A Proof of the Boyer-Moore Majority Protocol
Jayadev Misra
06/11/2013

1 Introduction

This note is inspired by discussions with Greg Plaxton who has observed that the
Boyer-Moore Majority Protocol [1] provides an excellent example for teaching
program verification in an undergraduate course. I write out the proof in detail
here. The first program uses certain abstract data structures. Its proof is
relatively easy to construct. The next program is a refinement, replacing the
abstract data structures by concrete representations.

The Boyer-Moore Majority Protocol Given is a finite bag B of items.
An item is a majority if it occurs more often than all other items combined.
Equivalently, a majority item of B occurs more than |B|/2 times on B. It is
required to determine if B has a majority item and return it if there is one.
The Boyer-Moore algorithm consists of two passes, each pass consuming linear
time. The first pass either determines that there is no majority item or finds a
candidate item that is the only possible majority item. The second pass is run
only if there is a candidate in order to determine if the candidate is indeed a
majority item. The second pass is straightforward and is omitted from further
discussion. The rest of this note is about the first pass.

Terminology An item may occur multiple times in a bag. Each of its
occurrences is called an element. Henceforth, we overload the usual set notation
to apply to bags. Symbol ¢ denotes the empty bag. a

The protocol description below is from Misra and Gries [3] where a general-
ized version of this problem treated. A reduction step removes any two distinct
elements from B. The algorithm applies the reduction step to B repeatedly as
long as there are distinct elements in Bj; the resulting bag, R, is a reduced bag.
Termination is guaranteed because each step strictly decreases the bag size. Bag
R contains copies of at most one item, because otherwise a reduction step can
be applied to R.

Observe that the reduced bag is not unique. For example, starting with the
bag {2,2,3,4} a reduction might eliminate {3,4} leaving {2,2} as the reduced
bag whereas a different sequence of reduction steps that eliminate {2,3} and
{2,4} would leave ¢ as the reduced bag.

Informal Proof of the Protocol We assert that a majority item of B is in
R. Equivalently, any item z not in R is a non-majority in B. Consider the bag
B — R, the bag of elements removed using the reduction steps. Each reduction
step removes two distinct elements from B. So, every element in B — R is paired
with an element of different value; so, B — R has no majority, and z is not a

majority item in B — R. Further, since z does not occur in R it is not a majority
in R. Therefore, z is not a majority in (B — R) U R, or B.

2 Formal Algorithm Description and Proof

The original description of the algorithm by Boyer and Moore [1] was given
in Fortran, which makes its analysis very difficult. It is a tribute to the au-
thors’ abilities in automated verification that they could even prove the result.
But such a description is wholly unsuitable for teaching program verification to
novices.

2.1 Properties of a reduced bag

We use the notation B < R to stand for “B can be reduced to R”. First, we
note some simple properties of <. These properties can be established directly
from the intuitive description of <, or they can simply be taken as the definition
of —.

b= 9 (R1)
B— Rand (R=¢VzeR)imply BU{z} — RU{z} (R2)
B— Rand (R# ¢ Az ¢ R) imply BU{z} — R — {s},

where s is any item in R (R3)

2.2 Properties of Reduction

The goal of this section is to prove formally that any majority item of bag B
belongs to the reduced bag R. We do so through a number of smaller proof
steps.

2.2.1 Proposition (P1): R is a subbag of B

The proof is by induction on the number of times rules (R1) through (R3) are
applied in reducing B to R.

e Given ¢ — ¢, we have ¢ C ¢.

e Given that R C B, it is easy to see that RU{z} C BU{z} and R—{s} C
B U {a}, for any s in R.

2.2.2 Proposition (P2): There is no majority item in B — R

For bag b and item z let nomaj(z,b) denote that z is not a majority item in b.
Slightly abusing notation, let nomaj(b) denote nomaj(z,b) for all z; that is, b
has no majority item. (This predicate is a simpler version of one proposed in
Plaxton [4].)

We show that nomaj(B — R) by induction on the number of times rules (R1)
through (R3) are applied in reducing B to R. We need the following results
whose proofs are straightforward using any formal definition of nomaj(z,b).

z &b = nomaj(z,b) (QL)
(nomaj(z,b) Anomaj(z,b')) = nomaj(z,bUbd) (Q2)
(nomaj(b) Anomaj(b’)) = nomaj(bUbd’) (Q3)

Proof of nomaj(B — R)

e Given ¢ — ¢, we have to show nomaj(¢ — ¢), or nomaj(¢), which follows
trivially.

e In applying (R2), B — R does not change; so, nomaj(B — R) is preserved.

e In applying (R3), the precondition is B — R, (R # ¢ Az ¢ R) and
nomaj(B — R). Note that from (R # ¢ Ax ¢ R) and s € R, we have
s # x.
We have to show that nomaj((B U {z}) — (R — {s})). From induction
hypothesis,

nomaj(B — R)
= {since s # x, nomaj({z, s})}
nomaj(B — R) and nomaj({z, s})
= {from (Q3)}
nomaj((B — R) U{x, s})
{from (P1) RC B. So, (B—R)U{z,s} = (BU{z})— (R—{s})}
nomaj(BU{z}) - (R - {s})

2.2.3 Proposition (P3): Any majority item of B is in R

We prove the contrapositive, that z ¢ R = nomaj(z, B).

z¢ R
= {from (Q1)}
nomaj(z, R)
= {from (P2), nomaj(B — R)}
nomaj(z, B — R) and nomaj(z, R)
= {from (Q2)}
nomaj(z,(B — R)UR)
= {from (P1), R C B;so, (B— R)UR= B}
nomaj(z, B)

2.3 Computing a reduced bag

Properties (R1) through (R3) also prescribe a procedure for computing a re-
duced bag. To compute a reduced bag for B U {z}, we may first compute the
reduced bag R for B. If R is empty or it contains x, then add x to R. Otherwise,
remove an item from R as an application of the reduction step.

The obvious way to formally describe the algorithm is to have an array that
stores the elements to be processed, and a program that processes the array

elements in sequence. We propose a different style of description that completely
avoids dealing with array indices. This style is inspired by UNITY [2] where
the emphasis is placed on the actions that manipulate data rather than on the
control or data structures. A similar approach is advocated in Plaxton [4] for
this problem.

Imagine that some external agent supplies a stream of x values that make
up bag B. There are two actions, increase(x) and reduce(x), that either add
x to R or remove an element from R, respectively. These actions are executed
repeatedly as long as values are supplied.

initially B, R := ¢, ¢
increase(z):: R=¢ Ve € R — B,R:=BU{z},RU{x}

reduce(z) = R#¢ Nz ¢ R— B,R:=BU{z},R— {s}, where s€ R

Correctness The computation procedure implements (R1) through (R3). There-
fore, B < R is an invariant of this program. Consequently, propositions (P1)
through (P3) hold. In particular, from (P3), any majority item of B is in R.

Invariant for the Structure of R We can establish that R contains (possibly
multiple copies of) at most one item. That is, we have the invariant

yeE RANz€ R = y=z, forall yand z.)
The proof of the invariance of (I) is as follows.

e Initially, (I) holds vacuously.

e increase(x) adds x to R provided (R = ¢ Vo € R). Then R contains no
item other than x following the action execution if (I) holds prior to the
execution.

e reduce(x) removes an item from R; so, it preserves (I).

3 Optimizing the Data Structure

The description of the algorithm in Section 2 uses bags B and R. Bag B is an
auxiliary variable introduced solely for stating the correctness condition and the
invariant. So, we eliminate this variable in the final algorithm. Bag R can be
represented more efficiently as follows.

Given (I) we may represent R by a pair of variables, ¢ and s, where ¢ is the
size of R and s the unique item in R provided ¢ > 0; if ¢ = 0 the value of s is
irrelevant. The representation invariant linking the concrete data structure (¢, s)
to the abstract data structure R is: the bag consisting of ¢ copies of element s
equals R.

The initial assignment to R, R := ¢, can be implemented by ¢ := 0. Ad-
ditionally, assign s a dummy value NIL so that s always has a defined value.
Similar translations for all tests and assignments are shown in Table 1.

Abstract Operation | Concrete Implementation
R:=¢ c,s:=0,NIL
R=¢ c=0
rER =35

R:=RU{z} ¢,s:=c+ 1,z
R:=R-—{s} ci=c—1

Table 1: Implementing the Reduced Bag

These transformations result in the following program.
initially c,s:= 0, NIL
increase(z):: c=0 Ver=s — c¢,s:=c+ 1,2

reduce(x) = c#0 ANrx#s — ci=c—1

4 Concluding Remarks

The Boyer-Moore majority algorithm is an excellent example of an algorithm
whose description is simple but whose proof is not. It appears to be a very good
exercise in teaching program verification. Unfortunately, it does not include
enough imperative features —such as multiple program states, nested loops,
or termination arguments— that would illustrate other aspects of imperative
program verification.

References

[1] R.S. Boyer and J Moore. MJRTY - a fast majority vote algorithm. In R.S.
Boyer, editor, Automated Reasoning: FEssays in Honor of Woody Bledsoe,
Automated Reasoning Series, pages 105-117. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1991.

[2] K. M. Chandy and J. Misra. Parallel Program Design. A Foundation.
Addison-Wesley, 1988.

[3] Jayadev Misra and David Gries. Finding repeated elements. Science of
Computer Programming, 2:143-152, 1982.

[4] Greg Plaxton. Personal communication.

