root_of_the_tree;
state := segment (0, tt.production);
repeat
next := state + 1;
with table[state] do
if 7s_computation then evaluate (t, rule)
else if segment_number <> 0 then
begin
stack_push (t, nezxt);
t := t1.X[child];
next := segment (segment_number,tl.production);
end
else if stack_empty then goto 1
else stack_pop (t, mext);
state := nezxt;
until false; (x forever x)
1 : end; (x interpret x)

c¢) Table interpreter

Figure 8.19: Tabular Implementation of Attribution Algorithms
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8.3.2 Attribute Storage

So far we have assumed that all attributes of a structure tree node were stored within the node
itself. Applying this assumption in practice usually leads to a gigantic storage requirement.
Several remedies are possible:

e Overlaying of attributes

e Use of local temporaries of evaluation procedures

e Storage of specified attributes only at designated nodes.
e Use of global variables and data structures.

Because these optimizations cannot be automated completely (given the present state of
the art), the question of attribute storage represents an important part of the development
of an attribute grammar implementation.

We classify the attributes of a node as final or intermediate. Final attributes are neces-
sary in later phases of the compilation and must be available in the structure tree following
attribution. Intermediate attributes are used only as aids in computing other attributes or
testing conditions; they have a bounded lifetime. The largest intermediate attribute, which
we shall discuss in Chapter 9, is the environment used to obtain the meaning of an identifier
at a particular point.

Distinct storage must be assigned to final attributes, but this storage can be used earlier
to hold one or more intermediate attributes if their lifetimes do not overlap. Minimization of
overlap (not minimization of lifetimes for simple attributes) is thus one of the most important
uses of our freedom to specify the sequence of attribute evaluations. Usually it is best to begin
with the final attributes and work backwards, fixing the sequence so that attributes can take
one another’s place in storage.

We often discover that two attribute lifetimes overlap, but only briefly. The overlap
can be eliminated by defining a new attribute whose lifetime is just this overlap, assigning
the first attribute to it, and freeing the second attribute’s storage. The second attribute is
then computed into that storage. In this manner we reduce the overlap among ‘long lived’
attributes and increase the number of ‘short lived’ attributes. The new attributes generally
have little overlap among themselves, but even if they had we have gained something: This
transformation usually makes other optimizations applicable.

In many cases we can implement short-lived attributes as local variables of the evaluation
procedures, thus avoiding the need for space within the node entirely. If the attributes
are referenced by other procedures (for the parent or children of the node to which they
belong) then their values can be passed as extra parameters. This strategy only works for
implementations like that of Figure 8.17, where distinct processing procedures are provided.
The tabular implementation discussed at the end of Section 8.2.1 requires stacks instead of
procedure parameters or local variables to realize the same strategy.

An attribution rule can only access attributes of the nodes corresponding to the symbols
of the associated production. Many of the attributes in a typical grammar are therefore
concerned with transmission of information from one part of the tree to another. Since
attribute values do not change, they may be transmitted by reference instead of by value.
Thus we might store the value of a large attribute at a single node, and replace this attribute
in other nodes by a pointer to the stored information. The node at which the value is stored is
usually the root of a subtree to which all nodes using this information belong. For example,
the environment attribute of a block or procedure node is formed by combining the lists
generated by local definitions with the inherited environment. The result is passed to all
nodes in the subtree rooted in the block or procedure node. If a pointer to the next enclosing
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block or procedure node is given during the processing of the nodes in the subtree, then we
obtain the same environment: First we reach the local definitions in the innermost enclosing
block and, in the same manner, the next outermost, etc. The search of the environment for
a suitable definition thus becomes a search of the local definition lists from inner to outer.

Attributes should often be completely removed from the corresponding nodes and repre-
sented by global variables or linked structures in global storage. We have already noted that
it is usually impossible to retain the entire structure tree in memory. Global storage is used
to guarantee that an attribute accessible by a pointer is not moved to secondary storage with
the corresponding node. Global storage is also useful if the exact size of an attribute cannot
be determined a priori. Finally, global storage has the advantage that it is directly accessible,
without the need to pass pointers as parameters to the evaluation procedures.

If the environment is kept as a global attribute then it is represented by a list of local
definitions belonging to the nested blocks or procedures. In order to be certain that the
‘correct’ environment is visible at each node we alter the global attribute during the traversal
of the structure tree: When we move to a block or procedure node from its parent, we copy
the local definition set to this environment variable; when we return to the parent we delete
it.

The description in the previous paragraph shows that in reality we are using a global
data structure to describe several related attribute values. This situation usually occurs with
recursive language elements such as blocks. The environment attribute shows the typical
situation for inherited attributes: Upon descent in the tree we alter the attribute value, for
example increasing its size; the corresponding ascent in the tree requires that the previous
state be restored. Sometimes, as in the case of the nesting depth attribute of a LAX block,
restoration is a simple inverse of the computation done on entry to the substructure. Often
there is no inverse, however, and the old value of the attribute must be saved explicitly. (The
environment represents an intermediate situation that we shall consider in Section refsec-9.3.)
By replacing the global variable with a global stack, we can handle such cases directly.

Global variables and stacks are also useful for synthesized attributes, and the analysis par-
allels that given above. Here we usually find that attribute values replace each other at suc-
cessive ascents in the tree. An example is the primode computation in a LAX case_clause:

rule case ::= case_label ’:’ statement_list.
attribution
case.primode < statement_list.primode;

rule cases case .
rule cases ::= cases ’//’ case.
attribution

cases[1].primode < balance (cases[2].primode, case.primode) ;

The value of cases[2].primode becomes irrelevant as soon as cases[1].primode has
been evaluated. A case may, however, contain another case_clause. Hence a stack must
be used rather than a variable.

By changing the attribution rules, we can often increase the number of attributes imple-
mentable by global variables or stacks. A specific change usually fixes a specific traversal
strategy, but any one of several changes (each implying a different traversal strategy) could
be used to achieve the desired effect. Thus the designer should avoid such changes until
the last possible time, when they can be coordinated with the ‘natural’ traversal strategies
determined by the basic information flow.
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8.4 Notes and References

Attribute grammars stem from the ‘syntax-directed compilers’ introduced by IRONS [1961,
1963b]. Irons’ grammars had a single, synthesized attribute attached to each nonterminal.
This attribute provided the ‘meaning’ of the subtree rooted in the nonterminal. KNUTH
[1968b, 1971b] proved that such a scheme was sufficient to define the meaning associated
with any structure tree, but pointed out that the description could be simplified considerably
through the use of inherited attributes in addition. (Sufficiency of synthesized attributes
leads immediately to the conclusion that all well-defined attribute grammars have the same
descriptive power.) Intrinsic attributes were first characterized by ScHULz [1976], although
LEWIS et al. [1974] had previously allowed certain terminal symbols to have ‘attributes whose
values are not given by rules’. The affix grammars of KOSTER [1971, 1976] are similar to
attribute grammars, the main difference being that affixes are considered to be variables while
attributes are constants. RAIHA [1980] provides a good overview of the attribute grammar
literature as it existed in 1979.

Our treatment of attribute classification differs from that of many authors because we
do not begin with disjoint sets of synthesized, inherited and intrinsic attributes. Instead,
Definition 8.2 classifies the attributes based upon the placement of the attribution rules.
TIENARI [1980] has derived results similar to Theorems 8.3 and 8.8 from a definition allowing
more than one attribution rule per attribute in a single production. His analog of Theorem 8.8,
however, includes the restriction to a single attribution rule as a part of the hypothesis.

Theorem 8.8 assumes ‘value semantics’ for the attribution rules: The operands of the rule
are evaluated before the rule itself, and hence the following represents a circularity:

a < if p then b else 1 fi; b + if not p then a else 2 fi;

‘Lazy evaluation’, in which an operand is not evaluated until its value is required, would
not lead to circularity in this case. The attendant broadening of the acceptable grammars is
not interesting for us because we are attempting to define the evaluation sequence statically.
Whenever there is a difference between value semantics and lazy evaluation, the evaluation
sequence must be determined dynamically.

Dynamic attribute evaluators based on cooperating sequential processes have been re-
ported by FANG [1972] and BANATRE et al. [1979]. BOROWIEC [1977] described a fragment
of COBOL in this manner. The process scheduling overhead can be avoided by deriving a
dependency graph from the specific tree being processed, and then converting this graph to a
partial order. GALLUCCI [1981] implemented such a system, adding dependency links to the
tree and using reference counts to derive the partial order.

One of the major arguments given in support of a dynamic evaluator is that it is simple to
implement. The actual evaluation algorithm is simple, but it will fail on certain programs if the
grammar is not well-defined. We have already pointed out that WAG testing is exponential,
[JAZAYERI et al., 1975; JAZAYERI, 1981] and hence occasional failure of the dynamic evaluator
is accepted by most authors advocating this strategy. Acyclicity of IDP(p) and IDS(X), a
sufficient condition for WAG, can be tested in polynomial time [KASTENS, 1980]. This test
forms the basis of all systems that employ subclasses of WAG. Such systems are guaranteed
never to fail during evaluation.

KENNEDY and WARREN [1976] termed the subclass of WAG for which IDP(p) and
IDS(X) are acyclic for all p and X ‘absolutely non-circular attribute grammars<« (ANCAG).
They developed an algorithm for constructing ANCAG evaluators that grouped attributes
together, avoiding individual dependency links for every attribute. The evaluation remains
dynamic, but some decisions are shifted to evaluator construction time. In a later paper,
KENNEDY and RAMANATHAN [1979] retain the ANCAG subclass but use a pure dynamic
evaluator. Their reasoning is that, although this strategy is less efficient at run time, it is
easier to understand and simpler to implement.
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Ordered attribute grammars were originated by KASTENS [1976, 1980], who used the term
‘arranged orderly’ to denote a partitioned grammar. OAG is a subclass of ANCAG for which
no decisions about evaluation order are made dynamically; all have been shifted to evaluator
construction time. This means that attribute lifetimes can be determined easily, and the
optimizations discussed in Section 8.3.2 can be applied automatically: In a semantic analyzer
for Pascal, constructed automatically from an ALADIN description by the GAG [KASTENS
et al., 1982] system, attributes occupied only about 20% of the total structure tree storage.

LEWIS et al. [1974] studied the problem of evaluating all attributes during a single depth-
first, left-to-right traversal of the structure tree. Making no use of the local acyclicity of
DDP(p), they derived the first three conditions we stated in Theorem 8.18. The same con-
ditions were deduced independently by BOCHMAN [1976], who went on to point out that
dependencies satisfying the fourth condition of Theorem 8.18 are allowed if the relationship
NDDP(p) is used in place of DDP(p). There is no real need for this substitution, however,
because if DD P(p) is locally acyclic then the dependency X;.a — X;.b immediately rules out
X;.b — Xj.a. Thus dependencies satisfying the fourth condition of Theorem 8.18 cannot lead
to any problem in left-to-right evaluation. Since local acyclicity is a necessary condition for
well-definedness, this assumption does not result in any loss of generality.

LAG(k) conditions similar to those of Theorem 8.20 were also stated by BOCHMAN [1976].
Again, he did not make use of local acyclicity to obtain the last condition of our result.
Systems based upon LAG(k) grammars have been developed at the Université de Montreal
[BOCHMANN and LECARME, 1974] and the Technische Universitit Miinchen [GIEGERICH,
1979].

The theoretical underpinnings of the latter system are described by RIPKEN [1977], WIL-
HELM [1977] and GANZINGER [1978]. Wilhelm’s work combines tree transformation with
attribution.

Alternating-evaluable grammars were introduced by JAZAYERI and WALTER [1975] as a
generalization of BOCHMANN’s work. Their algorithm for testing the AAG(k) condition does
not provide precise criteria analogous to those of Theorem 8.18, but rather uses specifications
such as ‘occur before [the current candidate] in the present pass’ to convey the basic idea. A
group at the University of Helsinki developed a compiler generator based upon this form of
grammar [RAIHA and SAARINEN, 1977; RAIHA et al., 1978].

ASBROCK [1979] and POZEFSKY [1979] considers the question of attribute overlap mini-
mization in more detail.

JAZAYERI and POZEFSKY [1977] and POZEFSKY [1979] give a completely different method
of representing a structure tree and evaluating a multi-pass attribute grammar. They propose
that the parser create k sequential files D; such that D; contains the sequence of attribution
rules with parameters for pass ¢ of the evaluation. Thus D; contains, in sequential form,
the entire structure of the tree; only the attribute values, arbitrarily arranged and without
pointers to subnodes, are retained in memory. POZEFSKY [1979] also considers the question
of whether the evaluation of a multi-pass grammar can be arranged to permit overlaying of
the attributes in memory.

Exercises

8.1 Write an attribute grammar describing a LAX basic symbol as an identifier, integer
or floating point. (Section A.1l describes these basic symbols.) Your grammar should
compute the intrinsic attributes discussed in Section 4.1.1 for each basic symbol (with
the exception of location) as synthesized attributes. Use no intrinsic attributes in your
grammar. Be sure to invoke the appropriate symbol and constant table operations
during your computation.
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8.2 [BANATRE et al., 1979] Write a module for a given well-defined attribute grammar
(G, A, R,B) that will build the attributed structure tree of a sentence of L(G). The
interface for the module must provide creation, access and assignment operations as
discussed in Section 4.1.2. The creation and assignment operations will be invoked by
parser actions to build the structure tree and set intrinsic attribute values; the access
operation will be invoked by other modules to examine the structure of the tree and
attribute values of the nodes. Within the module, access and assignment operations are
used to implement attribution rules. You may assume that all invocations of creation
and assignment operations from outside the module will precede any invocation of an
access operation from outside. Invocations from within the module must, of course, be
scheduled according to the dependencies of the attribute grammar. You may provide
an additional operation to be invoked from outside the module to indicate the end of
the sequence of external creation and assignment invocations.

8.3 Consider the following attribute grammar:
rule Z ::= s X.

attribution
X.a <— X.c;
X.b < X.a;

rule 7 ::= t X.
attribution
X.b < X.d;
X.a < X.b;

rule X ::

attribution
X.d « 1;
X.c < X.d;

1]
e

rule X ::= v.

attribution
X.c «+ 2;
X.d < X.c;

(a) Show that this grammar is partitionable using the admissible partition A;(X) =
{c,d}, A2(X) = {a,b}, A3(X) = {}.

(b) Compute IDP(p) and IDS(X) replacing NDDP(p) by DDP(p) in Defini-
tion 8.12. Explain why the results are cyclic.

(c) Modify the grammar to make I DP(p) and IDS(X) acyclic under the modification

of Definition 8.12 postulated in (b).
(d) Justify the use of NDDP(p) in Definition 8.12 in terms of the modification of (c).

8.4 Compute IDP and IDS for all p and X in the grammar of Figure 8.1. Apply construc-
tion 8.16, obtaining a partition (different from that given at the end of Section 8.2.1),
and verify that Theorem 8.13 is satisfied. Compute DP for all p, and verify that
Theorem 8.15 is satisfied.

8.5 Show that a partitionable grammar that is not ordered can be made into an ordered
grammar by adding suitable ‘artificial dependencies’ X.a — X.b to some IDS(X).
(In other words, the gap between partitionable and ordered grammars can always be
bridged by hand.)
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8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

Define a procedure Evaluate P for each production of an LAG(1) grammar such that
all attributes of a structure tree can be evaluated by applying Evaluate Z (where Z
is the production defining the axiom) to the root.

A right-to-left attribute grammar may have both inherited and synthesized attributes.
All of the attribute values can be obtained in some number of depth-first, right-to-left
traversals of the structure tree. State a formal definition for RAG(k) analogous to
Definition 8.19 and prove a theorem analogous to Theorem 8.20.

[JAZAYERI and WALTER, 1975] Define the class of alternating evaluable attribute gram-
mars AAG(k) formally, state the condition they must satisfy, and give an analysis pro-
cedure for verifying this condition. (Hint: Proceed as for LAG(2k), but make some of
the conditions dependent upon whether the traversal number is odd or even.)

Extend the basic definitions for multi-pass attribute grammars to follow the hybrid
linearization strategy of Figure 4.4d: Synthesized attributes can be evaluated not only
at the last visit to a node but also after the visit to the i** subnode, 1 < i < n, or
even prior to the first subnode visit (¢ = 0). How does this change the procedure
determine_traversals?

Show that the LAG(k), RAG(k) or AAG(k) condition can be violated by a partitionable
attribute grammar only when a syntactic rule leads to recursion.

Complete the class definitions of Figure 8.16 and fill in the remaining details to obtain
a complete program that parses an assignment statement by recursive descent and then
computes the attributes. If you do not have access to SIMULA, convert the schema
into MODULA2, Ada or some other language providing coroutines or processes.

Under what conditions will the tabular implementation of an evaluator for a partitioned
attribute grammar require less space than the coroutine implementation?

Give detailed schemata similar to Figure 8.17 for LAG(k) and AAG(k) evaluators,
along the lines sketched at the end of Section 8.3.1.

Consider the implementation strategies for attribution algorithms exemplified by Fig-
ures 8.17 and 8.19.

(a) Explain why the tree node of Figure 8.19b is less space-efficient than that of

Figure 8.17a.
(b) Show that, by coding the interpreter of Figure 8.19¢ in assembly language and

assigning appropriate values to the child field of Figure 8.19a, it is possible to use
the tree node of Figure 8.17a and also avoid the need for the sproc_s procedures
of Figure 8.17c.

Modify Figure 8.1 by replacing name with ezpression everywhere, and changing the
second rule to ezpression ::= '(’ ezpression addop ezpression ')’. Consider an
interpretive implementation of the attribution algorithms that follows the model of
Exercise 8.16.

(a) Show the memory layout of every possible node.
’_’

(b) Define another rule, addop ::= ’-’, with a suitable attribution procedure. What

nodes are affected by this change, and how?
(c) Show that the addop node can be incorporated into the ezpression node without

changing the attribution procedures for addop. What is the minimum change
necessary to the interpreter and the attribution procedure for ezpression? (Hint:
Introduce a second interpretation for ¢; ;.)



Chapter 9

Semantic Analysis

Semantic analysis determines the properties of a program that are classed as static semantics
(Section 2.1.1), and verifies the corresponding context conditions — the consistency of these
properties.

We have already alluded to all of the tasks of semantic analysis. The first is name anal-
ysis, finding the definition valid at each use of an identifier. Based upon this information,
operator identification and type checking determine the operand types and verify that they
are allowable for the given operator. The terms ‘operator’ and ‘operand’ are used here in
their broadest sense: Assignment is an operator whether the language definition treats it as
such or not; we also speak of procedure parameter transmission and block end (end of extent)
as operations.

Section 9.1 is devoted to developing a formal specification of the source language from
which analysis algorithms can be mechanically generated by the techniques of Chapters 5-8.
Our goal for the specification is clarity, so that we can convince ourselves of its correctness.
This is an important point, because the correspondence between the specification and the
given source language cannot be checked formally. In the interest of clarity, we often use
impractically inefficient descriptions that give the effect of auxiliary functions, but do not
reflect their actual implementation. Section 9.2 discusses the practical implementation of
these auxiliary functions by modules.

9.1 Description of Language Properties via Attribute Gram-
mars

The description of a programming language by an attribute grammar provides a formal defi-
nition of both its context-free syntax and its static semantics. (Dynamic semantics, such as
expression evaluation, could be included also; we shall not pursue that point, however.) We
therefore approach the total problem of analysis via attribute grammars as follows:

e First we develop an attribute grammar and replace the informal language description
with it.

e From the attribute grammar we extract the context-free syntax and transform it to a
parsing grammar in the light of the chosen parsing technique.

e Finally we implement the attribution rules to obtain the semantic analyzer.

The parsing grammar and implementation of the attribution rules can be derived individ-
ually from the informal language definition, as we have done implicitly up to this point. The
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advantage of using attribute grammars (or some other formal description tool such as denota-
tional semantics) lies in the fact that one has a comprehensive and unified specification. This
ensures that the parsing grammar, structure tree and semantic analysis ‘fit together’ without
interface problems.

Development of an attribute grammar consists of the following interdependent steps:

e Development of the context-free syntax.

e Determination of the attributes and specification of their types.
e Development of the attribution rules.

e Formulation of the auxiliary functions.

Three major aspects of semantic analysis described via attribution are scope and name
analysis, types and type checking, and operator identification in expressions. With a few
exceptions, such as the requirement for distinct case labels in a case clause (Section A.4.6),
all of the static semantic rules of LAX fall into these classes. Sections 9.1.1 to 9.1.4 examine
the relevant attribution rules in detail.

Many of the attribution rules in a typical attribute grammar are simple assignments. To
reduce the number of such assignments that must be written explicitly, we use the following
conventions: A simple assignment to a synthesized attribute of the left-hand side of a pro-
duction may be omitted when there is exactly one symbol on the right-hand side that has
a synthesized attribute with the same name. Similarly, simple assignments of inherited at-
tributes of the left-hand side to same-named inherited attributes of any number of right-hand
side symbols may be omitted. In important cases we shall write these (semantic) transfers
for emphasis. (Attribute grammar specification languages such as ALADIN [KASTENS et al.,
1982] contain even more far-reaching conventions.)

We assume for every record type R used to describe attributes the existence of a function
N_R whose parameters correspond to the fields of the record. This function creates a new
record of type R and sets its fields to the parameter values. Further, we may define a list of
objects by records of the form:

type
t_list = Tt_list_element;
t_list_element = record first : t; rest : t_list end;

If e is an object of type ¢t then we shall also regard e as a single element of type
t_list wherever the context requires this interpretation. We write 1_1 & 1.2 to indicate
concatenation of two lists, and hence e & 1 describes addition of the single element e to the
front of the list 1. ‘Value semantics’ are assumed for list assignment: A copy of the entire
list is made and this copy becomes the value of the attribute on the left of the arrow.

9.1.1 Scope and Name Analysis

The scope of identifiers is specified in most languages by the hierarchical structure of the
program. In block structured languages the scopes are nested. Languages like FORTRAN
have only a restricted number of levels in the hierarchy (level 1 contains the subprogram and
COMMON names, level 2 the local identifiers of a subprogram including statement numbers).
Further considerations are the use of implicit definition (FORTRAN), the admissibility (AL-
GOL 60) or inadmissibility (LIS) of new definitions in inner blocks for identifiers declared in
outer blocks, and the restriction of scope to the portion of the block following the definition
(C). We shall consider the special properties of field selectors in Section 9.1.3.

Every definition of an identifier is represented in the compiler by a variant record. The
types of Figure 9.1a suffice for LAX; different variants would be required for other languages.
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type

definition_class = (
object_definition, (* Section A.3.1 x)
type_definition, (* Section A.3.1 x)
label_definition, (* Section A.2.6 *)
unknown_definition) ; (* Undefined identifier *)

definition = record

uid : integer; ... (* Discussed in Section 9.1.3 *)
ident : symbol; (* Identifier being defined x)

case k : definition_class of
object_definition : (object_type:mode); (*mode is discussed *)
type_definition : (defined_type:mode); (*in Section 9.1.2 *)
label_definition,
unknown_definition : ()
end;

a) The attributes of an identifier

definition_table = 1di_element ;
dt_element = record first:definition; rest:definition_table end;

b) Type of the environment attribute

rule name ::= identifier_use.
condition
tdentifier_use.corresponding_definition.k = object_definition;

rule identifier_use ::= identifier.
attribution
tdentifier_use.corresponding_definition <
current_definition (identifier.sym, identifier_use.environment);
c¢) Use of an environment

Figure 9.1: Environments

For example, the variant type_definition would be missing in a language without type
identifiers and FORTRAN would require additional variants for subprograms and COMMON
blocks because these are not treated as objects. The definition record could also specify
further characteristics (such as the parameter passing mechanism for ALGOL 60 parameters
or the access rights to Ada objects) that are known at the defining occurrence and used at
the applied occurrences.

The definition class unknown_definition is important because semantic functions must
deliver a value under all circumstances. If no definition is available for an identifier, one must
be supplied (with the variant unknown_definition).

Records of type definition are collected into linear lists referenced as the environment
attribute by every construct that uses an identifier. The rules for this attribute describe the
scope rules of the language. Figure 9.1b gives the type of this attribute, and Figure 9.1c
shows a typical example of its use. (Examples such as that of Figure 9.1c will normally
contain only the attribution rules necessary for the point that we are trying to make. Do not
assume, therefore, that no additional attributes or attribution rules are associated with the
given syntax rule.)
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rule statement_list ::= statements.
attribution
statements.environment <
statements.definitions & statement_list.environment;
condition
unambiguous (statements.definitions);

a) Language construct that changes the environment

rule unlabelled _statement ::= expression.
attribution
ezpresstion.environment <— unlabelled_statement.environment;

b) Language construct that does not change the environment
Figure 9.2: Environment Manipulation

The introduction of an additional nonterminal ident<fier_use in Figure 9.1c is necessary
because we cannot attach the attribute corresponding_definition to either the nonterminal
name or the terminal identifier. For the former the attribute would be meaningless in the
production name := name ' 7', while for the latter we would have difficulty with defining
occurrences of identifiers.

In LAX, the environment attribute is changed only upon entry to ranges (A.2.0.2). Fig-
ure 9.2a shows the change associated with a statement_list. For language constructs that
are not ranges, the environment attribute is simply passed along unchanged as illustrated in
Figure 9.2b. (Figure 9.2b is an example of a ‘transfer rule’, where we would normally not
write the attribute assignment.)

The synthesized attribute statements.definitions is a definition_table that has
one entry for each label definition. It describes the identifiers given new meanings in the
statement_list. This attribute is constructed as shown in Figure 9.3. (Note that the rule
statements ::= statement is simply a transfer, and hence the attribution rules are omitted.)
The function gennum is a source of unique integers: Each invocation of gennum yields a new
integer.

Section A.2.2 gives the visibility rules for LAX. Implementation of these rules in the
attribute grammar is illustrated by Figures 9.1c and 9.2a. The function unambiguous is used
in Figure 9.2a to verify that statements.definitions contains no more than one definition
of any identifier. Current_definition (Figure 9.1c) searches the environment linearly from
left to right and selects the first definition for the desired identifier. As shown in Figure 9.2a,
the local definitions are placed at the front of the environment list; they therefore ‘hide’ any
definitions of the same identifiers appearing in outer ranges because a linear search will find
them first.

We must reiterate that attributes belonging to different symbols in a production or to
different nodes in a structure tree are different, even if they are identically named. Thus
there is not just one attribute environment, but as many as there are nodes in the structure
tree. The fact that these many environments will be represented by a single definition table
in the implementation discussed in Section 9.2 does not concern us in the specification. In the
same way, it does not follow from the informal specification of current_definition given
above that the implementation must also use an inefficient linear search; this strategy is only
a simple specification of the desired effect.

If the scope of a definition begins at that definition, and not at the beginning of the range in
which it appears (an important property for one-pass compilers), then the environment must
be passed ‘along the text’ as shown in Figure 9.4. The right-recursive solution of Figure 9.4a
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rule statements statement .

rule statements
attribution
statements[1].definitions <
statements[2].definitions & statement.definitions;

statements ’;’ statement.

rule statement ::= label_definition statement .
attribution
statement[1].definitions <«
label_definition.def & statement[2].definitions;

rule statement ::= unlabelled_statement.
attribution
statement.definitions < nil;

rule label_definition ::= tdentifier ’:’.
attribution
label_definition.def <
N_definition (gennum, identifier.sym, label_definition);

Figure 9.3: Label Definition

requires the parser to accumulate entries for all of the declarations on its stack before it can
begin reducing declaration lists. This can lead to excessive storage requirements. A better
approach is to use left recursion, as shown in Figure 9.4b. In this case the parser will never
have more than one declaration entry on its stack, no matter how many declarations appear in
the declaration list. Figure 9.4b is easy to understand, but it has the unpleasant property that
for each declaration the original environment is augmented by all of the definitions resulting
from earlier declarations in the list. Figure 9.4c, where the environment is extended in a
stepwise manner, is the best strategy.

Figure 9.4c makes the passing of the environment ‘along the text’ explicit. Declara-
tion_list has an (inherited) attribute environment_in that describes the initial state and
a (synthesized) attribute environment_out that describes the final state. The latter consists
of the former augmented by the current definition. Although this solution appears to be
quite costly because of the multiple environments, it is actually the most efficient: Simple
analysis shows that all of the environments replace one another and therefore all of them can
be represented by a single data structure.

It is clear that all of the definitions of Figure 9.4 are equivalent from the standpoint of
the language definition. If, however, we wish to specify the semantic analyzer then we prefer
Figure 9.4c. Examining a given attribute grammar for optimizations of this kind often pays
dividends.

The implicit declarations of FORTRAN are described in a similar fashion, with each
identifier_use a potential declaration (Figure 9.5). We pass the environment along the
text of the expressions and statements, modifying it at each operand, by rules analogous
to those of Figure 9.4c. This strategy avoids the problem of double implicit declarations in
expressions such as [ * I.

Greater difficulties arise from the fact that the Pascal fragment shown in Figure 9.6 is
illegal because % is declared in p but used prior to its declaration. This is not allowed,
even though a declaration of % exists outside of p. On the other hand, the use of ¢ in the
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rule declaration_list ::= declaration ’;’ declaration_list.
attribution
declaration.environment < declaration_list[1].environment;
declaration_list[2].environment <
declaration.definitions & declaration_list[1].environment;
declaration_list[1].definitions <
declaration.definitions & declaration_list[2].definitions;

a) Right-recursive solution

rule declaration_list ::= declaration_list ’;’ declaration.
attribution
declaration_list[2].environment < declaration_list[1].environment
declaration.environment <—
declaration_list[2].definitions & declaration_list[1].environment;
declaration_list[1].definitions <
declaration_list[2].definitions & declaration.definitions;

b) Left-recursive solution

rule declaration_list ::= declaration_list ’;’ declaration.
attribution
declaration_list[2].environment_in <
declaration_list[1].environment_in;
declaration.environment < declaration_list[2].environment_out;
declaration_list[1].environment_out <+
declaration_list[2].environment_out & declaration.definitions;
declaration_list[1].definitions <
declaration_list[2].definitions & declaration.definitions;

c) Stepwise environment construction

Figure 9.4: Scope Beginning at the Declaration

rule identifier_use ::= identifier.
attribution
i1dentifier_use.implicit_definitions <
if found (identifier.sym, identifier_use.environment) then nil
else
N_definition (
gennum,
i1dentifier.sym,
object_definition,
identifier.implicit_type);
i1dentifier_use.corresponding_definition <
current_definition (
tdentifier.sym,
identifier_use.implicit_definitions & identifier_use.environment);

Figure 9.5: Implicit Declarations in FORTRAN
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const = = 17;

type t = ...; (x First declaration of ¢t x*)
procedure p;
type
j =1ij; (* Use of 4 illegal here )
1 = 1; (* This makes the previous line illegal *)
type
tt = 1t; (x Refers to second declaration of t *)
t = ...; (* Second declaration of t *)

Figure 9.6: Definition Before Use in Pascal

declaration of ¢t is correct and identifies the type whose declaration appears on the next
line. This problem can be solved by a variant of the standard technique for dealing with
declarations in a one-pass ALGOL 60 compiler (Exercise 9.5).

9.1.2 Types

A type specifies the possible operations on an entity and the coercions that can be applied
to it. During semantic analysis this information is used to identify operators and verify
the compatibility of constructs with their environment. We shall concentrate on languages
with manifest types. Languages with latent types, in which type checking and operator
identification occur during execution, are treated in the same manner except that these tasks
are deferred.

In order to perform the tasks outlined in the previous paragraph, every structure tree
node that represents a value must have an attribute describing its type. These attributes
are usually tree-valued, and are built of linked records. For uniformity, the compiler writer
should define a single record format to be used in building all of them. The record format
must therefore be capable of representing the type of any value that could appear in a source
program, regardless of whether the language definition explicitly describes that value as being
typed. For example, the record format used in a LAX compiler must be capable of representing
the type of nil because nil can appear as a value. Section A.3.1 does not describe nil as
having a specific type, but says that it ‘denotes a value of type ref t, for arbitrary ¢”.

Figure 9.7 defines a record that can be used to build attributes describing LAX types.
Type class bad_type is used to indicate that errors have made it impossible to determine the
proper type. The type itself must be retained, however, since all attributes must be assigned
values during semantic analysis. Nil_type is the type of the predefined identifier nz1. We
also need a special mechanism for describing the result type of a proper procedure. Void_type
specifies this case, and in fact is used whenever a result is to be discarded.

For languages like ALGOL 60 and FORTRAN, which have only a fixed number of types,
an enumeration similar to type_class serves to represent all types. Array types must also
specify the number of dimensions, but the element type can be subsumed into the enumeration
(e.g. integer_array_type or real_array_type). Pascal requires additional specifications for
the index bounds; in LAX the bounds are expressions whose values do not belong to the static
semantics, as illustrated by the rules of Figure 9.8.

Figure 9.9 shows how procedure types are constructed in LAX. (Bad_symbol represents a
nonexistent identifier.) Because parameter transmission is always by value (reference param-
eters are implemented by passing a ref value as discussed in Section 2.5.3) it is not necessary
to give a parameter transmission mechanism. In Pascal or ALGOL 60, however, the trans-
mission mechanism must be included for each parameter. For a language like Ada, in which
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type
type_class = (
bad_type, nil_type, void_type, bool_type, int_type, real_type,
ref_type,
arr_type,
rec_type,
proc_type,
unidentified_type, (*x See Section 9.1.3 x)
identified_type); (* See Section 9.1.3 x)
mode = record
case k : type_class of
bad_type, nil_type, void_type, bool_type,
int_type, real_type : ();
ref_type : (target : Tmode);

arr_type : (dimensions : integer; element : Tmode);
rec_type : (fields : definition_table);
proc_type : (parameters : definition_table; result : Tmode);

unidentified_type : (identifier : symbol);
identified_type : (definition : integer)
end;
Figure 9.7: Representation of LAX Types

keyword association of arguments and parameters is possible, the identifiers must be retained
also. We retain the parameter identifiers, even though this is not required in LAX, to reduce
the number of attributes for the common case of a procedure declaration (A.3.0.8). Here we
can use the procedure type attribute both to validate the type compatibility and to provide
the parameter definitions. If we were to remove the parameter identifiers from the procedure
type this would not be possible.

When types and definitions are represented by attributes, the complete set of declarations
(other than procedure declarations) can, in principle, be deleted from the structure tree
to avoid duplicating information both as attributes and as subtrees of the structure tree.
Actually, however, this compression of the representation should only be carried out under
extreme storage constraints; normally both representations should be retained. The main
reason is that expressions (like dynamic array bounds) appearing within declarations cannot
be abstracted as attributes because they are not evaluated until the program is executed.

Context-sensitive properties of types lead to several relations that can be expressed as
recursive functions over types (objects of type mode). These basic relations are:

Equivalent : Two types t and ¢’ are semantically equivalent.

Compatible : Usually an asymmetric relation, in which an object of type ¢ can be used in
place of an object of type t”.

Coercible : A type t is coercible to a type t’ if it is either compatible with ¢’ or can be
converted to £’ by a sequence of coercions.

Type equivalence is defined in Section A.3.1 for LAX; this definition is embodied in the
procedure type_equivalent of Figure 9.10. Type_equivalent must be used in all cases
where two types should be compared. The direct comparison ¢; = 5 may not yield true for
equivalent composite types because the pointers contained in the type records may address
equivalent types represented by different records.

The test for equivalence of type identifiers is for the identity of the type declarations
rather than for the equivalence of types they declare. This reflects the name equivalence
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rule of Section A.3.1. If structural equivalence is required, as in ALGOL 68, then we must
compare the declared types instead. A simple implementation of this comparison leads to
infinite recursion for types containing pointers to themselves. The recursion can, however, be
stopped as soon as we attempt to compare two types whose comparison has been begun but
has not yet terminated. During comparison we therefore hold such pairs in a stack. Since the
only types that can participate in infinite recursion are those of class identified_type, we
enter pairs of identified_type types into the stack when we begin to compare them. The
next pair is checked against the stack before beginning their comparison; if the pair is found
then they are considered to be equivalent and no further comparison of them is required. (If
they are not equivalent, this will be detected by the first comparison — the one on the stack.)

rule type_specification ::= ’ref’ type_specification.
attribution
type_specification[1].repr < N_mode (ref_type,
type_specification[2].repr);

rule type_specification ::= ’ref’ array_type.
attribution
type_specification.repr < N_mode (ref_type, array_type.repr);

rule array_type ::= ’array’ ’[’ dimensions ’]’ ’of’ type_specification.
attribution
arraoy_type.repr <
N_mode (arr_type, dimensions.count, type_specification.repr);

rule dimensions ::= .
attribution
ditmensions.count <« 1;

rule dimensions ::= dimensions ’,’.
attribution
dimensions[1].count < dimensions[2].count + 1;

rule record_type ::= ’record’ fields ’end’.
attribution

record_type.repr < N_mode (rec_type, fields.definitions);
condition

unambiguous (fields.definitions) ;

rule fields field.

rule fields
attribution
fields[1].definitions < fields[2].definitions & field.definitions;

fields ’;’ field.

rule field ::= <dentifier ’:’ type_specification.
attribution
fteld.definttions <
N_definition (gennum, identifier.sym, object_definition,
type_specification.repr);
Figure 9.8: Type Definition
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rule type_specification ::= ’procedure’ parameter_type_list result_type.
attribution
type_specification.repr <
N_mode (proc_type ,parameter_type_list.definitions,result_type.repr);

rule parameter_type_list
attribution
parameter_type_list.definitions < nil;

rule parameter_type_list ::= ’(’ parameter_types ’)’.
rule parameter_types ::= type_specification.
attribution

parameter_types.definitions <
N_definition (gennum, bad_symbol, type_definition,
type_specification.repr);

rule parameter_types ::= parameter_types ’,’ type_specification.
attribution
parameter_types[1].definitions <
parameter_types[2].definitions &
N_definition (gennum, bad_symbol, type_definition,
type_specification.repr);

Figure 9.9: Procedure Type Definition

Figure 9.10 compares exactly two types. If we wish to group all types of a block, procedure
or program into classes of structurally equivalent types then it is better to use the refinement
algorithm of Section B.3.2 as generalized in Exercise B.7. This algorithm has the advantage
of reducing the number of records that represent types, and therefore the amount of storage
required to hold the attributes.

The Pascal Standard proposes name equivalence for all types except sets and subranges,
whose equivalence depends upon the equivalence of the base types. In addition, however, it
defines the property of type compatibility and relies upon that property for assignments and
parameter transmission. Among other things, two array types are compatible if they have the
same bounds and compatible element types. Other languages also provide (explicitly or im-
plicitly) a somewhat weaker compatibility relation in addition to the strong type equivalence.
There is no separate type compatibility rule in LAX.

The allowable LAX coercions (Section A.4.2) are embodied in the function coercible
(Figure 9.11). Note that when the type class of a type is bad_type any coercion is allowed.
The reason is that this class can only occur as the result of an error. If we did not allow the
coercion, the use of an erroneous construct would lead to further (superfluous) error messages.

9.1.3 Declarations

Figure 9.12 shows the attribution rules for variable and identity declarations in LAX. A
definition is created for each declaration, just as was done for label definitions in Figure 9.3.
Note that the variable declaration creates a reference to the given type, while the identity
declaration uses that type as it stands. This is because the variable declaration creates ‘a
variable referring to an undefined value (of the specified type)’ (Section A.3.2) and the identity
declaration creates ‘a new instance of the value (of the specified type)’ (Section A.3.3).
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function type_equivalent (t1, t2 : mode) : boolean;
(*x Compare two types for equivalence *)
function compare_parameters (f1, f2 : definition_table) : boolean;
(* Compare parameter lists for equivalent types *)
begin (* compare_parameters *)
if f1 = nil then compare_parameters := f2 = nil
else if f2 = nil then compare_parameters := false
else compare_parameters :=
type_equivalent (f11. first.object_type, f21.first.object_type)
and compare_parameters (fif.rest, f2.rest)
end; (* compare_parameters *)
begin (* type_equivalent *)
if t1.k <> t2.k then type_equivalent := false
else case t1.k of
ref_type
type_equivalent := type_equivalent (t1.target!, t2.target!);
arr_type
type_equivalent :=
t1.dimension = t2.dimension and
type_equivalent (tl.elementl, t2.element?);
rec_type
type_equivalent
proc_type
type_equivalent :=
compare_parameters (tl.parameters, t2.parameters) and
type_equivalent (t1.resultt, t2.result?);
tdentified_type
type_equivalent := tl.definition = t2.definition
otherwise type_equivalent := true
end;
end; (*x type_equivalent *)

false;

Figure 9.10: Type Equivalence in LAX

function coercible (t1, t2 : mode) : boolean;
(* Verify that t1 can be coerced to t2 x)
begin (* coercible *)
if type_equivalent (t1, t2) or t2.k = woid_type or t2.k = bad_type

then coercible := true

else case t1.k of
bad_type : coercible := true
nil_type : coercible := t2.k = ref_type;
int_type : coercible := t2.k = real_type;

ref_type : coercible := coercible (tl1.target?, t2);

proc_type: coercible := tl.parameters = nil and
coercible (tl.resultt, t2)

otherwise coercible := false

end;

end; (x coercible )

Figure 9.11: Coercibility in LAX
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rule variable_declaration ::= <dentifier ’:’ type_specification.
attribution
variable_declaration.definitions <
N_definition (gennum, identifier.sym, object_definition,
N_mode (ref_type, type_specification.repr));

rule variable_declaration ::=
identifier ’:’ ’array’ ’[’ bounds ']’ ’of’ type_specification.
attribution
variable_declaration.definitions <
N_definition (gennum, identifier.sym, object_definition,
N_mode (ref_type,
N_mode (arr_type, bounds.count,
type_specification.repr)));

rule bounds ::= bound_pair.
attribution

bounds.count := 1;
rule bounds ::= bounds ’,’ bound_pair.
attribution

bounds[1].count := bounds[2].count + 1;

rule identity_declaration ::=
itdentifier ’is’ expresstion ’:’ type_specification.
attribution
tdentity_declaration.definitions <
N_definition (gennum, identifier.sym, object_definition,
type_specification.repr);

Figure 9.12: Variable and Identity Declarations

The treatment of array variables in Figure 9.12 reflects the requirements of Section A.3.2.
We construct the array type based only on the dimensionality and element type. The bounds
must be integer expressions, but they are to be evaluated at execution time.

Type declarations introduce apparent circularities into the declaration process: The defi-
nition of an identifier must be known in order to define that identifier. One obvious example,
the declaration type t = record z : real; p : ref t end, was mentioned in Section 8.1.
Another is the fact that the analysis process discussed in Section 9.1.1 assumes we can con-
struct definitions for all identifiers in a range and then form an environment for that range.
Unfortunately the definition of a variable identifier includes its type, which might be specified
by a type identifier declared in the same range. Hence the environment must be available to
obtain the type.

We solve the problem in three steps, as shown in Figure 9.13, using the untdenti-
fied_type and identified type variants of mode:

1. Collect all of the type declarations of a range into one attribute, of type defini-
tion_table. Any type identifiers occurring in the corresponding types are not yet
identified, but are given by the unidentified_type variant.
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rule type_specification ::= identifier.
attribution
type_specification.repr < N_mode (unidentified_type, identifier.sym);

a) Reference to a type identifier

rule type_declaration ::= ’type’ identifier ’=’ record_type.
attribution

type_declaration.definitions <

N_definttion (gennum,identifier.sym, type_definition,record_type.repr);

rule declaration vartable_declaration.

rule declaration i1dentity_declaration.

rule declaration type_declaration.
rule declarations ::= declarations ’;’ declaration.
attribution
declarations[1].definitions <
declarations[2].definitions & declaration.definitions;

rule block ::= ’declare’ declarations ’begin’ statements ’end’.
attribution
declarations.environment <
complete_env (
declarations.definitions,
declarations.definitions & statements.definitions &
block.environment) & statements.definitions & block.environment ;
statements.environment < declarations.environment;
condition
unambiguous (declarations.definitions & statements.definitions);

b) Completing the type declarations
Figure 9.13: Type Declarations

2. As soon as step (1) has been completed, transform the entire attribute to an-
other definition_table in which each unidentified type has been replaced by an
identified_type that identifies the proper definition. This transformation uses the
environment inherited by the range as well as the information present in the type dec-
larations.

3. Incorporate the newly-created defintition_table into the range’s environment, and
then process all of the remaining declarations (none of which are type declarations).

Complete_env is a recursive function that traverses the definitions seeking unidentified
types. Whenever one is found, identify_type (Figure 9.14) is used to obtain the current
definition of the type identifier. Note that ident<fy_type must use a unique representation
of the definition, not the definition itself, corresponding to the type identifier. The reason
is that, if types involve recursive references, we cannot construct any of the definitions until
we have constructed all of them! (Remember that attributes are not variables, so it is not
possible to construct an ‘empty’ definition and then fill it in later.)
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function identify_type (s : symbol; e : definition_table) : mode;

(* Find the type defined by an identifier *)
begin (* identify_type *)
if e = nil then identify_type := N_mode (bad_type)
else with ef, first do

if s <> ident

then identify_type := identify_type (s, rest)

else if def.k <> type_definition

then identify_type := N_mode (bad_type);

else identify_type := N_mode (identified_type, uid)
end; (*x identify_type *)

Figure 9.14: Type Identification

9.1.4 Expressions and Statements

The a priori type (primode) of an expression is a synthesized attribute, and describes the type
with which a result is computed; the a posteriori type (postmode) is an inherited attribute,
and describes the type required by the context. If these two types are different then a sequence
of coercion operations must be used during execution to convert the value from one to the
other.

The a posteriori type of a particular expression may or may not depend upon its a priori
type. If the expression is an operand of an operator indication like +, which can stand for
several operations (e.g. integer addition, real addition), then its postmode depends upon the
primode attributes of both operands. If, on the other hand, the expression is an array index
in LAX then postmode is integer independent of the expression’s primode.

Some constructs, like the LAX clause, may not yield a result of the same type every time
they are executed. This does not lead to difficulty when the construct appears in a context
where the a posteriori type is fixed, because each part of the construct simply inherits the
fixed postmode. When the a posteriori type depends upon the a priori types of the operands,
however, we need a type t to serve as a ‘model a priori type’ in place of the result types
t1,...,t,. This type is obtained by balancing: A set of types t1,...,t,, n > 1 can be balanced
to a type t if each ¢; is coercible to t, and there is no type t' coercible to ¢ such that each ¢;
is coercible to t'.

For LAX (and most other languages) balancing is commutative and ‘associative’ (Exer-
cise 9.11), so that we may restrict ourselves to the case n = 2 (Figure 9.15).

Three facts were used in constructing balance:

e If 1 is coercible to but not equivalent to to, 2 is not coercible to t;.

e If not voided, the result has the same base type (type after all references and procedures
have been removed) as one of the operands.

e If¢; is coercible to the base type of to but not to ts itself, the result type is a dereferencing
and/or deproceduring of ts.

If LAX types t; and ¢, are coerced to an a posteriori type t’, then the type balance(t1,t3)
always appears as an intermediate step. This may not be true in other languages, however. In
ALGOL 68, for example, balance (integer, real) = real but both types can be coerced
to union (integer, real) and in this case integer is not coerced to real first.

Figure 9.16 illustrates the use of balancing. In addition to the attributes primode and
postmode, this example uses label_values (synthesized, type case_selectors). Postmode
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function base_type (t : mode) : mode;
(x Remove all levels of reference and procedure call from a type *)
begin (* base_type *)
if t.k = ref_type then base_type := base_type (t.targett)
else if ¢t.k = proc_type then
if t.parameters <> nil then base_type := ¢
else base_type := base_type (t.resultt)
else base_type := ¢
end; (*x Dbase_type *)

function balance (t1, t2 : mode) : mode;
(* Obtain the representative a priori type of t1,t2 *)
begin (* balance *)
if coercible (t1, t2) then balance := t2
else if coercible (t2, t1) then balance := ti1
else if coercible (t1, base_type (t2)) then
case t2.k of
ref_type : balance := balance (i1, t2.target!);
proc_type : balance balance (t1, t2.resultt)
end
else if coercible (t2, base_type (t1)) then
case t1.k of
ref_type : balance := balance (t1.targetf, t2);

proc_type : balance := balance (t1.resultf, t2)
end
else N_mode (woid_type); (* incompatible types *)

end; (x balance *)

Figure 9.15: Balancing in LAX

is simply passed through from top to bottom, so we follow our convention of not writing these
transfers explicitly. Label_values collects the values of all case labels into a list so we can
check that no label has occurred more than once (Section A.4.6).

Note that there is no condition checking coercibility of the resulting a priori type of the
case clause to the a posteriori type. Similarly, the a priori type of the selecting expression is
not checked against its a posteriori type in these rules. Such tests appear only in those rules
where the a priori type is determined by considerations other than balancing or transfer from
adjacent nodes.

Figure 9.17 illustrates some typical attribution rules for primode and postmode in ex-
pressions. Table A.2 requires that the left operand of an assignment be a reference, and
Section A.4.2 permits only dereferencing coercions of the left operand. Thus the assignment
rule invokes deproc (Figure 9.18)

Figure 9.18 to obtain an a posteriori type for the name. Note that there is no guarantee
that the type obtained actually is a reference, so additional checks are needed. Coercible
(Figure 9.11) is invoked to verify that the a priori type of the assignment itself can be coerced
to the a posteriori type required by the context in which the assignment appears. As can be
seen from the remainder of Figure 9.17, this check is made every time an object is created.

Assignment is the only dyadic operator in Table A.2 whose left and right operands have
different types. In all other cases, the types of the operands must be the same. The attribution
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type
case_selectors = Tcs_element;
cs_element = record first : integer; rest : case_selectors end;

a) Type of label_values

rule case_clause ::=

’case’ ezpresston ’of’ cases ’else’ statement_list ’end’.
attribution
case_clause.primode < balance (cases.primode,

statement_list.primode);

erpression.postmode < N_mode (int_type);
condition
values_unambiguous (cases.label_values);

rule cases case.

rule cases cases ’//’ case.
attribution
cases[1].primode < balance (cases[2].primode, case.primode);

cases[1].label_values < cases[2].label_values & case.label_values;

rule case ::= case_label ’:’ statement_list.
attribution
case. label_values < case_label.value;

b) Attribution rules

Figure 9.16: Case Clauses

rules for comparison show how balance can be used in this case to obtain a candidate
operand type. The two rules for egop illustrate placement of additional requirements upon
this candidate.

The attribution for a simple name sets the a priori type to the type specified by the
identifier’s definition, and must also verify (via coercible) that the a priori type satisfies
the requirements of the context as specified by the a posteriori type. Field selection is a bit
trickier. Section A.4.4 states that the name preceding the dot may yield either an object or
a reference to an object. This requirement, which also holds for index selection, is embodied
in one_ref (Figure 9.18). Note that the environment in which the field identifier is sought is
that of the record type definition, not the one in which the field selection appears. We must
therefore write the transfer of the environment attribute explicitly. Finally, the type yielded
by the field selection is a reference if and only if the object yielded by the name to the left of
the dot was a reference (Section A.4.4).

Figure 9.19 shows how the field definitions of the record are obtained. Section A.3 requires
that every record type be given a name. The declaration process described in Figures 9.13
and 9.14 guarantees that if this name is associated with an identified_type, the type
definition will actually be in the current environment. Moreover, the type definition cannot
specify anything but a record. Thus record_env need not verify these conditions.

In most programming languages the specification of the operator and the a posteriori types
of the operands uniquely determines the operation to be carried out, but usually no operation
attribute appears in the language description itself. The reason is that semantic analysis does
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rule assignment ::= name ’:=’ expression.
attribution
assignment.primode < name.postmode;
name.postmode < deproc (name.primode) ;
expression.postmode <
if name.postmode.k <> ref_type then N _mode (bad_type)
else name.postmode. target?;
condition
coercible (assignment.primode, assignment.postmode) and
name.postmode.k = ref_type;
rule comparison ::= relation eqop relation.
attribution
comparison.primode < N_mode (bool_type);
relation[1].postmode < eqop.operand_post;
eqop.operand_pri < balance (relation[1].primode,relation[2].primode) ;
relation[2].postmode < eqop.operand_post;

condition

coercible (comparison.primode, comparison.postmode);
rule eqop ::= ’=’.
attribution

eqop.operand_post < deref (eqop.operand_pri);
condition

eqop.operand_post.k <> wvoid_type;

rule eqop ::= ’==7,
attribution

eqop.operand_post < deproc (eqop.operand_pri);
condition

eqop.operand_post.k = ref_type;
rule name ::= name ’.’ identifier_use.
attribution

name[1] .primode <
if identifier_use.current_definition <> object_definition then
N_mode (bad_type)
else if name[2].postmode.k = ref_type then
N_mode (ref_type, identifier_use.current_definition.object_type)
else identifier_use.current_definition.object_type;
name [2] .postmode < one_ref (namel[2].primode);
name [2] . environment < mname[1].environment ;
itdentifier_use.environment <
if deref (name[2].postmode).k <> identified_type then nil
else record_env (deref (name[2].postmode) .definition,
name [1] . environment) ;
condition
coercible (name[1].primode, name[1].postmode) and
itdentifier_use.current_definition.k = object_definition;

Figure 9.17: Determining A Priori and A Posteriori Types
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function deproc (t : mode) : mode;
(* Remove all levels of procedure call from a type *)
begin (* deproc *)
if t.k <> proc_type then deproc := t
else if t.parameters <> nil then deproc := t
else deproc := deproc (t.result?)
end; (x deproc x*)
function deref (t : mode) : mode;
(* Remove all levels of reference from a type *)
begin (* deref x*)
if 1.k <> ref_type then deref := ¢
else deref := deref (t.targett);
end; (x deref )
function one_ref (¢t : mode) : mode;
(* Remove all but one level of reference from a type *)
begin (* one_ref *)
case t.k of
ref_type :
if t.targetl.k <> arr_type and t.targetl.k <> rec_type
then one_ref := one_ref (t.target!) else one_ref := t;
proc_type :
if t.parameters <> nil then one_ref := t
else one_ref := one_ref (t.resultt)
otherwise
one_ref :=t
end;
end; (*x one_ref *)
Figure 9.18: Type Transformations in LAX

function record_env (i :integer;e:definition_table):definition_table;
(* Obtain the field definitions of a record type
On entry-
1=type for which the fields are sought
e=environment containing the type definition *)
begin (* record_env *)
if ef.first.uid <> ¢ then record_env := record_env(%,ef.rest)
else record_env := ef.first.defined_type.fields;
end; (x record_env )
Figure 9.19: Obtaining a Record’s Field Definitions

not make any further use of the operation, and the operation determined by the semantic
analysis may be either an over- or underspecification for code generation purposes. For
example, the distinction between integer and real assignment is usually an overspecification
because only the length of the object being assigned is of interest. On the other hand, a
record assignment operator is an underspecification because the code generator must decide
between a load/store sequence, a block transfer and a closed subroutine on the basis of the
record size.

The situation is different for languages like ALGOL 68 and Ada, in which a user may define
operations. There the semantic analyzer must identify the operations, and there is scarcely
any distinction between operators and functions of one or two operands. Which operations
or functions are implemented with closed subprograms and which with open sequences of
instructions is a decision made by the code generator.
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Operator identification for Ada depends not only upon the a priori types of the operands,
but also upon the a posteriori type of the result. There is no coercion, so the a priori and
a posteriori types must be compatible, but on the other hand the constant 2 (for example)
could have any of the types ‘short integer’, and ‘integer’ and ‘long integer’. Thus both the
operand types and the result types must be determined by analysis of the tree.

Each operand and result is given one inherited and one synthesized attribute, each of
which is a set of types. We begin at the leaves of the tree and compute the possible (a priori)
types of each operand. Moving up the tree, we specify the possible operations and result types
based upon the possible combinations of operand types and the operator indication. Upon
arriving at the root of the tree for the expression we have a synthesized attribute for every
node giving the possible types for the value of this node. Moving down the tree, these type
sets are now further restricted: An inherited attribute, a subset of the previous synthesized
attribute, is computed for each node. It specifies the set of types permitted by the use of this
value as an operand in operations further up the tree. At the beginning of the descent, the
previously-computed set of possible result types at the root is used as the inherited attribute
of the root. If this process leads to a unique type for every node of the tree, i.e. if the inherited
attribute is always a singleton set, then the operations are all specified; otherwise at least one
operator (and hence the program) is semantically ambiguous and hence illegal.

Because LAX is an expression-oriented language, statements and statement-like constructs
(statement_list, iteration, loop, etc.) also have primode and postmode attributes.
Most rules involving these constructs simply transfer those attributes. Figure 9.20 shows
rules that embody the conditions given in Sections A.2.4 through A.2.6.

9.2 Implementation of Semantic Analysis

If we have fully specified the semantic analysis with an attribute grammar and auxiliary
functions, the implementation consists of the following steps:

e Derive the abstract syntax for the structure tree.

e Derive the attribution algorithms as discussed in Section 8.2.
e Derive the attribute storage layout as discussed in Section 8.3.
e Code the attribution rules and auxiliary functions.

As we noted in connection with Figure 4.2, the distinction between the concrete and
abstract syntax is that groups of symbols appearing in the former are really different names
for a single construct of the latter, and hence chain rules that simply transform one of these
symbols into another are omitted. The abstract syntax is derived from the attribute grammar
by identifying symbols whose attributes are the same, and deleting all rules whose attribution
consists solely of transfers.

We extract the context-free syntax directly from the attribute grammar for input to a
parser generator. The only thing missing is the connection point specifications, which can be
attached systematically as discussed in Section 7.1.1. If a rule does not belong to the abstract
syntax, no connection points are attached to it. Thus the parser uses the concrete syntax for
its analysis of the token sequence, but produces a connection sequence that is a linearization
of a structure tree obeying the abstract syntax.

The result of the attribution algorithm specification leads to the choice of analysis tech-
nique: multi-pass, ordered, etc. As with the selection of a parsing technique discussed in
Chapter 7, this choice depends primarily upon the experience of the compiler writer and the
availability of tools for automated processing. Tools are indispensable if ordered grammars
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rule statements := statements ’;’ statement.
attribution
statements[1].primode < statement.primode;
statements[2].postmode < N_mode (void_type);
statement.postmode < statements[1].postmode;

rule iteration := ’while’ ezpression loop.
attribution
iteration.primode < N_mode (void_type);
ezpression.postmode < N_mode (bool_type);
loop.postmode < N_mode (void_type);
condition
i1teration.postmode.k = void_type;

rule iteration :=
’for’ identifier ’from’ ezxpression ’to’ ezxpression loop.
attribution
iteration.primode < N_mode (woid_type);
expresston[1].postmode < N_mode (int_type);
ezpression[2] .postmode < N_mode (int_type);
loop.environment <—
N_definition (gennum,identifier.sym,object_definition,
N_mode (int_type)) &
tteration.environment ;
loop.postmode < N_mode (woid_type);
condition
i1teration.postmode.k = void_type;

rule jump := ’goto’ identifier_use.
attribution
jump.primode < N_mode (woid_type);
condition
jump.postmode.k = wvoid_type and
(tdentifier_use.corresponding_definition.k = label_definition or
identifier_use.corresponding_definition.k = unknown_definition);

Figure 9.20: A Priori and A Posteriori Types in Statements

are to be used; the evaluation sequence for multi-pass grammars can be obtained by hand.
Further, the available memory plays a role. Roughly the same amount of memory suffices to
store the attributes for any method, if intermediate attributes are suitably overlaid. In the
case of multi-pass evaluation, however, the algorithm and attribution rules can be segmented
and overlaid so that only the relevant part is required during each pass.

The storage layout of the attributes is fixed last, based upon the discussion in Section 8.3.2.
As noted there, particular attention must be paid to the interaction among attribute repre-
sentation, algorithms and formulation of the attribution rules. Often one can influence the
entire behavior of the semantic analysis through small (in terms of content) variations in
the attribute representation or attribution rules. For example, a one-pass attribution for
languages like Pascal is usually not obtained at first, but only after some modification of
the original specification. This is not surprising, since the language description discussed in
Section 9.1 aims above all for a correct rendition of the language properties and does not
consider implementability.
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One of the most common attributes in the structure tree is the environment, which allows
us to determine the meaning of an identifier at a given point in the program. In the simplest
case, for example in several machine-oriented languages, each identifier has exactly one defi-
nition in the program. The definition entry can then be reached directly via a pointer in the
symbol table. In fact, the symbol and definition table can be integrated into a single table in
this case.

Range header Possession relations for the range
- —_— 0 0 E—
Symbol
Entity }
Current
Possession
relation
e —_— —_—
Possession relations holding in
outer ranges
Symbol stack
headers

Note : ‘Entity’ is a pointer to a definition.

Figure 9.21: A Definition Table Structure

Most languages permit an identifier to have several meanings. Figure 9.21 shows a defini-
tion table organization that provides access to the current definition for an identifier, given its
symbol table entry, in constant time: The symbol table entry points to a stack of elements,
the first of which contains a pointer to the current possession, and the current possession
points to the definition. But this access is exactly the current_definition function of Fig-
ure 9.1c. Thus Figure 9.21 allows us to implement current_definition without using any
list search at all. The access time is essentially the same as that in the simple case of the
previous paragraph; only two additional memory accesses (to follow the possession pointer
contained in the stack and the definition pointer contained in the possession) are required.

At first glance, it may seem that there is too much indirection in Figure 9.21. Why does
the stack element contain a pointer to the possession instead of a pointer to the definition?
Why does the possession contain a pointer to the definition instead of the definition itself?
The answers to these questions become clear if we examine the operations that take place on
entry to and exit from a range, when the set of currently-valid declarations changes and the
definition table must be updated to reflect these changes.



204 Semantic Analysis

type
one
two

record f : integer; g : Ttwo end;
record f : boolean; h : fTone end;

var
j : Tone;

with 51 do
begin

with g1 do
begin

with »1 do
begin

end
end
end;
Figure 9.22: Self-Nesting Ranges

When a range is entered, the stack for each identifier defined in the range must be pushed
down and an entry describing the definition valid in this range placed on top. Conversely,
the stack for each identifier defined in a range must be popped when leaving that range. To
simplify the updating, we represent the range by a linear list of elements specifying a symbol
table entry and a corresponding definition as shown at the top of Figure 9.21. This gives
constant-time access to the stacks to be pushed or popped, and means that the amount of
time required to enter or leave a range is linear in the number of identifiers having definitions
in it.

We use a pointer to the definition rather than the definition itself in the range list because
many identifiers in different ranges may refer to the same definition. (For example, in Pascal
many type identifiers might refer to the same complex record type.) By using a pointer we
avoid having to store multiple copies of the definition itself, and also we simplify equality
tests on definitions.

We stack a pointer to the appropriate range list entry instead of stacking the range list
entry itself because it is possible to enter a range and then enter it again before leaving it.
(Figure 9.22 is a Pascal fragment that has this property. The statement with 51 enters the
range of the record type one; the range will be left at the end of that statement. However,
the nested statement with A7 also enters the same range!) When a range is entered twice
without being left, its definitions are stacked twice. If the (single) range list entry were placed
on the stack twice, a cycle would be created and the compiler would fail.

Finally, we stack a pointer to the range list entry rather than a pointer to the definition
to cater for languages (such as COBOL and PL/1) that allow partial qualification: In a field
selection the specification of the containing record may be omitted if it can be determined
unambiguously. (This assumes that, in contrast to LAX, exactly one object exists for each
record type. In other words, the concepts of record and record type merge.)

Figure 9.23 illustrates the problem of partial qualification, using an example from PL/1.
Each qualified name must include sufficient identifiers to resolve any ambiguity within a single
block; the reference is unambiguous if either or both of the following conditions hold:

e The reference gives a valid qualification for exactly one declaration.

e The reference gives the complete qualification for exactly one declaration.
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A: PROCEDURE;
DECLARE
1W,

B: PROCEDURE;

DECLARE
P,
1Q,
2 R,
3 Z,
2 X,
3Y,
3 Z,
3 Q;
Y = R.Z; /* Q.X.Y from B, Q.R.Z from B */
W = Q, BY NAME; /* W from A, major Q from B */
C: PROCEDURE
DECLARE Y,
1R,
2 Z;
Z=0Q.Y /* R.Z from C, Q.X.Y from B */
X = R, BY NAME; /* Q.X from B, R from C */
END C;
END B;
END A;

Figure 9.23: Partial Qualification

Most of the references in Figure 9.23 are unambiguous because the first of these conditions
holds. The @ in W = @, however, gives a valid qualification for either the major structure or
the field Q. X.Q; it is unambiguous because it gives the complete qualification of the major
structure. References Z and ().Z in procedure B would be ambiguous.

In order to properly analyze Figure 9.23, we must add three items of structural in-
formation to each possession relation in Figure 9.21: The level is the number of identi-
fiers in a fully-qualified reference to the entity possessed. If the level is greater than 1,
containing structure points to the possession relation for the containing structure. In any
case, the range to which the possession belongs must be specified. Figure 9.24 shows the
possession relations for procedure B of Figure 9.23. Note that this range contains two valid
possession relations for @ and two for Z. The symbol stack entries for Z have been included
to show that this results in two stack entries for the same range.

A reference is represented by an array of symbols. The stack corresponding to the last
of these is scanned, and the test of Figure 9.25 applied to each possession relation. When a
relation satisfying the test is found, no further ranges are tested; any other relations for the
same symbol within that range must be tested, however. If more than one relation in a range
satisfies the test, then the reference is ambiguous unless the level of one of the relations is
equal to the number of symbols in the reference.

A definition table module might provide the following operations:

e New range () range: Establish a new range.

e Add possession (symbol, definition, range): Add a possession relation to a given
range.

e Enter_range (range): Enter a given range.



206 Semantic Analysis

Range header Possession relations for the range

Symbol stack

headers Figure 9.24: Range Specification Including Structure

e Leave_range: Leave the current range.

e Current_definition (symbol) definition: Identify the definition corresponding to
a given identifier at the current point in the program.

e Definition_tn_range (symbol, range) definition: Identify the definition corre-
sponding to a given identifier in a given range.

The first two of these operations are used to build the range lists. The next three have been
discussed in detail above. The last is needed for field selection in languages such as Pascal
and LAX. Recall the treatment of field selection in Figure 9.17. There the environment in
which the field identifier was sought consisted only of the field identifiers defined in the record
yielded by name. This is exactly the function of definition_in_range. If we were to enter
the range corresponding to the record and then use current_definition, we would not
achieve the desired effect. If the identifier sought were not defined in the record’s range, but
was defined in an enclosing range, the latter definition would be found!

Unfortunately, definition_in_range must perform a search. (Actually, the search is
slightly cheaper than the incorrect implementation outlined in the previous paragraph.) It
might linearly search the list of definitions for the range representing the record type. This
technique is advantageous if the number of fields in the record is not too large. Alternatively,
we could associate a list of pairs (record type, pointer to a definition entry for a field with
this selector) with each identifier and search that. This would be advantageous if the number
of record types in which an identifier occurred was, on the average, smaller than the number
of fields in a record.

9.3 Notes and References

Many language definitions use context-free syntax rules to indicate properties that are more
easily checked with attribute computations. The compiler designer should not slavishly follow
the language definition in this regard; checks should be apportioned between the context-free
rules and attribution rules on the basis of simplicity.
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In many compilers the semantic analysis is not treated as a separate task but as a by-
product of parsing or code generation. The result is generally that the static semantic condi-
tions are not fully verified, so erroneous programs are sometimes accepted as correct. We have
taken the view here that semantic analysis is the fundamental target-independent task of the
compiler, and should be the controlling factor in the development of the analysis module.

type

possession = record
range : Trange_header;
nert : Tpossession;
possessing_symbol : symbol;
possessed_entity : entity;
level : integer;
containing_structure : Tpossession

end;

symbol_array = array [1..maz_qualifiers] of symbol;

function test (qualifier:symbol_array;i:integer;p:possession) : boolean;
(* Check a qualified reference
On entry-
qualifier=reference to be checked
2 =number of symbols in the reference
p=possession to be checked
If the reference describes the possession then on exit-
test = true
else on exit-
test = false *)
label 1;
begin (* test *)
test := true;
while 7 < p.level do
begin
if qualifier[i] = p.possessing_symbol then
begin
T =1 - 1;
ifi = 0 then goto 1;
end;
p := p.containing_structure
end;
if ¢ = p.level then
while qualifier[:i] = p.possessing_symbol do

begin

1 =1 - 1;

if ¢ = 0 then goto 1;

p := p.containing_structure
end;

test := false
1 : end; (* test *)

Figure 9.25: Test for Partially-Qualified Reference
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Many of the techniques presented here for describing specific language facilities were the
result of experience with attribute grammars for PEARL, [DIN, 1980] Pascal [KASTENS et al.,
1982], and Ada [UHL et al., 1982] developed at the Universitiat Karlsruhe. The representation
of arbitrarily many types by lists was first discussed in conjunction with ALGOL 68 com-
pilers [PECK, 1971]. KOSTER [1969] described the recursive algorithm for ALGOL 68 mode
equivalence using this representation.

The attribution process for Ada operator identification sketched in Section 9.1.4 is due
to PERSCH and his colleagues [PERSCH et al., 1980]. BAKER [1982] has proposed a similar
algorithm that computes attributes containing pointers to the operator nodes that must be
identified. The advantage claimed by the author is that if the nodes can be accessed randomly,
this means that a complete second traversal is unnecessary. Operator identification cannot
be considered in isolation, however. It is not at all clear that a second complete traversal
will not be required by other attribution, giving us the operator identification ‘for free’. This
illustrates the importance of constructing the complete attribute grammar without regard to
number of traversals, and then processing it to determine the overall evaluation order.

Most authors combine the symbol and definition tables into a single ‘symbol table’ [GRIES,
1971; BAUER and EICKEL, 1976; AHO and ULLMAN, 1977]. Separate tables appear in descrip-
tions of multi-pass compilers and serve above all to reduce the main storage requirements;
[NAUR, 1964] the literature on ALGOL 68 [PECK, 1971] is an exception. In his description of
a multi-pass compiler for ‘sequential Pascal’, HARTMANN [1977] separates the tables both to
reduce the storage requirement and simplify the compiler structure.

The basic structure of the definition table was developed for ALGOL 60 [RANDELL and
RUSSELL, 1964; GRAU et al., 1967; GRIES, 1971]. We have refined this structure to allow
it to handle record types and incompletely-qualified identifiers [BusaM, 1971]. An algebraic
specification of a module similar to that sketched at the end of Section 9.2 was given by
GuTTAG [1975, 1977].

Exercises

9.1 Determine the visibility properties of Pascal labels. Write attribution rules that embody
these properties. Treat the prohibition against jumping into a compound statement as
a restriction on the visibility of the label definition (as opposed to the label declaration,
which appears in the declaration part of the block).

9.2 Write the function current_definition (Figure 9.1c).
9.3 Write the function unambiguous (Figure 9.2a).

9.4 Note that Figure 9.5 requires additional information: the implicit type of an identifier.
Check the FORTRAN definition to find out how this information is determined. How
would you make it available in the attribute grammar? Be specific, discussing the role
of the lexical analyzer and parser in the process.

9.5 [SALE, 1979] Give attribution rules and auxiliary functions to verify the definition before
use constraint in Pascal. Assume that the environment is being passed along the text,
as illustrated by Figure 9.4.

(a) Add a depth field to the definition record, and provide attribution rules that set
this field to the static nesting depth at which the definition occurred.
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9.6

9.7

9.8

9.9

9.10

9.11

9.12

(b) Add attribution rules that check the definition depth at each use of an identifier.
Maintain a list of identifiers that have been used at a depth greater than their
definition.

(c) When an identifier is defined, check the list to ensure that the identifier has not
previously been used at a level greater than or equal to the current level when it
was defined at a level less than the current level.

(d) Demonstrate that your rules correctly handle Figure 9.6.

What extensions to the environment attribute are required to support modules as
defined in MODULAZ2?

Extend the representation of LAX types to handle enumerated types and records with
variants, described as in Pascal.

Develop type representations analogous to Figure 9.7 for FORTRAN, ALGOL 60 and
Ada.

Modify the procedure type_equivalent to handle the following alterations in the LAX
definition:

(a) Structural type equivalence similar to that of ALGOL 68 is specified instead of
the equivalence of A.3.1.

(b) Union types union(t1,...,t,) similar to those of ALGOL 68. The sequence
of types is arbitrary and union (t1, union(t2,t3)) = union(union(ti,t2),t3) =
union (t1,to,t3).

Consider the case clause described in Figure 9.16.

(a) Formulate a procedure value_unambiguous to verify the uniqueness of the case
labels.

(b) Alter the attribution rules to check the uniqueness at each label.

(c) Alter the attribution rules and extend the value_unambiguous procedure so that
the labels may be constants of an enumerated type (see Exercise 9.7).

Prove the following relations for types 1, t5 and t3, using the coercion rules defined in
A4.1:

(a) balance(ty,te) = balance(ts, ;)
(b) balance(balance(ti,t2),t3) = balance(ti, balance (to,t3))

Suppose that we chose to use the definition table discussed in Section 9.2 for a LAX
compiler.

(a) [GUTTAG, 1975, 1977] The definition table module operations were stated as oper-
ations of a package, with ‘definition table’ as an implied parameter. Restate them
as operations of an abstract data type, making this dependence explicit.

(b) Two abstract data types, range and definition_table, are involved in this
module. Which of the attributes in the LAX rules discussed in this chapter will
be of type range, and which of type definition_table?

(c) Replace the computations of the attributes you listed in (b) with computations
involving the operations of the definition table module. Does this change affect
the traversal strategy?
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9.13

9.14

9.15

9.16

9.17

(d) Given the modified rules of (c), do any of the attributes you listed in (b) satisfy
the conditions for implementation as global variables? As global stacks? How do
your answers to these questions bear upon the implementation of the definition
table as a package vs. an abstract data type?

Develop definition tables for BASIC, FORTRAN, COBOL and Pascal.
Add the use before definition check of Exercise 9.5 to the definition table of Figure 9.21.

Give a detailed explanation of the problems encountered when analyzing Figure 9.22 if
possession relation entries are stacked directly.

How must a Pascal definition table be set up to handle the with statement? (Hint:
Build a stack of with expressions for each record type.)

Show the development during compilation of the definition table for the program of
Figure 9.23 by giving a sequence of snapshots.



Chapter 10

Code Generation

The code generator creates a target tree from a structure tree. This task has, in principle,
three subtasks:

e Resource allocation: Determine the resources that will be required and used during
execution of instruction sequences. (Since in our case the resources consist primarily of
registers, we shall speak of this as register allocation.)

e Execution order determination: Specify the sequence in which the descendants of a node
will be evaluated.

e Code selection: Select the final instruction sequence corresponding to the operations
appearing in the structure tree under the mapping discussed in Chapter 3.

In order to produce code optimum under a cost criterion that minimizes either program
length or execution time, these subtasks must be intertwined and iterated. The problem is
NP-complete even for simple machine architectures, which indicates that in practice the cost
will be exponential in the number of structure tree nodes. In view of the simple form of
the expressions that actually occur in programs, however, it is usually sufficient to employ
linear-cost algorithms that do not necessarily produce the optimum code in all cases.

The approach taken in this chapter is to first map the source-language objects onto the
memory of the target machine. An estimate of register usage is then made, and the execution
order determined on the basis of that estimate. Finally, the behavior of the target machine is
simulated during an execution-order traversal of the structure tree, driving the code selection
and register assignment. The earlier estimate of register usage must guarantee that all register
requirements can actually be met during the final traversal. The code may be suboptimal in
some cases because the final register assignment cannot affect the execution order.

The computation graph discussed in Section 4.1.3 is implicit in the execution-order struc-
ture tree traversal. Chapter 13 will make the computation graph explicit, and discuss opti-
mizing transformations that can be applied to it. If a compiler writer follows the strategies of
Chapter 13, some of the optimization discussed here becomes redundant. Nevertheless, the
three code generation subtasks introduced above remain unchanged.

Section 10.1 shows how the memory map is built up, starting with the storage requirements
for elementary objects given by the implementor in the mapping specification of Section 3.4.
We present the basic register usage estimation process in Section 10.2, and show how addi-
tional attributes can be used to improve the generated code. Target machine simulation and
code selection are covered in Section 10.3.

211
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10.1 Memory Mapping

Memory mapping determines the size and (relative) address of each object. In the process, it
yields the sizes and alignments for all target types and the relative addresses of components
of composite objects. This information is used to find access paths during the code selection
and, in the case of static allocation, to generate storage reservation requests to the assembly
module. It also constitutes most of the information needed to construct the type templates
discussed in Section 3.3.3, if these are required.

The storage mapping process begins with elementary objects whose sizes and alignments
are known. These are combined, step-by-step, into larger aggregates until an object is created
whose base address cannot be determined until run time. We term such an object allocatable.
Examples of allocatable objects are activation records and objects on the heap. Objects are
characterized during this aggregation process by their size and relative address within the
containing object. The sum of the base address determined at run time and the sequence of
relative addresses of aggregates in which an object is contained yields the effective address of
that object.

When the objects are combined, the compactness (packed/aligned) may be specified. This
specification influences not only the relative address of a component, but also its size and the
alignment of the composite object: If the source language permits value constraints (e.g.
Pascal subranges), then a type can be characterized by both a size (for the unconstrained
value set) and a minimum size (taking the constraint into account). For example, in Pascal an
object defined to lie in a subrange 0..10 would have a minimum size of 4 (if sizes are expressed
in bits) or 1 (if sizes are expressed in bytes) and a size equal to that of an unconstrained integer.
When this object is combined with others in a packed composite object, its minimum size is
assumed; when the composite object is not packed, the size is used.

The alignment of a composite object that is not packed is the least common multiple of the
alignments of its components. When the object is packed, however, no alignment constraint
is imposed.

The storage mapping process can, of course, only use objects of known length as compo-
nents of other objects. As noted in Chapter 3, this means that activation records containing
arrays whose bounds are not known until run time must be split into two parts; only the
array descriptor is held in the static part. For languages like FORTRAN, in which all objects
have fixed size, and in which each procedure is associated with one and only one local storage
area, the procedure and its activation record can be combined into a single allocatable object.
This object then becomes the basis for planning run-time overlay structure.

Figure 10.1 defines an interface for a memory mapping module. The module is independent
of both source language and target machine. It can be used for packing to either the memory
cell or the bit, depending upon the interpretation of the types size and location.

The basic idea of the storage module is that one has areas that may grow by accretion of
blocks (objects of known size). An area whose growth has ceased becomes a block and can
itself be added to other areas. Areas may grow either upward or downward in memory, and
the packing attribute is specified individually for each area. (Both properties are fixed at
the time the area is established.) Each area has a growth point that summarizes the current
amount of the area’s growth. For example, at the beginning of the variant part of a Pascal
record, the storage mapping module notes the growth point; for each alternative it resets to
that point. Since variants may be nested, the growth points must be saved on stacks (one per
area) within the memory mapping module. After all of the alternatives have been specified,
the growth point is advanced by the maximum length over all alternatives.

In Pascal, the size and alignment of each variant of a record must be kept so that new
and dispose calls can be handled correctly. This requirement is most easily satisfied by
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type
area

size e
location = ...

direction = (up,down);
strategy = (align, pack);

procedure new_area (d : direction; s : strategy; var a :@ area);
(* Establish a new memory area
On entry -

d = growth direction for this area
s = growth strategy for this area

On exit -
a specifies the new area
*)
procedure add_block (a : area; s : size; alignment : integer;
var 1 : location);
(* Allocate a block in an area
On entry -

a specifies the area to which the block is to be added
s = size of the block

alignment = alignment of the block
On exit -

l = relative location of the first cell of the block

*)
-
procedure end_area (a : area; var s : size; var alignment : integer);
(* Terminate an area
On entry -
a specifies the area to be terminated
On exit -

s = size of the resulting block
alignment = alignment of the resulting block
*)
3
procedure mark (a : area);
(* Mark the current growth point of an area *)
o
procedure back (a : area);
(* Reset the growth point of an area to the last outstanding mark *)
procedure combine (a : area);
(* Erase the last outstanding mark in an area and
reset the growth point to the maximum of all previous growths

*)

Figure 10.1: Memory Mapping Module Interface
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adding two output parameters to both back and combine (Figure 10.1), making their calling
sequences identical to that of end_area.

In areas that will become activation records, storage must be reserved for pointers to
static and dynamic predecessors, plus the return address and possibly a template pointer.
The size and alignment of this information is fixed by the mapping specification, which may
also require space for saving registers and for other working storage. It is usually placed
either at the beginning of the record or between the parameters and local variables. (In
the latter case, the available access paths must permit both negative and positive offsets.)
Finally, it is convenient to leave an activation record area open during the generation of code
for the procedure body, so that compiler-generated temporaries may be added. Only upon
completion of the code selection will the area be closed and the size and alignment of the
activation record finally determined.

In principle, the storage module is invoked at the beginning of code generation to fix
the length, relative address and alignment of all declared objects and types. For languages
like Ada, integration with the semantic analyzer is essential because object size may be
interrogated by the program and must be used in verifying semantic conditions. Even in this
case, however, we must continue to regard the storage module as a part of the synthesis task
of the compiler; only the location of the calls, not the modular decomposition, is changed.

10.2 Target Attribution

In the simplest case we fix the execution order without regard to target machine register
allocation. The code selector performs a depth-first, left-to-right traversal of the structure
tree that corresponds directly to the postfix form of the expressions. It does not alter the
left-to-right evaluation of the operands, since there is no additional information upon which
to base such an alteration. If the number of registers available does not suffice to hold the
intermediate results while computing the value of an expression then an ad hoc decision is
made during the code generation about which intermediate value(s) should be left in memory.
In general this strategy leads to greater register requirements and longer code than necessary;
hence some planning is recommended. This planning results in computation of additional
attributes.

In this section we consider the computation of seven attributes: Register_count,
store and operand_sequence are used to determine the execution order, desire and
target_labels provide information about the use of a result, cost and decision are used
to modify the instruction sequence generated from a node. These attributes are evaluated
by three distinct kinds of computation, which we treat in the following subsections: Register
allocation (Section 10.2.1) is concerned with determining the temporary storage requirements
of subtrees and hence the execution order. Targeting (Section 10.2.2) specifies desirable place-
ment of results. Finally, algebraic identities (Section 10.2.3) can be used to obtain equivalent
computations having better properties.

10.2.1 Register Allocation

We distinguish global register allocation, which holds over an entire procedure, from local
register allocation, which controls the use of registers within expressions and influences the
execution order. Further, we partition the task into allocation, by which we plan the register
usage, and assignment, by which we fix the registers actually used for a specific purpose.
Register assignment takes place during code selection, and will be discussed in Section 10.3.1;
here we concern ourselves only with allocation.
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(x+y)/(axb+cxd)
a) A LAX expression

LE 0,z LE 2,a
AE 0Oy ME 2,
LE 24 LE  Oc
ME  2,b ME 0d
LE  4c AER 2,0
ME 4.4 LE 0Oz
AER 24 AE Oy
DER 0,2 DER 0,2
(uses 3 registers) (uses 2 registers)

b) Two possible IBM 370 implementations

Figure 10.2: Dependence of Register Usage on Evaluation Order

Global register allocation begins with values specified by the implementation as being held
permanently in registers. This might result in the following allocations for the IBM 370:

Register 15: Subprogram entry address

Register 14: Return address

Register 13: Local activation record base address
Register 12: Global activation record base address
Register 11: Base address for constants

Register 10: Code base address

Register 9: Code offset (Section 11.1.3)

Only two registers are allocated globally as activation record bases; registers for access to
the activation records of intermediate contours are obtained from the local allocation, as are
registers for stack and heap pointers.

Most compilers use no additional global register allocation. Further global allocation
might, for example, be appropriate because most of a program’s execution time is spent in
the innermost loops. We could therefore stretch the register usage considerably and shorten
the code if we reserved a fixed number of registers (say, 3) for the most-frequently used values
of the innermost loops. The controlled variable of the loop is often one of these values. The
simple approach of assigning the controlled variables of the innermost loops to the reserved
registers gives very good results in practice; more complex analysis is generally unnecessary.

Upon completion of the global allocation, we must ensure that at least n registers always
remain for local allocation. Here n is the maximum number of registers used in a single
instruction. (For the IBM 370, n = 4 in the MVCL instruction.) A rule of thumb says that
we should actually guarantee that n+1 registers remain for local allocation, which allows at
least one additional intermediate result or base address to be held in a register.

Pre-planning of local register allocation would be unnecessary if the number of available
registers always sufficed for the number of simultaneously-existing intermediate results of an
expression. Given a limited number of registers, however, we can guarantee this only for some
subtrees. Outside of these, the register requirement is not fixed unambiguously: Altering the
sequence of operations may change the number of registers required. Figure 10.2 shows an
example.

The general strategy for local register allocation is to seek subtrees evaluable, possibly
with rearrangement, using only the number of registers available to hold intermediate results.
These subtrees can be coded without additional store instructions. We choose the largest,
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and generate code to evaluate it and store the result. All registers are then again available to
hold intermediate results in the next subtree.

Consider an expression represented as a structure tree and a machine with n identical
registers r;. The machine’s instructions have one of the following forms:

e Load: r; := memory_location
e Store: memory_location = r;
e Compute: r; := op(vj,...,v;), where v, may be either a register or a memory location.

The machine has various computation instructions, each of which requires specific
operands in registers and memory locations. (Note that a load instruction can be consid-
ered to compute the identity function, and require a single operand in a memory location.)

We say that a program fragment is in normal form if it is written as Py Jy ... Ps_1Js 1P
such that each J is a store instruction, each P is a sequence containing no store instructions,
and all of the registers are free immediately after each store instruction. Let I; ... I, be one
of the sequences containing no stores. We term this sequence strongly contiguous if, whenever
I; is used to compute an operand of I} (i < k) all I; such that ¢ < j < k are also used in the
computation of operands of I. The sequence P;.J; ... P is in strong normal form if P, is
strongly contiguous for all 1 < ¢ <s.

AHO and JOHNSON [1976] shows that, provided no operand or result has a size exceeding
the capacity of a single register, an optimal program to evaluate an expression tree on our
assumed machine can be written in strong normal form. (The criterion for optimality is
minimum program length.) Thus to achieve an optimal program it suffices to determine a
suitable sequence in which to evaluate the operands of each operator and — in case the register
requirements exceed n — to introduce store operations at the proper points. The result can
be described in terms of three attributes: register_count, store and operand_sequence.
Register_count specifies the maximum number of registers needed simultaneously at any
point during the computation of the subtree. Store is a Boolean attribute that is true if the
result of this node must be stored. Operand_sequence is an array of integers giving the order
in which the operands of the node should be evaluated. A Boolean attribute can be used if
the maximum number of operands is 2.

The conditions for a strong normal form stated above are fulfilled on most machines by
floating point expressions with single-length operands and results. For integer expressions
they generally do not hold, since multiplication of single-length values produces a double-
length result and division requires a double-length dividend. Under these conditions the
optimal instruction sequence may involve ‘oscillation’. Figure 10.3a shows a tree that requires
oscillation in any optimal program. The square nodes produce double-length values, the round
nodes single-length values. An optimal PDP11 program to evaluate the expression appears as
Figure 10.3b. The PDP11 is an ‘even/odd machine’ — one that requires double-length values
to be held in a pair of adjacent registers, the first of which has an even register number. No
polynomial algorithm that yields an optimal solution in this case is known.

Under the conditions that the strong normal form theorem holds and, with the exception of
the load instruction, all machine instructions take their operands from registers, the following
register allocation technique leads to minimum register requirements: For the case of two
operands with register requirements k; < ks, always evaluate the one requiring k; registers
first. The result remains as an intermediate value in a register, so that while evaluating the
other operand, ko + 1 registers are actually required. Since k; < ko however, the total register
requirement cannot exceed k;.

When ki = ko, either operand may be evaluated first. The evaluation of the first operand
will still require k; registers and the result remains in a register. Thus k; + 1 registers will be
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Note:Round nodes have single-length results
Square nodes have double-length results

a) An expression involving single- and double-length values

MOV ARO  (RO,R1):=A*B

MUL B,RO
MOV C,R2 (R2,R3):=C*D

MUL D,R2

ADD R3,Rl (RO,R1):=(RO,R1)+(R2,R3)
ADC R2

ADD R2,R0

DIV ER0O R0:=(RO,R1) DIV E
MOV G,R2 (R2,R3):=G*H

MUL H,R2
MOV LRI  RL=I+J
ADD JRI

DIV RI,R2 R2:=(R2,R3) DIV Rl
MUL F,R0 (RO,R1):=RO*F
DIV R2,R0 R0:=(RO,R1) DIV R2

b) An optimal PDP11 program to evaluate (a)

Figure 10.3: Oscillation

needed to evaluate the second operand, leading to an overall requirement for k; + 1 registers.
If Ky = n then it is not possible to evaluate the entire expression in the registers available,
although either subexpression can be evaluated entirely in registers. We therefore evaluate
one operand (usually the second) and store the result. This leaves all n registers free to
evaluate the other operand. Figure 10.4 formalizes the computation of these attributes.

If the second operand may be either in a register or in memory we apply the same rules,
but begin with simple operands having a register_count of 0; further, the left operand
count is replaced by maz (ezpression[2].register_count,l) since the first operand must
always be loaded and therefore has a cost of at least one register. Extension to the case in
which the second operand must be in memory (as for halfword arithmetic on the IBM 370)
presents some additional problems (Exercise 10.3). For integermutiplication and division we
must take account of the fact that the result (respectively the first operand) requires two
registers. The resulting sequence is not always optimal in this case.

Several independent sets of registers can also be dealt with in this manner; examples
are general registers and floating point registers or general registers and index registers. The
problem of the Univac 1108, in which the index registers and general registers overlap, requires
additional thought.

On machines like the PDP11 or Motorola 68000, which have stack instructions in addition
to registers or the ability to execute operations with all operands and the result in memory,
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rule expression ::= simple_operand.
attribution
expression.register_count < 1;
erpresston.operand_sequence <— true,

rule ezpression ::= ezpression operator ezpression.
attribution
expresston/[1].operand_sequence <—
ezpresston[2] .register_count > ezpression[3].register_count;
expresston[1].register_count

if expression[2].register_count = ezpression[3].register_count
then

min (ezpression[2].register_count + 1,n)
else

maz (ezpression[2].register_count,ezpression[3].register_count);
expresston[2].store < false;
expression[3].store <+

ezpression[2].register_count = n
and
ezpression[3].register_count = n;

Figure 10.4: Local Register Allocation and Execution Order Determination

optimization of the local register allocation is a very difficult problem. The minimum register
requirement in these cases is always 0, so that we must include the program length or execution
time as cost criteria. The result is that in general memory-to-memory operations are only
reasonable if no operands are available in registers, and also the result does not appear in a
register and will not be required in one. Operations involving the stack usually have longer
execution time than operations of the same length involving registers. On the other hand,
the operations to move data between registers and the stack are usually shorter and faster
than register-memory moves. As a general principle, then, intermediate results that must be
stored because of insufficient registers should be placed on the stack.

10.2.2 Targeting

Targeting attributes are inherited attributes used to provide information about the desired
destination of a result or target of a jump.

We use the targeting attribute des<re to indicate that a particular operand should be in a
register of a particular class. If a descendant can arrange to have its result in a suitable register
at no extra cost, this should be done. Figure 10.5 gives the attribution rules for expressions
containing the four basic arithmetic operations, assuming the IBM 370 as the target machine.
This machine requires a multiplicand to be in an odd register, and a dividend to be in a
register pair. We therefore target a single-length dividend to the even-numbered register of
the pair, so that it can be extended to double-length with a simple shift.

In the case of the commutative operators addition and multiplication, we target both operands
to the desired register class. Then if the register allocation can satisfy our preference for
the second operand but not the first, we make use of commutativity (Section 10.2.3) and
interchange the operands. If neither of the preferences can be satisfied, then an instruction to
move the information to the proper register will be generated as a part of the coding of the
multiplication or division operator. No disadvantages arise from inability to satisfy the stated
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type register_class = (dont_care, even, odd, pair);

rule exzpression ::= expression operator erpression.
attribution
ezpression[2].desire <+
case operator.operator of
plus, minus:
if expression[1].desire = pair
then even
else ezpression[1].desire;

times : odd;
divided_by : even
end;

ezpression[3].desire <+
case operator.operator of
plus
if expression[1].desire = pair
then even
else ezpression[1].desire;

times : odd;
otherwise dont_care
end;

Figure 10.5: Even/Odd Register Targeting for the IBM 370

preference. This example illustrates the importance of the non-binding nature of targeting
information. We propagate our desire to both branches in the hope it will be satisfied on one
of them. If it is satisfied on one branch then it is actually spurious on the other, and no cost
should be incurred by trying to satisfy it there.

Many Boolean expressions can be evaluated using conditional jumps (Section 3.2.3), and it
is necessary to specify the address at which execution continues after each jump. Figure 10.6
shows the attribution used to obtain short-circuit evaluation, in the context of a conditional
jump. (If short-circuit evaluation is not permitted by the language, the only change is to delay
generation of the conditional jumps until after all operands not containing Boolean operators
have been evaluated, as discussed in Section 3.2.3.) Labels (and procedure entry points) are
specified by references to target tree elements, for which the assembler must later substitute
addresses. Thus the type assembler_symbol is defined not by the code generator, but by the
assembler (Section 11.1.1).

Given the attribution of Figure 10.6, it is easy to see how code is generated: A conditional
jump instruction is produced following the code to evaluate each operand that contains no
further Boolean operators (e.g. a relation). The target of the jump is the label that does not
immediately follow the operand, and the condition is chosen accordingly. Boolean operator
nodes generate no code at all. Moreover, the execution order is fixed; no use of commutativity
is allowed.

10.2.3 Use of Algebraic Identities

The goal of the attribution discussed in Section 10.2.1 was to reduce the register requirements
of an expression, which usually leads to a reduction in the length of the code sequence. The
length of the code sequence can often be reduced further through use of the algebraic identities
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type boolean_labels = record
false_label, true_label : assembler_symbol;
tmmediate_successor : boolean;
end;

rule conditional_clause ::=
’if’ boolean_ezpresstion ’then’ statement_list
’else’ statement_list ’end’.
attribution
boolean_expression.location < N_assembler_symbol;
conditional_clause.then_location < N_assembler_symbol;
conditional_clause.else_location < N_assembler_symbol;
boolean_ezpression. jump_target <—
N_boolean_labels(
conditional_clause.else_location,
condttional_clause.then_location,
true); (x true target follows immediately *)

rule boolean_expression ::=
boolean_ezpression boolean_operator boolean_exzpression.
attribution
boolean_expression[2].location < boolean_expression[1].location;
boolean_expression[3].location < N_assembler_symbol;
boolean_expression[2]. jump_target <
if boolean_operator.operator = ’or’ then
N_boolean_labels (
boolean_expression[3].location,
boolean_exzpression[1]. jump_target.true_label,
false) (x false target follows immediately *)
else(* operator must be and *)

N_boolean_labels (
boolean_expresston[1]. jump_target. false_label,
boolean_ezpression[3].location,

true);
boolean_exzpression[3]. jump_target <
boolean_ezpression[1]. jump_target;

rule boolean_expression ::= ’not’ boolean_ezxpression.
attribution
boolean_ezpression[2].location < boolean_ezpression[1].location,
boolean_expression[2]. jump_target <
N_boolean_labels (
boolean_expression[1]. jump_target. true_label,
boolean_exzpression[1]. jump_target. false_label,
not
boolean_exzpression[1]. jump_target. immediate_successor) ;

Figure 10.6: Jump Targeting for Boolean Expression Evaluation



10.2 Target Attribution 221

summarized in Figure 10.7a. We distinguish two steps in this reduction:

e Reduction of the number of computational instructions.
e Reduction of the number of load instructions.

r+y=y+zx
z—y=z+(—y)=—(y—1)
—(—z) =2

rxy=y*r=(-1)*(-y)
—(zxy)=(—z)xy =1z (~y)

a) Identities for integer and real operands

L 1,x

LNR 1,1

L 2,y

S 2,2

MR 0,2

b) Computation of (—z) * (y — z)

L 2,7

S 2,y

L 1.x

MR 0,2

¢) Computation of z x (z — y), which is equivalent to (b)

L 1,z
S ly
M 0x

d) Computation of (z — y) * x, which is equivalent to (c)

Figure 10.7: Algebraic Identities

The number of computational instructions can be reduced by, for example, using the
identities of Figure 10.7a to remove a change of sign or combine it with a load instruction
(unary complement elimination). Load operations can be avoided by applying commutativity
when the right operand of a commutative operator is already in a register and the left operand
is still in memory. Figures 10.7b-d give a simple example of these ideas.

None of the identities of Figure 10.7a involve the associative or distributive laws of algebra.
Computers do not obey these axioms, and hence transformations based upon them are not
safe. Also, if the target machine uses a radix-complement representation for negative numbers
then the identity —(—z) = x fails when z is the most negative representable value, leaving
commutativity of addition and multiplication as the only safe identities. As implementors,
however, we are free to specify the range of values representable using a given type. By simply
stating that the most negative value does not lie in that range, we can use all of the identities
listed in Figure 10.7a. This does not unduly constrain the programmer, since its only effect is
to make the range symmetric and thus remove an anomaly of the hardware arithmetic. (We
normally remove the analogous anomaly of sign-magnitude representation, the negative zero,
without debate.)
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Although use of algebraic identities can reduce the register requirement, the decisive cost
criterion is the code size. Here we assume that every instruction has the same cost; in prac-
tical applications the respective instruction lengths must be introduced. Let us also assume,
for the moment, a machine that only provides register-register arithmetic instructions. All
operands must therefore be loaded into registers before they are used. We shall restrict our-
selves to addition, subtraction, multiplication and negation in this example and assume that
multiplication yields a single-length result. The basic idea consists of attaching a synthesized
attribute, cost, to each expression. Cost specifies the minimum costs (number of instruc-
tions) to compute the result of the expression in its correct and inverse (negated) form. It is
determined from the costs of the operation, the operand computations, and any complement-
ing required. An inherited attribute, deciszon, is then computed on the basis of these costs
and specifies the actual form (correct or inverse) that should be used.

To generate code for a node, we must know which operation to actually implement. (In
general this may differ from the operator appearing in the structure tree.) If the actual
operation is not commutative then we have to know whether the operands are to be taken
in the order given by the structure tree or not. Finally, we need to know whether the result
must be complemented. As shown in Table 10.1, all of this information can be deduced from
the structure tree operator and the forms of the operands and result.

Tree Result Operand k&  Reverse Negate Actual Method
Node Form Forms Operands Operation
c cc 1 false false plus a+b
ci 1 false false minus a— (—b)
ic 1 true false minus b— (—a)
i1 2 false true plus —(—a+ (-b))
a+b i cc 2 false true plus —(a+b)
cl 1 true false minus —b—a
ic 1 false false minus —a—"b
i 1 false false plus —a+ (—b)
c cc 1 false false minus a—b
ci 1 false false plus a+ (—b)
ic 2 false true plus —(—a+0b)
i1 1 true false minus —b—(—a)
a—b i cc 1 true false minus b—a
ci 2 false true plus —(—a+ (=b))
ic 1 false false plus —a+b
i1 1 false false minus —a — (—b)
c cc 1 false false times axb
ci 2 false true times —(a* (=b))
ic 2 false true times —(—a=xb)
i1 1 false false times —a x (—b)
ax*xb 1 cc 2 false true times —(a*b)
ci 1 false false times a * (—b)
ic 1 false false times —axb
i1 2 false true times —(—a* (-b)

c means that the sign of the operand is not inverted
i means that the sign of the operand is inverted
k is a typical cost of the operation in instructions

Table 10.1: Unary Complement Elimination
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type form = (correct, inverse);
combination = (cc, ci, ic, 211);
cost_specification = array [correct .. inverse] of record
length : integer;
operands : combination
end;
function best (op:operator;kcc,kci,kic,kii:integer):cost_specification;
(x Determine the cheapest combination
Structure tree operator
kpq Sum of the operand costs for combination pgq
On exit - best Cost of the optimum instructions yielding,
respectively, the correct and inverted values of the

On entry- op

expression *)
var operand_length : array [ci .. ii] of integer;
cost : cost_specification;
next : integer;
begin (* best x*)

operand_length[ci] := kci;
operand_length[ic] := kic;
operand_length[ii] := kii;
for f := correct to inverse do

begin
cost[f].length := kcc + klop, f, ccl; cost[f].operands := cc;
for pg := ci to %7 do
begin
nezt :=operand_length[pql+klop, f,pq]l; (¥k from Table 10.8%)
if cost[f].length > nezt then begin
cost[f].length := nexzt; cost[f].operands := pq

end
end
end;
best := cost

end; (x Dbest *)
Figure 10.8: The Cost Attribute

The k column of Table 10.1 gives the cost of the operation, including any complementing.
This information is used to obtain the minimum costs of the correct and inverse forms of
the expression as shown in Figure 10.8: Best is invoked with the structure tree operator
and the costs of all combinations of operand computations. It tests all of the possibilities,
finding the combination of operand forms that minimizes the cost of computing each of the
possible result forms. Figure 10.9 gives the attribution rules. Note that the costs assessed to
simple operands in Figure 10.9 do not include the cost of a load operation. Loads and stores
are completely determined by the local register allocation process for a machine with only
register-register instructions.

Let us now consider a machine that has an additional instruction for each binary arithmetic
operation. These additional instructions require the left operand value to be in a register and
the right operand value to be in memory. Since the best choice of computation depends upon
the operand locations, we must extend Table 10.1 to include this information. Table 10.2
shows such an extension for the integer addition operator. The k column of Table 10.2
includes the cost of a load instruction when both operands are in memory.
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rule assignment ::= name ’:=’ expression.
attribution
expression.deciston < correct;

rule ezpression ::= denotation.
attribution
expression.cost <
N_cost_specification ( (* Combination is a dummy value *)
0, cc, (* Load instruction only *)
0, cc); (* Negative constant is stored *)

rule ezpression ::= name.
attribution
expression.cost <
N_cost_specification ( (* Combination is a dummy value *)
0, cc, (* Load instruction only *)
1, cc); (* Load and complement *)

rule ezpression ::= expression binary_operator ezpression.
attribution
ezpresston[1].cost <+
best (
binary_operator.op,
ezpression[2].cost[correct].length+expression[3].cost[correct].length,
expression[2].cost[correct].length+erpression[3].cost/[inverse].length,
ezpression[2].cost[inverse].length+expression[3].cost[correct].length,
ezpresston[2].cost[inverse].length+expression[3].cost[inverse].length) ;
Vexpression[2] .decision ¢«
if expression[1].cost[expression[1].decision].operands in [cc, ct]
then correct
else inverse;
ezpresston[3].decision <
if expression[1].cost[expression[1].decision].operands in [cc, ic]
then correct
else inverse;

rule expression ::= unary_operator ezpression.
attribution
ezpresston[1].cost <+
best (

unary_operator.op,
ezpression[2].cost[correct].length,
mazint, mazint, (¥ ci, ic are invalid in this case *)
expression[2].cost[inverse].length);
expresston[2].decistion <

if ezpression[1].cost[expression[1].decision].operands = cc

then correct

else inverse;

Figure 10.9: Unary Complement Costing
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We took the operand location as fixed in deriving Table 10.2. This meant, for example,
that when the correct left operand was in memory and the inverted right operand was in a
register we used the sequence subtract, negate to obtain the correct value of the expression
(Table 10.2, row 7). We could also have used the sequence load, subtract, but this would
have increased the register requirements. If we allow the unary complement elimination to
alter the register requirements then it must be integrated with the local register allocation,
increasing the number of attribute dependencies and possibly requiring a more complex tree
traversal. Our approach is optimal provided that the cost of a load instruction is never less
than the cost of negating a value in a register.

Result Operand Operand k& Reverse Negate Actual Method
Form Forms  Locations Operands Operation
c cc T 1 false false  plus a+b
rm 1 false false  plus a+b
mr 1 true false  plus b+a
mm 2 false false  plus a+b
ci T 1 false false  minus a— (—b)
rm 1 false false  minus a— (—b)
mr 2 true true minus —(—=b—a)
mm 2 false false  minus a— (—b)
ic T 1 true false  minus b— (—a)
rm 2 false true minus —(—a—0)
mr 1 true false  minus b—(—a)
mm 2 true false  minus b— (—a)
i1 rr 2 false true plus —(—a+ (=b))
rm 2 false true plus —(—a+ (-b))
mr 2 true true plus —(=b+ (—a))
mm 3 false true plus —(—a+ (-b))
i cc rr 2 false true plus —(a+10)
rm 2 false true plus —(a+b)
mr 2 true true plus —(b+a)
mm 3 false true plus —(a+b)
cl T 1 true false minus —b—a
rm 2 false true minus —(a — (—Db))
mr 1 true false minus —b—a
mm 2 true false minus —b—a
ic rr 1 false false  minus —a—>
rm 1 false false minus —a—b
mr 2 true true minus —(b—(—a))
mm 2  false false minus —a—b
i1 rr 1 false false  plus —a + (—b)
rm 1 false false  plus —a+ (—b)
mr 1 true false  plus —b+ (—a)
mm 2 false false  plus —a+ (—b)

c means that the sign of the operand is not inverted

i means that the sign of the operand is inverted
r means that the value of the operand is in a register
m means that the value of the operand is in memory
k is a typical cost of the operation in instructions

Table 10.2: Addition on a Machine with Both Memory and Register Operands
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When we apply algebraic identities on a machine with both register-register and register-
memory instructions, the local register allocation process should assume that each computa-
tional instruction can accept any of its operands either in a register or in memory, and returns
its result to a register (the general model proposed in Section 10.2.1). This assumption leads
to the proper register requirement, and allows complete freedom in applying the identities.
Local register allocation decides the evaluation order of the operands, but leaves open the
question of which operand is left and which is right. Algebraic identities, on the other hand,
deal with the choice of left and right operands but make no decisions about evaluation order.

10.3 Code Selection

Although the techniques of the previous sections largely determine the shape of the generated
code, a number of problems remain open. These include the final assignment of registers and
the question of which instructions will actually implement a previously-specified operation:
On the IBM 370, for example, can a constant be loaded with an LA instruction or must it be
stored as a literal? Does an addition of two addresses require a separate add instruction, or
can the addition be carried out during computation of the effective address of the following
instruction?

10.3.1 Machine Simulation

The relationship between values computed by the program being compiled and the machine
resources that will be used to represent them during execution can be characterized by a
sequence of machine states. These states form the pre- and post-conditions for the generated
instructions. We could include the machine state as an attribute in the structure tree and
specify it in advance by attribution rules. This would mean, for example, that we would com-
bine register assignment with local register allocation and thereby specify the final register
numbers for operands and results. Such a strategy complicates a number of optimizations,
however. Examples are the re-use of intermediate results that remain in registers from previ-
ous computations in the same expression, and the delay of store instructions discussed below.
Thus we assume that, during the execution-order traverssal of the structure tree in which
code selection takes place, a machine simulation is used to determine the run-time machine
state as closely as possible.

Every value computed by the program and every allocatable resource of the target machine
is (conceptually) specified by a descriptor. The machine state consists of links between these
descriptors, indicating the relationship between the values and the resources representing them
at a given point in the execution sequence. Figure 10.10 shows typical descriptor layouts for
implementing LAX on the IBM 370.

Constants that might appear in the address field of the instruction, and constants whose
values are to be processed further by the code generator, are described by the value class
literal_value. Other constants, like strings and floating point numbers, will be placed in
storage and consequently appear as memory values.

Label and procedure references are represented by closures (Section 2.5.2), leaving the
code location to be defined by the assembler and indicating the proper environment by an
execution-time value. Note that this representation is used only for an explicit label or
procedure reference; the closure for a label or procedure-type variable or parameter is not
known at compile time and must therefore appear as a memory or register value.

The value descriptors of Figure 10.10 contain no information for the storage classes ‘pro-
gram counter’ and ‘condition code’ (Section 3.1.1), since these classes occur only implicitly in
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IBM 370 instructions. The situation could be different on the PDP11, where explicit assign-
ments to the program counter are possible. Computers like the Motorola 68000 and PDP11,
which provide stack instructions, also require information about the storage class ‘stack’. The
actual representation in the descriptor depends upon how many stacks there are and whether
only the top element or also lower elements can be accessed. We restrict ourselves here to
two storage classes: ‘main storage’ and ‘registers’. Similar techniques can be used for other
storage classes.

type
main_storage_access = record
base, inder : twalue_descriptor;
displacement : internal_int;

end;

value_class = (, (* Current access *)
literal_value, (* Manipulable integer constant *)
label_reference, (* Explicitly-referenced label *)
procedure_reference, (* Explicitly-referenced procedure *)
general_register, (* Single general register *)
register_pair, (* Adjacent even/odd general registers *)
floating_point_register, (x Single floating point register x)
memory_address , (* Pointer to a memory location *)
memory_value) ; (* Contents of a memory location *)

value_descriptor = record
tmode : target_type; (* Pointer to target definition table *)
case class : walue_class of
literal_value
(lval : internal_int);
label_reference, procedure_reference
(code : assembler_symbol;
environment : Twalue_descriptor);
general_register, register_pair, floating_point_register :
(reg : Tregister_descriptor);
memory_address, memory_value
(location : main_storage_access)

end;

register_state = ( (* Current usage *)
free, (* Unused *)
copy , (* A copy exists in memory *)
unique, (* No other copy available *)
locked) ; (* Not available for assignment *)

register_descriptor = record
state : register_state;
content : Twalue_descriptor;
memory_copy : main_storage_access;
end;

Figure 10.10: Descriptors for Implementing LAX on the IBM 370



228 Code Generation

When an access function is realizable within a given addressing structure, we say that the
accessed object is addressable within that structure. If an object required by the computation
is not addressable then the code generator must issue instructions to manipulate the state,
making it addressable, before it can be used. These manipulations can be divided into two
groups, those required by source language concepts and those required by limitations on the
addressing structure of the target machine. Implementing a reference with a pointer variable
would be an example of the former, while loading a value into an index register illustrates
the latter. The exact division between the groups is determined by the structure of the main
storage access function implemented in the descriptors. We assume that every non-literal leaf
of the structure tree is addressable by this access function. The main storage access function
of Figure 10.10 is stated in terms of a base, an index and a displacement. The base refers
to an allocatable object (Section 10.1) whose address may, in general, be computed during
execution. The index is an integer value computed during execution, while the displacement
is fixed at compile time. Index and displacement values are summed to yield the relative
address of the accessed location within the allocatable object referred to by the base.

If the access is to statically-allocated storage then the ‘allocatable object’ to which the
accessed object belongs is the entire memory. We indicate this special case by a nil base, and
the displacement becomes the static address. A more interesting situation arises when the
access is to storage in the activation record of a LAX procedure.

Figure 10.11 shows a LAX program with five static nesting levels. If we associate activation
records only with procedures (Section 3.3.2) then we need consider only three levels. Value
descriptors for the three components of the assignment in the body of ¢ could be constructed
as shown in Figure 10.11b.

The level array is built into the compiler with an appropriate maximum size. When the
compiler begins to translate a procedure, it ensures one value descriptor for each level up to the
level of the procedure. Initially, the descriptor at level 1 indicates that the global activation
record base address can be found in register 12 and the descriptor at the procedure’s level
indicates that the local activation record base address can be found in register 13. Base
addresses for other activation records can be found by following the static chain, as indicated
by the descriptor at level 2. This initial condition is determined by the mapping specification.
We are assuming here that the LAX-to-IBM 370 mapping specification makes the global
register allocation proposed at the beginning of Section 10.2.1.

When a value descriptor is created for a variable, its base is simply a copy of the level
array element corresponding to the variable’s static nesting depth. (The program is assumed
at level 0 here.) The index field for a simple variable’s access function is nil (indicated in
Figure 10.11b by an empty field) and the displacement is the offset of the variable within the
activation record. For array variables, the index field points to the value descriptor of the
index, and the displacement is the fictitious offset discussed in Section 3.2.2.

The access function for a value may change as instructions that manipulate the value
are generated. For example, suppose that we generate code to carry out the assignment in
Figure 10.11a, starting from the machine state described by Figure 10.11b. We might first
consider generating a load instruction for b. Unfortunately, b is not addressable; the IBM 370
load instruction requires that the base be in a register. Thus we must first obtain a register
(say, general register 1) and load the base address for the activation record at level 2 into
it. When this instruction has been generated, we change the value descriptor for the base to
have a value class of general_register and indicate general register 1. Generation of the
load for b is now possible, and the value descriptor for b must be altered to reflect the fact
that it is in (say) general register 3.

There is one register descriptor for each register used by the code generator. This includes
both the registers controlled by the local register allocation and globally-assigned registers
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declare
a : integer;
procedure p;
declare
b : integer;
procedure g (c : integer); a :=b + ¢
begin
b :=1; g (2
end
begin
p
end
a) A LAX program
general memory
register address
12
a offset
0
1 ——— memory memory
2 value address
3
4 .
static chain b offset
offset
Level
Array genera memory
register address
13
c offset

b) Value descriptors for the IBM 370
Figure 10.11: Referencing Dynamic Storage

with fixed interpretations. The local register allocation process discussed in Section 10.2.1
schedules movement of values into and out of registers. As we noted at the beginning of the
chapter, however, only an estimate of the register requirements is possible. The code selection
process, working with the machine state description, may be able to reduce the register count
below that estimated by the local register allocator. As a consequence, it may be unnecessary
to store an intermediate value whose node had been given the store attribute. For this
reason, we defer the generation of store instructions requested by these attributes in the hope
that the register holding the value will not actually be required before the value can be used
again. Using this strategy, we may have to free the register ‘unexpectedly’ in a context where
the value descriptor for the value is not directly accessible. This means that the register
descriptor of a register containing a value must point to the value descriptor for the contained
value. If the register must be freed, a store instruction can be emitted and the value descriptor
updated to reflect the current location of the value.
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Immediately after a load or store instruction, the contents of a register are a copy of
the contents of some memory location. This ‘copy’ relationship represents a condition that
occurs during execution, and to specify it the register descriptor must be able to define a
memory access function. This access function is copied into the register descriptor from a
value descriptor at the time the two are linked; it might describe the location from which the
register was loaded or that to which it was stored. Some care must be exercised in deciding
when to establish such a relationship: The code generator must be able to guarantee that
the value in memory will not be altered by side effects without explicitly terminating the
relationship. Use of programmer-defined variables is particularly dangerous because of this
requirement, but use of compiler-generated temporaries and activation record bases is safe.

if free registers exist then choose one arbitrarily
else if copy registers exist then choose the least-recently accessed
else
begin
choose the least-recently accessed unique register;
allocate a temporary memory location;
emit a store instruction;
end;
if chosen register has an associated value descriptor then
de-link the value descriptor;
lock the chosen register;
Figure 10.12: Register Management

The register assignment algorithm should not make a random choice when asked to assign
a register (Figure 10.12). If some register is in state free, it may be assigned without penalty.
A register whose state is copy may be assigned without storing its value, but if this value is
needed again it will have to be reloaded. The contents of a register whose state is unique must
be stored before the register can be reassigned, and a locked register cannot be reassigned
at all. All globally-allocated registers are locked throughout the simulation. The states of
locally-allocated registers change during the simulation; they are always free at a label.

As shown in Figure 10.12, the register assignment algorithm locks a register when it is
assigned. The code selection routine requesting the register then links it to the proper value
descriptor, generating any code necessary to place the value into the register. If the value is
the result of a node with the store attribute then the register descriptor state is changed to
unique. This makes the register available for reassignment, and guarantees that the value
will be saved if the register is actually reassigned. When a value descriptor is destroyed, it is
first de-linked from any associated register descriptor. The state of the register descriptor is
changed to free if the register descriptor specifies no memory copy; otherwise it is changed
to copy. In either case it is available for reassignment without any requirement to store
its contents. The local register allocation algorithm of Section 10.2.1 guarantees that the
simulator can never block due to all registers being locked.

10.3.2 Code Transformation

We traverse the structure tree in execution order, carrying out a simulation of the target
machine’s behavior, in order to obtain the final transformation of the structure tree into a
sequence of instructions. When the traversal reaches a leaf of the tree, we construct a value
descriptor for the object that the leaf represents. When the traversal reaches an interior node,
a decision table specific to that kind of node is consulted. There is at least one decision table
for every abstract operation, and if the traversal visits the node more than once then each
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visit may have its own decision table. The condition stubs of these decision tables involve
attributes of the node and its descendants.

Result correct
[ correct

r correct

I in register

r in register

YYYYYYYYYYYYYYYYNNNNNNNNNNNNNNNN
YYYYYYYYNNNNNNNNYYYYYYYYNNNNNNNN
YYYYNNNNYYYYNNNNYYYYNNNNYYYYNNNN
YYNNYYNNYYNNYYNNYYNNYYNNYYNNYYNN
YNYNYNYNYNYNYNYNYNYNYNYNYNYNYNYN

swap(l, 7) X X X XX X X X XX X X
Ireg(l, desire) X X X X X X X X
gen(A,l,r) XXX XXX XXX XXX
gen(AR,l,r) |X X X X
gen(S, I, r) XXX XXX XXX XXX
gen(SR,1,r) X X X X

gen(LCR,I,r) X X XXXXXXXX X X

free(r) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

result(/, store)

”correct” means the sign is not inverted

I=value descriptor of the left operand, r=value descriptor of the right operand
desire=desire attribute of the current node

store=store attribute of the current node

A, AR, S, SR and LCR are IBM 370 instructions

Figure 10.13: IBM 370 Decision Table for + (integer, integer) integer Based on Ta-
ble 10.2

Figure 10.13 shows a decision table for integer addition on the IBM 370 that is derived
from Table 10.2. The condition stub uses the form and location attributes discussed in
Section 10.2.3 to select a single column, and the elements of the action stub corresponding to
X’s in that column are carried out in sequence from top to bottom. These actions are based
primarily upon the value descriptors for the operands, but they may interrogate any of the
node’s attributes. They are basically of two kinds, machine state manipulation and instruction
generation, although instructions must often be generated as a side effect of manipulating the
machine state.

Four machine state manipulation actions appear in Figure 10.13: swap (1, r) simply
interchanges the contents of the value descriptors for the left and right operands. A regis-
ter is allocated by lreg (1, desire), taking into account the preference discussed in Sec-
tion 10.2.2. This action also generates an instruction to load the allocated register with the
value specified by value descriptor 1, and then links that value descriptor to the register
descriptor of the allocated register. After the code to carry out the addition has been gen-
erated, registers that might have been associated with the right operand must be freed and
the descriptor for the register holding the left operand must be linked to the value descriptor
for the result. If the store attribute is true then the result register descriptor state is set to
unique; otherwise it remains locked as discussed in Section 10.3.1.

Figure 10.13 contains one action to generate the RR-format of the add instruction and
another to generate the RX-format. A single action could have been used instead, deferring
the selection to assembly. The choice between having the code generator select the instruction
format and having the assembler select it is made on grounds of convenience. In our case the
code generator possesses all of the information necessary to make the selection; for machines
with several memory addressing formats this is not always true because the proper format
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may depend upon the location assigned to an operand by the assembler.

We must stress here a point made earlier: The code selection process, specified by the
decision tables and the register assignment algorithm operating on the machine state, produces
the final code. All previous attribution prepares for this process, gathering information but
making no decisions.

Decision tables occurring in the code generator usually have a comparatively small number
of conditions (two to six), and well-known techniques for converting decision tables into
programs can be applied to implement them. We can distinguish two essentially different
methods: programmed decision trees and realization as data structures. The former method
generally leads to long programs with large storage requirements. In the latter case the tables
must be interpreted; the storage costs are smaller but the execution time is longer. Because
each decision table is used infrequently, we give priority to reduction of memory requirements
over shortening of execution time. Mixed-code approaches, based upon the frequency of use
of the table, can also be followed. Programmed decision tables are most successful in small,
simple compilers. The more cases and attributes that the code generator distinguishes, the
more heavily the advantages of a data structure weigh.

To represent the decision tables by data structures we first collect all of the possible actions
into a large case statement. The actions can then be represented in the tables by their case
selectors. In most cases the tables are (or are close to being) complete, so we can apply a
method based upon the idea that the sequence of values for the conditions that characterize
the possible cases can be regarded as a mixed-radix number. The lower right quadrant of the
decision table (see Figure 10.13) is implemented as a Boolean matrix indexed by the action
number (row) and the condition (column). An X corresponds to a true element, a blank to
a false element. Instead of using a Boolean matrix, each column could also be coded as a list
of the case labels that correspond to the actions which must be carried out.

10.4 Notes and References

The memory_map module enters blocks into an area as they are delivered, regardless of whether
or not gaps are introduced because of alignment constraints. As noted in Chapter 3, such gaps
can often be eliminated or reduced by rearrangement of the components of a composite object.
Unfortunately, the problem of obtaining an optimum layout is a variant of the ‘knapsack
problem’ [MILLER and THATCHER, 1972], which is known to be NP-complete.

The problem of optimal code generation for expression trees has been studied extensively.
Proof that the problem is NP-complete was given by BRUNO and SETHI [1976]. Our treatment
is derived from those of BRUNO and LASSAGNE [1975] and AHO and JOHNSON [1976]. The
basic method for estimating register usage is due to SETHI and ULLMAN [1970] Multi-register
machines were discussed by AHO et al. [1977] who showed that a polynomial algorithm for
optimal code generation could be obtained if double-length values could occupy arbitrary pairs
of registers. Unfortunately, most machines restrict double-length values to pairs of adjacent
registers, and usually require that the first register of the pair have an even number.

Targeting is a concept that is implicit in the notion of an inherited attribute. Wulf and
his students 1975 were the first to make systematic use of targeting under that name, and
our discussion of unary complement elimination is based upon their work.

Target attribution is described by an attribute grammar, and hence the semantic analysis
and code generation tasks can be interfaced by merging their attribute grammars. If storage
constraints require splitting of this combined attribution, the split should be made on the
basis of traversals required by the combined attribute grammar. Thus each traversal may
be implemented as a pass, and each pass may carry out both semantic analysis and code
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generation tasks. The specifications of the two tasks remain distinct, however, their merging
is an implementation decision that can be carried out automatically.

‘Peephole optimization’ [MCKEEMAN, 1965] uses a machine simulation, and capitalizes
upon relationships that arise when certain code fragments are joined together. WILCOX
[1971] proposed a code generator consisting of two components, a transducer (which essen-
tially evaluates attributes) and a simulator (which performs the machine simulation and code
selection). He introduced the concepts of value and register descriptors in a form quite similar
to that discussed here. DAVIDSON and FRASER [1980] uses a simulation following a simple
code selector based upon a depth-first, left-to-right traversal of the structure tree with no
attempt to be clever about register allocation. He claims that this approach is easier to
automate, and gives results approaching those of far more sophisticated techniques.

Formulation of the code selection process in terms of decision tables is relatively rare in
the literature, although they seem to be the natural vehicle for describing it. A number of
authors [ELSON and RAKE, 1970; WiLcOX, 1971; WAITE, 1976] have proposed special code
generator description languages that effectively lead to programmed decision trees. GRIES
[1971] mentions decision tables, but only in the context of a rather specialized implementation
used by the IBM FORTRAN H compiler [LOWRY and MEDLOCK, 1969]. This technique,
known as ‘bit strips’, divides the conditions into two classes. Conditions in the first class
select a column of the table, while those in the second are substituted into particular rows of
the selected column. It is useful only when a condition applies to some (but not all) elements
of a row. The technique precludes the use of a bit matrix because it requires each element to
specify one of three possibilities (execute, skip and substitute) instead of two.

GLANVILLE and GRAHAM [1978] use SLR(1) parse tables as a data structure implementa-
tion of the decision tables; this approach has also been used in the context of LALR(1) parse
tables by JANSOHN et al. [1982]

Exercises

10.1 Complete the definition of the memory mapping module outlined in Figure 10.1 for a
machine of your choice.

10.2 Devise a linear algorithm to rearrange the fields of a record to minimize waste space,
assuming that the only possible alignments are 1 and 2. (The DEC PDP11 and Intel
8086 have this property.)

10.3 [AHO and JOHNSON, 1976] Consider an expression tree attributed according to the
rules of Figure 10.4.

(a) State an execution-order traversal algorithm that will produce optimum code when

arithmetic instructions are emitted at the postfix encounters of interior nodes.

(b) State the conditions under which LOAD and STORE instructions will be emitted
during the traversal of (a).

(c) Show that the attribution of Figure 10.4 is inadequate in the case where some
arithmetic operations can be carried out only by instructions that require one
operand in memory.

(d) Show that optimum code can be produced in case (c) if it is possible to create
a queue of pointers to the tree and use this queue to guide the execution-order
traversal.

10.4 Extend the attribution of Figure 10.4 to handle expression nodes with arbitrary num-
bers of operands, all of which must be in registers.
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10.5

10.6

10.7

10.8

10.9

10.10

10.11
10.12

10.13

10.14

10.15

10.16

10.17

10.18

[BRUNO and LASSAGNE, 1975] Suppose that the target computer has a stack of fixed
depth instead of a set of registers. (This is the case for most floating point chips
available for microprocessors.) Show that your algorithm of Exercise 10.4 will still
work if extra constraints are placed upon the allowable permutations.

What changes would you make in your solution to Exercise 10.4 if some of a node’s
operands had to be in memory and others in registers?

Show that the attribution rules of Figure 10.6 obey DeMorgan’s law, i.e. that either
member of the following pairs of LAX expressions leads to the same set of attributes
for o and b:

not (¢ and b), not a or not b

not (a or b), not ¢ and not b

Modify Figure 10.6 for a language that does not permit short-circuit evaluation. What
corresponding changes must be made in the execution-order determination?

[ELSON and RAKE, 1970] The PL/1 LENGTH function admits optimizations of string ex-
pressions analogous to short-circuit evaluation of Boolean expressions: LENGTH (A||B)
becomes LENGTH(A)+LENGTH(B). (‘|| is the concatenation operator.) Devise targeting
attributes to carry this information and show how they are propagated.

Show that the unary complement elimination discussed in Section 10.2.3 also minimizes
register requirements.

Extend Table 10.1 to include division.

Show that the following relation holds for the cost attribute (Figure 10.9) of any ex-
pression node:

|cost[correct].length — costlinverse].length| < L

Where L is the length of a negation operator. (This condition must hold for all op-
erations, not just those illustrated in Table 10.1.) What follows from this if register-
memory instructions are also allowed?

What changes would be required in Figure 10.9 for a machine with a ‘load negative’
instruction that places the negative of a memory value into a register?

Modify Figure 10.8 for a machine with both register-register and register-memory in-
structions. Write a single set of attribution rules incorporating the tasks of both Fig-
ure 10.4 and Figure 10.9.

Specify descriptors to be used in implementing LAX on some computer other than
the IBM 370. Carefully explain any difference between your specification and that of
Figure 10.10.

Under what circumstances could a LAX code generator link register values to
programmer-defined variables? Do you believe that the payoff would justify the analysis
required?

There is no guarantee that the heuristic of Figure 10.12 will produce optimal code.
Under what circumstances would the code improve when unique registers were chosen
before copy registers?

Give, for a machine of your choice, the remaining decision tables necessary to translate
LAX trees involving simple integer operands and operators from Table A.2.



Chapter 11

Assembly

The task of assembly is to convert the target tree produced by the code generator into the
target code required by the compiler specification. This target code may be a sequence of bit
patterns to be interpreted by the control unit of the target machine, or it may be text subject
to further processing by a link editor or loader. In either case, the assembler must determine
operand addresses and resolve any issues left open by the code generator.

Since the largest fraction of the compilers for most machines originate from the manufac-
turer, the manufacturer’s target code format provides a de facto standard that the compiler
writer should use: If the manufacturer’s representation is abandoned then all access to the
software already developed using other compilers, and probably all that will be developed in
the future at other installations, is lost. For the same reason, it is best to use manufacturer-
supplied link editors and loaders to carry out the external address resolution. Otherwise, if
the target code format is extended or changed then we must alter not only the compilers,
but also the resolution software that we had developed. We shall therefore assume that the
output of the assembly task is a module rather than a whole program, and that external ad-
dress resolution is to be provided by other software. (If this is not the case, then the encoding
process is somewhat simplified.)

Assembly is essentially independent of the source language, and should be implemented by
a common module that can be used in any compiler for the given machine. To a large extent,
this module can be made machine-independent in design. Regardless of the particular com-
puter, it must be able to resolve operand addresses and encode instructions. The information
required by different link editors and loaders does not vary significantly in content. In this
chapter we shall discuss the two main subtasks of assembly, internal address resolution and
instruction encoding, in some detail. We shall sketch the external address resolution problem
briefly in order to indicate the kind of information that must be provided by the compiler;
two specific examples of the way in which this information is represented can be found in
Chapter 14.

11.1 Internal Address Resolution

Internal address resolution is the process of mapping the target tree onto a block of contiguous
target machine memory locations, determining the addresses of all labels relative to the
beginning of this block. We begin by assuming that the size of an instruction is fixed, and
then show how this assumption can be relaxed. Special problems can arise from particular
machine architectures, and we shall briefly discuss a representative example.

235
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11.1.1 Label Value Determination

We begin with the structure of the target tree discussed in Section 4.1.4, which can be
characterized by the context-free rules of Figure 11.1.

The attribution rules in Figure 11.1 gather information from the tree about the rela-
tionships among sequences (origin_env) and the placement of labels within the sequences
(label_env). This information is exactly what is found in the ‘symbol table’ of a conven-
tional symbolic assembler. It can easily be shown that Figure 11.1 is LAG(1), and the single
traversal corresponds to ‘pass 1’ of the conventional assembler. Clearly we could integrate this
traversal with the code selection process in an implementation, but it remains conceptually
distinct.

The environments are lists whose elements have the types shown in Figure 11.2a. A based
origin element specifies an address expression stored as a tree, using linked records of the
form shown in Figure 11.2b. This tree actually forms a part of the origin_env attribute;
it is abstracted from the target tree by rules not shown in Figure 11.1, and delivered as
the attribute ezpression.ezpr in the rule for sequence ::= expression nodes. We shall
assume that all address computations either involve only absolute values or have the form
relative £ absolute; situations requiring more complex calculations can easily be avoided
by the compiler.

On the basis of the information in label_env and origin_env, every label can be assigned
a value that is either absolute or relative to the origin of a sequence whose origin class is
arbitrary. We could simply consider each arbitrary-origin sequence as a separate ‘module’
and terminate the internal address resolution process when the attribution of Figure 11.1
was complete. This is generally not done. Instead, we compute the overall length of each
arbitrary-origin sequence and concatenate them, restating all but the first as based. The
concatenated sequences form the relocatable portion of the program in which every label can
be assigned a relocatable address — an address relative to the single arbitrary origin.

Most programming languages do not offer the user a way to specify an absolute origin,
and hence the compiler will create only relocatable target code. If a particular implementa-
tion does require absolute sequences, there are two ways to proceed. The first is to fix the
arbitrary origin and treat the entire program as absolute; the second is to resolve the ad-
dresses separately in the absolute and relocatable portions, resolving cross references between
them by the methods of Section 11.2. The latter approach can also be taken when the source
language allows the programmer to specify that portions of the program reside in read-only
memory and others in read-write memory.

11.1.2 Span-Dependent Instructions

The assumption that the size of an instruction is fixed does not hold for all machines. For
example, the conditional branch instructions of the PDP11 use a single-byte address and
can therefore transfer control a maximum of 127 words back or 128 words forward. If the
branch target lies outside of this range then a sequence involving a conditional branch over
an unconditional jump must be used. The code generator cannot decide between these two
possibilities, and hence it outputs an abstract conditional jump instruction for the assembler
to resolve. Clearly the size of the resulting code depends upon the relative locations of the
target label and jump instruction. (A simple-minded assembler could always assume the
worst case and generate the longest version of the jump.)

A span-dependent instruction can be characterized by its location and the manner in
which its length depends upon the label(s) appearing in its operand(s). For example, the
length of a jump may depend upon the difference between the location of the jump and the
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rule target_tree ::= sequences

rule sequences ::=

attribution
sequences. label_env <« nil;
sequences.origin_env < nil;

rule sequences := sequences sequence
attribution
sequences[1].label_env <
sequences[2].label_env & sequence.label_env;
sequences[1].origin_env <
sequences[2].origin_env & sequence.orTigin_env;

rule sequence := nodes
attribution
nodes.base < gennum;
sequence.origin_env <—
N_origin_element (nodes.base, nodes.length, arbitrary)

rule sequence := expression nodes
attribution
nodes.base < gennum;
sequence.origin_env <—
N_origin_element (nodes.base, nodes.length,
based, exzpression.erpr);

rule nodes ::

attribution
nodes. label_env < nil;
nodes.length < O;

rule nodes := nodes operation
attribution
nodes[1].length < nodes[2].length +
instr_size (operation.instr);

rule nodes := nodes constant
attribution
nodes[1].length < nodes[2].length +
const_size (constant.value);

rule nodes := nodes label
nodes[1].label_env <+
nodes[2].label_env &
N_label_element (label.uid, nodes[1].base, nodes[2].length);

Figure 11.1: Target Tree Structure and Attribution
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type
label_element = krecord
uid : integer; (* Unique identification for the label *)
base : integer; (* Sequence to which the label belongs *)
relative_address : integer,(* Address of the label in the sequence *)
end;
origin_class = (arbitrary, based);

origin_element = krecord

uid : integer; (* Unique identification for the sequence *)
length : integer (* Space occupied by the sequence *)
case k : origin_class of

arbitrary : ();

based : (origin : address_ezp)
end;

a) Types used in the environments of Figure 11.1

type
address_ezp = record
case k : expr_class of

absolute :
(value : integer_value); (* Provided by the constant table *)
relative :
(label : integer); (* Unique identification of the
referenced label *)
computation

(rator : (add, sub);
right, left : Taddress_ezp)
end;
b) Types used to represent address expressions

Figure 11.2: The Environment Attributes

location of its target; in rare cases the length of a constant-setting instruction may depend
upon the value of an expression (LABEL1 - LABELZ2). In the remainder of this section we shall
consider only the former situation, and restrict the operand of the span-dependent instruction
to a simple label.

Span-dependence does not change the basic attribution of Figure 11.1, but it requires that
an extra attribute be constructed. This attribute, called mod_1%st, consists of linked records
whose form is given in Figure 11.3a. Mod_l1¢st is initialized and propagated in exactly the
same way as label_env. Elements are added to it at span-dependent instructions as shown in
Figure 11.3b. The function instr_size returns the minimum length of the span-dependent
instruction, and this value is used to determine origin values as discussed in Section 11.1.1.

The next step is to construct a relocation table that can be consulted whenever a label
value must be determined. Each relocation table entry specifies the total increase in size for
all span-dependent instructions lying below a given address (relative or absolute). When the
label address calculation of Section 11.1.1 indicates an address lying between two relocation
table entries, it is increased by the amount specified in the lower entry.
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type
mod_element = record
base : integer; (*Sequence in which instruction appears *)
relative_address:integer; (¥ Address of the instruction in the sequence *)
operand : integer; (*Unique identification for the operand labelx)
instr : machine_op; (*x Characterization of the instruction *)
end;
a) Type used in mod_list
rule nodes := nodes span_dependent_operation
attribution

nodes[1].length <
nodes[2].length + instr_size (span_dependent_operation.instr);
nodes[1].mod_list <
nodes[2] .mod_list &
N_mod_element (
nodes[1].base,
nodes[2].length,
span_dependent_operation.operand_uid,
span_dependent_operation.instr);

b) Calculation of mod_list

Figure 11.3: Span-Dependent Instructions

The properties of the span-dependent instructions are embodied in a module that provides
two operations:

Too_short (machine_op, integer) boolean: Yields true if the instruction defined by
machine_op cannot have its operand at the (signed) distance from the instruction given
by the integer.

Lengthen (machine_op, integer) integer: Updates the given machine_op, if necessary, so
that the instruction defined can have its operand at the (signed) distance given by the
integer. Yields the increase in instruction size resulting from the change.

The relocation table is built by the following algorithm:

1. Establish an empty relocation table.

2. Make the first element of mod_1%st current.

3. Calculate the addresses of the span-dependent instruction represented by the current
element of mod_1ist and its operand, using the current environments and relocation
table.

4. Apply too_short to the (signed) distance between the span-dependent instruction and
its operand. If the result is false, go to step 6.

5. Lengthen the instruction and update the relocation table accordingly. Go to step 2.

6. If elements remain in mod_l1ist, make the next element current and go to step 3.
Otherwise stop.

This algorithm has running time proportional to n? in the worst case (n is the number
of span-dependent instructions), even when each span-dependent instruction has more than
two lengths.
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Span-dependency must be resolved separately in each portion of the program that depends
upon a different origin (see the end of Section 11.1.1). If span-dependent instructions provide
cross-references between portions based on different origins then either all analysis of span-
dependence must be deferred to external address resolution or some arbitrary assumption
must be made about the cross-referencing instructions. The usual approach is to optimize
span-dependent instructions making internal references and use the longest version of any
cross-referencing instruction.

11.1.3 Special Problems

The IBM 370 and its imitators have a short address field and do not permit addressing relative
to the program counter. This is a design flaw that means the general-purpose registers must be
used as base registers to provide addressability within the code sequence. Such addressability
is required for two purposes: access to constants and specification of jump targets. The
code generator could, as a part of the memory mapping process, map all constants into a
contiguous block of memory and determine the number of base registers required to provide
addressability for this block. Given our decomposition of the compilation process, however,
it is impossible to guarantee that the code generator can allocate the minimum number of
base registers needed for jump target specification.

The number of code base registers required for any procedure can be reduced to two,
at the cost of increasing the size of a jump instruction from 4 bytes to 8: One of the two
registers holds the address of the procedure’s first instruction. Any jump target is defined
by its address, t, relative to this address. Let ¢ = 4096q + d, such that 0 < d < 4096 will fit
the displacement field of an RX-format instruction. Assuming that the address of the first
instruction is in register 10 and the second register allocated for code basing is 9, a jump to
t becomes

LH 9,CONS+2%¢(10)
BC MASK,d(9,10)

(Here ‘CONS’ is an array of halfword values for 4096g and ‘MASK’ is the condition code
mask defining the branch condition.)

By performing additional analysis of the code sequence, it may be possible to avoid ex-
panding some of the jumps. The value of ¢ (and hence the contents of register 9) is easily
determined at every point in the program. If the target of a jump has the same ¢ as is in force
at the location of the jump then no expansion is necessary. Effectively, jump becomes a span-
dependent instruction. The problem of finding the minimum number of jumps that must be
expanded is NP-complete, but a linear algorithm that never shortens a previously-generated
jump gives adequate results in practice.

11.2 External Address Resolution

External address resolution combines separately-compiled modules into a complete program
or simply a larger module. Component modules may constitute a part of the input text,
or may be extracted automatically from one or more libraries. They may have originally
been coded in a variety of programming languages, and translated by different compilers.
(This last is only possible when all of the compilers produce target code using a common
representation.)

We restrict ourselves here to the basic problems of external address resolution and their
solution. To do so we must assume a particular code format, but this should in no way be
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taken as advice that the compiler writer should design his own representation! As noted at
the beginning of the chapter, we strongly advocate use of manufacturer-supplied link editors
and loaders for external address resolution.

11.2.1 Cross-Referencing

In many respects, external address resolution is analogous to internal address resolution: Each
module is a single code sequence with certain locations (usually called entry points, although
they may be either data or code addresses) distinguished. These locations are analogous
to the label nodes in the internal address resolution case. The module may also contain
address expressions that depend upon values (usually called ezternal references) not defined
within that module. These values are analogous to the label references in the internal address
resolution case. When the modules are combined, they can be considered to be a list of
independent code sequences and all of the techniques discussed in Section 11.1 can be carried
over.

There can be some benefit in going beyond the analogy discussed in the previous para-
graph, and simply deferring the internal address resolution until all modules have been gath-
ered together. Under those circumstances one could optimize the length of inter-module
references as well as intra-module references (Section 11.1.2). We believe that the bene-
fits are not commensurate with the costs, however, since inter-module references should be
relatively rare.

Two basic mechanisms are available for establishing inter-module references: transfer
vectors and direct substitution. A transfer vector is best suited to references involving a
transfer of control. It is a block of memory, included in each module that contains external
references, consisting of one element for each distinct external symbol referenced (Figure 11.4).
The internal address resolution process replaces every external reference with a reference to
the corresponding element of the transfer vector, and the external address resolution process
fills each transfer vector element with the address of the proper entry point. When the
machine architecture permits indirect addressing, the initial reference is indirect and may
be either a control or a data reference. If the machine does not provide indirect addressing
via main memory, the transfer vector address must be loaded into a base register for the
access. When the address length permits jumps to arbitrary addresses, we might also place
an unconditional jump to the entry point in the transfer vector and implement a call as a call
to that transfer vector entry.

Direct substitution avoids the indirection inherent in the transfer vector mechanism: The
actual address of an entry point is determined during external address resolution and stored
into the instruction that references it. Even with the transfer vector mechanism, direct
substitution is required within the transfer vector itself. In the final analysis, we use a
transfer vector because it reduces to one the number of changes that must be made when the
address of an entry point changes, and concentrates these changes at a particular point in the
program. Entry point addresses may change statically, as when a module is newly compiled
and bound without altering the program, or they may change dynamically, as when a routine
resides in memory temporarily. For example, service routines in an operating system are
often ‘transient’ — they are brought into memory only when needed. The operating system
provides a transfer vector, and all invocations of service routines must go via this transfer
vector. When a routine is not in memory, its transfer vector entry is replaced by a jump to
a loader. Even if the service routines are not transient, a transfer vector is useful: When
changes made to the operating system result in moving the service routine entry points, only
the transfer vector is altered; there is no need to fix up the external references of all user
programs. (Note that in this case the transfer vector is a part of the operating system, not
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procedure ez (z, y : real) : real;

var
a, b : real;

begin

a := sign (z) * sqrt (abs (z));

b := sign (y) * sqrt (abs (y));

ez := (a - b) / (a + D)

end; (x ex *)
a) External references

abs
sign
sqrt

b) Transfer vector for procedure ez

Figure 11.4: Transfer Vectors

of each module using the operating system as discussed in the previous paragraph. If the
vector occupies a fixed location in memory, however, it may be regarded either as part of the
module or as part of the operating system.)

In the remainder of this section we shall consider the details of the direct substitution
mechanism. As pointed out earlier, this is analogous to internal address resolution. We shall
therefore concern ourselves only with the differences between external and internal resolution.
These differences lie mainly in the representation of the modules.

A control dictionary is associated with each module to provide the following information:

e Length of the module.

e Locations of entry points relative to the beginning of the module.

e Symbols used to denote entry points and external values.

e Fields within the module that represent addresses relative to the beginning of the mod-
ule.

e Fields within the module that represent external references.

Additional information about the size of external areas may also be carried, to support
external static data areas such as FORTRAN COMMON.

The module length, relative entry point addresses and symbols are used to establish
an attribute analogous to label_element. Note that this requires a traversal of the list
of modules, but not of the individual modules themselves. After this attribute is known,
the fields representing relative and external addresses must be updated. A relative address
is updated by adding the address of the module origin; the only information necessary to
characterize the field is the fact that it contains a relative address. One common way of
encoding this information is to associate relocation bits with the module text. The precise
relationship between relocation bits and fields depends upon the machine architecture. For
example, on the PDP11 a relative address occurring in an instruction must occupy one word.
We might therefore use one relocation bit per word, 1 indicating a relative address. Note
that this encoding precludes other placement of relative addresses, and may therefore impose
constraints upon the code generator’s mapping of data structures to be initialized by the
compiler.

To characterize an external reference we must specify the particular external symbol in-
volved in addition to the fact that an external reference occurs in the field. The concept of
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a relocation bit can be extended to cover the existence of an external reference by adding a
third state: For a particular field the possibilities are ‘no change’, ‘relative’ and ‘external’.
The field itself then contains an integer specifying the particular external symbol.

There are two disadvantages to this strategy for characterizing external references. The
most important is that it does not permit an address relative to an external symbol, since the
field must be used to define the symbol itself. Data references, especially those to external
arrays like FORTRAN COMMON, tend to violate this constraint. A second disadvantage is
that the number of relocation bits for every field is increased, although only a small minority
of the fields may actually contain external references. Both disadvantages may be overcome
by maintaining a list of all fields containing external references relative to a particular symbol.
The field itself contains the relative address and the symbol address is simply added to it,
exactly as a relative address is updated. (This same strategy can be used instead of relocation
bits for relative addresses on machines whose architectures tend to make relative addresses
infrequent; the IBM 370 is an example.)

The result of the cross-referencing process could be a ready-to-run program, with all
addresses absolute, or it could be single module with relative addresses, entry points and
external references that can be used as input to further linkage steps. In the latter case, the
input must specify not only the modules to be linked but also the entry points to be retained
after linkage. External references will be retained automatically if and only if they do not
refer to entry points of other input modules.

11.2.2 Library Search

A language such as Ada requires that the semantic analyzer verify the correctness of all inter-
module references. Thus during assembly all of the modules needed are already known. This
is not the case for languages such as FORTRAN. Mathematical subroutines, I/O procedures,
environment inquiries and the like are almost always supplied by the installation and placed
in a library in target code format. After the first traversal of the input module list, external
references not corresponding to entry points may be looked up in this library. If a module in
the library has one or more of these symbols as entry points then it is added to the list and
processed just as though it had come from the input. Clearly more than one library may be
searched in the process of satisfying external references; the particular libraries and order of
search are specified by the user.

A library is often quite large, so it would be inefficient to scan all of the modules in a
search for entry points. The entry point information is therefore normally gathered into a
catalog during the process of constructing the library, and only the catalog is examined to
select appropriate modules. Since the modules of a library may have a high degree of internal
linkage, the catalog should also specify the external symbols referenced by each module. After
the modules necessary to satisfy user external references have been determined, a transitive
closure operation adds any others required by those already selected.

11.3 Instruction Encoding

After all attributes of target tree nodes have been computed, the information must be con-
verted into target code suitable for execution. This process is similar to the code selection
discussed in Section 10.3, but somewhat different specification techniques are appropriate.
After discussing an appropriate interface for the target code converter, we shall present an
encoding mechanism and a specification language.
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11.3.1 Target Code
We regard the target code as an abstract data type defined by eight operations:

Module_name (identifier_string): Establish the name of the module being generated.

Module_size (length): Specify the length of the block of contiguous memory locations re-
quired for the module being generated.

Entry_point (identifier_string): Establish an entry point to the module being generated.

Set_location (relative_address): Specify the load point at which subsequent target code
is to be placed in memory.

Absolute_text (target_text, length): Place encoded target text into memory at the cur-
rent load point. The length argument gives the amount of text to be placed. After
the text has been placed, the current load point is the point immediately beyond it.

Internal_reference (relative_address): Place an encoded relative address into memory
at the current load point. After the address has been placed, the current load point is
the point immediately beyond it.

Ezternal_reference (offset, identifier_string): Place an external reference into mem-
ory at the current load point. The offset is the address relative to the external symbol
identifierstring. After the reference has been placed, the current load point is the
point immediately beyond it.

These operations provide the information summarized in Section 11.2, and would consti-
tute the interface for a module that actually produced a target code file. Some manufacturer’s
software may place restrictions upon parameter values, and some may provide facilities (such
as repetitions of data values) that cannot be reached via these operations.

Module_name, module_size and entry_point all provide specific information for the
control dictionary. Set_location is used to reset the current load point at the beginning of a
code sequence. It embodies the ‘scatter loading’ concept in which the target code is broken up
into a number of compact blocks, each of which carries the address at which it is to be placed.
These addresses need not be contiguous. We shall consider two specific implementations of
this concept in Section 14.2.

Only a small range of length parameters is possible for the absolute_tezt operation on
any given machine: There is a fixed set of instruction and instruction fragment lengths, and
most constants have a length dependent only upon their type and not upon their value. One
notable exception is the string constant, which must be broken into smaller units to be used
with the absolute_text operation.

There is no length parameter specified for an internal or external reference. On most
computers, relative addresses are only useful as operands of a specific length, and hence that
length is assumed.

Absolute text, internal references and external references are distinguished because they
may be represented in very different ways by the manufacturer’s software. For a particular
target computer there may even be several operating systems with quite different target
code formats. It is therefore wise for the compiler writer to design his target code module
according to the abstract data type given here instead of attempting to merge absolute_tezt,
internal_reference and external_reference into one operation and inserting relocation
bits explicitly.

11.3.2 The Encoding Process

Each target tree node represents a label, storage reservation, constant or abstract machine
instruction. Label nodes are ignored by the encoding process, and storage reservation nodes
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simply result in invocations of the set_location operation. The remaining nodes must be
encoded by invoking one or more of the last three operations defined in the previous section.

Constants may appear as literal values to be incorporated directly into the target code, or
they may be components of address expressions. In the latter case, the result of the expression
could be used as data or as an operand of an instruction. Literal values must be converted
using the internal-to-target conversion operations of the constant table (Section 4.2.2), and
then inserted into the target code by absolute_text. An address expression is evaluated
as outlined in Exercise 11.9. If the result is used as data then the appropriate target code
operation is used to insert it; otherwise it is handled by the instruction encoding.

In the simplest case the abstract instructions correspond to unique operation codes of the
real machine. In general, however, the correspondence is not so simple: One abstract opera-
tion can represent several instructions, or one of several operation codes could be appropriate
depending upon the operand access paths. Decisions are thus made during instruction en-
coding on the basis of the abstract operator and the attributes of the operand(s) just as in
the case of code generation.

The basic instruction encoding operations are called formats. They are procedures that
take sets of values and add them to the target code so that the result is a single instruction.
These procedures sometimes correspond to the instruction formats recognized by the target
machine’s control unit, and hence their name. In many cases, however, the instruction format
shows regularities that can be exploited to reduce the number of encoding formats. For
example, the five instruction formats of the IBM 370 (Figure 11.5a) might correspond to only
three encoding formats (Figure 11.5b).

RR | opcode | R1 | R2 |

RX [opcode [RI[X2[B2] D2 |
RS [opcode [RITR3[B2] D2 |
ST [opcode | 12 [BI| D1 |
SS | opcode | L1 [ L2 | BI | D1 | B2 | D2 |

a) Instruction formats

FR | opcode | R1 | R2 |

FI | opcode | | |

FM [B ] D |

b) Encoding formats
Figure 11.5: IBM 370 Formats

An instruction is encoded by calling a sequence of one or more format-encoding proce-
dures. The process can be described in a language resembling a normal macro assembly
language. Figure 11.6 shows a portion of a description of the IBM 370 instruction encod-
ing cast in this form. Each macro body specifies the sequence of format invocations, using
constants or macro parameters (denoted by the character ‘%’ followed by the position of the
parameter) as arguments. A separate directive, NAME, is used to associate the macro body
with an instruction because many instructions can often use the same encoding procedure.
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AR NAME 1AH

SR NAME 1BH
MACRO ; Register,Register
FR %0,%1,%2
ENDM

A NAME 5AH
S NAME 5BH

MACRO ; Register,Memory,Index
FR %0,%1,%3

FM %2

ENDM

AP NAME OFAH
SP  NAME OFBH

MACRO ; Memory,Length,Memory,Length
FR %0,%2,%4

FM %1

FM %3

ENDM

Note: Suffix ‘H’ denotes hexadecimal.
Figure 11.6: IBM 370 Instruction Encoding

NAME directives may specify an argument, which becomes parameter 0 of the macro. In
Figure 11.6 the NAME directive has been used to supply the hexadecimal operation code for
each instruction. (A hexadecimal constant begins with a digit and ends with ‘H’.) We use the
IBM mnemonics to denote the instructions; in practice these macros would be represented
by tables and the node type of an abstract operation would appear in place of the symbolic
operation code.

Formal parameters of the macros in Figure 11.6 are described by comments. (Strings
following ‘;” on the same line are comments.) The corresponding actual parameters are the
operands of the target tree node, and their values will have been established during code
generation or address resolution. Note that a ‘memory’ operand includes its base register but
not an index register. Thus the ‘FM’ format takes a single memory address and encodes it
as a base and displacement. This reflects the fact that the index register is assigned by the
code generator, while the base register is determined during assembly. In other words, the
abstract IBM 370 from which these macros were derived did not have the concept of a based
access.

Consider the LAX expression a + b 1 [¢]. If @ were in register 1, b 1 in register 2 and
¢ (multiplied by the appropriate element length) in register 3 then the addition could be
performed by a single IBM 370 add instruction with R1 = 1, B2 = 2, X2 = 3 and D2 a
displacement appropriate to the lower bound of the array being referenced. Given the macros
of Figure 11.6, however, this instruction could not be encoded because the abstract machine
has no concept of a based access. Clearly one solution to this problem is to give FM two
arguments and make the base register explicit in the abstract machine; another is to provide
the abstract machine with two kinds of memory address: one in the code sequence and the
other in data memory. We favor the latter solution because these two kinds of memory address
are specified differently. The code generator defines the former by a label and the latter by
a base register and displacement. The assembler mustpick a base register for the former but
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A NAME 5AH
S NAME 5BH
MACRO ,LABEL ; Register,Memory,Index

FR %0,%1,%3

FM1 %2

ENDM

MACRO ; Register,Base,Index,Displacement
FR %0,%1,%3

FM2 %2,%4

ENDM

a) Selection of different macros

A NAME 5AH
S NAME 5BH

MACRO ; Either pattern
FR %0,%1,%3

IF @%2=LABEL

FM1 %2

ELSE

FM2 %2,%4

ENDIF

ENDM

b) Conditional within a macro

Figure 11.7: Two Memory Operand Types

not the latter. Because of these differences it is probably useful to have distinct target node
formats for the two cases.

Figure 11.7 shows a modification of the macros of Figure 11.6 to allow our second solution.
In Figure 11.7a the add instruction is associated with two macro bodies, and the attribute of
one of the parameters of the first is specified. The specification gives the attribute that the
operand must possess if this macro is to be selected. By convention, the macros associated
with a given name are checked in the order in which they appeared in the definition; param-
eters with no specified attributes match anything. Figure 11.7b combines the two bodies,
using a conditional to select the proper format invocation. Here the operator ‘Q’ is used to
select the attribute rather than the wvalue of the parameter. This emphasizes the fact that
there are two components of an operand, attribute and value, which must be distinguished.

What constitutes an attribute of an operand, and what constitutes a value? These ques-
tions depend intimately upon the design of the abstract machine and its relationship to the
actual target instructions. We shall sketch a specific mechanism for defining and dealing with
attributes as an illustration.

The value and attribute of an operand are arbitrary bit patterns of a specified length.
They may be accessed and manipulated individually, using the normal arithmetic and bitwise-
logical operators. Any expression yields a value consisting of a single bit pattern. Two
expressions may be formed into a value/attribute pair by using the quote operator: e;”es.
(See Figure 11.8 for examples.) An operand is compatible with a parameter of a macro if the
following expression yields true:

(Qoperand and Qparameter) = parameter
Thus the operand R2 would be compatible with the parameters R2, EVENGR and GENREG
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ANY SET 070 ; Any operand

LABEL SET 10H”10H ; Code sequence memory operand
EVENGR SET 20H”21H ; Even-numbered general register
ODDGR  SET 21H”21H ; Odd-numbered general register
GENREG SET 20H”20H ; Any general register

RO SET 0720H ; General register 0
R1 SET 1721H ; General register 1
R2 SET 2722H ; General register 2
R3 SET 3”23H ; General register 3
a) Symbol definitions
LABEL = 10H
@QLABEL = 10H
RO+1 =1
@RO-1 = 17TH
R1+@LABEL = 11H
@QR3 and QEVENGR = 21H
@R3 and @QODDGR = 21H

b) Expressions

Figure 11.8: Values and Attributes

in Figure 11.8; it would not be compatible with ODDGR. or LABEL. Clearly any operand is
compatible with ANY, and it is this object that is supplied when a parameter specification
is omitted.

Macro languages similar to the one sketched here have been used to specify instruction
encoding in many contexts. Experience shows that they are useful, but if not carefully imple-
mented can lead to very slow processors. It is absolutely essential to implement the formats
by routines coded in the implementation language of the compiler. Macros can be interpreted,
but the interpretive code must be compact and carefully tailored to the interpretation pro-
cess. The normal implementation of a macro processor as a string manipulator is inadequate.
Names should be implemented as a compact set of integers so that access to lists of macro
bodies is direct. Since the number of bodies associated with a name is usually small, linear
search is adequate. Note that a tradeoff is possible between selection on the basis of the name
and selection on the basis of attributes.

As a by-product of the encoding, it is possible to produce a symbolic assembly code version
of the program to aid in the debugging and maintenance of the compiler itself. If the macro
names are specified symbolically, as in Figures 11.6 and 11.7, these can be used as symbolic
operation codes in the listing. The u4id that appears as an intrinsic attribute of the label
nodes can be converted into a normal identifier by prefixing a letter. Only constants need
special treatment: a set of target value-to-character conversion procedures must be provided.

11.4 Notes and References

Assembly is seldom provided as a cleanly-separated module that can be invoked by any
compiler. Exceptions to this rule are IBSYS [TALMADGE, 1963] and EMAS [STEPHENS,
1974] both of which contain standard assembly modules. The IBSYS assembler requires the
target code tree to reside on a sequential file, while EMAS makes a collection of assembly
procedures available as part of the standard library. IBM chose not to follow the IBSYS
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example in OS/360, probably because of complaints about performance degradation due to
the need to explicitly write the target code tree.

The idea of using separate code sequences instead of specific storage reservation nodes
in the target tree was discussed by MEALY [1963]. TALMADGE [1963] shows how complex
addressing relationships among sequences can be implemented. His philosophy was to provide
complete flexibility in the assembler (which was written once for each machine) in order to
reduce effort that would otherwise be duplicated in every compiler. In practice, it seems
that the duplicated effort is generally required to support quality code generation. Thus the
complexity does not occur in target code produced by a compiler, but it is often found in
symbolic assembly code produced by human programmers.

Several ‘meta-assemblers’ have been proposed and used to implement symbolic assembly
languages. These systems provide mechanisms for specifying the instruction encoding process
in terms of formats and macros as discussed in Section 11.3.2. Most of the basic ideas are
covered by GRAHAM and INGERMAN [1965] but the concept of including attributes in the
pattern match does not occur until much later. [LANGUAGE RESOURCES, 1981]. The problem
of span-dependence has been studied by a number of authors. Our treatment follows that of
HANGELBERGER [1977] and SZYMANSKI [1978] and is specially adapted for use in a compiler.
In symbolic assemblers, more complex address expressions may appear and the order of the
algorithm may be altered thereby.

Exercises

11.1 Complete Figure 11.1 by adding rules to describe address expressions and construct
the attribute expression.ezpr.

11.2 [GALLER and FISCHER, 1964] Consider the problem of mapping storage described by
FORTRAN COMMON, DIMENSION, EQUIVALENCE and DATA statements onto
a sequence of contiguous blocks of storage (one for each COMMON area and one for
local variables).

(a) How can these statements be translated into a target tree of the form discussed
in Section 4.1.4 and Figure 11.17

(b) Will the translation you describe in (a) ever produce more than one arbitrary-
origin sequence? Carefully explain why or why not.

(c) Does your target tree require any processing by the assembler in addition to that
described in Section 11.1.17 If so, explain why.

11.3 [TALMADGE, 1963] Consider the concatenation of all arbstrary-origin sequences dis-
cussed in Section 11.1.1.

(a) Write a procedure to determine the length of an arbitrary-origin sequence.
(b) Write a procedure to scan origin_env, finding two arbitrary-origin sequences
and concatenating them by altering the ortgin_element record for the second.

11.4 Consider the implementation of the span-dependence algorithm of Section 11.1.2.

(a) Show that the algorithm has running time proportional to n? in the worst case,
where n is the number of span-dependent instructions.

(b) Define a relocation table entry and write the update routine mentioned in step
(5) of the algorithm.
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11.5 [SzyMANSKI, 1978] Modify the span-dependence analysis to allow target expressions of
the form label + constant.

11.6 Consider the code basing problem of Section 11.1.3.

(a) Define any attributes necessary to maintain the state of ¢ within a code sequence,
and modify the rules of Figures 11.1 and 11.3 to include them.

(b) Explain how the operations too_short and lengthen (Section 11.1.2) must be
altered to handle this case. Would you prefer to define other operations instead?
Explain.

11.7 [ROBERTSON, 1979] The Data General Nova has an 8-bit address field, addressing
relative to the program counter is allowed, and any address may be indirect. Constants
must be placed in the code sequence within 127 words of the instruction that references
them. If a jump target is further than 127 words from the jump then the address must
be placed in the code sequence as a constant and the jump made indirect. (The size of
the jump instruction is the same in either case.)

(a) Give an algorithm for placing constants that takes advantage of any unconditional
jumps already present in the code, placing constants after them.

(b) Indicate how the constant blocks might be considered span-dependent instruc-
tions, whose size varies depending upon whether or not they contain jump target
addresses.

(c) Show that the problem of optimizing the span-dependence in (b) is NP-complete.

11.8 [TALMADGE, 1963] Some symbolic assemblers provide ‘multiple location counters’,
where each location counter defines a sequence in the sense of Section 11.1.1. Pseudo
operations are available that allow the user to switch arbitrarily from one location
counter to another.

(a) Show how a target tree could represet arbitrary sequence changes by using
internally-generated labels to associate ‘pieces’ of the same sequence.

(b) Some computers (such as the Control Data Cyber series) have instructions that
are smaller than a single memory element, but an address refers only to an entire
memory element. How could labels be represented for such a machine? How does
the choice of label representation impact the solution to (a)?

(c) What changes to Figure 11.1 would be needed if we chose not to represent arbitrary
sequence changes by internally-generated labels, but instead gave every ‘piece’ of
the same sequence the same uzd?

(d) If we used the representation for sequences suggested in (c), how would the answer
to (b) change?

11.9 The ultimate value of an address embedded in the target code must be either a number
or a pair (external symbol, number). A number alone may represent either a numeric%
operand or a relative address.

(a) Suppose that A, B and C are labels. What form does the value of (A+B)-C take?
Why is (A+B)+C a meaningless address expression?

(b) Specify an attribute that could be used to distinguish the cases mentioned in (a).

(c) If A were an external symbol, would your answer to (a) change? Would your
answer to (b) change? How?

(d) Would you allow the expression (A+B)-(A+C), A an external symbol, B and C
labels? What form would its value take?
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11.10

11.11

11.12

(e) Use an attribute grammar to define the language of legal address expressions.
Make the value of the expression an attribute of the root.

[HEDBERG, 1963] What requirements are placed upon the external address resolution
process by FORTRAN COMMON blocks? Quote the FORTRAN standard to support
your position, and then explain how these requirements might be satisfied.

Suppose that the target machine provided an instruction to add an immediate value to
a register, but none to subtract an immediate value from a register. The addition is,
however, a 2’s complement addition so that subtraction can be accomplished by adding
the complement of an immediate value. How would you provide the complement of a
relative address as an immediate operand?

[GENERAL ELECTRIC COMPANY, 1965] Several utility modules may require the same
support functions, but optimizations may arise from integrating these support functions
with the utility modules. The result is that several modules may have identical entry
points for the support functions but differ in other entry points. Devise a library catalog
that will distinguish between primary and secondary entry points: A module will be
selected only if one or more of its primary entry points corresponds to an unsatisfied
external reference. Once a module has been selected, however, secondary entry points
can be used to satisfy external references. Comment upon any user problems you
foresee.
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Chapter 12

Error Handling

Error handling is concerned with failures due to many causes: errors in the compiler or its
environment (hardware, operating system), design errors in the program being compiled, an
incomplete understanding of the source language, transcription errors, incorrect data, etc.
The tasks of the error handling process are to detect each error, report it to the user, and
possibly make some repair to allow processing to continue. It cannot generally determine
the cause of the error, but can only diagnose the visible symptoms. Similarly, any repair
cannot be considered a correction (in the sense that it carries out the user’s intent); it merely
neutralizes the symptom so that processing may continue.

The purpose of error handling is to aid the programmer by highlighting inconsistencies.
It has a low frequency in comparison with other compiler tasks, and hence the time required
to complete it is largely irrelevant, but it cannot be regarded as an ‘add-on’ feature of a
compiler. Its influence upon the overall design is pervasive, and it is a necessary debugging
tool during construction of the compiler itself. Proper design and implementation of an error
handler, however, depends strongly upon complete understanding of the compilation process.
This is why we have deferred consideration of error handling until now.

It is perhaps useful to make a distinction between the correctness of a system and its
reliability. The former property is derived from certain assumptions regarding both the prim-
itives upon which the system is based and the inputs that drive it. For example, program
verification techniques might be used to prove that a certain compiler will produce correct
object programs for all source programs obeying the rules of the source language. This would
not be a useful property, however, if the compiler collapsed whenever some illegal source
program was presented to it. Thus we are more interested in the reliability of the compiler:
its ability to produce useful results under the weakest possible assumptions about the quality
of the environment, input data and human operator. Proper error handling techniques con-
tribute to the reliability of a system by providing it with a means for dealing with violations
of some assumptions on which its design was based. (Theoretically, of course, this could be
regarded simply as a relaxation of those assumptions; pragmatically, techniques for achieving
correctness and reliability are quite different.)

We shall begin this chapter by considering some general principles of error handling. A
distinction will be made between errors detectable at compilation time and errors whose
symptoms do not appear until execution time. The compiler must deal with those in the
former class directly, and must provide support for the run-time system that allows it to
handle those in the latter class. Section 12.2 further classifies compiler-detected errors, and
explains methods of recovering from erroneous input in order to obtain as much diagnostic
information as possible from a single run. Support for run-time error handling is considered
in Section 12.3.

253
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12.1 General Principles

The class of detectable errors is determined by the design of the programming language, not
the design of the compiler. An error handler should recognize and repair all detectable errors
occurring in a program. Unfortunately, this goal often conflicts with the principle that a
correct program should pay nothing for error handling. One compromise is to subdivide the
detectable errors into several classes and proceed in a stepwise fashion: The detection of
errors in different classes is provided for by distinct options in the compiler or controlled by
additional monitoring code during execution.

Almost by definition, error handling involves a mass of special cases and exceptions to
rules. It is thus very difficult to provide any sort of clean, theoretical foundation for this
aspect of the compilation process. What we shall try to do in this section is to classify errors
and outline the broad strategies useful in dealing with these classes.

12.1.1 Errors, Symptoms, Anomalies and Limitations

We distinguish between the actual error and its symptoms. Like a physician, the error handler
sees only symptoms. From these symptoms, it may attempt to diagnose the underlying
error. The diagnosis always involves some uncertainty, so we may choose simply to report the
symptoms with no further attempt at diagnosis. Thus the word ‘error’ is often used when
‘symptom’ would be more appropriate.

A simple example of the symptom/error distinction is the use of an undeclared identifier
in LAX. The use is only a symptom, and could have arisen in several ways:

e The identifier was misspelled on this use.
e The declaration was misspelled or omitted.

e The syntactic structure has been corrupted, causing this use to fall outside of the scope
of the declaration.

Most compilers simply report the symptom and let the user perform the diagnosis.

An error is detectable if and only if it results in a symptom that violates the definition of
the language. This means that the error handling procedure is dependent upon the language
definition, but independent of the particular source program being analyzed. For example,
the spelling errors in an identifier will be detectable in LAX (provided that they do not result
in another declared identifier) but not in FORTRAN, which will simply treat the misspelling
as a new implicit declaration.

Our goal in implementation should be to report each detectable error at the earliest
opportunity. If the symptom can be noticed at compile time, then we should do so. Some
care must be taken, however, not to report errors before their symptoms occur. For example,
the LAX expression (1/0) conforms to the syntax and static semantics of the language; the
symptom ‘division by zero’ only occurs when the expression is actually evaluated during
execution. It is important that the compiler not report an error in this case, even though it
might detect the problem (say, while folding constants). The reason is that this expression
may never actually be evaluated, and hence the program may not be incorrect at all. (Another
possibility is that the programmer is attempting to force an execution-time error, perhaps to
check out a new recovery mechanism.)

We shall use the term anomaly to denote something that appears suspicious, but that we
cannot be certain is an error. Anomalies cannot be derived mechanically from the language
definition, but require some exercise of judgement on the part of the implementor. As expe-
rience is gained with users of a particular language, one can spot frequently-occurring errors
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end
1:=1;
a) A legal fragment of an ALGOL 60 program

end;
1 :=1;
b) The probable intent of (a)

fori:=1step 1l until 2xn+1
c¢) A probable inefficiency in SIMULA

Figure 12.1: Anomalies

and report them as anomalies before their symptoms arise. An example of such a case is the
fragment of ALGOL 60 shown in Figure 12.1a. Since ALGOL 60 treats text following end
as a comment (terminated by else, end or ;), there is no inconsistency here. However, the
appearance of := in the comment makes one suspicious that the user actually intended the
fragment of Figure 12.1b. Many ALGOL 60 compilers will therefore report an anomaly in
this case.

Note that a detectable error may appear as an anomaly before its symptoms arise: A
LAX compiler could report the expression (1/0) as an anomaly even though its symptoms
would not be detected until execution time. Reports of anomalies therefore differ from error
reports in that they are simply warnings that the user may choose to suppress.

Anomalies may be reported even though there is no reason whatever to believe that
they represent true errors; some compilers are quite prepared to simply comment on the
programmer’s style. The SIMULA compiler for the Univac 1108, for example, diagnoses
Figure 12.1c as poor style because — as in ALGOL 60 — the upper limit of the iteration is
evaluated 2n + 1 times even though its value probably does not change during execution of
the loop. Such reports may also be used to call the programmer’s attention to nonstandard
constructs supported by the particular system on which he is running.

A particular implementation normally places some limitations on the language definition,
due to the finite resources at its disposal. (Examples include the limitation of finite-precision
arithmetic, a limit on the number of identifiers in a program, the number of dimensions in
an array or the maximum depth of parentheses in an expression.) Although violations of
implementation-imposed constraints are not errors in the sense discussed above, they have
the same effect for the user. A major design goal is therefore to minimize the number of such
limitations, and to make them as ‘reasonable’ as possible. They should not be imposed lightly,
simply to ease the task of the implementor, but should be based upon a careful analysis of
the cost/benefit ratio for user programs.

12.1.2 Responses

We distinguish three possible levels of response to a symptom:

1. Report: Provide the user with an indication that an error has occurred. Specify the
symptom, locate its position precisely, and possibly attempt a diagnosis.

2. Recover: Make the state of the process (compilation, execution) consistent and continue
in an attempt to find further errors.

3. Repair: On the basis of the observed symptom, attempt a diagnosis of the error. If
confident that the diagnosis is correct, make an appropriate alteration in the program
or data and continue.
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Both the compiler and the run-time system must at least report every symptom they
detect (level 1). Recovery (level 2) is generally provided only by the compiler, while repair
may be provided by either. The primary criterion for recovery techniques is that the system
must not collapse, since in so doing it may take the error message (and even the precise
location of the symptom) with it. There is nothing more frustrating than a job that aborts
without telling you why!

A compiler that reports the first symptom detected and then terminates compilation is not
useful in practice, since one run would be needed for each symptom. (In an interactive setting,
however, it may be reasonable for the compiler to halt at the first symptom, requiring the
programmer to deal with it before continuing.) The compiler should therefore recover from
almost all symptoms, allowing detection of as many as possible in a single run. Some errors
(or restrictions) make it impossible for the compiler to continue; in this case it is best to give
a report and terminate gracefully. We shall term such errors deadly, and attempt to minimize
their number by careful language and compiler design.

Recovery requires that the compiler make some alteration of its state to achieve con-
sistency. This alteration may cause spurious errors to appear in later text that is actually
correct. Such spurious errors constitute an avalanche, and one of the major design criteria
for a recovery scheme is to minimize avalanches. We shall discuss this point in more detail in
Section 12.2.

If the compiler is able to diagnose and repair all errors with a high probability of success,
then the program could safely be executed to permit detection of further errors. We must,
however, be quite clear that a repair is not a correction. Much of the early literature on this
subject used these terms interchangeably. This has unfortunate connotations, particularly for
the novice, indicating that the compiler is capable of actually determining the programmer’s
intent.

Repair requires some circumspection, since the cost of execution could be very high and
the particular nature of the repair could render that execution useless or could cause it to
destroy important data files. In general, repair should not be attempted unless the user
specifically requests it.

As in the case of recovery, we may classify certain errors as uneconomic or impossible
to repair. These are termed fatal, and may cause us to refuse to execute the program. If a
program containing a fatal error is to be executed, the compiler should produce code to abort
the program when the error location is reached.

12.1.3 Communication with the User

The program listing is the primary document linking the user and the compiler. At a min-
imum, the listing reproduces the source program that the compiler translated; it may also
provide indexes and cross-references to data items, labels and procedures. All error reports
must indicate the relevant position of the symptom on the listing in addition to describing
the symptom.

As indicated in Figure 1.3, the compiler itself should not produce the program listing. A
separate listing editor uses the original source text and a compiler-generated error report file
to create the listing. Each error report specifies the error number and a source text position.
The reports are sorted according to source text position either by the compiler or by the
listing editor. As the listing editor creates the listing, it inserts the full text of the error
message at the error location. A standard format, which causes the message to stand out
in the listing, should be used: Special characters, printed in some part of the print line that
is normally blank, act as a flag. The position of the symptom is clearly marked, and the
remainder of the line contains a brief description. This description should be readable (in the
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user’s natural language), restrained and polite. It should be stated in terms of what the user
has done (or not done) rather than in terms of the compiler’s internal state. If the compiler
has recovered from the error, the nature of the recovery should be made clear so that any
resulting avalanche will be understandable.

Ideally, error reports should occur in two places: at the point where the compiler noticed
the symptom, and in a summary at the end of the program. By placing a report at the point
of detection, the compiler can identify the coordinates of the symptom in a simple manner
and spare the programmer the task of switching his attention from one part of the listing to
another. The summary report directs the programmer to the point of error without requiring
him to scan the entire listing, reducing the likelihood that errors will be missed.

Compiler error reports may be classified into several levels according to severity:

Note
Comment
Warning
Error

Fatal error
Deadly error

SOt W=

Levels 1-3 are reports of anomalies: Notes refer to nonstandard constructs, and are only
important for programs that will be transported to other implementations; comments criticize
programming style; warnings refer to possible errors. The remaining levels are reports of
actual errors or violations of limits. Errors at level 4 can be repaired, fatal errors suppress
production of an executable program (but the compiler will recover from them), and deadly
errors cause compilation to terminate.

The user should be able to suppress messages below a given severity level. Both the default
severity cutoff and the number of reports possible on each level will vary with the design goals
of the compiler. A compiler for use in introductory programming courses should probably
have a default cutoff of 0 or 1, and produce a plethora of comments and warnings; one for
use in a production operation with a single type of computer should probably have a cutoff
of 3, and do very little repair. The ability to vary these characteristics is a key component in
the adaptability of a compiler.

The programmer’s ability to cope with errors seems to be inversely proportional to the
density of errors. If the error density becomes very large, the compiler should probably
abandon the program and let the programmer deal with those errors found so far. (There is
always the chance that a job control error has been made, and the ‘program’ is really a data file
or a program in another language!) It is difficult to state a precise criterion for abandonment,
but possibly one should consider this response when the number of errors exceeds one-tenth
of the number of lines processed and is greater than 10.

The error report file is maintained by a module that provides a single operation:

Error (position, severity, code)

postition: The source text position for the message.
severity: One of the numbers 1-6, as discussed above.
code: An integer defining the error.

There is no need to supply additional information, such as symbols or context, in the
error report. For example, if the symptom is that a particular symbol is undefined, we do
not need to include the symbol. This is because the position is located precisely, and the
message points directly to the symbol for which there is no definition. Further, the position
given by the report need not be the position reached by the lexical analyzer at the time the
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error was detected. We can retain position information for certain constructs and then use
that information later when we have sufficient context to diagnose an error. For example,
suppose that a label was declared in a Pascal program and then never used. The error would
be diagnosed at the end of the procedure declaring the label, but we would give the position
of the declaration in the report and therefore the message ‘label never used’ would point
directly to the declaration.

12.2 Compiler Error Recovery

All errors detected at compile time are detected during analysis of the source program. Dur-
ing program synthesis, we can detect only compiler errors or violations of limits; these are
invariably fatal, and do not interest us in this section. Errors detected during analysis can be
classified by the analysis task being carried out at the time:

e Lexical. Errors in token formation, such as illegal characters or misspelled keywords.
e Syntactic. Errors in structure formation, such as missing operators or parentheses.

e Semantic. Errors in agreement, such as operands whose types are incompatible with
their operator, or undeclared variables.

If recovery is to be achieved, each analysis task must repair the errors it detects and pass
a consistent result to the next task. Unfortunately, this repair may be less than perfect;
it usually leads to a local repair, rather than a repair in the sense of Section 12.1.2 and
often results in detection of related errors by subsequent tasks that have more contextual
information.

Any recovery scheme must be based upon redundant information present in the program.
The higher the redundancy, the easier and more certain recovery will be. Since the amount
of structure available to the error recovery procedure increases significantly from the lexical
level to the semantic level, competent semantic error recovery is considerably easier than
competent recovery from lexical errors. We shall therefore begin by discussing recovery from
semantic errors and work our way back through syntactic errors to lexical errors.

12.2.1 Semantic Errors

Semantic errors are detected when conditions embedded in the attribute grammar of the
language yield false. Recovery from semantic errors is simply a function of the attribute
grammar itself. In Chapter 8 we emphasized the importance of guaranteeing that all attributes
are defined under all circumstances, and noted that this implied the introduction of special
error values for some attributes.

If the attributes of an item can be determined unambiguously then the compiler can
work with the correct attributes after an error has been detected. This occurs in LAX with
multiple definitions of an identifier in a range, possibly as a field selector or formal parameter.
Operands on the right hand sides of identity declarations and assignments provide another
example, as do situations in which the operator fully determines the type of the required
operand(s). Finally, we have type declarations for which the storage requirements cannot be
determined:

type t = record a : integer; b : t end.

The recovery is more difficult if several attributes influence the choice, or if the erroneous
symbol is not unambiguously determined. Consider the case of a binary operator indication,
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none of whose associated operators is consistent with the pattern of operand types given. This
symptom could result from an error in one of the operand expressions, or from an erroneous
operator indication. There is no way to be certain which error has occurred, although the
probability of the former is enhanced if one of the operands is consistent with some operator
associated with the indication. In this case, the choice of operator should be based upon the
consistent operand, and might take into account the use of the result. If this choice is not
correct, however, spurious errors may occur later in the analysis. To prevent an avalanche
in this case, we should carry along the information that a semantic error has been repaired.
Further error messages involving type mismatches of this result should then be suppressed.

Another important class of semantic error is the undeclared identifier. We have already
noted (Section 12.1.1) that this error may arise in several ways. Clearly we should produce
an error message if the problem was that the identifier was misspelled on this use, but if
the declaration were misspelled or omitted the messages attached to each use of the variable
constitute an avalanche, and should be suppressed.

In order to distinguish between these cases, we might set up a definition table entry for the
undeclared identifier specifying as many properties as could be determined from the context
of the use. Subsequent occurrences could then be used to refine the properties, but error
messages would not be issued unless the properties were inconsistent. This strategy attempts
to distinguish the cases on the basis of frequency of use of an identifier: At the first use an
error will be reported; thereafter we assume that the declaration is missing or erroneous and
do not make further reports. This method works well in practice. It breaks down when the
programmer chooses an identifier susceptible to a consistent misspelling, or when the text
is entered into the machine by a typist prone to a certain type of error (usually a character
transposition or replacement).

The specific details of the consistency check are language dependent. As a concrete ex-
ample, consider the algorithm used by the Whetstone Compiler for ALGOL 60 [RANDELL
and RUSSELL, 1964]. (There the algorithm is not used to suppress avalanches, but rather
to resolve forward references to declared identifiers in a one-pass compilation.) The Whet-
stone Compiler created a property set upon the first use of an (as yet) undeclared identifier,
with each element specifying a distinct property that could be deduced from local context
(Table 12.1). The first three elements of Table 12.1 determine the form of the use, while the
remaining nine elements retain information about its context. For each successive occurrence,
a new set A’ was established and checked for consistency with the old one, A: The union of
the two must be identical to either set (e.g. A must be a subset of A’ or A’ must be a subset
of A). If A’ is a superset of A, then the new use provides additional information.

Suppose that we encounter the assignment p := ¢ where neither p nor ¢ have been seen
before. We deduce that both p and g must have the form of simple variables, and that
values could be assigned to each; the type must therefore be real, integer or Boolean. If
the assignment r := p + s; were encountered later, we could deduce that p must possess an
arithmetic (i.e. real or integer) value. This use of p is consistent with the former use, and
provides additional information. (Note that the same deduction can be applied to ¢, but this
relationship is a bit too devious to pursue.) Figures 12.2a and 12.2b show the sets established
for the first and second occurrences of p. If the statement p[i] := 3; were now encountered,
the union of Figure 12.2¢ with Figure 12.2b would indicate an inconsistency.

If a declaration is available, we are usually not able to accept additional information about
the variable. There is one case in ALGOL 60 (and in many other languages) in which the
declaration does not give all of the necessary information: A procedure used as a formal
parameter might or might not have parameters of its own, so the declaration does not specify
which of the properties {simple, proc} should appear (Figure 12.2d). That decision must be
deferred until a call of the procedure is encountered.
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Property Meaning
simple The use takes the form of a simple variable.
array The use takes the form of an array reference.
proc The use takes the form of a procedure call.
value The object may be used in a context where a value is required.
variable The object has a Boolean value.
arithmetic The object has an arithmetic (i.e. integer or real) value.
Boolean The object has a Boolean value.
integer The object has an integer value.
location The object is either a label or a switch.
normal The object is not a label, switch or string.
string The object is a string.
nopar The object is a parameterless procedure.

Table 12.1: Identifier Properties in the Whetstone ALGOL Compiler
{simple,value,variable}
a) Property set for both p and ¢ derived from p := ¢
{simple,value,variable, arithmetic}
b) Property set for p derived from r :=p + s;
{array,value,variable}
c) Property set for p derived from p[i] := 3;
procedure z(p); procedure p;

d) A declaration that leaves properties unspecified

Figure 12.2: Consistency Checks

12.2.2 Syntactic Errors

A syntactic error is one resulting in a program that is not a sentence in the (context-free)
language being compiled. Recovery from syntactic errors can change the structure of the
program and the entire semantic analysis. (Lexical errors with such far-reaching consequences
are considerably rarer.)

Consider the grammar G = (N, T, P, Z) for the source language L. If we think of the
elements of T* as being points in space, we might ask which sentence is ‘closest’ to the
erroneous program. We would then take this sentence as the correct version of the program,
and define the error as the transformation that carries the correct program into the incorrect
one. This approach is called minimum-distance correction, and it requires that we define a
metric on the T* space. One way of defining this metric is to regard every transformation as
a sequence of elementary transformations, each corresponding to a distance of 1. The usual
elementary transformations are:

e Insert one symbol
e Delete one symbol
e Replace one symbol by another

Global minimum-distance correction, which examines the entire program, is currently
impractical. Moreover, a minimum-distance correction is often not the best: The minimum-
distance correction for an ALGOL 60 statement containing more than one error would be
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to precede it with comment! For ALGOL-like languages simpler methods that can change
more symbols are often superior. On the other hand, global minimum-distance correction
minimizes avalanches.

The symptom of a syntactic error is termed a parser-defined error. Since we parse a
program deterministically from left to right, the parser-defined error is the first symbol ¢ such
that w is a head of some string in the language, but wt is not. For example, the string w
of Figure 12.3a is certainly a head of a legal FORTRAN program, which might continue as
shown in Figure 12.3b. If ¢ is the end-of-statement marker, #, then wt is not the head of
any legal program. Hence # constitutes a parser-defined error. Possible minimum-distance
corrections are shown in Figure 12.3d. From the programmer’s point of view, the first has
the highest probability of being a correct program. This shows that a parser-defined error
may not always coincide with the point of the error in the user’s eyes. This is especially true
for bracketing errors, which are generally the most difficult to repair.

DO 10I=J(K,L
a) A head, w, of a FORTRAN program
w)#X

b) A possible continuation (# is end-of-statement)

wH#X

c) A parser-defined error

DO 101 = JK,L
DO 10 I = J(K,L)

d) Two minimum-distance corrections

Figure 12.3: Syntax Errors

Ad hoc parsing techniques, and even some of the older formal methods, may fail to detect
any errors at all in certain strings not belonging to the language. Other approaches (e.g. simple
precedence) may delay the point of detection arbitrarily. The LL and LR algorithms will
detect the error immediately, and fail to accept t. This not only simplifies the localization of
the symptom in the listing, but also avoids the need to process any syntactically incorrect text.
Recovery is eased, since the immediate context of the error is still available for examination
and alteration.

If wtxy € (T* — L) is an erroneous program with parser-defined error ¢, then to effect
recovery the parser must alter either w or ¢y such that w'ty € L or wt'x’ € L. Alteration of w
is unpleasant, since it may involve undoing the effects of connection points. It will also slow
the processing of correct programs to permit backtrack when an error is detected. Thus we
shall only consider alteration of the erroneous symbol ¢ and the following string .

Our basic technique will be to recover from each error by the following sequence of steps:

1. Determine a continuation, u, such that wu € L.

2. Construct a set of anchors D = {d € T | v is a head of y and wrd is a head of some
string in L}.

3. Find the shortest string n € T* such that tx = nt"u’, " € D.

4. Discard n from the input string and insert the shortest string v € T* such that wvt” is
a head of some string in L.

5. Resume the normal parse.
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This procedure can never cause the error recovery process to loop indefinitely, since at
least one symbol (") of the input string is consumed each time the parser is restarted. Note
also that it is never necessary to actually alter the input string during step (4); the parser
is simply advanced through the required steps. A dummy symbol of the appropriate kind is
created at each symbol connection encountered during this advance.

The sequence of connection points reported by the parser is always consistent when this
error recovery technique is used. Semantic analysis can therefore proceed without checking
for inconsistent input. Generated symbols, however, must be recognized as having arbitrary
attributes. This is guaranteed by using special ‘erroneous’ attribute values as discussed in
the previous section.

It is clear from the example of Figure 12.3 that we can make no claim regarding the
‘correctness’ of the continuation determined during step (1). The quality of the recovery in the
eyes of the user depends upon the particular continuation chosen, but it seems unlikely that we
will find an algorithm that ‘optimizes’ this choice at acceptable cost. We therefore advocate
a process that can be incorporated into a parser generator and applied automatically without
any effort on the part of the compiler writer. The most important benefit is a guarantee
that the parser will recover from all syntactic errors, presenting only consistent input to the
semantic analyzer. This guarantee cannot be made with ad hoc error recovery techniques.

P ={Z— E#,
E - FE,
E' = +FE E ¢
F—i, F— (E)}
a) Productions of the grammar

Z — E#
E — FF
E' — ¢
F —

b) Designated productions

*qot — q1921, qo(— q1q2(,
Q1 — €
*qot — q3q4t, q2(— q39s(,
“g3# = qeqr#,  43) = 4697), @3+ — degst
*Q4Z — q9,
*q5(— 10,
“q6 — €,
“qr — €,
*gs+ — qu1,
*qo — €,
*qr0t — q12421, q10(— q12¢2(,
*qu11 = q1341, q11(— 1365,
“q12) = qu4,
‘q3# = qsqrE,  @3) = Qu5q7), Q3T — qisgst,
*q1a — €,
“qi5 — €
c¢) The transitions of the parsing automaton (compare Figure 7.4)

Figure 12.4: Adding Error Recovery to an LL(1) Parser
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qot + #
q1q2t + #
q1q3q4% + #
q1q399 + #
qq3 +#
q19698 + #
Q1969117

a) Parse to the point of error detection

qigeqrn D = {i(}
q19691394

4196491399

qgeqiz D = {i(#)+}
419641597

q196415

q196

q1

b) Continuation to the final state

Q1969117

9196q13G47F

q19691399% @ is generated by qai — g

q196913H# the normal parse may now continue

c¢) Continuation to the resume point

Figure 12.5: Recovery Using Figure 12.4c

We begin by designating one production for each nonterminal, such that the set of desig-
nated productions contains no recursion. For example, in the production set of Figure 12.4a
we would designate the productions listed in Figure 12.4b. (With this example the desig-
nation is unique, a condition seldom encountered in larger grammars.) We then reorder the
productions for each nonterminal so that the designated production is first, and apply the
parser generation algorithms of Chapters 5 and 7. As the transitions of the parsing automata
are derived, certain of them are marked. When an error occurs during the parse, we choose
a valid continuation by allowing the parsing automaton to carry out the marked transitions
until it reaches its final state. No input is read during this process, but at each step the set
of input symbols that could be accepted is added to the set of anchors.

Construction 5.23, as modified in Section 7.2.1 for strong LL(1) grammars, was used to
generate the automaton of Figure 12.4c. The transitions were marked as follows (marked
transitions are preceded by an asterisk in Figure 12.4c):

e Any transition introduced by step 3 or step 4 of the construction was marked.

e The elements of H in step 5 are listed in the order discussed in the previous paragraph.
The first transition qw — gh[1l]w of a group introduced by step 5’ was marked.

To see the details of the recovery, consider the erroneous sentence :+#. Figure 12.5a traces
the actions of the automaton up to the point at which the error is detected. The continuation
is traced in Figure 12.5b. Note that the input is simply ignored, and the stack is updated
as though the parser were reading symbols that caused it to make the marked transition. At
each step, all terminal symbols that could be accepted are added to D. Figure 12.5¢c shows
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(1) Z— E#
2) ESE+F, (3) E—F
(4) F — 1, (5) F — (E)
a) The grammar
0: Z —eE ; # 4: F — (oF) ; #+)
E — oF ; #+ E — oF ; )+
E — oE+F ; #+ E—eE+F;)+
F — ei; #+ F — ei; )+
F — o(E) ; #+ F—e(E); )+
l: Z—>FEe ;# 5: E— E+eF ; #+)
E—-FEe +F;#+ F — ei; #+)

F — o(E) ; #+)
2: E—Fe ;#+)
6: F— (Ee); #+)
3: F —ie ; #+) E—FEe +F;)+

7. E—E+Fe ;#+)

8: F — (E)e ; #+)
b) States of the Automaton
i () + # E F

0|-4 4 . . . 1 -3
i1y . . . 5 *r

4 -4 4 . . . 6 -3
5| -4 4 . . . -2
6 -7 5

¢) The transition function for the parser

Figure 12.6: Error Recovery in an LR(0) Parser

the remainder of the recovery. No symbols are deleted from the input string, since # is in
the set of anchors. The parser now follows the continuation again, generating any terminal
symbols needed to cause it to make the marked transitions. When it reaches a point where
the first symbol of the input string can be accepted, the normal parse resumes.

Let us now turn to the LR case. Figure 12.6a shows a left-recursive grammar for the same
language as that defined by the grammar of Figure 12.4a. The designated productions are
1, 3 and 4. If we reorder productions 2 and 3 and then apply Construction 5.33, we obtain
the states of Figure 12.6b. The situations are given in the order induced by the ordering of
the productions and the mechanics of Construction 5.33. Figure 12.6¢ shows the transition
table of the automaton generated from Figure 12.6b, incorporating shift-reduce transitions.
The marked transition in each state (indicated by a prime) was the first shift, reduce or
shift-reduce transition generated in that state considering the situations in order.

An example of the LR recovery is given in Figure 12.7, using the same format as Fig-
ure 12.5. The erroneous sentence is i+)i#. In this case, ) does not appear in the set of
anchors and is therefore deleted.

One obvious question raised by use of automatic syntactic error recovery is that of provid-
ing meaningful error reports for the user. Fortunately, the answer is also obvious: Describe
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qoi+ )i
qoq1+)iF

Q0415 )1#
a) Parse to the point of error detection

Qo095 D ={i(}

o D={t(+#}
b) Continuation to the final state

qoq195t# the normal parse may now continue
c) Continuation to the resume point

Figure 12.7: LR Error Recovery

the repair that was made! This description requires one error number per token class (Sec-
tion 4.1.1) to report insertions, plus a single error number to report deletions. Since token
classes are usually denoted by a finite type, the obvious choice is to use the ordinal of the
token class as the error number to indicate that a token of that class has been inserted.

Missing or superfluous closing brackets always present the danger that avalanches will
occur because brackets are inserted in (globally) unsuitable places. For this reason we must
take cognizance of error recovery when designing the grammar. In particular, we wish to
make bracketed constructs ‘visible’ as such to the error recovery process. Thus the grammar
should be written to ensure that closing brackets appear in the anchor sets for any errors
that could cause them to be deleted from the input string. This condition guarantees that an
opening bracket will not be deleted by mistake and lead to an avalanche error at the matching
closing bracket. It is easy to see that the grammar of Figure 12.4a satisfies the condition, but
that it would not if F were defined as follows:

F— i F— (F,
F' — E)

12.2.3 Lexical Errors

The lexical analyzer recognizes two classes of lexical error: Violations of the regular grammar
for the basic symbols and illegal characters not belonging to the terminal vocabulary of the
language or, in languages with stropping conventions, misspelled keywords.

Violations of the regular grammar for the basic symbols (‘structural’ errors), such as the
illegal LAX floating point number .E2, are recovered in essentially the same way as syntax
errors. Characters are not usually deleted from the input string, but insertions are made as
required to force the lexical analyzer to either a final state or a state accepting the next input
character. If a character can neither form part of the current token, nor appear as the first
character of any token, then it must be discarded. A premature transition to a final state
can make two symbols out of one, usually resulting in syntactic avalanche errors. A third
possibility is to skip to a symbol terminator like ‘space’ and then return a suitable symbol
determined in an ad hoc manner. This is interesting because in most languages lexical errors
occur primarily in numbers, where the kind of symbol is known.

Invalid characters are usually deleted without replacement. Occasionally these characters
are returned to the parser so it can give a more informative report. This behavior violates
the important basic principle that each analysis task should cope with its own errors.

When keywords are distinguished by means of underlines or bracketed by apostrophes,
the compiler has sufficient information available to attempt a more complete recovery by
checking for certain common misspellings. If we restrict ourselves to errors consisting of
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single-character substitutions, insertions, omissions or transpositions then the length of the
basic symbol cannot change by more than one character. For each erroneous symbol there
exists a (relatively small) set of correct keywords that are identical to it if one of these errors
occurred.

If a spelling-correction algorithm is used, it should form a distinct module that tests a
pair of strings to determine whether they are equivalent under one of the four transformations
listed in the previous paragraph. The two strings should be in a standard form, chosen to
speed the test for equivalence. This module can be used in other cases also, such as to check
whether an undefined identifier is misspelled. The spelling-correction algorithm should not
be required to scan a list of candidate strings, since different callers will generate candidates
in different ways.

The decision to provide spelling correction usually has far-reaching effects on the compiler
data structures: Searches for additional candidates to test against a misspelled word often
have a pattern different from the normal accesses. This entails additional linkage, as well as
the additional information to facilitate ‘quick checks’. Such increases in data storage violate
our previously-stated principle that an error-free program should not be required to pay for
error recovery.

12.3 Run-Time Errors

During execution of a program, the values of the data objects obey certain restrictions and
relationships, so that the operations of the program can be carried out. Most relationships
result either implicitly or explicitly from the language definition or implementation restric-
tions. When the validity of these relationships cannot be determined from the context during
compilation, they can be tested at run time with the help of the hardware or by code gen-
erated by the compiler. If such a test fails, then a symptom of a run-time error has been
detected.

Examples of such relationships are given in Figure 12.8. Since ¢**2 cannot be less than
0, the compiler could prove that both the first and the third assertions in Figure 12.8b hold;
in the case of 1 4+ ¢**2 # 0, however, this would be costly. Frequently the first assertion will
be tested again at run time (and consequently the test could be omitted at compile time),
because the computation and test of the storage mapping function is done by a standard
library routine.

A run-time error report should give the symptom and location in the source program. The
compiler must therefore provide at least the information needed by the run-time system to
locate the symptom of the error. If a more exact description or a diagnosis of the cause of the
error is required, the compiler must prepare additional information about the neighborhood
of the error and its dynamic environment. Debugging aids (like traces and snapshots) require
similar information from the compiler’s symbol and definition tables.

In this section we shall not consider run-time error handling in detail. Our concern will
be with the information that the compiler must provide to the run-time system to make
competent error handling possible.

12.3.1 Static Error Location

In order to specify the exact location of an error in the program, it must be possible to
determine from the instruction position, z, the position, f(z), of the corresponding source
text in the program listing. This requires us to establish an appropriate coordinate system
for the listing. The lines of the listing are usually chosen as the basis for this coordinate
system, and are numbered in ascending order of appearance to facilitate location of a position
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a:array [1:4,1:4] of real;

b:=al3,i]/(1 + ¢**2)
a) A LAX fragment

1<3<H4
1<:<4
14+c2#0

b) Relationships implied by the LAX definition and (a)

J=K*L
c) A FORTRAN statement

|K| < 248
d) Relationship implied by the Control Data 6000 FORTRAN implementation and (c)

ASSERT m =n

e) Relationship explicitly stated by the programmer
Figure 12.8: Implicit and Explicit Relationships

in the program. The numbers may be chosen in various ways: One of the simplest is to
use the address of the first instruction generated by the source line. (This numbering, like
others discussed below, may contain gaps.) The contents of the location counter provides a
direct reference to the program line if the compiler produces absolute code. If the compiler
produces relocatable code and the final target program is drawn from several sources, then
the conversion f(z) first requires identification of the (separately compiled) program unit by
means of a load map produced when the units are linked. This map gives the absolute address
of each program unit. The relative address appearing on the listing is obtained by subtracting
the starting address from the address of the erroneous instruction.

If the compiler has used several areas for instructions (Section 11.2), the monotonicity of
the (relative) addresses is no longer guaranteed and we must use arbitrary sequence numbers.
These numbers could be provided by the programmer himself or supplied by the compiler. In
the latter case the number could be incremented for each line or for each construct of a given
class (for example, assignments).

When arbitrary sequence numbers are used, the compiler must either store f(z) in tabular
form accessible to the run-time system or insert instructions into the target program to place
the current sequence number into some specified memory location. If a table is given in a
file, a relationship between the table and the program must be established by the run-time
system; no further cost is incurred. In the second case all information is held within the
program and a run-time overhead in both time and space is implied.

The line number, and even the position within the line, can be given for each instruction
if a table is used. For dynamic determination of line numbers, the line number must be set
in connection with a suitable syntactic unit of the source program. The instructions making
up an assignment, for example, do not always occur in the order in which they appear in the
source program. This is noticeable when the assignment is spread over several source lines.
Of course the numbering need only be updated at those syntactic units that might fail; it
may be omitted for the empty statement in ALGOL 60, for example.
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12.3.2 Establishing the Dynamic Environment

Run-time errors usually lead to symptoms that can be described quite simply. Diagnosis of the
error from these symptoms is considerably more difficult than diagnosis of compile time errors
because it must take account of the dynamic environment of the error: the values of data
objects being manipulated and the path by which control arrived at the failure point. Most
of this information can be recovered from the contents of the memory at the failure point;
the only difficulty lies in establishing the correct relationship to the source program. For this
purpose, the compiler should at least provide sufficient information in the source program
listing to enable the programmer to locate every data object in a printout of the memory
contents. This information, in conjunction with that discussed in Section 12.3.1, we shall
term cross-reference information; if it exists in tabular form, these tables are cross-reference
tables.

Analysis of a memory dump is always tedious. In order to provide a more convenient
specification of the data objects, the compiler could generate templates similar to those needed
to support garbage collection (Section 3.3.3). These templates can then be used by a run-time
support routine to print the object in a suitable form. Templates may be incorporated into
the compiled program or written on an auxiliary file. Extra storage is required by the former
approach, cooperation of the loader and the operating system by the latter.

A symbolic dump describes a single state of the computation — it is a ‘snapshot’ of the
program’s execution. In order to achieve a full understanding of the symptom we often need
information about how the program reached the failure point. There are two aspects of this
execution history, the call hierarchy, which specifies the procedures whose invocation has not
yet ended, and the jump history, which defines the path taken through the procedures.

The call hierarchy is embodied in the current state as a chain of procedure activation
records. In order to represent it we extend the symbolic dump by attaching the procedure
name and point of call to each procedure’s activation record. (The former is obtained from
the cross-reference tables, the latter from the return address.)

The jump history, represented by the addresses of successful jumps, cannot be obtained
from the environment of the symptom. It must be stored explicitly during execution. Either
the compiler must generate specific instructions for this purpose, or the hardware must store
the addresses of successful jumps automatically (EDSAC 2 [BARRON and HARTLEY, 1963]
and the Siemens 7000 series are examples of such machines). The relevance of the jump history
diminishes with the ‘age’ of the jumps; to save memory we would therefore retain only the
most recent jump addresses. In some debugging systems for machine-oriented languages the
number 4 is chosen, EDSAC 2 chose 41 and the Siemens 7000 chose 64. Loops rapidly fill the
jump history with useless information. It is thus better to store a sequence of identical jumps
as a single address with a cycle count. Cycles of length 2 can be represented in a similar
manner, but recognition of longer cycles does not seem worthwhile.

In a language like LAX, which provides a variety of control structures, source programs
will usually contain no jumps at all. The jump history is thus understandable only if the
sequence of source language constructs that created it can be recovered. For this purpose one
can use the cross-referencing techniques of Section 12.3.1, augmented with information about
the kind of jump (conditional, case clause, repetition of a loop, etc.) The source language
constructs need be determined from the cross-reference tables only when the dump actually
occurs, and then only for the jumps appearing in the jump history.

We must always be aware of the possibility that the state of the memory may have
been corrupted by the error, and that inconsistencies may be present that could cause the
analysis routines to loop or make further errors. During the output of a symbolic dump or
jump history all information must be carefully examined for consistency. The compiler may
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provide redundant information, for example special bit patterns in particular places, to aid
in this process.

12.3.3 Debugging Aids

A program can be tested by following its progress to normal termination or to some unusual
event. This can be done by tracing the jump addresses and/or procedure calls, tracing the
values of certain data objects, or taking selective symbolic dumps. When working interac-
tively, one can insert breakpoints to halt execution and permit examination and resetting of
variables. The program can then be restarted at a specified point, possibly after alteration
of the call hierarchy. All of these techniques require the support of the compiler as discussed
in Sections 12.3.1 and 12.3.2.

All supervision mechanisms other than those specific to interactive execution can be pro-
vided by modification and recompilation of the program. With large programs this is quite
costly; in addition, the modification can cause unrecognized side effects in the program’s
behavior. By concentrating the facilities in a test system independent of the compiler, this
problem can be avoided. Such a solution increases the demands on the cross-reference ta-
bles, since the test system is now in the position of having to use them to modify the target
program. If the same test system is to be used for several languages, then the structure and
contents of the cross-reference tables becomes a standard interface for all compilers.

12.4 Notes and References

The user orientation of the error handling (understandable error reports, suppression of ava-
lanches, run-time information in terms of the source program), and the principle that the
cost of preventive tests should be as small as possible, obviously represent the main problems
of error handling today. KOSTER [1973] gives a good overview of the demands placed upon
the error handler. The implementation of PL/C [CONWAY and WILCOX, 1973] represents an
attempt at extensive error recovery.

LyON [1974] gives an algorithm for global minimum-distance correction that requires
O(n?) space and O(n?) time to correct an n-symbol input string. Theoretical results
[PETERSON, 1972] indicate that improvement of these bounds is highly unlikely. A back-
tracking method for global repair of syntactic errors is given by LEVY [1975]; our approach
is based upon some ideas of IRONS [1963a] that were applied to top-down parsers by GRIES
[1971]. compiler construction gries 1971 ROHRICH [1978, 1980] formalized these ideas and
extended them to LR parsers. The use of recovery sequences as error messages first appeared
in the SP/k compiler [HOLT et al., 1977]. DAMERAU [1964] has observed that over 80% of
all spelling errors in a particular retrieval system consisted of single-character substitutions,
insertions, omissions or transpositions. This observation serves as the basis for most spelling
correction algorithms, of which the one described by MORGAN [1970] is typical.

Dynamic updating of a variable containing a line number may consume significant re-
sources. BRINCH-HANSEN and HARTMANN [1975] notes that up to 25% of the generated code
for a Sequential Pascal program may be devoted to line number bookkeeping. KRUSEMAN-
ARETZ [1971] considers how this overhead can be minimized in the context of ALGOL 60,
and KLINT [1979] suggests that the information be obtained from a static analysis of the
program rather than being maintained dynamically.

Symbolic dumps in source language terms have been available since the early sixties.
The papers by SEEGMULLER [1963] and BAYER et al. [1967] summarize the information the
compiler must provide to support them. Other descriptions of this information can be found in
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the literature on symbolic debugging packages [HALL, 1975; PIERCE, 1974; SATTERTHWAITE,
1972; BALZER, 1969; GAINES, 1969].

Exercises

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

Define the class of detectable errors for some language available at your installation.
Which of these are detected at compile time? At run time? Are any of the detectable
errors left undetected? Have you made any such errors in your programming?

We have classified the LAX expression (1/0) as a compile-time anomaly, rather than a
compile-time error. Some authors disagree, arguing that if the expression is evaluated at
run time it will lead to a failure and that if it can never be evaluated then the program
is erroneous for other reasons. Write a cogent argument for or against (whichever you
prefer) our classification.

The definition of the programming language Euclid specifies minimum limitations that
may be placed on programs by an implementation. For example, the definition re-
quires that any compiler accept expressions having parentheses nested to depth 7, and
programs having environments nested to depth 31. The danger of setting such min-
imum limits is pointed out by SALE [1977], who demonstrates that the requirement
for environments nested to depth 31 effectively precludes implementation of Fuclid
on Burroughs 6700 and 7700 equipment. Comment on the advantages and disadvan-
tages of Euclid approach, indicating the scope of the problem and possible compromise
solutions.

Consider some compiler running at your installation. How are its error messages com-
municated to the user? If the result gives less information than the model we discussed
in Section 12.1.3, argue for or against its adequacy. Were there any constraints on the
implementor forcing him to his choice?

Experiment with some compiler running at your installation, attempting to create
an avalanche based upon a semantic error. If you succeed, analyze the cause of the
avalanche. Could it have been avoided? How? At what cost to correct programs?
If you do not succeed, analyze the cause of your failure. Is the language subject to
avalanches from semantic errors? Is the implementation very clever, possibly at some
cost to correct programs?

Under what conditions might a simple precedence analyzer [GRIES, 1971] delay detec-
tion of an error?

[ROHRICH, 1980] Give an algorithm for designating productions of a grammar so that
there is one production designated for each nonterminal, and the set of designated
productions contains no recursion.

Apply the syntactic error recovery technique of Section 12.2.2 to a recursive descent
parser based upon extended BNF (Section 7.2.2).

Apply both the automaton of Figure 12.4c and that of Figure 12.6¢ to the string
(i(7 + i#£. Do you feel that the recovery is reasonable?

[DUNN and WAITE, 1981] Consider the modification of Figure 7.9 to support automatic
eITor recovery.
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12.11

12.12

12.13

12.14

12.15

(a) Assuming that the form of the table entry remained unchanged, how would you
incorporate the definition of the continuation into the tables?

(b) Based upon your answer to (a), write procedures parser_error, get_anchor and
advance_parser to actually carry out the recovery. These procedures should be
nested in parser as follows, and parser should be modified appropriately to
invoke them:

parser
parser_error
get_anchor
advance_parser

(c) Carefully explain your mechanism for generating symbols. Does it require access
to information known only to the lexical analysis module? If so, how do you obtain
this information?

[MORGAN, 1970] Design an algorithm for checking the equivalence of two strings under
the transformations discussed in Section 12.2.3. How would you interface this algorithm
to the analysis process discussed in Chapters 6 and 77 Be specific!

Consider some compiler running at your installation. How is the static location of
a run-time error determined when using that compiler? To what extent could the
determination be automated without making any change to the compiler? What (if
anything) would such automation add to the cost of running a correct program?

[KRUSEMAN-ARETZ, 1971] A run-time error-reporting system for ALGOL 60 programs
uses a variable Inc to hold the line number of the first basic symbol of the smallest
statement whose execution has begun but not yet terminated. We wish to minimize
the number of assignments to Inc. Give an algorithm that decides when assignments
to lnc must be generated.

Consider some compiler running at your installation. How is the dynamic environment
of a run-time error determined when using that compiler? To what extent could the
determination be automated without making any change to the compiler? What (if
anything) would such automation add to the cost of running a correct program?

[BAYER et al., 1967] Consider some language and machine with which you are familiar.
Define a reasonable symbolic dump format for that language, and specify the infor-
mation that a compiler must supply to support it. Give a detailed encoding of the
information for the target computer, and explain the cost increase (if any) for running
a correct program.
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Chapter 13
Optimization

Optimization seeks to improve the performance of a program. A true optimum may be too
costly to obtain because most optimization techniques interact, and the entire process of
optimization must be iterated until there is no further change. In practice, therefore, we
restrict ourselves to a fixed sequence of transformations that leads to useful improvement in
commonly-occurring cases. The primary goal is to compensate for inefficiencies arising from
the characteristics of the source language, not to lessen the effects of poor coding by the
programmer. These inefficiencies are inherent in the concept of a high level language, which
seeks to suppress detail and thereby simplify the task of implementing an algorithm.

Every optimization is based upon a cost function, a meaning-preserving transformation,
and a set of relationships occurring within some component of the program. Code size,
execution time and data storage requirements are the most commonly used cost criteria; they
may be applied individually, or combined according to some weighting function.

The boundary between optimization and competent code generation is fuzzy. We have
chosen to regard techniques based upon processing of an explicit computation graph as opti-
mizations. A computation graph is implicit in the execution-order traversal of the structure
tree, as pointed out at the beginning of Chapter 10, but the code generation methods dis-
cussed so far do not require that it ever appear as an explicit data structure. In this chapter
we shall consider ways in which a computation graph can be manipulated to improve the
performance of the generated code.

Our treatment in this chapter differs markedly from that in the remainder of the text.
The nature of most optimization problems makes computationally efficient algorithms highly
unlikely, so the available techniques are all heuristic. Each has limited applicability and
many are quite complex. Rather than selecting a particular approach and exploring it in
detail, we shall try to explain the general tasks and show how they fit together. Citations to
appropriate literature will be given along with the discussion. In Section 13.1 we motivate the
characteristics of the computation graph and sketch its implementation. Section 13.2 focuses
on optimization within a region containing no jumps, while Section 13.3 expands our view
to a complete compilation unit. Finally, Section 13.4 gives an assessment of the gains to be
expected from various optimizations and the costs involved.

13.1 The Computation Graph

Profitable optimizations usually involve the implementation of data access operations, and
hence the target form of these operations should be made explicit before optimization be-
gins. Moreover, many optimizations depend upon the execution order, and others may alter
that order. These requirements make the structure tree an unsuitable representation of the
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program being optimized. In the first place, the structure tree reflects the semantics of the
source language and therefore suppresses detail. Secondly, execution-order tree traversals
depend upon the values of specified attributes and hence cannot be generated mechanically
by the tools of Chapter 8.

Data access operations are often implicit in the target machine code as well: They are
incorporated into the access paths of instructions, rather than appearing as separate com-
putations. Because of this, it is difficult to isolate them and discover patterns that can be
optimized. The target tree is thus also an unsuitable representation for use by an optimizer.

To avoid these problems, we define the computation graph to have the following properties:

e All source operations have been replaced by (sequences of) operations from the in-
struction set of the target machine. Coercions appear as machine operations only if
they result in code. Other coercions, which only alter the interpretation of the binary
representation of a value, are omitted.

e Every operation appears individually, with the appropriate number of operands.
Operands are either intermediate results or directly-accessible values. Each value has a
specified target type.

e All address computations are explicit.

e Assignments to program variables are separated from other operations.

e Control flow operations are represented by conditional and unconditional jumps.

Although based upon target machine operations, the computation graph is largely
machine-independent because the instruction sets of most Von Neumann machines are very
similar.

We assume that every operation has no more than one result. To satisfy this assumption,
we either ignore any side effects of the machine instruction(s) implementing the operation or
we create a sequence of operations making those side effects explicit. In both cases we rely
upon subsequent processing to generate the proper instructions. For example, the arithmetic
operations of some machines set the condition code as a side effect. We ignore this, producing
comparison operators (whose one result is placed in the condition code) where required.
Peephole optimization (Section 13.2.3) will remove superfluous comparisons in cases where a
preceding arithmetic operation has properly set the condition code. The second approach is
used to deal with the fact that on many machines the integer division instruction yields both
the quotient and the remainder. Here we create a sequence of two operations for both div
and mod. The first operation in each case is diumod; the second is a unary selector, div or
mod respectively, that operates on the result of diumod. Common subexpression elimination
(Section 13.2.1) will remove any superfluous divmod operators.

The atoms of the computation graph are tuples. A tuple consists of an operator of the
(abstract) target machine and one or more operands, each of which is either a value known
to the compiler or the result of a computation described by a tuple. Each appearance of a
tuple in the computation graph is called a program point, and given an integer index greater
than 0.

Let 01 and 02 be operands in a computation graph. These operands are congruent if
they are the same known value, or if they are the results of tuples ¢; and #o with the same
numbers of operands for which operator(t1) = operator(t2) and operand;(t1) is congruent to
operand;(te) for all .. A unique operand identifier is associated with each set of congruent
operands, and this identifier is used to denote all of the operands in the set.

Figure 13.1b has 12 program points and 9 distinct tuples. Values known to the compiler
have the corresponding source language constructs as their operand identifiers. The full
definition of a tuple is given only at its first occurrence; subsequent occurrences are denoted
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V.i := aatT * y + V.75; aat = aat + V.j5;

a) A Pascal fragment

t1: aa? t1

to: t1 T to

t3: y?T ts

t42 tg * t3 tg: tg +t5
ts: V.57 to: t1 :=tg
tﬁl t4 +t5

tr: Vo1 = 1tg

b) The tuple sequence resulting from (a)
Figure 13.1: Tuples and Operands

by the operand identifier alone. Note that each operand identifier denotes a single value. For
example, V. 7 is the address of the j field of the record V, relative to the base of the activation
record. This value is the sum of the offset of ¥ from the base of the activation record and the
offset of j from the base of the record. Both offsets are known to the compiler, and hence
the sum is known. Also, contrast the representations of the two assignments. In the first,
the target address (V. %) is known to the compiler, while in the second it is the content of a
pointer variable.

A module very similar to the symbol table acts as a source of unique operand identifiers.
By analogy to Section 4.2.1, this module provides three operations:

e initialize: Enter the standard entities.

e give operand_tdentifier (tuple_spec)operand_identifier: Obtain the operand

identifier for a specified tuple or known value.

e give_tuple(operand_identifier) tuple_spec: Obtain the tuple or known value hav-

ing a specified operand identifier.

Tuple_spec is a variant record capable of describing any tuple or known value. One
possible representation would be as two major variants, a value descriptor to specify a known
value and an operator plus an array of operand identifiers to specify a tuple.

A straight-line segment is a set of tuples, each of which will be executed exactly once
whenever the first is executed. A straight-line segment of maximal length is called a basic
block. The flow graph of a compilation unit is a directed graph whose nodes are basic blocks
and whose edges specify the possible execution sequences of those basic blocks. We also
sometimes consider extended basic blocks, which are subtrees of the flow graph. (Extended
basic blocks correspond to nested conditional clauses and to the bodies of innermost loops that
contain no jumps.) The value of every tuple depends ultimately upon some set of variables.
If the value of any of these variables changes, then the value computed by the tuple will also
change. Figure 13.2c is a directed acyclic graph illustrating such dependency for the tuples
of Figure 13.2b. A tuple is dependent upon a variable if there is a directed path in the graph
from the node corresponding to the variable to the node corresponding to the tuple. When
the value of a variable is altered, any previously-computed value of a tuple depending upon
that variable becomes invalid. Note that a is treated as a single variable, whose value directly
influences the value of ¢4 but not the value of ¢3.

In general, evaluation of a particular tuple may use some operand values, define some
operand values and invalidate some operand values. We can define the following dependency
sets for each tuple ¢:

U = {o | o is a tuple or program variable operand of ¢}

D; ={o | o is an operand defined by ¢}
X; ={o | o is an operand invalidated by ¢}
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w =

to:
t3:
ty:
t5:

= x; 2z := ali] + z;

131

to

i3

121

ti: 27

t121 t4 + tu
t13: z = t12

ali]; alj]
a) A Pascal fragment
AN ts 1 g1
11 * 4 tr : tg x4
a + tg tg ta + t7
t3 T tg : IDT
w =ty t10: tg = tg

b) Tuple sequence resulting from (

@@?O

D2

c¢) Dependency graph for the tuples of (b)

U D X
t1 {3} {t:} {}
t2 {1} {ta} {}
ts  {t2} {ts} {}
ta  {ts} {ta} {}
ts  {ta} {w.ts} {}
ts {7} {te} {}
tr {ts} {tz} {}
ts  {tr} {ts} {}
to  {z} {to} {}
tio {ts,to}  {tio} {ta,t5,t12, t13}
tn {2} {tu}  {}
tig {ts,tun} {ti2} {}
tiz  {tio} {z,ti3}  {ti1,t12,t13}

d) Dependency sets for the tuples of (b)

Figure 13.2: Analyzing Array References

The rules of the language determine these sets. Figure 13.2d shows the sets for the tuples
of Figure 13.2b. It assumes that there are no other tuples in the program, and might differ

if that assumption were false.
t14 : tg 7. In that case, Dy,, = {t14}.

The effect of an assignment to a pointer variable is similar to, but more extensive than, that
of an assignment to an array element. Pointer variables in Pascal or Ada potentially access
any anonymous target of any other pointer variable of the same type. In LAX or ALGOL 68,
every object of the given target type is potentially accessible. A reference parameter of a

For example, suppose that the program contained a tuple
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procedure has the same properties as a LAX or ALGOL 68 pointer in most languages, except
that the accessibility is limited to objects outside the current activation record. A procedure
call must be assumed to use and potentially modify every variable visible to that procedure,
as well as every variable passed to it as a reference parameter.

To construct the computation graph, we apply the storage mapping, target attribution
and code selection techniques of Sections 10.1-10.3. These methods yield the tuples in an
execution order determined by the target attributes, in particular the register estimate. The
only changes lie in the code selection process (Section 10.3), where the abstract nature of the
computation graph must be reflected.

A new walue_class, generated, must be introduced in Figure 10.10. If the class of
a value descriptor is generated, the variant part contains a single id field specifying an
operand identifier. Decision tables (such as Figure 10.13) do not have tests of operand value
class in their condition stubs, nor do they generate different instructions for memory and
register operands. The result is a significant reduction in the table size (Figure 13.3). Note
that the gen routine calls in Figure 13.3 still specify machine operation codes, even though
no instruction is actually being produced. This is done to emphasize the fact that the tuple’s
operator is actually a machine operator. In this case we have chosen ‘A’ to represent IBM
370 integer addition. A tuple whose operator was A might ultimately be coded using an AR
instruction or appear as an access path of an RX-format instruction, but it would never result
in (say) a floating add.

Result correct
l correct

T correct
swap (1,7)
gen(4,1,7) X X | X X
gen(S,1,r) X X
gen(LCR,1,1) X | X

Y | N N | N
N|Y N|N
N|Y Y| N

<

Y
Y
N

| < 2
| 2 < 2

>
>

Figure 13.3: Decision Table for +(integer, integer) integer Based on Figure 10.13

The gen routine’s behavior is controlled by the operator and the operand descriptor
classes. When the operands are literal values and the operator is one made available by the
constant table, then the specified computation is performed and the appropriate literal value
delivered as the result. In this case, nothing is added to the computation graph. Memory
operands (either addresses or values) are checked to determine whether they are directly
addressable. If not, tuples are generated to produce the specified results. In any case, the
value descriptors are altered to class generated and an appropriate operand identifier is
inserted. Finally a tuple is generated to describe the current operation and the proper operand
identifier is inserted into the value descriptor for the left operand.

Although we have not shown it explicitly, part of the input to the gen routine specifies
the program variables potentially used and destroyed. This information is used to derive the
dependency sets. An example giving the flavor of the process can be found in the description
of Bliss-11 [WULF et al., 1975].

13.2 Local Optimization

The simplest approach to optimization is to treat each basic block as a separate unit, opti-
mizing it without regard to its context. A computation graph is built for the basic block,
transformed, and used to generate the final machine code. It is then discarded and the next
basic block is considered.
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Our strategy for optimizing a basic block is to carry out the following steps in the order
indicated:

1. Value Numbering: Perform a ‘symbolic execution’ of the block, propagating symbolic
values and eliminating redundant computations.

2. Coding: Collect access paths for program variables and combine them with operations
to form valid target machine instructions, assuming an infinite set of registers.

3. Peephole Optimization: Attempt to combine sequences of instructions into single in-
structions having the same effect.

4. Register Allocation: Map the register set resulting from the coding step onto the avail-
able target machine registers, generating spill code (code to save and/or restore registers)
as necessary.

Throughout this section we assume that all program variables are potentially accessed
after the end of the basic block, and that no tuple values are. The latter assumption fails for
an expression-oriented language, and in that case we must treat the tuple representing the
final value of the expression computed by the block as a program variable. Section 13.3 will
consider the more general case occurring as a result of global optimization.

13.2.1 Value Numbering

Access computations for composite objects are rich sources of common subexpressions. One
classic example is the code for the following FORTRAN statement, used in solving three-
dimensional boundary value problems:

A(I,J,K) =(A(I,J,K — 1)+ A(I,J,K +1) +
A(I,J-1,K)+A(I,J+1,K) +
AT -1,J,K)+ A(I +1,J,K))/6.0

The expression I 4 dy * (J + dy * K), where dy and dy are the first two dimensions of A, is
generated (in combination with various constants) seven times. The value of this expression
cannot change during evaluation of the assignment statement if I, J and K are variables, and
hence six of the seven occurrences are redundant.

Value numbering is used to detect and eliminate common subexpressions in a basic block.
The general idea is to simulate the computation described by the tuples, generating a new
tuple if and only if the current one cannot be evaluated at compile time. Pseudo-variables
are kept for all of the tuples and program variables, and are updated to reflect the state of
the computation. Figure 13.4 defines the algorithm, and the example of Figure 13.5 gives the
flavor of the process. (Operand identifiers of the form v; have been used in Figure 13.5¢ to
emphasize the fact that a new set of tuples is being generated.)

Simulation of ¢; requires generation of v;, and sets the pseudo-variable a to 2. Tuple ¢,
can then be evaluated by the compiler, setting pseudo-variable ¢ to 2. No value is known for
pseudo-variable X, so v2 must be generated. When we reach t7, the value of pseudo-variable
t3 is vo and hence the required computation is 2*vo. But a tuple for this computation will have
already been executed, and we have called its result vs3. Thus 2xv9 is a common subexpression
that may be eliminated; the only result of the simulation is to set pseudo-variable t7 to vs.

X, requires us to invalidate four pseudo-variables (the other three elements of Xy, corre-
spond to pseudo-variables that have never been given values), and resets the value of pseudo-
variable a to vs. Then ¢9 and ¢19 can be fully simulated, while t9 is eliminated. Finally, ¢11
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tnvalid := inttialize_vn;
for o € J [U, U D,] do PV[o] := invalid;
¢

for t := first tuple to last tuple do
begin
if (¢ = "vi") and (PV[v]# invalid) then
for o € D, do PV[o] := PV[v]
else
begin
T := evaluate (t);
if not is_value (T, PV[t]) then
begin
result := new_value (T);
for o € X, do PV[o] := invalid;
for o € D, do PV[o] := result;

end
end
end;
a) The algorithm
Operation Meaning
initialize_vn : value_number Clear the output block and return the first
value number.
evaluate (tuple) : tuple Create a new tuple by replacing each ¢ in

the argument by PV/[t]. Return the newly-
created tuple.

1s_value (tuple, operand) : boolean If the last occurrence of tuple in the out-
put block was associated with PV[operand]
then return true, otherwise return false.

new value (tuple): value_number Add tuple to the output block, associating
it with a new value number. Return the
new value number.

b) Operations of the output module
Figure 13.4: Value Numbering

and t1o result in the last two tuples of Figure 13.5¢c. As can be seen from this example, value
numbering recognizes common subexpressions even when they are written differently in the
source program.

In more complex examples than Figure 13.5, the precise identity of the accessed object
may not be known. For example, the value of ali] in Figure 13.2a might be altered even
though none of the assignment tuples in the corresponding straight-line segment has a[i] as
a target. The analysis uses X;,, to account for this phenomenon, yielding the basic block
of Figure 13.6. Note that the algorithm correctly recognizes the address of a[i] as being a
common subexpression.

The last step in the value numbering process is to delete redundant assignments to program
variables (such as vy in Figure 13.5¢) and, as a byproduct, to develop use counts for all of the
tuples. Figure 13.7 gives the algorithm. Since each tuple value is defined exactly once, and
never used before it is defined, USECOU NT[v] will give the number of uses of v at the end
of the algorithm. The entries for program variables, on the other hand, may not be accurate
because they include potential uses by procedures and pointer assignments.



280 Optimization

a = 2;
b=ax X +1;
a:=2x%X;
c:=a+1+Db
a) A sequence of assignments
Tuple U D X
t1:a:=2 {} {a} {ta,t4,ts5,t6,to, t11,t12}

tz:at {a} {t2} {}
t3: X1 {X} {ts} {}
ty @ to *t3 {tg,tg} {t4} {}
t5 . t4 +1 {t4} {t5} {}

te : b:=t5 {ts} {b,ts}  {tio,t11,t12}

t3

t7 1 2xt3 {ts} {t7} {}

tg :a:=t; {t7} {a,ts}  {t2,t4,1t5,t6,t9, t11, 12}
to

to s ta+1  {t2} {to} {}
tio: b1 {b} {tt {}
tii: to+tio  {to,tio} {ti1} {}
tio: c:i=ti1  {tui} {e,ti2} {}

b) Tuples and sets for (a)

v a:=2 | vs: b:=1y
ve: X T Vg: Q1= U3
v3: 2% vy | U7 U4 + Uy
v4: v3+1 | vg: c:=w7

¢) Transformed computation graph
Figure 13.5: Common Subexpression Elimination

The analysis discussed in this section can be easily generalized to extended basic blocks.
Each path through the tree of basic blocks is treated as a single basic block; when the control
flow branches, we save the current information in order to continue the analysis on the other
branch. Should constant folding determine that the condition of a conditional jump is fixed,
we replace this conditional jump by an unconditional jump or remove it. In either case one of
the alternatives and the corresponding basic block is superfluous and its code can be deleted.
These situations arise most frequently in automatically-generated code, or when the if ...
then ... else construct, controlled by a constant defined at the beginning of the program, is
used for conditional compilation.

To generalize Figure 13.7, we begin by analyzing the basic blocks at the leaves of the
extended basic block. The contents of USECOUNT are saved, and analysis restarted on a

v 4T ve 1 v11: v3 T
v9: v x4 v7 v k4 vio: 2T
vg: a+wvy | vg: a+wvr V13! V11 + V12

V4. V3 T Vg : T T V14: Z = V13
V. W 1= V4 V10 Vg = Vg

Figure 13.6: Value Numbering Applied to Figure 13.2
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for o € Y, [U, U D,] do USECOUNT[o] := 0;
for o € {Program variables} do USECOUNT[o] := 1;

for v := last tuple downto first tuple do
begin
c := 0;
for o € D, do
begin

¢ := c + USECOUNT[o];
if o is a program variable then USECOUNT[o]
end;
if ¢ = 0 then delete tuple w
else kfor o € U, do USECOUNT[o] := USECOUNT[o] + 1;
end;

0;

Figure 13.7: Redundant Assignment Elimination and Use Counting

predecessor block by resetting each element of USECOUNT to the maximum of the saved values
for the successors. We cannot guarantee consistency in the use counts by this method, since
not all of the use counts must reach their maxima along the same execution path. It turns
out, however, that this inconsistency is irrelevant for our purposes.

13.2.2 Coding

The coding process is very similar to that of Section 10.3. We maintain a value descriptor
for each operand identifier, and simulate the action of the target computer using these value
descriptors as a data base. There is no need to maintain register descriptors, since we are
assuming an infinite supply.

Figure 13.8 gives two possible codings of Figure 13.1a for the IBM 370. Our notation for
describing the instructions is essentially that of DAVIDSON and FRASER [1980]: ‘R][...] means
‘contents of register ...” and ‘MJ...]" means ‘contents of the memory location addressed by

.”. Register numbers greater than 15 represent ‘abstract registers’ of the infinite-register
machine, while those less than 15 represent actual registers whose usage is prescribed by the
mapping specification. (As discussed in Section 10.2.1, register 13 is used to address the local
activation record.)

The register transfer notation of Figure 13.8 is independent of the target machine (al-
though the particular descriptions of Figure 13.8b are specific to the IBM 370), and is useful
for the peephole optimization discussed at the end of this section. Figure 13.8b is not a
complete description of the register transfers for the given instructions, but it suffices for the
current example. Later we shall show an example that uses a more complete description.

The differences between the left and right columns of Figure 13.8b stem from the choice
of the left operand of the multiply instruction, made when the second line was generated.
Because the multiply is a two-address instruction, the value of the left operand will be replaced
by the value of the result. WULF et al. [1975] calls this operand the target path.

In generating the left column of Figure 13.8b, we used Wulf’s criterion: Operand vy has a
use count greater than 1, and consequently it cannot be destroyed by the operation because it
will be needed again. It should not lie on the target path, because then an extra instruction
would be needed to copy it. Since v is only used once, no extra instructions are required
when it is chosen as the target path. Nevertheless, the code in the right column is two bytes
shorter — why? The byte counts for the first six rows reflect the extra instruction required to
preserve vo when it is chosen as the target path. However, that instruction is an LR rather
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Tuple Use count
v1: aa T 2
Vo U1 T
v3: y T
V4. Vg * V3
vs: Vgt
Vg: V4 + Us
(% Vi:= Vg
vg: U9 + U5 1
Vg: V1 1= Vg

—_ N = = DN

a) Result of value numbering

R[16] := M[R[13]+aa] R[16] := M[R[13]+aa]
R[17] := M[R[13]+y] 17] := M[R[16]+0]

R[17] := R[17]*M[R[16]40]

R[17] := R[17]+M[R[13]+V.j]
M[R[13]+V.i] := R[17] M[R[13]+V.i] := R[18]
R[18] := M[R[16]+0]
R[18] := R[18]+M[R[13]+V.j] | R[17] := R[17]+M[R[13]+V.]

M[R[16]+0] := R[18] M[R[16]+0] := R[17]
32 bytes 30 bytes
3 registers 4 registers

b) Two possible codings
Figure 13.8: Coding Figure 13.1 for the IBM 370

than an L and thus its cost is only two bytes. It happens that the last use of vy involves an
operation with two memory operands, one of which must be loaded at a cost of 4 bytes! If
the last use involved an operation whose other operand was in a register, we could use an RR
instruction for that operation and hence the byte counts of the two codings would be equal.

This example points up the fact that the criteria for target path selection depend strongly
upon the target computer architecture. Wulf’s criterion is the proper one for the DEC PDP11,
but not for the IBM 370.

Figure 13.8b does not account for the fact that the IBM 370 multiply instruction requires
the multiplicand to be in an odd register and leaves the product in a register pair. The
register allocation process must enforce these conditions in any event, and it does not appear
useful to introduce extra notation for them at this stage. We shall treat the problem in detail
in Section 13.2.4.

13.2.3 Peephole Optimization

Every tuple of the computation graph corresponds to some instruction of the target machine.
It may be, however, that a sequence of several tuples can be implemented as a single instruc-
tion. The purpose of peephole optimization is to combine such tuples, reducing the size of
the basic block and the number of intermediate values. There are two basic strategies:

e Each instruction of the target machine is defined in terms of register transfers. The
optimizer determines the overall register transfer of a group of instructions and seeks a
single instruction with the same effects [DAVIDSON and FRASER, 1980].
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e A set of patterns describing instruction sequences is developed, and a single instruction
associated with each. When the optimizer recognizes a given pattern in the basic block,
it performs the associated substitution [TANENBAUM et al., 1982].

Instruction Register transfers

MOV  s,d d:=s; CC:=s70

ADD s,d d:=d+s; CC:=d+ s70
CMP s,d CC:=s?d

Be [ if CC=c then PC :=1

INC d d:=d+1; CC:=d+ 170

d and s match any PDP11 operand address.
¢ matches any condition.

[ matches any label.

a) DEC PDP11

Instruction Register transfers

L nrz ri=x;

A rzx r:=r+xz; CC:=r+ z70
C nrz CC:=r?z

Be 1 if CC=c then PC:=l

r matches any register.

« matches any RX-format operand.

¢ matches any condition.

[ matches any label.

b) IBM 370

Figure 13.9: Register Transfer Descriptions

Figure 13.9 illustrates register transfer descriptions of PDP11 and IBM 370 instructions;
no attempt at completeness has been made in either case. Upper-case identifiers and special
characters are matched as they stand, while lower-case identifiers represent generic patterns
as indicated. (Note that in Figure 13.9b the description of an add instruction fits both A
and AR; there is no need to distinguish these instructions until assembly, when they could
be encoded by the technique of Section 11.3.2.) Literal characters in the patterns are chosen
simply for their mnemonic value. The optimizer needs no concept of machine operations;
optimization is carried out solely on the basis of pattern matching and replacement. Thus
the process is machine-independent — all machine dependence is concentrated in the register
transfer descriptions themselves.

In Section 13.1 we asserted that extra comparisons introduced to allow us to ignore the
side effect of condition code setting in arithmetic instructions could easily be removed. The
example of Figure 13.10 illustrates the steps involved. (Abstract registers have numbers
larger than 7, and we assume that register 5 addresses the local activation record.) Note
that the combined effect of the move and compare instructions (Figure 13.10d) is identical to
the effect of the move instruction (line 3 of Figure 13.10c). The optimizer discovers this by
pattern matching, and replaces the pair (move, compare) by the single move.

A two-instruction ‘window’ was sufficient to detect the redundant comparison in the ex-
ample of Figure 13.10. When a computer provides memory updating instructions that are
equivalent to simple load/operate/store sequences, the optimizer needs to examine instruction
triples rather than pairs.
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a:=b+c¢; if a< 0 then goto L;
a) A straight-line segment involving local variables

ti: b1

to: ¢t

ta: b + to

ty: a:=t3

t5: 1370

te: JGT(t5)L
b) The tuple sequence for (a) after value numbering
R[8] := M[R[5]+b]; CC := M[R[5]+b]70;
R[8] := R[8]+M]R[5]+c]; CC := R[8]+M[R][5]+]70;
M[R/[5]+a] := R[8]; CC := R[8]?0;
CC := RJ[8]70;
if CC = GT then PC :=L;

c¢) Register transfers for instructions implementing (b)

R[8] := M[R[5]+b];

R[8] := R[8]+M[R[5]+c];
M[R[5]+a] := R[18];

CC := RJ[8]70;

if CC = GT then PC := L;

d) After eliminating redundant transfers from (c)
M[R[5]+a] := R[8]; CC := R][8]70;
e) The combined effect of lines 3 and 4 in (d)

Figure 13.10: Comparison

=... 41

a) Incrementing an arbitrary location
ti: t; 1 tj is the address ...
trp: t; + 1 Increment the value

t;: tj:=1t; Store the result

b) The tuple sequence for (a) after value numbering

R[8] := M[R[9]];

R[8] := R[8]+1;

MIR[9]]:=R[8];
c) Registers transfers for (b) after redundant transfer elimination
M[R[9] := MIR[9]]+1;

d) The overall effect of (c)

Figure 13.11: Generating an Increment
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Figure 13.11 shows how an increment instruction is generated. The ‘...  in Figure 13.11a
stands for an arbitrarily complex address expression that appears on both sides of the assign-
ment. This expression is recognized as common during value numbering, and the address it
describes appears as an operand identifier (Figure 13.11b).

DAVIDSON and FRASER [1980] assert that windows larger than 3 are not required. Ad-
ditional evidence for this position comes from Tanenbaum’s 1982 table of 123 optimization
patterns. Only seven of these were longer than three instructions, and none of the seven
resulted in just a single output instruction. Three of them converted addition or subtraction
of 2 to two increments or decrements, the other four produced multi-word move instructions
from successive single-word moves when the addresses were adjacent. All of these patterns
were applied rather infrequently.

The optimizations of Figures 13.10 and 13.11 could be specified by the following patterns if
we used the second peephole optimization method mentioned at the beginning of this section:

MOV a,b CMP a,0 = MOV q,b
MOV a,b ADD 1b MOV bha = INCa
(The second pattern assumes that b is not used elsewehere.)

Any finite-state pattern matching technique, such as that of AHO and CORASICK [1975],
can be modified to efficiently match patterns such as these. (Modification is required to
guarantee that the item matching the first occurrence of a or b also matches subsequent
occurrences.) A complete description of a particular algorithm is given by RAMAMOORTHY
and JAHANIAN [1976]. As indicated earlier, an extensive set of patterns may be required.
(Tanenbaum and his coauthors 1982 give a representative example.) The particular set of
patterns that will prove useful depends upon the source language, compiler code generation
and optimization strategies, and target machine. It is developed over time by examining
the code output by the compiler and recognizing areas of possible improvement. There is
never any guarantee that significant optimizations have not been overlooked, or that useless
patterns have not been introduced. On the other hand, the processing is significantly faster
than that for the first method because it is unnecessary to ‘rediscover’ the patterns for each
pair of instructions.

13.2.4 Local Register Allocation

The classical approach to register allocation determines the register assignment ‘on the fly’ as
the final code is being output to the assembler. This determination is based upon attributes
calculated by previous traversals of the basic block, and uses value descriptors to maintain
the state of the allocation. We solve the register pair problem by computing a size and
alignment for each abstract register. (Thus the abstract register becomes a block in the sense
of Section 10.1.) In the right column of Figure 13.8b, R[16] and R[17] each have size 1 and
alignment 1 but R[18] has size 2 and alignment 2 because of its use as a multiplicand. Other
machine-specific attributes may be required. For example, R[16] is used as a base register
and thus cannot be assigned to register 0 on the IBM 370.

A register assignment algorithm similar to that described in Section 10.3.1 can be used.
The only modification lies in the choice of a register to free. In Figure 10.12 we chose the
least-recently accessed register; here we should choose the one whose next access is furthest in
the future. (BELADY [1966] has shown this strategy to be optimal in the analogous problem
of determining which page to replace in a virtual memory system.) We can easily obtain
this information at the same time we compute the other attributes mentioned in the previous
paragraph. Note that all of the attributes used in register allocation must be computed after
peephole optimization; the peephole optimizer, by combining instructions, may alter some of
the attribute values.
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Figure 10.12 makes use of a register state copy that indicates existence of a memory
copy of the register content. If it has been necessary to spill a register then the assignment
algorithm knows that it is in the copy state. However, as the example of Figure 13.8 shows,
a register (e.g. R[16]) may be in the copy state because it has been loaded from a memory
location whose content will not be altered. In order to make use of this fact, we must guarantee
that no side effect will invalidate the memory copy. The necessary information is available in
the sets D and X associated with the original tuples, and must be propagated by the value
numbering and coding processes.

When we are dealing with a machine like the IBM 370, the algorithm of Figure 10.12
should make an effort to maximize the number of available pairs by appropriate choice of a
free register to allocate. Even when this is done, however, we may reach a situation in which
no pair is free but at least two registers are free. We can therefore free a pair by freeing one
register, and we might free that register by moving its content to the second free register
at a cost of two bytes. If the state of one of the candidate registers is copy, then it can
be freed at a cost of two bytes if and only if its next use is the proper operand of an RR
instruction (either operand if the operation is commutative). It appears that we cannot lose
by using an LR instruction. However, suppose that the value being moved must ultimately
(due to other conflicts) be saved in memory. In that case, we are simply paying to postpone
the inevitable! We conclude that the classical strategy cannot be guaranteed to produce an
optimum assignment on a machine with double-length results.

13.3 Global Optimization

Code is ultimately produced by the methods discussed in Section 13.2, one basic block at
a time. The purposes of global optimization are to perform global rearrangement of the
computation graph and to provide contextual information at the basic block boundaries. For
example, in Section 13.2 we assumed that all program variables were potentially accessed
after the end of each basic block. Thus the algorithm of Figure 13.7 initialized USECOUNT [v]
to 1 for all program variables v. A global analysis of the program might show, however, that
there was no execution path along which certain of these variables were used before being
reset. USECOUNT[v] could be initialized to 0 for those variables, and this might result in
eliminating more tuples.

We shall first sketch the process by which information is collected and disseminated over
the computation graph, and then discuss two common global transformations. The last
section considers ways of allocating registers globally, thus increasing register utilization and
avoiding mismatches at basic block boundaries.

It is important to emphasize that none of the algorithms discussed in Section 13.2 should
precede global optimization. Papers appearing in the literature often combine value number-
ing with the original generation of tuples, but doing so may prevent global optimization by
destroying congruence of tuples in different basic blocks.

13.3.1 Global Data Flow Analysis

The information derived by global data flow analysis consists of sets defined at particular
program points. Two types of set may be interesting: a set of operand identifiers and a set of
program points. For example, we might define a set LIVE (b) at the end of each basic block
b as the set of operand identifiers that were used after the end of b before being reset. This
set could then be used in initializing USECOUNT as discussed above.

Sets of program points are useful when we need to find all the uses of an operand that
could be affected by a particular definition of that operand, and vice-versa. Global constant
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propagation is a good example of this kind of analysis. As the computation graph is being
built, we accumulate a list of all of the program points at which an operand is given a constant
value. During global data flow analysis we define a set USES (o, p) at each program point
p as the set of program points potentially using the value of o defined at p. Similarly, a set
DEFS (o, p) is the set of program points potentially defining the value of operand o used at
program point p. For each element of the list of constant definitions, we can then find all of
the potential uses. For each potential use, in turn, we can find all other potential definitions.
If all definitions yield the same constant then this constant can be substituted for the operand
use in question. Finally, if we substitute constants for all operand uses in a tuple then the
tuple can be evaluated and its program point added to the list. The process terminates when
the list is empty.

For practical reasons, global data flow analysis is carried out in two parts. The first
part gathers information within a single basic block, summarizing it in sets defined at the
entry and/or exit points. This drastically reduces the number of sets that must be processed
during the second part, which propagates the information over the flow graph. The result of
the second part is then again sets defined at the entry and/or exit points of basic blocks. These
sets are finally used to distribute the information within the block. A complete treatment of
the algorithms used to propagate information over the flow graph is beyond the scope of this
book. KENNEDY [1981] gives a good survey, and HECHT [1977] covers the subject in depth.

As an example, consider the computation of LIVE (b). We characterize the flow graph
for this computation by two sets:

PRED(b) = {h | h is an immediate predecessor of b in the flow graph}
SUCC(b) = {h | h is an immediate successor of b in the flow graph}

An operand is then live on exit from a block b if it is used by any block in SUCC (b) before
it is either defined or invalidated. Moreover, if a block h € SUCC (b) neither defines nor
invalidates the operand, then it is live on exit from b if it is live on exit from h. Symbolically:

LIVE®) = | [IN(h)UTHRU(h) N LIVE(h)] (13.1)
heSUCC(b)

IN (h) is the set of operand identifiers used in h before being defined or invalidated, and
THRU (h) is the set of operand identifiers neither defined nor invalidated in #.

We can solve the system of set equations (13.1) iteratively as shown in Figure 13.12. This
algorithm is O(n?), where n is the number of basic blocks: At most n — 1 executions of
the repeat statement are needed to make a change in a basic block b available to another
arbitrary basic block b’. The actual number of iterations depends upon the sequence in which
the basic blocks are considered and the complexity of the program. For programs without
explicit jumps the cost can be reduced to two iterations, if the basic blocks are ordered so
that inner loops are processed before the loops in which they are contained.

Computation of the sets USES (o, p) and DEFS (o, p) provides a more complex exam-
ple of global flow analysis. We begin by computing REACHES (b), the set of program points
that define values valid at the entry point of basic block b. Let DEF (b) be the set of program
points within b whose definitions remain valid at the end of b, and let VALID (b) be the
set of program points whose definitions are not changed or invalidated in b. REACHES (b) is
then defined by:

REACHES(b)= |J [DEF(h)UVALID(h) N REACHES(h)] (13.2)
hePRED(b)
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for all basic blocks b do

begin
IN (b) := (; THRU (b) := {all operand identifiers};
for t := last tuple downto first tuple do

begin

IV (b) := (IN (b) - D, - X;) U U;;
THRU (b) := THRU (b) - D, - X,;
end;

LIVE (b) := 0

end;

repeat
changed := false;
for all basic blocks b do

begin
old := LIVE (b);
LIVE (b) := U [IN (h) U THRU (h) N LIVE (h)];

h € succ (b)
changed := changed or (LIVE (b) # old);
end;
until not changed;

Figure 13.12: Computation of LIVE (b)

Note the similarity between equations (13.1) and (13.2). It is clear that essentially the
same algorithm can be used to solve both sets of equations. Similar systems of equations
appear in most global data flow analysis problems, and one can show that a particular prob-
lem can be handled by a standard algorithm simply by showing that the sets and rules for
combining them at junctions satisfy the axioms of the algorithm.

The computation of DEF (b) and VALID (b) is described in Figure 13.13a. It uses
auxiliary sets DF (o) which specify, for each operand identifier o, the program points whose
definitions of o reach the ends of the basic blocks containing those program points. Once
DEF (b) and VALID (b) are known for every basic block, REACHES (b) can be computed
by solving the system of set equations (2). Finally, a simple scan (Figure 13.13b) suffices
to define DEFS (o, p) at each program point. USES (o, p) is computed by scanning the
entire program and, for each tuple p that uses o, adding p to USES (o, ¢) for every q €
DEFS (o, p).

13.3.2 Code Motion

The address expression for a[i, j] in the Pascal fragment of Figure 13.14a is common to both
branches of the conditional statement, although there is no path from one to the other over
which the value remains unchanged. The second implementation of Figure 13.14b shows how
we can move the computation, with the assignment, forming an epilogue to the conditional.
This code motion transformation reduces the code size but leaves the execution time un-
changed. In the third implementation of Figure 13.14b we have moved a computation whose
value does not change in the inner loop to the prologue of that loop. Here the execution time
is reduced and the code size is increased slightly.

A key consideration in code motion is safety: The transformation is allowed when the
transformed program will deliver the same result as the original, and will terminate ab-
normally only if the original would have terminated abnormally. (Note that the abnormal
termination may occur in a different place.) In Figure 13.14, the value of i div k does not
change in the inner loop. Moving that computation to the prologue of the inner loop would be
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unsafe, however, because if k were zero the transformed program would terminate abnormally
and the original would not.

We can think of code motion as a combination of insertions and deletions. An insertion
is safe if the expression being inserted is available at the point of insertion. An expression is
available at a given point if it has been computed on every path leading to that point and
none of its operands have been altered since the last computation. Clearly the program’s
result will not be changed by the inserted code if the inserted expression is available, and
if the inserted code were to terminate abnormally then the original program would have
terminated abnormally at one of the earlier computations. This argument guarantees the
safety of the first transformation in Figure 13.14b. We first insert the address computation
and assignment to a[i, j|, making it an epilogue of the conditional. The original computations
in the two branches are then redundant and may be removed.

C : array [operand_tidentifier] of program_point;

for all operand identifiers o do DF (o) := 0);
for all basic blocks b do
begin
for all operand identifiers o do C[o] := 0;
for 7 := first program point of b to last program point of b do
begin

for o € X, (i) do Clo] := 0;
for o € D, (i) do Clo]
end;
DEF (b) := {;
for all operand identifiers o do
if Clo] # 0 then
begin
DEF (b) := DEF (b) U {C[o]};
DF (o) := DF (o) U {Clo]};
end;

I
=

end;
for all basic blocks b do
begin
VALID (b) := (;
for all operand identifiers o do
if o € THRU (b) then VALID (b) := VALID (b) U DF (o0);
end;
a) Computation of DEF (b) and VALID (b)

TR := REACHES (b);
for 7 := first program point of b to last program point of b do
begin
DEFS (o, 1) := ;
for o € U, (i) do DEFS (o, %) := TR N DF (o0);
for o € D, (i) UX, (i) do TR := TR - DF (0);
for o € D, (i) do TR := TR U {i};
end;
b) Computation of DEFS (o, p)

Figure 13.13: Computing a Set of Program Points
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The second transformation in Figure 13.14b involves an insertion where the inserted ex-
pression is not available, but where it is anticipated. An expression is anticipated at a given
point if it appears on every execution path leaving that point and none of its operands could
be altered between the point in question and the first computation on each path. In our
example, (i — 1) * n is anticipated in the prologue of the j loop, but i div & is not. Therefore
it is safe to insert the former but not the latter. Once the insertion has been made, the
corresponding computation in the epilogue of the conditional is redundant because its value
is available.

Let AVAIL (b) be the set of operand identifiers available on entry to basic block b and
ANTIC (b) be the set of operand identifiers anticipated on exit from b. These sets are defined
by the following systems of equations:

AVAIL(b)= () [OUT(h) UTHRU(h) N AVAIL(h)]
he PRED(b)

ANTIC(b) = (] [ANLOC(h)UTHRU(h) N ANTIC(h)]
heSUCC(b)

Here OUT (b) is the set of operand identifiers defined in b and not invalidated after their last
definition, and ANLOC (b) is the set of operand identifiers for tuples computed in b before
any of their operands are defined or invalidated.

The main task of the optimizer is to find code motions that are safe and profitable (reduce
the cost of the program according to the desired measure). WULF et al. [1975] considers
‘a — w’ code motions that move computations from branched constructs to prologues and
epilogues. (The center column of Figure 13.14 illustrates an w motion; an « motion would
have placed the computation of afi, j| before the compare instruction.) He also discusses
the movement of invariant computations out of loops, as illustrated by the right column of
Figure 13.14. If loops are nested, invariant code is moved out one region at a time. MOREL
and RENVOISE [1979] present a method for moving a computation directly to the entrance
block of the outermost strongly-connected region in which it is invariant.

13.3.3 Strength Reduction

Figure 13.15 gives yet another implementation of Figure 13.14a for the IBM 370. The code
is identical to that of the right-hand column of Figure 13.14b, except that the expression
(1 —1) *xn has been replaced by an initialization and increment of R5. It is easy to see that in
both cases the sequence of values taken on by Rb5 is 0, n, 2n, 3n, ... This strength reduction
transformation reduces the execution time, but its effect on the code size is unpredictable.

ALLEN et al. [1981] gives an extensive catalog of strength reductions. The major im-
provement in practice comes from simplifying access to arrays, primarily multidimensional
arrays, within loops. We shall therefore consider only strength reductions involving expres-
sions of this kind. All of these transformations are based upon the fact that multiplication is
distributive over addition.

Let S be a strongly-connected component of the computation graph. A region constant
is an expression whose value is unchanged in S, and an induction value is one defined only
by tuples having one of the following forms:

jEtk
—J
1:=17
it
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for 7 :=1 to n do
for j :=1 to n do
if 5 > k then af[%, 5] := 0 else ali, j] := % div k;
a) A Pascal fragment
LA RO, LA RO, LA RO,
C RO,n(R13) C RO,n(R13) C RO,n(R13)
BH ENDI BH ENDI BH ENDI
B BODI B BODI B BODI
INCI A RO,=1 INCI A RO,=1 INCI A RO,=1
BODI ST R0,i(R13) BODI ST R0,i(R13) BODI ST R0,i(R13)
C RO,n(R13) C RO,n(R13) C RO,n(R13)
BH ENDJ BH ENDJ BH ENDJ
L R5,i(R13)
S R3,=1
M R4n(R13)
B BODJ B BODJ B BODJ
INCJ A RO,=1 INCJ A RO,=1 INCJ A RO,=1
BODJ ST  RO,j(R13) BODJ ST  RO,j(R13) BODJ ST  RO,j(R13)
C RO,k(R13) C RO,k(R13) C RO,k(R13)
BNH ELSE BNH ELSE BNH ELSE
SR R1,R1 SR R1,R1 SR R1,R1
L R3,i(R13)
S R3,=1
M R2n(R13)
A R3,j(R13)
SLA  R32
ST  Rl,a-4(R3,R13)
B ENDC B ENDC B ENDC
ELSE L RO,i(R13) ELSE L RO,i(R13) ELSE L RO,i(R13)
SRDA R0,32 SRDA R0,32 SRDA R0,32
D RO,k(R13) D RO,k(R13) D RO,k(R13)
L R3,i(R13) ENDC L R3,i(R13)
S R3,=1 S R3,=1
M R2n(R13) M R2n(R13)
A R3,j(R13) A R3,j(R13) ENDC L R3,j(R13)
AR R3,R5
SLA  R32 SLA R3,2 SLA  R32
ST  R1,a-4(R3,R13) ST  Rl,a4(R3,R13) ST  R1,a-4(R3,R13)
ENDC L RO,j(R13) L RO,j(R13) L RO,j(R13)
C RO,n(R13) C RO,n(R13) C RO,n(R13)
BL INCJ BL INCJ BL INCJ
ENDJ L RO,i(R13) ENDJ L RO,i(R13) ENDJ L RO,i(R13)
C RO,n(R13) C RO,n(R13) C RO,n(R13)
BL INCI BL INCI BL INCI
ENDI ENDI ENDI

(142 bytes)

(118 bytes)

b) IBM 370 implementations

Figure 13.14: Code Motion

(120 bytes)
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LA  RO1

C RO,n(R13)

BH ENDI

SR R5R5 (i — 1) xn initially 0

B BODI
INCI A RO,=1

A R5,=n Increment (i — 1) *n
BODI ST RO,i(R13)

LA RO,1

C RO,n(R13)

BH ENDJ

B BODJ
INCJ] A RO,=1
BODJ ST RO,j(R13)

C RO,k(R13)

BNH ELSE

SR RI1,R1

B ENDIF
ELSE L RO,i(R13)

SRDA RO0,32

D RO,k(R13)
ENDIF L R3,7(R13)

AR R3.,R5

SLA  R32

ST R1,a-4(R3,R13)

L RO,7(R13)

C RO,n(R13)

BL INCJ
ENDJ L RO,i(R13)

C RO,n(R13)

BL INCI

ENDI
(118 bytes)

Figure 13.15: Strength Reduction Applied to Figure 13.14b

Here 5 and k are either induction values or region constants and i is an induction variable.
The set of induction values is determined by assuming that all values defined in the region
are induction values, and then deleting those that do not satisfy the conditions [ALLEN et al.,
1981]. The induction values in Figure 13.16 are i, t9, t3 and ¢7.

To perform a strength reduction transformation on Figure 13.16, we define a variable
V1 to hold the value t9. An assignment must be made to this variable prior to entering
the strongly-connected region, and at program points where t9 has been invalidated and yet
to x di is anticipated. For example, tg is invalidated by tg in Figure 13.16, and yet o * d;
is anticipated at that point. An assignment V; := ¢3 % di should therefore be inserted just
before [5. Since to is the value of i 1, 7 := t7; V] := tg x d; is equivalent to Vi := (to + 1) x dy;
1 := t7. Using the distributive law, and recalling the invariant that V; always holds the value
of tg(= t2 * dy), this sequence can be written as V; := Vj +dy; i := t7. Figure 13.17 shows the
result of the transformation, after appropriate decomposition into tuples.

We could now apply exactly the same reasoning to Figure 13.17, noting that Vi, tag, to9,
t31, t35 and t49 are now induction values. The obvious variables then hold t39, ¢3¢ and 4.
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for i := 1 to n do alj,i] := alk,i] + a[m, 1];

a) A Pascal fragment

tll 1:=1 l2 H t2 t2
to: ¢ 1 tg : to *x dy tg
t3: n T tio: k1 to1: 5 1
ty: to7t3 t11: tig + L9 too: to1 + g
t52 JGT(t4)13 t121 tll x4 t23: t22 x4
te: JMP o t13: a + t12 tog: a + to3
li: tp t1g: 113 1 tos: 24 1= t2p
tr: ta+1 to to
tg: 1 := 17 tg ts3
t15: m 7T 171
t16: T15 + 19 tog: JLT (t4)l4
t171 tlg x4 13:
t18: a4+ t17
t19: t1g T
too: t14 + t19

b) Computation graph for (a)
Figure 13.16: Finding Induction Values

i1 lo: tog tog
t2 t10 to1
i3 310 10 + t28 t40: to1 + tog
ty t3o: t31 x4 ta1: tgo x4
ts t3z: a + t32 tio: a + t41
tor: Vi :=dy t34: t33 1 t43: t4o 1= t39
Lo tog t2

Lz tog: VI 1 t15 t3
tag: tog + di t35: t15 + tog ty
t30: V1 :=tag t3: t33 % 4 tog
tg t372 a + t36 13:
tr t3g: t37 T
iy 390 134 + l38

Figure 13.17: Figure 13.16b After One Strength Reduction

Unfortunately, none of these variables have simple recurrence relations. Four more variables,
to hold tog * 4, t19 * 4, t15 * 4 and t91 * 4 must be defined. Although tedious, the process
is straightforward; a complete algorithm is given by ALLEN et al. [1981]. As can be seen
from this simple example, the number of variables introduced grows rapidly. Many of these
variables will later be eliminated because their functions have been effectively taken over by
other variables. This is the case after further processing of Figure 13.17, where the function
of V1 is taken over by the variable implementing t9g 4. In fact, the program variable ¢ can be
omitted in this loop if the test for termination is changed to use one of the derived induction
variables.

Clearly strength reduction must precede code motion. The strength reduction process gen-
erates many extra tuples that are constant within the strongly connected region and hence
should be moved to its prologue. It is also clear that strength reduction must be iterated if it
is to be effective. The proliferation of derived induction variables, with concomitant initializa-
tion and incrementing, may cause a significant increase in code size. Thus strength reduction
is strictly an execution time optimization, and usually involves a time/space tradeoff. SCAR-
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BOROUGH and KOLSKY [1980] advocate judicious preprocessing of subscript expressions in
an effort to reduce the growth due to strength reduction.

13.3.4 Global Register Allocation

As discussed in Section 13.2.4, local register allocation considers each basic block in isolation.
Values that live across basic block boundaries are generally program variables, and are stored
in memory. Thus it is unnecessary to retain values in registers from one basic block to the
next. The global optimizations discussed so far alter this condition. They tend to increase the
number of operands whose lifetimes include more than one basic block, and if such operands
must be kept in memory then much of the advantage is lost. It is absolutely essential that we
take a more global view in allocating registers in order to minimize the number of additional
fetch, store and copy register instructions.

Most global register allocation strategies allow program variables to compete equally for
registers with other operands. Some care must be taken, however, since program variables may
be accessible over paths that are effectively concealed from the compiler. It is probably best
to exclude program variables from the allocation when such paths are available. As indicated
in Section 13.1, this is a property of the source language and the necessary restrictions will
vary from compiler to compiler.

DAy [1970] discusses the general register allocation problem and gives optimal solutions
for the basic strategies. These solutions provide standards for measuring the effectiveness of
heuristics, but are themselves too expensive for use in a production compiler. Two faster,
non-optimal procedures are also discussed. All of these algorithms assume a homogeneous
set of registers. Late in the paper, Day mentions that the problem of register pairs might
be solved by running the allocation twice. The first run would be given only the values that
must be assigned to one register of a pair (or both). Input to the second run would include
all items, but attach a very high profit to each assignment made by the first run.

One of the problems with global register allocation is the large number of operands that
must be considered. In spite of the previous global optimizations, the majority of these
operands have lifetimes contained within a basic block. We would like to perform the expen-
sive global allocation procedure on only those operands whose lifetimes cross a basic block
boundary, allocating the remainder by the cheaper methods of Section 13.2.4. If we do this,
however, we run the risk of allocating all registers globally and hence generating very poor
local code. BEATTY [1974] suggests that we divide the local register allocation process into
two phases, determining the number of registers required (‘allocation’) and deciding which
registers will be used (‘assignment’). The requirements set by the first phase are used in
determining global register usage, and then the unclaimed registers are assigned in each basic
block individually.

All data items that live across basic block boundaries are initially assumed to be in
memory, but all instructions that can take either register or memory operands are assumed
to be in their register-register form. FExplicit loads and stores are inserted where required,
and the processes of Sections 13.2.1-13.2.3 are carried out. The methods of Section 13.2.4
are applied to determine the number of registers required locally. With this information, a
global analysis [BEATTY, 1974] is used to guide load-store motion (code motion involving
only the loads and stores of operands live across basic block boundaries) and global register
assignment. As the assignment proceeds, some (but not necessarily all) loads and stores
will become redundant and be deleted. When the global analysis is complete, we apply the
allocation of Section 13.2.4 to assign local registers.

Real computers usually have annoying asymmetries in register capability that wreak havoc
with uniform register allocation schemes. It is necessary to provide a mechanism for incor-
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porating such asymmetries in order to avoid having to exclude certain registers from the
allocation altogether. One allocation scheme [CHAITIN et al., 1981; CHAITIN, 1982] that
avoids the problem is based on graph coloring (Section B.3.3). The constraints on allocation
are expressed as an interference graph, a graph with one node for each register, both abstract
and actual. An edge connects two nodes if they interfere (i.e. if they exist simultaneously).
Clearly all of the machine registers interfere with each other. In the left column of Figure 13.8,
R[17] and R[18] do not interfere with each other, although they both interfere with R[16];
all abstract registers interfere with each other in the right column. If there are n registers, a
register assignment is equivalent to an n-coloring (Section B.3.3) of the interference graph.

Many asymmetry constraints are easily introduced as interferences. For example, any
abstract register used as a base register on the IBM 370 interferes with machine register
0. Similarly, we can solve a part of the multiplication problem by making the abstract
multiplicand interfere with every even machine register and defining another abstract register
that interferes with every odd machine register and every abstract register that exists during
the multiply. This guarantees that the multiplicand goes into an odd register and that an
even register is free, but it does not guarantee that the multiplicand and free register form a
pair.

The coloring algorithm [CHAITIN et al., 1981] used for this problem differs from that of
Section B.3.3 because the constraints are different: There we are trying to find the minimum
number of colors, assuming that the graph is fixed; here we are trying to find an n-coloring,
and the graph can be changed to make that possible. (Spilling a value to memory removes
some of the interferences, changing the graph.) Any node with fewer than n interferences does
not affect the coloring, since there will be a color available for it regardless of the colors chosen
for its neighbors. Thus it (and all edges incident upon it) can be deleted without changing
whether the graph can be n-colored. If we can continue to delete nodes in this manner until
the entire graph disappears, then the original was n-colorable. The coloring can be obtained
by adding the nodes back into the graph in the reverse order of deletion, coloring each as it
is restored.

If the coloring algorithm encounters a node with n or more interferences, it must make a
decision about which node to spill. A separate table is used to give the cost of spilling each
register, and the register is chosen for which cost/(incident edges) is as small as possible.
Some local intelligence is included: When a computation is local to a basic block, and no
abstract register lifetimes end between its definition and last use, the cost of spilling it is set
to infinity. The cost algorithm also accounts for the facts that some computations can be
redone instead of being spilled and reloaded, and that if the source or target of a register
copy operation is spilled then that operation can 