Real-Time Computing with Lock-Free Shared Objects*

James H. Anderson

Srikanth Ramamurthy

Kevin Jeffay

Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175

Abstract

This paper considers the use of lock-free shared objects
within hard real-time systems. As the name suggests,
lock-free shared objects are distinguished by the fact
that they are not locked. As such, they do not give
rise to priority inversions, a key advantage over con-
ventional, lock-based object-sharing approaches. De-
spite this advantage, it is not immediately apparent
that lock-free shared objects can be employed if tasks
must adhere to strict timing constraints. In particular,
lock-free object itmplementations permit concurrent op-
erations to interfere with each other, and repeated in-
terferences can cause a giwen operation to take an ar-
bitrarily long time to complete.

The main contribution of this paper is to show that
such interferences can be bounded by judicious schedul-
mg. This work pertains to periodic, hard real-time
tasks that share lock-free objects on a uniprocessor. In
the first part of the paper, scheduling conditions are de-
rived for such tasks, for both static and dynamic prior-
ity schemes. Based on these conditions, it s formally
shown that lock-free object-sharing approaches can be
expected to wncur much less overhead than approaches
based on wait-free objects or lock-based schemes. In
the last part of the paper, this conclusion is vali-
dated experimentally through work wnvolving a real-
time desktop videoconferencing system.

1 Introduction

Lock-based approaches to synchronization are the ac-
cepted means for interprocess communication in real-
time systems. The main problem that arises in such
approaches is that of priority inversion, i.e., the sit-
uation in which a given task waits on another task

*The first two authors were supported by NSF contract CCR
9216421, and by a Young Investigator Award from the U.S.
Army Research Office, grant number DAAHO4-95-1-0323. The
third author was supported by grants from Intel and IBM.
Email: {anderson, ramamurt, jeffay } @cs.unc.edu.

of lower priority to unlock a semaphore. Mechanisms
such as the priority ceiling protocol (PCP) [17, 18]
are used to solve this problem. The PCP requires
the operating system to identify those tasks that may
lock a semaphore. This information is used to ensure
that the priority of a task holding a semaphore is at
least that of the highest-priority task that ever locks
that semaphore. Although the PCP provides a gen-
eral framework for real-time synchronization, this gen-
erality comes at a price, specifically operating system
overhead that is sometimes excessive.

In this paper, we consider interprocess communi-
cation in object-based, hard real-time systems. Our
main contribution is to show that lock-free shared ob-
jects [3, 7, 16] — i.e., objects that are not critical-
section-based — are a viable alternative to lock-based
schemes such as the PCP in such systems. We es-
tablish this through a combination of formal anal-
ysis and experimentation. We begin by establish-
ing scheduling conditions for hard real-time, peri-
odic tasks that share lock-free objects on a unipro-
cessor under either rate-monotonic (RM) or earliest-
deadline-first (EDF) scheduling [15]. We then com-
pare lock-free and lock-based approaches, both for-
mally, based on our scheduling conditions, and exper-
imentally, based on work involving a real-time desktop
videoconferencing facility.

Our formal analysis and experimental work both
lead to the same conclusion: lock-free objects of-
ten require less overhead than conventional lock-based
object-sharing approaches. In addition, our schedul-
ing conditions show that lock-free objects can be ap-
plied without detailed knowledge of which specific
tasks access which objects. This makes them easier
to apply than lock-based schemes. Also, with lock-
free objects, new tasks can be added dynamically to
a system with very little effort. In contrast, adding
new tasks with lock-based schemes entails recomput-
ing certain operating system tables (e.g., tables in the
PCP that record the highest-priority task that locks
each semaphore). Furthermore, with lock-based

In Proceedings of the 16! IEEE Real-Time Systems Symposium, Pisa, Italy, 1995, pp. 28-37.

schemes, when a high-priority task tries to access
an object that i1s locked by a low-priority task, two
“additional” context switches are required, one from
the high-priority task to the low-priority task, and
another from the low-priority task back to the high-
priority task. Such context switching is unnecessary
when lock-free objects are used.

Lock-free operations are usually implemented using
“retry loops” [3, 6, 7, 11, 16]. Figure 1 depicts an ex-
ample of such an operation, an enqueue taken from
a shared queue implementation given in [16]. In this
example, an enqueue is performed by trying to thread
an item onto the tail of the queue by using a two-word
compare-and-swap (CAS2) instruction.! This thread-
ing is attempted repeatedly until it succeeds. (Note
that the queue is not actually “locked” by any task.)
A related notion to that of a lock-free object, which
may be familiar to some readers, is that of a wait-
free object. Wait-free objects guarantee a strong form
of lock-freedom that precludes all waiting dependen-
cies among tasks [6, 7, 19] (including potentially un-
bounded retry loops).? Although one motivation for
work on wait-free objects has been their potential use
in real-time systems, our results show that lock-free
objects are usually superior for real-time computing
Ol UNIProcessors.

From a real-time perspective, lock-free objects are
of interest because they do not give rise to priority
inversions, and can be implemented with minimal op-
erating system support. Despite these advantages, it
may seem that unbounded retry loops render such ob-
jects useless in hard real-time systems. Nonetheless,
we show that if tasks on a uniprocessor are scheduled
appropriately, then such loops are indeed bounded.
We now explain intuitively why such bounds exist.
For the sake of explanation, let us call an iteration
of a retry loop a successful update if 1t successfully
completes, and a failed update otherwise. Thus, a sin-
gle invocation of a lock-free operation consists of any
number of failed updates followed by a successful one.

Consider two tasks 7; and 7} that access a common
lock-free object B. Suppose that T; causes T} to expe-
rience a failed update of B. On an uniprocessor, this
can only happen if 7; preempts the access of T; and

I The first two parameters of CAS2 are shared variables, the
next two parameters are values to which the shared variables
are compared, and the last two parameters are new values to be
placed in the shared variables should both comparisons succeed.
Note that it is possible to simulate the CAS2 instruction in
software, as discussed in Section 7.

2More precisely, individual wait-free operations are required
to be starvation-free. In contrast, lock-free objects guarantee
only system-wide progress: if several tasks concurrently access
such an object, then some access will eventually complete.

type objtype =recorddata: valtype; next: xobjtype end
shared var queue_tail: xobjtype
procedure Enqueue(input: valtype)
local var old_tail, new_tail: *objtype
begin
*xnew_tail :== (input, NULL);
repeat old_tail .= queue_tail
until CAS2(queue_tail, queue_tail => nexst,
old_tail, NULL,
new_tail, new_tail)
end

Figure 1: Lock-free enqueue operation.

then updates B successfully. However, T} preempts 7
only if T} has higher priority than 7. Thus, at each
priority level, there is a correlation between failed up-
dates and task preemptions. The maximum number
of task preemptions within a time interval can be de-
termined from the timing requirements of the tasks.
Using this information, it is possible to determine a
bound on the number of failed updates in that in-
terval. Intuitively, a set of tasks that share lock-free
objects is schedulable if there i1s enough free proces-
sor time to accommodate the failed updates that can
occur over any interval.

The formal analysis that we present establishes a
fundamental tradeoff between lock-free and lock-based
approaches. This tradeoff essentially hinges on the
cost of a lock-free retry loop, and the cost of the
operating system overhead that arises in lock-based
schemes. An important question, then, is how costly
lock-free retry loops are likely to be. Although such
loops could be long in principle, as shown in [16], many
common objects, including most that would be of use
in a real-time system, can be implemented with very
short retry loops, such as that depicted in Figure 1
(see [2] for a detailed discussion of this issue). The
overriding conclusion to be drawn from our work is
that, for all but certain pathological objects that re-
quire costly retry loops, lock-free objects are likely to
require substantially less overhead than lock-based ob-
jects implemented using the PCP or other approaches.

The lock-free approach to real-time object sharing
that we espouse 1s actually rooted in work done by
Sorenson and Hamacher in the real-time systems com-
munity some twenty years ago [20, 21]. Sorenson and
Hamacher’s work involved a real-time communication
mechanism based on wait-free read/write buffers. In
their approach, buffers are managed by the operating
system, so 1t suffers from many of the same shortcom-
ings as conventional lock-based approaches.

Unfortunately, the thread of research on wait-free
and lock-free communication begun by Sorenson and
Hamacher was lost in the real-time systems commu-

nity for many years. Recently, however, this thread of
research resurfaced in work presented by Kopetz and
Reisinger in [12] and by Johnson and Harathi in [11].
In the former paper, a simple lock-free, one-writer,
read/write buffer is presented, and scheduling condi-
tions are given for tasks sharing the buffer. In the
latter paper, the primary focus is implementations of
lock-free algorithms rather than scheduling. Our work
deals almost exclusively with scheduling, and signifi-
cantly extends the work of Kopetz and Reisinger by
focusing on arbitrary task sets and objects.

The rest of this paper is organized as follows. In
Section 2, we present definitions, notation, and two
key lemmas. We then derive RM and EDF scheduling
conditions in Sections 3 and 4, respectively. In ad-
dition, we briefly consider Deadline-Monotonic (DM)
scheduling in Section 3. We then formally and exper-
imentally compare lock-free object sharing with other
approaches in Sections 5 and 6, respectively. We con-
clude in Section 7.

2 Definitions and Notation

We use the term task to refer to a sequential program
that is invoked repeatedly. We call a single execution
of a task a job. The time at which a job arrives for
execution 1s called its release time. A task is pertodic
iff the interval between job arrivals is constant. In our
analysis, we assume that all tasks are periodic and
share a single processor. We assume that all release
times and periods are integers. For simplicity, we as-
sume that jobs can be preempted at arbitrary points
during their execution, and ignore system overheads
like context switch times, interrupt handler overheads,
etc.

As in the previous section, we call an iteration of
a lock-free loop a successful update if it results in the
successful completion of the corresponding operation,
and a failed update otherwise. For now, we assume
that the deadline of a job is the end of the correspond-
ing period. Later, when considering DM scheduling at
the end of Section 3, we relax this assumption. A task
set 1s schedulable iff all tasks meet their deadlines at
all times. The following 1s a list of symbols used in
deriving our scheduling conditions.

e N - The number of tasks in the system. We use
¢ and j as task indices. Unless stated otherwise,
we assume that ¢ and j are universally quantified
over {1,...,N}.

e T; - The i** task in the system.

e p; - The period of task 7;. Tasks are sorted in
nondecreasing order by their periods, i.e., p; <
P =>1<j.

o 7;(k) - The release time of the k' job of T}, where
ri(k) = r;(0) + k - p;. We use k as a job index.
Unless stated otherwise, we assume that & is uni-
versally quantified with range k& > 0.

e ¢; - The worst-case computational cost (execution
time) of task 7; when it is the only task executing
on the processor, i.e., when there is no contention
for the processor or for shared objects.

e S, - The m'* shared object in the system.

e s - The execution time required for one loop iter-
ation in the implementation of a lock-free object,
which for simplicity is assumed to be the same for
all objects. This is also the extra computation re-
quired in the event of a failed update.

We obtain conditions for schedulability by deter-
mining the worst-case “unfulfilled demand” of each
task. Informally, the unfulfilled demand of task T;
at time ¢ is the remaining computation time of 7;’s
current job. In the derivation of our scheduling con-
ditions, we assume that the unfulfilled demand of T;
increases by s — the computation time of the extra
loop iteration that will result from a failed update —
when a job of 7; is preempted by a higher-priority
job that accesses a common lock-free object. This ap-
proach is pessimistic because the preempted job may
not, in fact, be accessing any shared object when pre-
empted. Before we present our scheduling conditions,
we define the concept of a “busy point” and then state
two lemmas used in the proofs of these conditions.

In [15], it is shown that for independent tasks, the
longest response time of a task occurs at a critical
wnstant of time, at which jobs of that task and all
higher-priority tasks are released. However, this is not
necessarily the case if tasks synchronize using lock-free
objects (see [2] for examples showing why this is not
s0). Instead of defining the critical instant or giving
the worst-case phasing of the tasks, we introduce the
notion of a busy point. The busy point of the k%"
job of task T; is denoted by b;(k), where k > 0. The
busy point, b;(k), is the most recent point in time at
or before r;(k) when T; and all higher-priority jobs
either release a job or have zero unfulfilled demand.

It is easy to show that b;(k) is well-defined for any
¢ and k. In particular, at time 0, each task has either
just released its first job or has no unfulfilled demand.
Hence, 0 < b;(k) < r;(k). (For the RM scheme, it is

possible to prove a tighter bound of (r;(k — 1), r;(k)]
on the range of b;(k). See [2] for details.) In the for-
mal proofs of our scheduling conditions, we inductively
count the number of failed updates over intervals of
time. A busy point provides a convenient instant at
which to start such an inductive argument, because
tasks that have zero unfulfilled demand or that have
just released a job have no failed updates.

We now state two lemmas that bound the number
of failed updates in a given interval, under the RM
and EDF schemes. Full proofs of these lemmas can be

found in [2].

Lemma 2.1: Consider the k' job of task T; and
any t € [bi(k),ri(k + 1)), where k > 0. (i) Under
the RM scheme, the number of failed updates in T;
and higher-priority tasks in the interval [b;(k),1] is at
most 23;11 {%—‘. (i) Under the EDF scheme,
the number of failed updates in jobs with a dead-
line at or before t in the interval [b;(k),t] is at most
N t—bi(k

dim1 %. i
The above lemma states that the number of failed
updates in an interval [b;(k),¢] is at most the num-
ber of higher-priority jobs released in the interval
[b;(k) +1,1].

Lemma 2.2: Under the RM scheme, If the k' job
of task T; has not completed execution at some time
t' € (ri(k),ri(k + 1)], where k > 0, then, for any
t in the interval [b;(k),1'), the difference between the
total demand placed on the processor by T; and higher-
priority tasks in the interval [b;(k),t] and the available
processor time in that interval is greater than one. 0O

3 RM/DM Conditions

The following theorem gives a sufficient scheduling
condition for the RM scheme. The left-hand side of
the quantified expression given below gives the max-
imum demand placed by 7; and higher-priority tasks
in the interval [0,¢). The first summation represents
the demand placed on the processor by 7; and higher-
priority tasks, not including the demand due to failed
updates. The second summation represents the to-
tal additional demand placed on the processor due to
failed updates in 7; and higher-priority tasks. The
right-hand side of the expression is the available pro-
cessor time in [0,?). As noted in the introduction, this
condition can be applied without knowledge of which
tasks access which objects.

Theorem 3.1: A set of tasks scheduled under the RM

scheme is schedulable if the following condition holds
for every task T;.

@to<t<p Y [—J e+ Y0 [1.5§t>

pP;

Proof: We prove that if a task set is not schedulable,
then the negation of the above expression holds. As-
sume that the given task set is not schedulable. Let
the k'" job of some task 7; be the first job to miss
its deadline. This can only happen if T; has positive
unfulfilled demand at r;(k + 1) — 1. Consider any ¢
in the interval [b;(k), r;(k + 1)). By Lemma 2.2, the
difference between the total demand due to 7; and
higher-priority tasks in the interval [b;(k),t] and the
available processor time in that interval is greater than
one.

We now derive a bound on D;(b;(k),t), the total
demand placed on the processor by 7; and higher-
priority tasks in the interval [b;(k),t]. D;(b;i(k),?) is
comprised of the demand placed by job releases and
the extra demand placed by failed updates. Recall
that at the busy point of the k' job, 7} and all higher-
priority task have either completed execution (have no
unfulfilled demand) or have a job release. Each job of
some task 7} can place a demand of ¢;, and there are at
most [(t—b;(k)+1)/p;] job releases of that task in the
interval [b;(k),t]. Therefore, the total demand placed
on the processor due to job releases of T; and higher-
priority tasks is at most Z}Il [(t—b;i(k) +1)/pjle;.

By Lemma 2.1, the number of failed updates
in the interval [b;(k),t] is given by 23;11 [(t —
b;j(k))/p;]. Each failed update requires s units
of additional demand. Therefore, the total ad-
ditional demand due to failed updates 1s at

most Zi_l[(— bi(k))/pj]s. Therefore, we have
Di(bi(k),6) < Ty [o) 4+ T [,

As stated previously, the difference between the to-
tal demand due to 7; and higher-priority tasks in the
interval [b;(k),?] and the available processor time in
that interval is greater than one. Hence, we have the
following.

Di(bi(k),t) — (t = bi(k)) > 1

Using the bound on D;(b;(k),t), the previous expres-
sion can be rewritten as follows.
iy | S e 3T [s (k) 4+ 1
The above expression holds for all ¢ in the interval
[b;(k),7i(k + 1)). Because the above expression is in-
dependent of the end points (it is a function of the
length of the interval), we can replace ¢ — b;(k) with

t', where t' = ¢ — b;(k) and ¥’ €
Hence, we have the following.

i t'1 | .. i—1 | ¢
2i=1 [T-‘ ¢+ 2o [p_j-‘ s>t 41
Now, replace ¢/ with ¢ in the above expression, where

t=t+1andt € (0,r5(k+ 1) — b;(k)]. Then, the
following holds for all ¢ € (0, r;(k + 1) — b;(k)].

Yio |5]e + i |5]s >

By definition, b;(k) < r;(k). Therefore, the interval
(0, 7;(k+1)—r; (k)] is completely contained in (0, r; (k+
1) — b;(k)]. Also, from the definitions, r;(k + 1) —
7;(k) = p;. Therefore, the previous expression holds
for all ¢ in (0, p;]. a

[0,7;(k+ 1) — b;(k)).

In the videoconferencing system described in Sec-
tion 6, job deadlines and release points for the given
task set do not necessarily coincide, as we have as-
sumed. However, the scheduling condition of Theorem
3.1 can easily be adapted to apply to such a task set.
This requires changing our model to allow the relative
deadline /; of task T; to range over (0,p;] — by rel-
ative deadline, we mean the elapsed time between a
job’s release time and its deadline. For simplicity, we
assume that tasks are indexed in nondecreasing order
by relative deadline.

With this change to our model, it 1s possible to
prove the following static scheduling condition. This
condition assumes that priority is assigned by the DM
scheme [14], in which tasks with smaller relative dead-
lines have higher priorities. The two summation terms
in the stated expression below give the computational
demand of 7; and higher-priority tasks, and the ad-
ditional computation required due to failed updates,
respectively, in an interval of length .

Theorem 3.2: A set of tasks scheduled under the DM
scheme is schedulable if the following condition holds
for every task T;.
i i1 [¢e
@tete (0l Y, [ﬂ NOR D [tp_ﬂ s < 1),
O
In comparing this condition to that given in The-
orem 3.1, we see that ¢ now ranges up to [;, the rel-
ative deadline of T;, rather than up to p;, the period
of T;. Observe that when deadlines coincide with job
releases, this condition reduces to RM scheduling.

4 EDF Scheduling Condition

The following theorem gives a sufficiency condition
for schedulability under the EDF scheme. Like the
RM sufficiency condition of the previous section, this

condition can be applied without knowledge of which
tasks access which objects.

Theorem 4.1: A set of periodic tasks scheduled under
the EDF scheme s schedulable if the following condi-
tion holds.

N c]'-l—s
Zj:l P S 1

Proof: We prove that if a task set is not schedulable

then Zj\f 1]js > 1. Assume that the given task set
is not schedulable. Let the k* job of some task T} be
the first job to miss its deadline. This can only happen
if the difference between the total demand due to tasks
with a deadline at or before r;(k + 1) in the interval
[b;(k),7i(k + 1)) and the available processor time in
that interval is greater than one.

We first derive a bound on D;(b;(k),r;(k+ 1) —1),
the total demand placed on the processor by T; and
higher-priority tasks in the interval [b;(k), ri(k + 1)).
D;(bi(k),r;(k 4+ 1) — 1) is comprised of the demand
placed by job releases and the extra demand placed
by failed updates. Recall that at the busy point of
the k' job, all jobs of equal or higher priority have ei-
ther completed execution (have no unfulfilled demand)
or have a job release. Each job of some task 7; can
place a demand of ¢;, and there are at most (r;(k +
1) — bi(k))/p; job releases of that task in the interval
[b;(k),t] that have a deadline at or before r;(k + 1).

Therefore, the total demand placed on the processor
(k+1) (k))'cj'

due to such jobs is at most Z
By Lemma 2.1, The total number of falled updates
in the interval [b;(k),r;(k + 1)) is bounded by the

term Zj\f:l w. Each failed update re-
quires s units of additional demand. Therefore, the
total additional demand due to failed updates 1s at
most Z k+1)p (k)=1)s
the dlﬁerence between the total demand placed on the
processor by jobs with deadlines at or before r;(k+1)
in the interval [b;(k), 7;(k + 1)) and the available pro-
cessor time in that interval is greater than one. There-
fore, we have the following.

As stated previously,

N (ri(h+1)=bi(k)) ¢4 N (r;(k+1)=bi(k)—1)-s
ijl - J +Zj:1(()pj (k)-1)

—(ri(k+1)=bi(k)—1) > 1

The terms on left-hand side of the previous expres-
sion give the total demand placed by jobs with dead-
lines before r;(k+ 1), the total additional demand due
to failed updates in those jobs, and the available pro-
cessor time, in the interval [b;(k), r;(k 4+ 1)), respec-
tively. The above expression can be rewritten as fol-
lows.

N (k1) =bi(k))-¢; N (k1) =bi(k)=1)s
Ej:lp—j]—i—zj:l(()Pj())

> Ti(k—l— 1) — bl(k’)

The previous expression implies the following.

Zj'\;l (Ti(k+1)—;;(k))'(cj+5) > 7 (k’ + 1) _ bl(k’)
Canceling out r;(k+ 1) — b; (k) from both sides of the
equation, we have the following expression, thus com-
pleting our proof.

N c]'+s
Zj:l pj >1 O

5 Formal Comparison

In this section, we compare lock-free objects to lock-
based synchronization schemes and wait-free objects.
This comparison is based upon the scheduling con-
ditions presented in the previous two sections, and
scheduling conditions for lock-based schemes found in
the literature. For simplicity, we assume that all ac-
cesses to lock-based objects require r units of time,
and that there are no nested object calls. (We recon-
sider the subject of nested calls later in Section 7.)
Thus, the computation time ¢; of a task 7; can be
written as ¢; = u; + m; - tgee, Where u; 18 the compu-
tation time not involving accesses to shared objects,
m; 18 the number of shared object accesses by T;, and
tace 18 the computation time per object access, i.e.,
s for lock-free objects and r for lock-based objects.
As explained below, recent studies that evaluate the
performance of lock-free objects [16] and lock-based
objects [5] indicate that s is likely to be much smaller
than r. This i1s confirmed by the experimental results
presented in Section 6.

5.1 Static-Priority Scheduling

We begin by comparing the overhead of lock-free syn-
chronization under RM scheduling with the overhead
of the lock-based priority ceiling protocol (PCP) [17].
When tasks synchronize by locking, a higher-priority
job can be blocked by a lower-priority job that ac-
cesses a common object; the maximum blocking time
is called the blocking factor. Under the PCP, the
worst-case blocking time equals the time required to
execute the longest critical section. Since we do not
consider nested critical sections, the blocking factor
equals r, the time to execute a single critical section.
We denote the schedulability condition for periodic
tasks using the PCP by the predicate sched_PCP,
which on the basis of the analysis in [17], is defined
as follows.

<Vi3t:0<t§pi:r+zzzl [ﬁ}(uj'i'mj'?”):w

Observe that (Vj : j < i : (m; +1)-s < my -
7y A sched_PCP implies (Vi 3t : 0 < t < p;

> imt L}Lj—‘(u]'—l—mj 5)—1—23_:11 [%—‘ -s < t). Because
¢; = u; + my - s, the previous expression is equivalent
to the scheduling condition of Theorem 3.1. Note that
s < g implies that (Vj :j <i:(m; +1)-s <m;-r)
because, for positive m;, % < m773+1 < 1. Thus, if
the time taken to execute one iteration of a lock-free
retry loop is less than half the time it takes to access
a lock-based object under the PCP, then any task set
that is schedulable under the PCP 1s also schedulable
when using lock-free objects. This also implies that
there are certain task sets that are schedulable when
lock-free objects are used, but not under the PCP.
What are typical values of s and 77 A performance
comparison of various lock-free objects is given by
Massalin in [16]. Massalin reports that, given hard-
ware support for primitives like compare-and-swap,
s varies from 1.3 microseconds for a counter to 3.3
microseconds for a circular queue. In the absence
of hardware support, such primitives can be simu-
lated by a trap, adding an additional 4.2 microsec-
onds. Massalin’s conclusions are based on experiments
run on a 25 MHz, one-wait-state memory, cold-cache
68030 CPU. In contrast, lock-based implementations
fared much worse in a recent performance comparison

of commercial real-time operating systems run on a
25 MHz, zero-wait-state memory 80386 CPU [5]. In
this comparison, the implementation of semaphores on
LynxOS took 154.4 microseconds to lock and unlock
a semaphore in the worst case. The corresponding
figure for POSIX mutex-style semaphores was 243.6
microseconds. Although these figures cannot be re-
garded as definitive, they do give some indication as
to the added overhead when operating-system-based
locking mechanisms are used. For the videoconferenc-
ing system described in Section 6, the situation is very
similar. In this system, s is 31 microseconds, while »
1s 126.5 microseconds.

In the above comparison, we have actually ignored
the effect of blocking under the PCP. If the blocking
times are considerable, then lock-free objects would
perform better than as indicated above. It should
also be noted that our scheduling analysis is very pes-
simistic. In reality, a preempted task need not be ac-
cessing a shared object, and hence may not necessarily
have a failed update as we have assumed.

5.2 Dynamic-Priority Scheduling

We now compare the overhead of lock-free objects with
two dynamic-priority schemes that use semaphore-
based objects: the dynamic priority ceiling protocol
(DPCP) [4], and the dynamic deadline modification
(DDM) scheme under EDF scheduling (EDF/DDM)
[8]. Based on the analysis in [4], a sufficient condition
for the schedulability of a set of periodic tasks under
the DPCP, sched_DPCP, can be defined as follows.

c]'+blockj)

sched_DPCP = 2N | <1

Pi =

In the above condition, block; is the maximum
time for which task 7} can be blocked by some lower-
priority task, and equals the time to execute the
longest critical section. Since we have assumed that
semaphore-based accesses require at most r time units,
we have block; = r.

Observe that the above condition resembles the one
we have derived for lock-free objects. It can be easily
shown that if (s < r A sched_DPCP), then Zj\f:l(cj +
s)/p; < 1. Therefore, by Theorem 4.1, if s < r then
any set of tasks that can be scheduled under the DPCP
can also be scheduled using lock-free objects. Because
s 1s likely to be smaller than r, processor utilization
is likely to be smaller when lock-free objects are used
for synchronization. Thus, there are task sets that can
be scheduled when lock-free objects are used but not
when DPCP is used.

We now turn our attention to the EDF/DDM
scheme presented in [8]. Under this scheme, tasks are
divided into one or more phases. During each phase,
a task accesses at most one shared resource. Before
a task T; accesses a shared object S,,, its deadline
is modified to the deadline of some task 7} that ac-
cesses Sy, and that has the smallest deadline of all
tasks that access S,,. Upon completing the shared
object access, T;’s deadline is restored to its original
value. In our comparison, we assume that phases in
which some shared object is accessed are r units in
length. Based on the analysis of [8], a sufficient con-
dition for the schedulability of a set of periodic tasks
under the EDF/DDM scheme, sched_DDM , can be
defined as follows.

N U;+y-r

sched_DDM = (3, > <A

<Vi,t P <t < p; 7°+Z;_:11 Vp‘le .(uj—l—mj .r) < t>
Observe that (Vj : (my v—|— 1) - s < my -7r) A

sched_DDM implies Zj»v:l W

¢; = u; + my - s, the pervious expression is equivalent

to the scheduling condition of Theorem 4.1. As noted

previously, s < & implies (Vj : (m; + 1) -s < mj; - 7).

< 1. Because

Thus, as with the PCP, if the time taken to exe-
cute one iteration of a lock-free retry loop is less than
half the time 1t takes to access an object using the
DDM scheme, then any task that i1s schedulable un-
der the EDF/DDM scheme is also schedulable under
EDF scheduling using lock-free objects. As mentioned
previously, s is likely to be much smaller than r.

5.3 Wait-Free Objects

Wait-free shared objects differ from lock-free objects
in that wait-free objects are required to guarantee that
individual tasks are free from starvation. Most wait-
free algorithms ensure termination by requiring each
task to “help” every other task to complete any pend-
ing object access [6, 7]. However, on a uniprocessor,
lower-priority tasks cannot help higher-priority tasks
because a higher-priority task does not release the
processor until its demand has been fulfilled. Thus,
each task only helps lower-priority tasks. Hence, the
greater the task priority, the larger the access time. In
some sense, the problem of priority inversion still ex-
ists, because a medium-priority task will have to wait
while a high-priority task helps a low-priority task.
On the other hand, when lock-free objects are used,
the time to complete an object access decreases with
increasing priority. For these reasons, some task sets
that are schedulable when using lock-free objects will
not be schedulable when using wait-free objects. This
is true of the task set evaluated in Section 6.2.

6 Experimental Comparison

In this section, we provide empirical evidence that
lock-free objects are always competitive with, and
often superior to, more traditional lock-based ap-
proaches to real-time object sharing. This evi-
dence comes from a set of experimental compar-
isons performed using a real-time desktop videocon-
ferencing system implemented at UNC [10]. We
modified this system to support lock-free shared ob-
jects implemented under both DM and EDF schedul-
ing, semaphores implemented using the PCP under
DM scheduling, and semaphores implemented under
EDF/DDM scheduling. We also considered wait-free
shared objects implemented under both DM and EDF
scheduling. The formal analysis for each synchro-
nization scheme was applied to determine whether it
was theoretically possible to ensure that no deadlines
would be missed. We then executed the system us-
ing each synchronization scheme under a variety of
loading conditions, and compared the actual perfor-

mance to that predicted by the formal analysis. In
virtually all cases, the formal analysis predicted the
actual behavior of the system. Moreover, our lock-
free synchronization schemes frequently led to higher
levels of sustainable system utilization than was possi-
ble with lock-based synchronization. Also, our experi-
ments confirm that lock-free shared objects are usually
superior to wait-free objects for real-time computing
on uniprocessors. The following subsection describes
the videoconferencing system in more detail.

6.1 Experimental Setup

The videoconferencing system considered in our in-
vestigations acquires analog audio and video samples
on a workstation and then digitizes, compresses, and
transmits the samples over a local-area network to a
second workstation where they are decompressed and
displayed. We modified the portion of the system re-
sponsible for the acquisition, compression, and net-
work transmission of media samples by the sending
workstation.

Abstractly, the tasks on the sending workstation are
organized as a software pipeline. Communication be-
tween stages is realized through a queue of media sam-
ples that is shared using a simple producer/consumer
protocol. Queues of shared media samples exist be-
tween the digitizing task and the compression task
and between the compression task and the network
transmission task. The real-time constraints on the
operation of the pipeline require media samples to flow
through the pipeline in a periodic manner. Each stage
of the pipeline must process a media sample every 33
milliseconds, and no media samples may be lost due
to buffer overflows. These constraints are met by im-
plementing the pipeline as a set of periodic tasks.

A comprehensive view of the tasks and shared
queues on the sending workstation is given in Figure
1. In this figure, an arrow is directed from each task
to each of the shared objects it accesses. The implicit
resources (Sp — Sis) correspond to queues used for
inter-task communication. These queues do not con-
tain any media samples. For our purposes, it suffices
to consider the tasks in Figure 1 to be an abstract
set of tasks — details regarding the function of each
task, and how the tasks interact are not important to
us. For a more detailed description of this system, we
refer the interested reader to [22].

We evaluated the performance of the system when
the shared queues were implemented using lock-free
algorithms, wait-free algorithms, and lock-based tech-
niques. We implemented lock-free queues by using
the shared queue implementation given by Massalin in

e s R
G o [Gsormwarra, L st

I Sereen Output Tasl——'_Keyboard Input Tasu D Shared Object

Y

P
| Implicit Resouces |~
. (Sis) -
Witiate L K
Transmitj Transmit Queue (3 |) _
= - - | _Initiate 1
p-| Transmit Video (5 | | Transmit 2 |
B Transmit Audio (& J—
e ———r ,_Audio 1
- Audio Free (S . Task |
Compressiorl < Trans_mit?
— T_aSk_ Compress Sink (8 |) — —
[Transmit 2!
Compress Free ($ — — :I|
inifate .
I nitiate Next Digitize (S5) — 14
l Digitize Initiate
—_— Compress Source (§ LCompress

Figure 1: Tasks and shared queues in the videoconferenc-
ing system.

[16], and wait-free queues by using the wait-free uni-
versal construction given by Herlihy in [7]. Massalin’s
queue implementation requires CAS (needed for the
dequeue operation) and CAS2 (needed for the enqueue
operation), and Herlihy’s construction requires load-
linked and store-conditional. We implemented these
primitives by short kernel calls; interrupts were dis-
abled for the duration of these calls.

We found that the videoconferencing task set was
not schedulable under the DM scheduling when the
shared queues were implemented using Herlihy’s wait-
free universal construction. This is due to the over-
head of helping, as discussed in Section 5.3. In con-
trast, our lock-free implementations required very lit-
tle overhead, with failed updates occurring only rarely.
For example, in ten executions of the system, only 363
failed updates occurred in 415,229 enqueue operations.
We also found that multiple failed updates by a single
operation never occurred. In the following two subsec-
tions, we discuss results of experiments that were con-
ducted to compare lock-free and lock-based schemes
under static- and dynamic-priority scheduling.

6.2 Static-Priority Scheduling

In this subsection, we discuss the results of experi-
ments that compare the overhead of lock-free objects
to lock-based objects implemented using the PCP.
In both cases scheduling was performed using a DM
scheduling algorithm [14].

Qualitatively, when queue synchronization was
achieved using semaphores, approximately seven me-
dia samples were lost in the pipeline every second due

to buffer overflow. In contrast, no media samples were
lost when lock-free objects were used.

This result is predicted by the formal analysis of
the system, the details of which can be found in
[2]. The analysis shows that under the PCP the
task Packetize 2 is not schedulable. This task
copies compressed media sample buffers to the net-
work adapter. When Packetize 2 does not meet its
deadline, the sender drops (never transmits) some of
the media samples. This analysis explains why some
media samples were lost when the system was run us-
ing lock-based objects and the PCP. The analysis also
predicts that all tasks are schedulable when lock-free
objects are used. This is confirmed by the fact that
no media samples are lost during the execution of the
system. (In our system, s equals 31 microseconds and
r equals 126.5 microseconds. Observe that s is less

than r/2.)

6.3 Dynamic-Priority Scheduling

In this subsection, we discuss the results of experi-
ments that compare the overhead of lock-free objects
under the EDF scheme to lock-based objects under the
EDF/DDM scheme. Our experiments showed that the
set of tasks in the system is schedulable under both
schemes. This result is predicted by the formal anal-
ysis of the system. For brevity, the formal analysis is
not presented here (refer to [2] for details).

In order to more precisely compare lock-free ob-
jects with objects implemented under the EDF/DDM
scheme, we introduced a dummy task to increase the
processor utilization of the system. This dummy task
consists of a bounded loop. During each loop itera-
tion, the task performs some busy work and accesses
some shared objects. The demand on the processor
was varied by modifying the number of loop iterations
executed by the dummy task.

Our experiments showed that processor utilization
was higher under the EDF/DDM scheme for all task
loads. Under the EDF/DDM scheme, tasks started to
miss deadlines when the dummy task performed ap-
proximately 3500 loop iterations. The processor uti-
lization corresponding to this load was close to 99.4%.
For the same load, the processor utilization was only
94% when lock-free objects were used. Processor uti-
lization is higher under EDF/DDM for the same load
due to the overhead of modifying task deadlines for
each shared object access. This confirms the predic-
tion of Section 5.2 that lock-free objects should re-
quire less overhead than object implemented under the
EDF/DDM scheme. In our experiments, when lock-
free objects were used, tasks started missing deadlines

when the processor utilization was about 99.1%.

7 Concluding Remarks

Our results show that lock-free objects have a num-
ber of advantages over lock-based schemes such as the
PCP for real-time computing on uniprocessors. First,
lock-free objects are easier to use, because their appli-
cation does not require detailed knowledge of which
tasks access which objects. Second, systems using
lock-free objects can be more easily modified to add
tasks dynamically, since operating system tables do
not have to be recomputed. Third, in contrast to
the PCP, lock-free accesses do not give rise to exces-
sive context switches. Finally, and most importantly,
lock-free objects usually entail substantially less over-
head than objects implemented using lock-based tech-
niques. This is the case for most common objects,
the exception being certain pathological objects that
require excessive copying and hence costly retry loops.

Even in the absence of hardware support for prim-
itives like CAS2 (refer to Figure 1), lock-free shared
objects can be implemented with low overhead. On a
uniprocessor, this can be achieved by a nonpreempt-
able kernel call that simulates the required primitive.
This requires the introduction of a blocking factor y in
our scheduling conditions. This nonpreemptable code
fragment is smaller than one iteration of a lock-free
retry loop, 1.e., y < s. Observe that the introduction
of this blocking term in our RM scheduling condition
does not affect our comparison with the PCP because
in comparing the two schemes, we ignored the blocking
factor in sched_PCP. This reasoning also holds for the
EDF/DDM scheme, because our comparison with that
scheme ignored the second conjunct of sched _DDM,
which includes the blocking factor under EDF/DDM
scheduling. In the case of the DPCP, if we introduce
the blocking factor into our sufficient condition, then
we require s + y to be at most r for lock-free ob-
jects to perform as well as lock-based objects under
the DPCP. Note that, since y is smaller than s, we
have s <r/2=s+y < r.

One advantage of lock-based schemes is that they
allow critical sections to be arbitrarily nested. It might
be useful, for example, to nest two critical sections
to transfer the contents of one shared buffer to an-
other. Recently, Anderson and Moir presented algo-
rithms for implementing multi-object operations that
allow similar functionality in lock-free (and wait-free)
implementations [1]. Using these algorithms, a buffer
transfer can be accomplished in a lock-free (or wait-
free) manner by simultaneously accessing both buffers.

Our scheduling conditions are still applicable if multi-
object accesses are allowed, provided s is defined to be
the time taken by the longest retry loop, presumably
a loop that accesses several objects at once.

Acknowledgements: We are grateful to Rich Gerber and
Ted Johnson for their comments on this paper. We also
thank Dave Bennett, Don Stone, and Terry Talley for help-
ing with the experimental work described in Section 6.

References

[1] J. Anderson and M. Moir, “Universal Construc-
tions for Multi-Object Operations”, to appear in the
Proceedings of the 14th Annual ACM Symposium on
Principles of Distributed Computing, 1995.

[2] J. Anderson, S. Ramamurthy and K. Jeffay, “Real-
Time Computing Using Lock-free Shared Objects”,
Technical Report TR95-021, Department of Com-
puter Science, University of North Carolina, June
1995 (URL: http://www.cs.unc.edu/~anderson/
papers/rtss95.ps.Z).

[3] B. Bershad, “Practical Considerations for Non-
Blocking Concurrent Objects”, Proceedings of the
18th wnternational Conference on Distributed Com-
puting Systems, May 1993, pp. pages 264-274.

[4] M.I. Chen and K. J. Lin, “Dynamic Priority Ceil-
ing: A Concurrency Control Protocol for Real Time
Systems”, Real-Time Systems Journal, Vol. 2, No.
1, 1990, pp. 325-346.

[6] B. O. Gallmeister and C. Lanier, “Early Expe-
rience With POSIX 1003.4 and POSIX 1003.4A”,
Proceedings of the 12th IEEFE Real-Time Systems
Symposium, 1991, pp. 190-198.

[6] M. Herlihy, “Wait-Free Synchronization”, ACM
Transactions on Programming Languages and Sys-
tems, Vol. 13, No. 1, 1991, pp. 124-149.

[7] M. Herlihy, “A Methodology for TImplementing
Highly Concurrent Data Objects”, ACM Transac-
tions on Programming Languages and Systems, Vol.

15, No. 5, 1993, pp. 745-770.
[8] K. Jeffay, “Scheduling Sporadic Tasks with Shared

Resources in Hard Real-Time Systems”, Proceedings
of the 13" IEEE Symposium on Real-Time Sys-
tems, Phoenix, AZ, 1992, pp. 89-99.

[9] K. Jeffay and D. Stone, “Accounting for Interrupt
Handling Costs in Dynamic Priority Task Systems”,

Proceedings of the 14" IEEE Symposium on Real-
Tume Systems, Durham, NC, 1993, pp. 212-221.

[10] K. Jeffay, D.L. Stone, and F.D. Smith, “Kernel
Support for Live Digital Audio and Video”, Com-
puter Communications, Vol. 15, No. 6, July/August
1992, pp. 388-395.

[11] T. Johnson and K. Harathi, “Interruptible Criti-
cal Sections”, Technical Report TR94-007, Depart-
ment of Computer Science, University of Florida,

1994.

[12] H. Kopetz and J. Reisinger, “The Non-Blocking
Write Protocol NBW: A Solution to a Real-Time
Synchronization Problem”, Proceedings of the IEEE
Real-Time Systems Symposium, 1993, pp. 131-137.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The Rate
Monotonic Scheduling Algorithm: Exact Charac-
terization and Average Case Behavior”, Proceedings
of the Tenth IEEE Real-Time Systems Symposium,
Santa Monica, CA, 1989, pp. 166-171.

[14] J.Y.T. Leung and J. Whitehead, “On the Com-
plexity of Fixed-Priority Scheduling of Periodic,
Real-Time Tasks”, Performance Evaluation, Vol. 2,

No. 4, 1982, pp. 237-250.
[15] C. Liu and J. Layland, “Scheduling Algorithms

for multiprogramming in a Hard Real-Time Envi-
ronment”, Journal of the ACM, Vol 30., Jan. 1973,
pp. 46-61.

[16] H. Massalin, Synthesis: An Efficient Implemen-
tation of Fundamental Operating System Services,
Ph.D. Dissertation, Columbia University, 1992.

[17] Raghunathan Rajkumar, Synchronization In
Real-Time Systems - A Priority Inheritance Ap-
proach, Kluwer Academic Publications, 1991.

[18] L. Sha, R. Rajkumar, and J. Lehoczky, “Prior-
ity Inheritance Protocols: An Approach to Real-
Time System Synchronization”, IEEE Transactions

on Computers, Vol. 39, No. 9, 1990, pp. 1175-1185.

[19] A. Singh, J. Anderson, and M. Gouda, “The Elu-
sive Atomic Register”, Journal of the ACM , Vol. 41,
No. 2, March 1994, pp. 311-339.

[20] P. Sorensen, A Methodology for Real-Time Sys-
tem Development, Ph.D. Thesis;, University of
Toronto, 1974.

[21] P. Sorensen and V. Hemacher, “A Real-Time Sys-
tem Design Methodology”, INFOR, Vol. 13, No. 1,
February 1975, pp. 1-18.

[22] D. Stone, Managing the Effect of Delay Jitter
on the Display of Live Continuous Media, Doctoral

Dissertation, University of North Carolina, Chapel
Hill, 1995.

