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Security-typed languages are a powerful tools for developing verifiably secure software applica-

tions. Programs written in these languages enforce a strong, global policy of noninterference

which ensures that high-security data will not be observable on low-security channels. Because
noninterference is typically too strong a property, most programs use some form of declassification

to selectively leak high security information, e.g. when performing a password check or data en-

cryption. Unfortunately, such a declassification is often expressed as an operation within a given
program, rather than as part of a global policy, making reasoning about the security implications

of a policy difficult.

In this paper, we propose a simple idea we call trusted declassification in which special de-
classifier functions are specified as part of the global policy. In particular, individual principals

declaratively specify which declassifiers they trust so all information flows implied by the policy
can be reasoned about in absence of a particular program. We formalize our approach for a Java-

like language and prove a modified form of noninterference which we call noninterference modulo

trusted methods. We have implemented our approach as an extension to Jif, a security-typed
variant of Java, and provide our experience using it to build a secure email client, JPmail.
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1. INTRODUCTION

Even a brief glance at the cases prosecuted by the United States Federal Trade
Commission reveals the damage that is continually caused by electronic information
leakage [Federal Trade Commission 2002; Bangeman 2006]. In protecting sensitive
information, including everything from credit card information to military secrets
to personal, medical information, there is a pressing need for software applications
with strong confidentiality guarantees.

In security-typed languages (STLs), each data item is labeled with its security
policy. For example, Alice’s password can be labeled to indicate that only Alice
may read it:

StringAlice alicePwd;

Principals may delegate to other principals, so this label more precisely states that
Alice and those principals who act for Alice may read alicePwd. The legal acts-for
relationships are typically defined in a global policy kept separate from the program,
as in Figure 3. Given this global policy and a particular program, standard type
checking enforces the property of noninterference, which informally means that
throughout the entire execution of the program, only those principals to which
Alice (transitively) delegates may learn the contents of her data, whether directly
or indirectly. This is quite convenient for the security analyst: to understand the
security implications of a particular datum, the analyst needs only to examine the
label on the datum and the global acts-for relationships; she does not need to
examine the entire program.

Unfortunately, noninterference is too strong a property for real programs. Con-
sider a password check in which a guess is compared with Alice’s password:

boolean??? check(Stringpublic guess, StringAlice pwd) {
return guess isEqualTo alicePwd;

}

What should be the label of the boolean return value? The problem is that this
function reveals a small amount of information about Alice’s password, which is
whether or not it is equal to the guessed string. This program would not satisfy
noninterference if ??? were public. On the other hand, if ??? were Alice the function
would satisfy the type checker, but would be useless as a password checker, because
it could not inform the public user whether the password were correct or not.

To remedy this problem, practical STLs support some form of declassification, in
which high-security information is permitted to flow to a low-security observer. For
example, we could rewrite the above function to support declassification selectively,
based on a programmer annotation, as follows:

booleanpublic check(Stringpublic guess, StringAlice pwd) {
return declassify(guess isEqualTo alicePwd, public);

}

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Another useful example is when we want to encrypt some data to send it over a
public channel:

Stringpublic encrypt(StringAlice secret, StringAlice key) {
return declassify(aesEncrypt(secret,key), public);

}

While the declassify operation is efficacious, the problem with such annotation-
based declassification is that we have lost localized reasoning about data security.
No longer can one simply examine a data label and the global acts-for relations;
now one must also find and reason about each occurrence of declassification in the
program; i.e., the global meaning of the policy Alice is lost. We can no longer reason
about a global security policy (i.e., the acts-for relations) in absence of a program
that uses it.

To remedy this problem, we propose the following simple idea. Rather than
permit declassification on the granularity of program statements, declassification
may only occur within special functions called declassifiers. The check and encrypt

functions above are declassifiers. Then, individual principals indicate whether or
not they trust a given declassifier as part of the global policy. For example, Alice
may allow her data to be encrypted via the encrypt declassifier, or may wish to
release her personal, medical records for scientific investigation, but only so long
as the personal information is stripped out of them first by an anonymizeMR de-
classifier. On the other hand, even the small amount of information released by
check and encrypt might be too much for some sensitive data. Likewise, different
anonymization functions may be suitable for different users.

This paper presents a global security policy system, JPolicy, for managing prin-
cipals in a security-typed language. Our system extends existing work by allowing
each principal to indicate which declassifiers it trusts. We call our approach trusted
declassification. We add functionality for a principal, p, to allow a function, f,
to declassify any of its information to a new label, lbl (expressed in our policy
language as p allows f(lbl)). With one of our policies in hand, the label on Alice’s
password regains a global meaning without having to inspect the code of the whole
program. For example, if, according to the policy, Alice trusts no declassifiers, then
we can be certain that alicePwd is only visible to principals who act for her. If,
according to the policy, Alice trusts only encrypt and check, we can check the code
and types for these two declassifiers, but not the entire program, to find that negli-
gible information is leaked via the output from each encryption or password check.
We have formalized our approach in a Java-like language called FJifP, and proven
a noninterference property, called noninterference modulo trusted methods, and im-
plemented it as an extension to Jif [Myers et al. 2001], a full scale implementation
of a security-typed language based on Java.

There has recently been a proliferation of work seeking to formalize suitable logics
for declassification in security-typed languages [Mantel and Sands 2004; Chong and
Myers 2004; Broberg and Sands 2006; Matos and Boudol 2005; Myers et al. 2006;
Li and Zdancewic 2005a] as detailed in a recent survey [Sabelfeld and Sands 2008].
The value of our approach is borne out of practical experience. In particular,
we and others [Askarov and Sabelfeld 2005; Chong et al. 2007] have been trying to
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build applications in Jif. Jif supports selective declassification [Myers 1999], similar
in style to the examples we presented above. Based on existing experience, many
uses of declassification—such as for encryption, anonymization, authentication, and
filtering—fit nicely into the framework we have proposed. Indeed, when we used
our framework to build an SMTP/POP3-compliant e-mail client, JPmail, we found
that it made the process of reasoning about declassification and information flows
far easier. This work takes a step toward making STLs more practical.

A key aspect of making STLs more practical for systems development lies in
the application of systems-construction principles to application development tools
for STLs [Hicks 2007]. This work makes security-typed languages more practi-
cal by applying a well-tested principle, first proposed for systems construction by
Hansen [Hansen 1970]. Our policy infrastructure is the first to separate out an
information flow policy with declassifiers into a policy file that may be analyzed
and modified apart from an STL application. By separating the information-flow
policy from a program in which it is used, the policy can be more easily analyzed
for its compliance with systems policies [Hicks et al. 2007a] and also re-configured
to work on different systems [Hicks et al. 2007b].

The structure of this paper is as follows: in Section 2 we give an example of a
program and policy which we will use throughout the paper to describe our ap-
proach. In Section 3, we describe a basic object-oriented, security-typed language,
FJifP with declassification and an external policy. We also give the security theo-
rems we have proven about FJifP, namely noninterference modulo trusted methods.
In Section 4, we describe an external, global policy definition for our system and
an implementation of our system in the security-typed language, Jif. Section 5
describes our experience using this framework for building and testing a realistic
application, JPmail. Following that, we consider related work in Section 6 and
conclude in Section 7.

2. EXAMPLE

Consider the code in Figure 1. Medical records are parameterized by a principal
(indicated with <>’s) and a medical record could be instantiated for Alice by writing
the following (presuming an implicit constructor which takes arguments of the
appropriate security levels to assign each of the member variables).

MedicalRecord<Alice> rec = new MedicalRecord<Alice>(...)

A medical record can release its history with the method getHistory, but the label
on the return value, p:, ensures that it will remain protected after it is released. A
medical record can also write its history to a public stream (a socket or a file, e.g.)
via the saveHistory method, but because the stream is public, the history must
be passed through a declassifier, in this case it is encrypted with AES. Finally,
using the method updateName, the name on the medical record can be updated
by someone other than p, but only if that principal knows the password. Here
again, declassification is needed, because the result of comparing a public value,
guess, and a secret value, password, is stored in a public boolean, valid. Thus, the
declassifier check is used to do the comparison and declassify the result. Principals
must authorize these declassifications explicitly in the global policy.
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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class MedicalRecord<p> {
Stringpublic name;

Stringp: history;

Keyp: aesKey;

Stringp: password;

Stringp: getHistory() { return history; }

void saveHistory(OutputStreampublic out) { out.write(AES<p>.encrypt(history,aesKey)); }

void updateName(Stringpublic guess, Stringpublic newName) {
booleanpublic valid = Passwd<p>.check(guess,password);

if (valid) name = newName; }
}

Fig. 1. A simple example

Alice −> DrBob

Alice allows Passwd.check(public)

Alice allows AES.encrypt(public)

DrBob allows AES.encrypt(public)

DrBob −> DrJohn

Chuck −> DrBob

Fig. 2. A simple policy

DrBob

DrJohn

Alice Chuck

AliceDrBob

AES.encrypt Passwd.check

public

public

Fig. 3. Example acts-for hierarchy and de-

classifier context.

A simple global policy is shown in Figure 2. Global policies express both del-
egations, using −>, and trusted declassifiers, using allows. Given this policy, we
can determine all the possible ways in which Alice’s data can flow. Anything
Alice can read can also flow to Dr. Bob, because Alice explicitly trusts him (in-
dicated by Alice −> DrBob). It can also flow transitively to his partner, Dr. John.
More interestingly, this policy contains all of the declassifiers which Alice will al-
low to operate on her data. Thus, we see that Alice’s data can flow to a pub-
lic output, but only if it is first encrypted with AES. This is asserted by the
Alice allows AES.encrypt(public) policy statement. Alternatively, Alice’s data might
be leaked (a little bit at a time) via a password check. It is also possible for a prin-
cipal to release information to a different security level through a declassifier, for
example, DrBob allows Doctor.patientReport(Alice). In this case, the declassifier only
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releases the information to the patient, not to the public. The declassifier sanitizes
the doctor’s notes before the release.

In FJifP, security is enforced statically by the type-checker, by disallowing
programs that violate their policy. Consider the two methods, updateName and
saveHistory. These methods utilize declassifiers, Passwd.check and AES.encrypt, re-
spectively. In order to instantiate a MedicalRecord with a principal p, we require
that p allows the use of these declassifiers. Thus, given the policy in Figure 2, the
above instantiation of rec for Alice will succeed, because Alice allows both declassi-
fiers. On the contrary, attempting to instantiate a medical record for Chuck would
cause a type error.

In this example, we can see how policy can be lifted out of a program and stored
in an external file. In this way, when examining any fragment of code, we can
understand the security guarantees of policy labels by consulting a centralized policy
file. It is worth noting that a precise characterization of how much information can
be leaked would also require inspecting the code of the declassifiers. For example,
consulting the code for encryption and the code for password checks readily leads to
the conclusion that very little information is leaked through these methods. Since
the number of declassifiers for an application is generally small, it is not hard to
inspect them by hand. Furthermore, a standard collection of declassifiers can be
built up over time with careful analyses of the information leakage allowed by each.

The challenge of automatically quantifying information leakage is being studied
elsewhere [Lowe 2002; Chen and Malacaria 2007; Clark et al. 2007]. We expect
that as these results mature, they will integrate cleanly with our system.

3. SEMANTICS AND PROPERTIES OF FJIFP

3.1 Introduction to FJifP

We first describe FJifP (short for Featherweight Jif with Policy), a security-typed,
object-oriented language. FJifP is an extension of Featherweight Java [Igarashi
et al. 1999] that includes the essential security features of Jif as well as the option for
certain methods to be used as declassifiers. We then give typing and evaluation rules
for that system, show their soundness, and prove a theorem about the language’s
security, noninterference modulo trusted methods.

Featherweight Java (FJ) is a minimal subset of the Java programming language
that models essential features of an object-oriented language such as field access,
dynamic dispatch, inheritance, casting, and mutually recursive classes. It does not
include many features of the full language, including mutable state, concurrency,
and introspection. Conditionals can be implemented through inheritance and loops
can be implemented through recursive method calls.

In giving the definition of FJifP, we seek to add security types and runtime
principals to FJ in order to provide a basic framework for the Jif language. We
omit some of the more complex features of Jif such as authority and unrestricted
declassification. To additionally simplify the presentation of our system, we omit
two mechanisms of FJ: non-default constructors and unrestricted type casts. These
language features do not interfere with the security properties.

Figure 4 shows the Medical Record Example from Figure 1, modified to be a pro-
gram in FJifP, extended with primitives for booleans and conditional expressions.
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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class MedicalRecord<α>{ξ / public} / Object {
Stringpublic name;

Stringα: history;

Keyα: aesKey;

Stringα: password;

Stringα: getHistory() { return history; }

OutputStreampublic saveHistory(OutputStreampublic out) {
return out.write( new AES<α>α:().encrypt( this.history, this.aesKey ) );}

MedicalRecord<α>public updateName( Stringpublic guess, Stringpublic newName ) {
if ( declassify(new Passwd<α>α:().check( guess, password ), public) )

return new MedicalRecord<α>public( this.newName, this.history,

this.aesKey, this.password );

else return this; }
}

Fig. 4. Figure 1, rewritten in FJifP

For the most part, the code in Figure 4 remains the same as the pseudo-code. We
presume the standard encodings for if and the existence of OutputStream, String,
Key, etc. The keyword Public is a special principal having the property that Public �
p for all principals p and the label public being the policy {Public :}. There are also
a few things to note involving the lack of state, static methods. First, when the
original code called for modification of a medical record through an assignment
statement, the new code instead returns a new medical record. Static methods
(such as the call to AES.encrypt) have been replaced by creating new instances of
the class and then calling that member function on them.

Because there is an illegal, implicit flow between the public string guess and
the {α :}-level password in updateName, this class cannot be type-checked without
some notion of declassification. In this example, to correctly type the updateName
method, we add a declassify statement around the check method. This is legal as
long as the policy allows updateName to declassify data from Alice to Public.

There is one other detail of note in updateName. Our type system does not
include a special label for the security level of this, and so to label-check the body
of a method, we specify the maximum label that the class can be instantiated
with. For example, the header of MedicalRecord is tagged with ξ / public, which
indicates that the only legal instances of the MedicalRecord class of the form
MedicalRecord〈α〉public for some principal α.

3.2 Definitions

An FJifP program consists of a series of defined classes C, D, . . . and terms t1, t2, . . .
that are to be evaluated under a series of class definitions. Terms might invoke
methods, access fields, create new instances of classes, and perform casts (to name
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Class Names C, D
Field Names f, g

Method Names m

Variables x, y

Principals p, q, r

Policies d ::= p1 : q1; . . . ; pk : qk
Labels l ::= {d}

Param. Classes N ::= C〈p〉
Security Types S, T ::= N{l}
Class Definitions CL ::= class C〈α〉 / N { S f; M }
Methods M ::= S m(S x) { return(t); }
Terms t ::= x

| t.f
| t.m(t)

| new S(t)

| (S) t

| actsfor(p, q) in t

| declassifym(t, l)
Values u, v ::= new S(v)

Actsfor Hierarchy (p, q) ∈ ∆

Declass. Policy (m, p, q) ∈ Υ
Security Contexts Θ = (∆,Υ)

Fig. 5. FJifP Language Syntax

a few possibilities). Classes contain fields f and methods m. Instantiated classes are
parameterized by principals p and given security labels l for security. The notation
x represents a list: x is a list of variables, parameterized x1, . . . , xn.

The language syntax for FJifP is given in Figure 5. FJifP adds new constructs
for actsfor(p, q) in t, which checks that p acts for q in t, and declassifym(t, l),
declassifies the term t to security level l under the policies of m. Statements of the
form declassifym(t, l) can only occur inside the body of a method m.

Our security labels follow the decentralized label model (DLM) [Myers 1999],
which permits multiple policies on values. A label l is made up of policies. Each
policy consists of an owning principal p together with reader lists allowed by that
principal (implicitly including p). The type system ensures that all of the policies
in a label are enforced, requiring a reader to appear in all policies in order to read
the data. For example, let l be the label {Alice : Bob,Charlie; Charlie : Bob}. Alice
owns the first policy, and is implicitly a reader. Bob, and Charlie are also readers in
this policy. The second policy is owned by Charlie and readable by both Bob and
Charlie. If a value v has been instantiated and tagged with l, then either Bob or
Charlie can read v; though Alice owns a policy on v, she is not a reader in Charlie’s
policy. A security context Θ then has two primary judgements: the first tests if
the principal q is trusted to act for p, written Θ ` p � q . The second tests if a
label l2 is at least as restrictive as l1 and is written Θ ` l1 v l2. The metavariable
d represents a list of policies p : q. These rules are given in Figure 6.

FJifP classes and terms are assigned a type under a global security context Θ =
(∆,Υ). The trust relations between principals are given in the acts-for hierarchy
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Actsfor Checking

Θ ` p � p
(plt-refl)

(p, q) ∈ Θ(∆)

Θ ` p � q
(plt-actsfor)

Θ ` p � r Θ ` r � q
Θ ` p � q

(plt-trans)

Label Comparison

∀p : q ∈ d1 . ∃p′ : q′ ∈ d2 . Θ ` p : q v p′ : q′

Θ ` {d1} v {d2}
(sec-lab)

Θ ` p � p′ ∀q′i ∈ q′ . ∃qj ∈ q . Θ ` qj � q′i
Θ ` p : q v p′ : q′

(sec-list)

Fig. 6. Security Context Judgements

∆. For example, if Alice trusts Bob to act for her, then (Alice,Bob) ∈ ∆. The
declassification policy Υ allows for users to specify trust relationships with higher
granularity. If the triple (m, p, q) ∈ Υ, then the trust relation (p, q) is added to
the acts-for hierarchy ∆ when type-checking the method m. m then acts as an
information flow from p’s data to q. We define the function policyflows(Υ, m) as
follows:

policyflows(Υ, m) = { (p, q) | (m, p, q) ∈ Υ}

We overload the extract function on security contexts in the natural way:
policyflows(Θ, m) = policyflows(Υ, m) if Θ ≡ (∆,Υ), while if Θ ≡ (∆,Υ), the no-
tation Θ ∪∆′ represents the security context (∆ ∪∆′,Υ).

While policyflows defines the principal flows that a method allows, the function
flows(Θ, m, l) contains the security labels l′ that a method may declassify data to:

flows(Θ, m, l) = {l′ | Θ ∪ policyflows(Θ, m) ` l v l′}

In FJifP, classes can be templated by principals, which introduces a principal
variable α that can be used within the class. When we create a new instance of a
class, the templated principals are then substituted in for the principal variables of
a class. Templated classes, C〈p〉, are represented by the meta-variable N. Security
types, C〈p〉{l}, are templated classes with labels attached, and they are ranged over
by S, T. The function lab returns the label associated with a security type, while the
expression St l represents the security type S raised to the security level lab(S)t l.
The definitions for these are as follows:

lab(C〈p〉{l}) = l
C〈p〉{l} t l′ = C〈p〉{l t l′}

As in FJ, there is a special class, Object, that has no principal variables, no fields,
and no methods.

FJifP contains a class table CT that contains each class’s definition. A class C
has the following definition:

CT(C) = class C〈α〉{ξ / l} / D〈q〉 { S f; M }
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Here, C is a class with principal parameters α (the bar indicates a list) that which
inherits from the class D〈q〉 (some of the qi might be in α). The label parameter
ξ / l indicates that C can be tagged with any label l0 that is no more secure than
the label l. When type-checking the methods of C, the this pointer is assumed to
have security level l.

The class C contains the fields and methods declared in its parent, along with the
locally defined fields S f and methods M; these methods may override its parent’s
methods, but are required to have the same type signatures.

We define a few simple functions for future reference.

—parent(C) = D〈q〉: the parent of a class.
—pvars(C) = α: the principal variables of a class.
—localfields(C) = S f: fields declared locally. Each field has a security type associ-

ated with it.
—localmethods(C) = M: methods declared locally. Each method specifies the secu-

rity type of its arguments and the security type of the returned value.

Member methods m are declared as follows: S0 m(S x). This method m takes
arguments x of security type S and returns a value of the security type S0. The
definitions for field lookup, method lookup, and a number of other utility functions
are given in 3.2 and closely follow the analogous functions in FJ. The notation
t[v/x] represents a simultaneous substitution being performed: in this case the
value v is substituted for the free variables x in the term t.

3.3 Typing Rules

We now present the typing rules for terms and classes; these are given in Figure 8.
Let Γ be an environment mapping variables to security types. The judgement for
term typing Θ; Γ ` t : S assigns security types S to terms t under security context
Θ and environment Γ.

The typing rules for terms are standard adaptations of their corresponding rules
in FJ, except for two cases: (tp-new) and (tp-declassify). When we create a
new instance of a class using (tp-new), we must check that it has been parame-
terized with legal principals and assigned a legal security label. The typing rule for
declassification is the only rule that allows explicitly lowering the security label on
data. A declassify term t can use the flows that the declassification policy Υ allows
for the method m.

There are three well-formedness checks, for types, classes, and methods. Respec-
tively, these are Θ ` S OK, Θ ` C〈α/p〉{ξ/l} OK, and Θ ` m OK IN C〈p〉{ξ/l}. We
define these rules in Figure 9. Checking that a type is well-formed requires it to be
instantiated with principals and labels compatible with the declared principal and
label upper bounds on the class. For a class to be well-formed, all of its methods
must be well-formed. For a method to be well-formed, its body must be typeable
to the declared security type and not conflict with the type of its superclass as
specified by the override function.

3.4 Subtyping

In FJ, a class C is a subtype of another class D if D is C, C inherits from D, or
there is a C′ such that C is a subtype of C′ and C′ is a subtype of D. For FJifP, we
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Field Lookup

fields(Object{l}) = •

localfields(C) = S f

parent(C) = D〈q〉 pvars(C) = α
fields(D〈q[p/α]〉) = T g

fields(C〈p〉) = (T g, S[p/α] f)

Method Typing

S m(S x) { return(t); } ∈ localmethods(C)
pvars(C) = α

mtype(m, C〈p〉) = (S→ S)[p/α]

m not defined in localmethods(C)
parent(C) = D〈q〉 pvars(C) = α
mtype(m, D〈q[p/α]〉) = S→ S0

mtype(m, C〈p〉) = S→ S0

Method Body Lookup

S m(S x) { return(t); } ∈ localmethods(C)
pvars(C) = α

mbody(m, C〈p〉) = (x, t[p/α])

m not defined in localmethods(C)
parent(C) = D〈q〉 pvars(C) = α
mbody(m, D〈q[p/α]〉) = (x, t)

mbody(m, C〈p〉) = (x, t[p/α])

Declared Methods

mbody(m, S) = (x, t)

m ∈ methods(S)

CT(C) = class C〈p〉{ξ / l} / · · · { · · · }
container(m, C〈p〉) = C〈p〉{l}

Method Overriding

mtype(m, D〈q〉) = T→ T0 implies
S = T and S0 = T0

override(m, D〈q〉, S→ S0)

Overloaded Functions for Security Types

fields(C〈p〉{l}) = fields(C〈p〉)

mbody(m, C〈p〉{l}) = mbody(m, C〈p〉)

mtype(m, C〈p〉{l}) = mtype(m, C〈p〉)

container(m, C〈p〉{l}) = container(m, C〈p〉)

override(m, C〈p〉, S→ S0)

override(m, C〈p〉{l}, S→ S0)

Fig. 7. Auxiliary Definitions

need to define exactly what it means for a security type C〈p〉{l} to be a subtype of
D〈q〉{l}. The combination of two observations forms our subtyping rules, given for
the subtyping judgement Θ ` S <:T in Figure 10.

If CT(C) = class C〈α〉{ξ / l} / D〈α〉 { · · · }, then C〈Alice〉{l0} is a subtype of
D〈Alice〉{l0} for all l0 that are no more secure than l. Following Jif, we do not extend
subtyping within class parameters: C〈Alice〉{l0} is not a subtype of C〈Bob〉{l0} even
if Θ ` Alice � Bob. As we can always safely raise the security level of data, C〈p〉{l1}
is a subtype of C〈p〉{l2} if l2 is at least as restrictive as l1 and both l1 and l2 are no
more secure than l.

3.5 Evaluation

Evaluation in FJifP is similar to FJ, with the exception of the actsfor expression,
where a runtime check of the current security policies is done. The evaluation
judgement Θ ` t ι7→ t′ is a small-step reduction: under security context Θ, t makes
a single step to t′ with declassifications ι, where ι is either blank or a security

label l. When we talk of a series of consecutive evaluations, we write Θ ` t
Λ
↪→ v,

representing multiple evaluation steps containing declassifications to the labels in
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Typing

Γ(x) = S

Θ; Γ ` x : S
(tp-var)

Θ; Γ ` t0 : S Si fi ∈ fields(S)
Θ; Γ ` t0.fi : Si t lab(S)

(tp-field)

Θ; Γ ` t0 : S0 mtype(m, S0) = S→ S
Θ; Γ ` t : S′ Θ ` S′ <:S

Θ; Γ ` t0.m(t) : S t lab(S0)
(tp-invk)

fields(C〈p〉{l}) = S f
Θ; Γ ` t : S′ Θ ` S′ <:S

Θ ` C〈p〉{l} OK

Θ; Γ ` new C〈p〉{l}(t) : C〈p〉{l}
(tp-new)

Θ; Γ ` t0 : S0 Θ ` S0 <:S

Θ; Γ ` (S) t0 : S
(tp-upcast)

Θ; Γ ` t : S Θ ` p � q
Θ; Γ ` actsfor(p, q) in t : S

(tp-actsfor)

Θ; Γ ` t : C〈p〉{l0}
l ∈ flows(Θ, m, l0)

Θ; Γ ` declassifym(t, l) : C〈p〉{l}
(tp-declassify)

Fig. 8. Typing Rules

Λ. The evaluation rules for FJifP are given in Figure 11.

3.6 Type System Properties

With the following lemmas, we prove that FJifP obeys all the usual type system
properties.

Lemma 3.1 Weakening. Suppose Θ; Γ ` t : S, Γ′ ⊇ Γ, and Θ′ ⊇ Θ. Then
Θ′; Γ′ ` t : S.

Proof. Proof proceeds by induction on the typing derivation.
Suppose Θ; Γ ` x : S; then by inversion we have Γ(x) = S. Since Γ′ ⊇ Γ,

G′(x) = S, and so Θ; Γ′ ` x : S as required.
All other cases follow by straightforward induction on the typing assumptions.

Lemma 3.2. Suppose Θ ` S <:T and let mtype(m, T) = S → S0. Then
mtype(m, S) = S→ S0.

Proof. Induction on the derivation of Θ ` S <:T.
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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Type Well-Formedness

Θ ` C〈α / q〉{ξ / l} OK
Θ ` p � q

Θ ` l0 <:l[p/α]

Θ ` C〈p〉{l0} OK

Class Well-Formedness

for all m ∈ methods(C), Θ ` m OK IN C〈α / q〉{ξ / l}
parent(C) = D〈q〉 Θ ` D〈q〉{l} OK

Θ ` C〈α / q〉{ξ / l} OK

Method Well-Formedness

mbody(m, C〈p〉{l}) = (x, t0)
mtype(m, C〈p〉{l}) = S→ S0

Θ; x : S, this : C〈p〉{l} ` t0 : T0

Θ ` T0 <:S0

parent(C) = D〈q〉
override(m, D〈q〉{l}, S→ S0)

Θ ` m OK IN C〈α / q〉{ξ / l}

Fig. 9. Well-Formedness Rules

Subtyping Rules

Θ ` S <:S
(s-refl)

Θ ` S <:S′ Θ ` S′ <:T
Θ ` S <:T

(s-trans)

Θ ` l1 v l2
Θ ` C〈p〉{l1}, C〈p〉{l2} OK

Θ ` C〈p〉{l1} <:C〈p〉{l2}
(s-label)

parent(C) = D〈q〉 pvars(C) = α

Θ ` C〈p〉{l}, D〈q[p/α]〉{l} OK

Θ ` C〈p〉{l} <:D〈q[p/α]〉{l}
(s-class)

Fig. 10. Subtyping Rules

Lemma 3.3 Value Substitution. Suppose Θ; Γ, x : S0 ` t : S and Θ ` v : S′0,
where Θ ` S′0 <:S0. Then Θ; Γ ` t[v/x] : S′ for some S′ such that Θ ` S′ <:S.

Proof. Induction on the derivation of Θ; Γ, x : S0 ` t : S.

Lemma 3.4. Suppose Θ ` S0 OK, mtype(m, S0) = T → T, and mbody(m, S0) =
(x, t). Then for some T0 such that Θ ` S0 <:T0, there exists S with Θ ` S <:T and
Θ ∪ policyflows(Θ, m); x : T, this : T0 ` t : S.

Proof. Induction on the judgement mbody(m, S0).

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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fields(S) = S f

Θ ` new S(v).fi 7→ vi
(ev-projnew)

mbody(m, S) = (x, t0)
Θ ` new S(v).m(u) 7→ t0[u/x, new S(v)/this]

(ev-invknew)

Θ ` S <:T
Θ ` (T) new S(v) 7→ new S(v)

(ev-castnew)

Θ ` p � q
Θ ` actsfor(p, q) in t 7→ t

(ev-actsfor)

Θ ` declassifym(t, l) l7→ t
(ev-declassify)

Θ ` t0
Λ7→ t′0

Θ ` t0.f
Λ7→ t′0.f

(ev-field)

Θ ` t0
Λ7→ t′0

Θ ` t0.m(t) Λ7→ t′0.m(t)
(ev-invk-recv)

Θ ` ti
Λ7→ t′i

Θ ` v0.m(v, ti, t) Λ7→ v0.m(v, t′i, t)
(ev-invk-arg)

Θ ` ti
Λ7→ t′i

Θ ` new S(v, ti, t) Λ7→ new S(v, t′i, t)
(ev-new-arg)

Θ ` t0
Λ7→ t′0

Θ ` (T) t0
Λ7→ (T) t′0

(ev-cast)

Fig. 11. Evaluation Rules

Theorem 3.5 FJifP Type Preservation. If Θ; Γ ` t : S and Θ ` t
Λ7→ t′,

then there exists Θ′ such that Θ′; Γ ` t′ : S′ for some Θ ` S′ <:S. Additionally, if
Λ = ∅, then Θ′ = Θ.

Proof. Proof by cases based on which evaluation rule is used.

3.7 Noninterference

To show that FJifP properly enforces security for well-typed programs, we show
that the evaluation of a term t does not interfere with data lower than the declas-
sifications that the term performs. To this end, we define a relation ≈ on FJifP
ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.
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terms. The judgement is written Θ; Λ ` t1 ≈ζ t2 : S: “under security context Θ
and allowed flows Λ, the terms t1 and t2 are observationally equivalent at security
type S to an observer at security level ζ.”

Noninterference only holds for programs that do not release data to level ζ. For
example, if a method declassifies data to {Bob:}, then Λ = {Bob :}. If the observer
is at ζ = {Public :}, no information is leaked.

Two values v1 and v2 are equivalent to security level ζ with permitted flows Λ
if, from the view of level ζ, doing the same field accesses or method calls evaluates
to terms that are also observationally equivalent at ζ. Two terms are equivalent if
they evaluate to equivalent values without declassifying information below ζ. We
do not consider termination leaks.

Where our security theorem differs from traditional logical relations-style def-
initions of noninterference is that we consider equivalence of values only under
methods that permit flows in Λ. This allows for a finer-grained definition of secu-
rity: two values may not be in general observationally equivalent, but they may be
used by the program in a safe way. For example, two classes may have different
implementations of a method release that releases data to public, but this method
may not be used by a program.

To capture what declassifications a program term might perform, we define the
function rtflows, which contains all of the possible declassifications that a term
might perform during evaluation. As this is necessarily runtime information, it
cannot be exactly captured by a static analysis. The main result of this section
requires only a conservative approximation of rtflows for language security.

Definition 3.6 Runtime Flows. Define the function rtflows(Θ, x : T, t):

rtflows(Θ, x : T, t) =
⋃
{Λ | Θ ` t[u/x]

Λ
↪→ v for some u such that Θ ` u : T}

Suppose for method m, mbody(m, S) = (x, t) and mtype(m, S) = T→ T. We overload
rtflows on methods m in type S.

rtflows(Θ, m, S) = rtflows(Θ, x : T; this : container(m, S), t)

Definition 3.7 Observational Equivalence. Under security context Θ,
two terms t1 and t2 are observationally equivalent at security type S to security
level ζ in the presence of declassifications Λ, written Θ; Λ ` t1 ≈ζ t2 : S, if:

—There exists Θ′ ⊇ Θ such that Θ′ ` t1 : S and Θ′ ` t2 : S
—Suppose t1 ≡ new S1(v) and t2 ≡ new S2(w). Then if either Θ ` lab(S) v ζ or

Θ ` li v ζ for li ∈ Λ:
(1 ) For all Ti fi ∈ fields(S), Θ ` vi ≈ζ wi : Ti.
(2 ) For all m ∈ methods(S) with rtflows(Θ, m) ⊆ Λ, and mtype(m, S) = T→ T, then

for all u such that Θ ` u : T, Θ; Λ ` new S1(v).m(u) ≈ζ new S2(w).m(u) : T.
—Otherwise, if Θ ` t1 ↪→ v1 and Θ ` t2 ↪→ v2, then Θ; Λ ` v1 ≈ζ v2 : S.

We present two subtyping results. The first states that if observational equiva-
lence holds at a type S′, then it holds at a supertype S of S′. The second states
that if l′ is one of the allowed flows in observational equivalence, then values obser-
vationally equivalent a a label l are also observationally equivalent at l′.
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Lemma 3.8 Security Subtyping 1. Suppose Θ; Λ ` t1 ≈ζ t2 : S′ and Θ `
S′ <:S. Then Θ; Λ ` t1 ≈ζ t2 : S.

Proof. Proof is by cases as to whether or not t1 and t2 are both values.
First suppose t1 ≡ new S1(v) and t2 ≡ new S2(w). Note that fields(S′) ⊆ fields(S),

so if Θ ` lab(S) v ζ, then for all Ti fi ∈ fields(S), Θ ` vi ≈ζ wi : Ti as required.
For all m ∈ methods(S) such that rtflows(Θ, m) ⊆ Λ, we have

mtype(m, S′) = mtype(m, S) = T→ T

From the assumption Θ; Λ ` t1 ≈ζ t2 : S′, we have for all u such that Θ ` u : T,

Θ; Λ ` new S1(v).m(u) ≈ζ new S2(w).m(u) : T

This is the required result.
Otherwise t1, t2 or both are not values; so Θ ` t1 ↪→ v1 and Θ ` t2 ↪→ v2 with

Θ ` v1 ≈ζ v2 : S′. By the above, Θ ` v1 ≈ζ v2 : S and so Θ ` t1 ≈ζ t2 : S as
required.

Lemma 3.9 Security Subtyping 2. Suppose Θ; Λ ` t1 ≈ζ t2 : C〈p〉{l} and
l′ ∈ Λ. Then Θ; Λ ` t1 ≈ζ t2 : C〈p〉{l′}.

Proof. Proof by cases on the terms t1, t2. Theorem 3.5 guarantees that there
exists Θ′ ⊇ Θ such that Θ′ ` ti : S for i ∈ {1, 2}.

Suppose t1 ≡ new S1(v) and t2 ≡ new S2(w).
Suppose Θ ` l′ v ζ. As l′ ∈ Λ, fields(C〈p〉{l′}) = fields(C〈p〉{l}), and

methods(C)pl′ = methods(C〈p〉{l}), conditions 1 and 2 in the definition of ≈ζ hold.
The reasoning for the case where t1 and t2 are not both values proceeds identi-

cally to this case in the proof of 3.8.

We now show that if t is typeable to S under security context Θ and context
x : S0 with allowed flows Λ, then x can be replaced in t by any values v1, v2 of
type S0 that are observationally equivalent to an attacker of level ζ under Θ and Λ.
The terms t[v1/x] and t[v2/x] are then observationally equivalent to an attacker at
level ζ.

Theorem 3.10 Security. Suppose Θ; x : S0 ` t : S, rtflows(Θ, x : S0, t) ⊆ Λ,
and Θ; Λ ` v1 ≈ζ v2 : S0. Then Θ; Λ ` t[v1/x] ≈ζ t[v2/x] : S.

Proof. Proof proceeds by induction on the typing derivation.
Suppose Θ; x : S0 ` t.fi : U. Then by inversion the last rule used was (tp-field)

and so Θ; x : S0 ` t : S, Ti fi ∈ fields(S), and U ≡ Tit lab(S). By applying induction
to the typing derivation, we have

Θ ` t[v1/x] ≈ζ t[v2/x] : S

Therefore, if we have evaluations

Θ ` t[v1/x] ↪→ new S1(v)
Θ ` t[v2/x] ↪→ new S2(w)
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We must have Θ ` new S1(v) ≈ζ new S2(w) : S. We therefore have

Θ ` t0[v1/x].fi ↪→ vi Θ ` t0[v2/x].fi ↪→ wi

If Θ ` lab(Ti t lab(S)) v ζ, then Θ ` lab(S) v ζ, and so Θ ` vi ≈ζ wi : T by
condition 1 in the definition of observationally equivalent values. By Lemma 3.8,
Θ ` vi ≈ζ wi : T t lab(S) = U. This is the required result.

Suppose the last typing rule used was (tp-invk). By inversion we have the typing

Θ; x : S0 ` t0 : T mtype(m, T) = S→ S
Θ; x : S0 ` t : S′ Θ ` S′ <:S

Θ; x : S0 ` t0.m(t) : S t lab(T)

Applying the induction hypothesis, we have

Θ ` t0[v1/x] ≈ζ t0[v2/x] : T0

Θ ` t[v1/x] ≈ζ t[v2/x] : S′0
We must show observational equivalence of the method calls by considering the
result of evaluating the terms t0[v1/x].m(t[v1/x]) and t0[v2/x].m(t[v2/x]). Suppose
we have the evaluations:

Θ ` t0[v1/x].m(t[v1/x])
Λ1
↪→ v′1

Θ ` t0[v2/x].m(t[v2/x])
Λ2
↪→ v′2

We know Λ1 ∪ Λ2 ⊆ rtflows(Θ, m) ⊆ rtflows(Θ, x : S0, t0.m(t)) ⊆ Λ. Therefore

Θ; Λ ` v′1 ≈ζ v′2 : S

by condition 2 in the definition of observational equivalence. This is the required
result.

Suppose the last typing rule used was (tp-declassify). By inversion

Θ; Γ ` t : C〈p〉{l0}
l ∈ flows(Θ, m, l0)

Θ; Γ ` declassifym(t, C〈p〉{l}) : C〈p〉{l}

By induction, Θ; Λ ` t[v1/x] ≈ζ t[v2/x] : S0. Therefore, if there are evaluations

Θ ` t[v1/x] ↪→ new S1(u)
Θ ` t[v2/x] ↪→ new S2(w)

then

Θ; Λ ` new S1(u) ≈ζ new S2(w) : C〈p〉{l0}

By the definition of rtflows, we know that l ∈ flows(S, x : S0, declassifym(t, l)),
and so l ∈ Λ. By Lemma 3.9, we have

Θ; Λ ` new S1(u) ≈ζ new S2(w) : C〈p〉{l}

Therefore,

Θ; Λ ` t[v1/x] ≈ζ t[v2/x] : S

This is the required result.
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Suppose Θ; x : S0 ` x : S. Then as Θ ` v1 ≈ζ v2 : S0, Θ ` x[v1/x] ≈ζ x[v2/x] : S0

as required. Suppose Θ; x : S0 ` y : S. Then as y[v1/x] = y[v1/x] = y, the
result is trivially true. (An expression is always observationally equivalent to itself.)
Suppose Θ; x : S0 ` new S(t) : S. By inversion:

fields(S) = S f
Θ; x : S0 ` t : S′ Θ ` S′ <:S

Θ; x : S0 ` new S(t) : S

By induction and Lemma 3.8,

Θ; Λ ` t[v1/x] ≈ζ t[v2/x] : S

Let there be evaluations

Θ ` t[v1/x] ↪→ v
Θ ` t[v2/x] ↪→ w

By the definition of ≈, Θ ` v ≈ζ w : S. To show Θ; Λ ` new S(v) ≈ζ new S(w) :
S, we need to show that all field acceses and methods on these values lead to
observationally equivalent evaluations.

For the first case, we consider the fields of S. For all Ti fi ∈ fields(S),

Θ ` new S(v).fi ↪→ vi
Θ ` new S(w).fi ↪→ wi

From induction, we have Θ; Λ ` vi ≈ζ wi : Ti.
For the first case, we consider the methods of S that have the required information

flows. For all m ∈ methods(S) such that rtflows(Θ, m) ⊆ Λ with mtype(m, S) = T→ T,
mbody(m, S) = (y, t), and u, u′, we have

Θ ` new S(t[v1/x]).m(t[v1/x]) 7→ t[new S(t[v1/x])/this, t[v1/x]/y
Θ ` new S(t[v2/x]).m(t[v2/x]) 7→ t[new S(t[v2/x])/this, t[v2/x]/y

By Theorem 3.5, as the above evaluation uses the rule (tp-invk) and a reverse
application of Lemma 3.3,

Θ; x : S0 ` t[new S(t)/this, t/y : T

As

rtflows(Θ, x : S0, t[new S(t)/this], t/y) ⊆ rtflows(Θ, x : S0, new S(t).m(t))
⊆ rtflows(Θ, x : S0, new S(t))
⊆ Λ

by induction we have

Θ ` new S(t).m(t)[v1/x] ≈ζ new S(t).m(t)[v2/x] : T

By the definition of ≈ζ , we thus have

Θ ` new S(t[v1/x]) ≈ζ new S(t[v2/x]) : T

This is the required result. The proof for the actsfor and cast cases follow from
straightforward application of induction.
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alice -> bob
alice allows X

...
policy 

compiler

Jif compiler

XClosure

...
class MyProg
...

AlicePrincipal

...

class Policy

policy

Policy.setupPolicy();

void main() {
...

}

Jif code
(auto-generated)

Jif code

class 
files

Fig. 12. Integrating an external policy into Jif.

4. POLICY FRAMEWORK IMPLEMENTATION

We implemented our trusted declassifiers in Jif [Myers et al. 2001]. In this section,
we first describe how we compile an external policy into Jif code and access it from
a Jif program. Then we comment on our approach, relating it to FJifP.

4.1 Compiling policy into Jif

We have developed a simple policy language for introducing principals and describ-
ing the delegations and declassifiers allowed by each principal. We built a small
translator to compile policies into Jif code. Its use is illustrated in Figure 12. The
translator automatically generates principal class definitions as well as a Policy

class. The Policy class instantiates these principals and establishes the delegations
described in the policy. In order to use our system, a programmer must provide
a policy file (such as in Figure 2), an application and the declassifiers mentioned
in the policy file. This policy is applied to the application by adding a single line
to the starting point of the application. Finally, the automatically generated files
must be compiled (other than the one line inserted into the main application file,
all other files in the application do not need to be changed and thus do not need to
be re-compiled).

Our policy language currently consists of only two kinds of statements (and
described earlier in Section 2): −>-rules corresponding to delegations and allow-
rules, establishing trust in declassifiers. The syntax is shown in Figure 13. There
is a special allow rule, allow None. Since a principal must be used in a rule in order
to be added to the system, a principal, p, which trusts no declassifiers and has
no delegations should be added with the special policy, p allows None. The policy
compiler takes policies and produces Jif code. To understand the Jif code, a brief
explanation of Jif Principals and Closures is necessary.

The Jif Principal class has methods for adding delegations called addDelegate

and for checking authorizations called isAuthorized. Our policy compiler leverages
this interface by automatically generating Principal subclasses which override the
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principal p ::= alice | bob | ...
declassifier D ::= method1 | method2 | ...
delegation Del ::= p −> p
trust stmt Allow ::= p allows D(p) | p allows None

policy stmts Stmt ::= (Del | Allow)∗

Fig. 13. Policy language syntax.

authorization method in order to authorize only the declassifiers mentioned in allow

statements in the given policy file. To establish the delegations given by −>-rules,
code is automatically generated for the Policy.setupPolicy method. This method
instantiates each principal and uses the principal’s addDelegate method to perform
the delegations given in the policy file. This gives the desirable result that, after
writing the policy in a simple syntax, the programmer merely has to invoke the
Policy.setupPolicy method at the beginning of an application in order to put the
policy into effect.

We implement declassifiers using Jif’s Closure class. The Jif Closure class pro-
vides a way of packaging up a function with some arguments and then treating it
as a first-class value. More importantly, it is parameterized by a principal, whose
authorization it needs in order to execute. This authorization is sought from the
principal’s isAuthorized method when it is invoked. By requiring that all declassi-
fications take place in Closures, we can be sure that all declassifications will consult
the policy before they execute.

Consider the example policy in Figure 2. Compiling this policy generates classes
for AlicePrincipal, DrBobPrincipal, DrJohnPrincipal and ChuckPrincipal, as well
the Policy class with a setupPolicy method that instantiates each class and per-
forms the indicated delegations. The principals are automatically generated such
that the isAuthorized method gives authorization to the Closures named in the
allow statements in the policy file. The AlicePrincipal class, for example, allows
for the Passwd.check(public) and AES.encrypt(public) closures to operate on data la-
beled with a policy owned by Alice. The declassifier in the allow statements is
parameterized by a principal which indicates the lowest possible security level to
which the method may declassify.

4.1.0.1 Adding a declassifier. An important benefit of our system is that adding
a declassifier is simple. Consider a declassifier for triple DES encryption. In our
system, this would require the programmer to provide a Closure to call the encryp-
tion function and do the declassification, as shown in Figure 14. In order to use
this Closure to encrypt and declassify some plaintext, the principal who owns the
plaintext must authorize TripleDESClosure. This authorization must be established
through the policy file with a command such as:

Alice allows crypto.TripleDESClosure(public)

This command is automatically translated into a line of Jif code in the auto-
matically generated AlicePrincipal class.Once this has been done, the programmer
simply needs to use the declassifier by first instantiating the closure class with the
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public class TripleDESClosure[principal P,label L]

implements Closure[P,{P:}] {
byte{P:}[]{P:} plaintext;

Key{P:} key;

...

public Object{this} invoke{P:}() where caller(P) {
return declassify( TripleDES[{P:}].encrypt( key, plaintext ), {this} );

}}

Fig. 14. A closure for declassifying the cipher text generated by triple DES encryption. The

standard constructor is defined, but not displayed.

particular arguments that are to be used. Then Jif’s built-in authorize method
must be called with the principal and the declassifier closure as arguments:

principalUtil.authorize(...)

This built-in method calls the principal’s isAuthorized method and if it authorizes
the Closure, it allows the Closure to be executed.

4.2 Relating the implementation to FJifP

In FJifP, typing and evaluation take place in the presence of a security context
Θ, which contains an acts-for hierarchy, ∆ and a declassification policy, Υ. The
implementation of the acts-for hierarchy is straight-forward; all delegation state-
ments indicated by −>-rules in the policy file are automatically generated in the
Policy.setupPolicy method. We implement Υ by first defining all the principals that
may be used in the program. Recall that Υ contains triples (m, p, q). These corre-
spond to allow statements in the policy written p allows m(q). Such allow-statements
correspond to lines of Jif code in the particular Principal class definitions, such that
exactly the methods in Υ relating to a particular principal are explicitly allowed by
that principal’s isAuthorized method. For example, if p = Alice then for all triples
(m,Alice, q), the isAuthorized method for the AlicePrincipal class explicitly allows clo-
sures m with return type, q. In our example, this would be TripleDES.encrypt(public)

and Passwd.check(public).
In order to faithfully implement FJifP, and achieve noninterference modulo

trusted methods, we must place some restrictions on Jif’s principals and declas-
sification mechanism:

(1) We require that no declassification may take place other than through Closures.
This is because all declassifications should first consult the declassification con-
text, which is distributed throughout the Principal classes in our implementa-
tion. Since Closures require an authorization before they may be executed, they
will always consult the principal whose data they are trying to declassify, to
make sure that the newly introduced flow is allowed by policy.

(2) We require that no new principals are introduced other than the ones introduced
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in the Policy.setupPolicy method which is automatically generated from the
policy file.

(3) We require that no delegations are established or revoked, other than the ones
introduced in the Policy.setupPolicy method which is automatically generated
from the policy file.

These restrictions present only minor limitations to the language. The declassi-
fication restriction does not limit the expressive power of Jif at all, since it would
be possible to wrap every declassify statement in a Closure and add the appropriate
allows statements to the policy. The restrictions on the principal hierarchy could
be somewhat more serious. By requiring that all principals and delegations are
established at the outset of the program, this would disallow dynamic updates to
the security policy. Currently, however, the mechanism for dynamic updating in Jif
is arguably unsafe [Swamy et al. 2006], and needs revision. Additionally, the static,
global nature of the acts-for hierarchy is less critical for our approach and it is easy
to imagine this restriction could be adapted to work with safe and secure dynamic
updates.

One difference between FJifP and our Jif implementation is in the enforcement
of the security policy. Jif is currently configured to do all delegations and policy
authorizations using a runtime mechanism. Although we use this runtime mecha-
nism, the Jif compiler could be modified to check the policy at compile-time. Our
restrictions force delegations and declassifications to be static, global entities. Thus,
the policy must be established at the outset of the program and the policy checks
could be integrated into the type-checker, which would give static enforcement, as
we have in FJifP.

5. JPMAIL: A PRACTICAL APPLICATION

We evaluate the practicality of our approach by using trusted declassification to
implement several significant applications, including an email client, called JPmail,
a chat client, chat server, and a logrotate UNIX tool. We focus on JPmail here.
JPmail uses several declassifiers, including a variety of symmetric and asymmetric
encryption declassifiers for sending sensitive data to an insecure mail server, a
password hashing method, as well as other filter declassifiers which filter e-mails for
certain recipients. Principals can choose which encryption and filter declassifiers
they trust, merely by changing a few lines in the policy file. Likewise, email recipient
groups may be changed by changing a few lines in the policy file.

5.1 JPmail Overview

An email system is particularly useful for the study of application development
in security-typed languages. This is not only because email is ubiquitous, but also
because it has been a frequent avenue for security leaks. Moreover, email has a wide
variety of security policies that it might need to enforce, from military multi-level
security to organizational hierarchies. Finally, email policy is naturally distributed,
with unique principals interacting across potentially distant clients. We seek to
support policies that involve these diverse and dynamic principals.

Illustrated in Figure 15, the JPmail system (JP = Jif/Policy) consists of three
main components: JPmail clients, the Internet and public mail servers. Written
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Fig. 15. Sending email

in Jif, the JPmail client (or just JPmail throughout) is a functional email client
implementing a subset of the MIME protocol. The JPmail client software consists
of three software components: a POP3-based mail reader, an SMTP-based mail
sender and a policy store. The client provably enforces security policy from end to
end (sender to recipient). Policy is defined with respect to a principal hierarchy.
Each environment defines principal hierarchies representative of their organizational
rights structure.

5.2 Security policy

The high-level security policy we defined for JPmail is: The body of an email should
be visible only to the authorized senders and receivers. We make two clarifications
about this policy. Firstly, in this work, we are only concerned with privacy (confi-
dentiality). Secondly, our email client is not inherently limited to sending email only
to authorized receivers. The way JPmail handles unauthorized recipients depends
on the user-defined policy.

We make the following assumptions. The JPmail-local file systems are trusted to
store information securely, based on the access control list on a given file (thus if a
file is readable only by the user, it is considered safe from leakage). Internet commu-
nication is generally untrustworthy, and is deemed as public channels throughout.
The SMTP and POP3 servers are not written in Jif, and do not enforce any security
policy save that which is provided by their implementation and administration. For
the purposes of this work, we assume nothing about the servers’ ability to prevent
leakage of user data: i.e., any information sent to them is deemed public.

Consider some dangers in email. 1) In the case of a malicious insider, email was
used to leak classified documents [Ross and Esposito 2005]. 2) In another case, a
programmer mistake led to a privacy violation for pharmaceutical clients [Federal
Trade Commission 2002]. 3) An email application also handles passwords for log-
ging into remote servers and could leak a password by sending it to the server as
plaintext (a protocol that some servers use, in fact). 4) An email client that uses
PGP could accidentally or maliciously leak keys.
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5.3 JPmail Security Evaluation

We evaluate the enforcement of our security policy: “The body of an email should
be visible only to the authorized senders and receivers.” by examining small sections
of the JPmail code, policy and declassifiers. We examine the label on emails and
cross-check it with the policy file to see what information flows are possible with
that label. The body of the email is initially labeled with the sender’s principal.
The email is then passed through a declassifier, DeclassMsgBody which relabels the
body to {rcpt:} (derived from the To: field in the email header) so long as rcpt is
one of the allowed recipient principals, given in the policy file. From this point, the
rcpt policy governs all information flows. Namely, before this email can be placed
on the public socket and sent to the SMTP server, it must pass through another
declassifier based on rcpt’s policy. If rcpt allows for AES and RSA encryption, then
the email is encrypted using a one-time randomly generated key (which cannot be
leaked, because it is labeled rcpt) and that key is then encrypted with the recipient’s
public key. After the declassifications, both email body and key are considered
public and can be sent to the SMTP server. Without the declassifications, the
program would not type-check.

We can repeat this evaluation for other sensitive data such as keys and passwords.
For these items the analysis is even simpler, because they are not dynamically
labeled like emails (which depend on user input). The password is given a label
when a MailSenderCrypto object is created. Checking the policy file, we can see that
Strings cannot be declassified except through an MD5 filter. Creating an MD5
hash is necessary for authentication with the mail server. This was made clear
when we tried to send the password as plaintext over the mail server socket when
establishing a connection. This insecure practice was automatically disallowed by
Jif with JPolicy.

There are other caveats to security that must not be overlooked. Firstly, the
security properties of a program are dependent on the correctness of the Jif compiler
(and our policy compiler). Secondly, the security properties may also be dependent
on supporting infrastructures. This includes the correctness of encryption libraries
and the strength of used cryptographic algorithms, the protection on keystores and
correctness of public-key cryptographic libraries as well as the security enforced by
the local file system. Moreover, for the system to be secure, the enforced policy
must be consistent across all clients.

One advantage of Jif is that it forces the programmer to think in terms of infor-
mation flows and to consider security concerns from the outset. Interestingly, there
is a strong consensus in the software engineering community that performing these
kinds of security analysis at design time is essential to the security of the resulting
system [Devanbu and Stubblebine 2000]. On the other hand, security by design
in advance can cause problems if it is too rigid and tied to particular operating
system constructs (i.e. insufficiently portable). This was the long-term experience
of MULTICS [Karger and Schell 2002]. We developed our policy tools in the hopes
of balancing the best of both worlds—security in advance by design along with
expressive policy, flexibility and portability.

Implementing policy in our model was significantly easier than managing all the
complex structures provided by Jif for principals, delegations and declassifications.
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The ability to implement a policy by merely giving a series of delegation and allow-
statements made the policy easier to construct and easier to manage. Furthermore,
we found that it is quite beneficial to be able to understand all possible flows by
merely examining the policy file.

Finally, we observed that the policy tool effectively decoupled policy from the
programs that they govern. This allowed us to modify policy easily in order to
accommodate different security models. By instrumenting the code during devel-
opment with different options for each filter, we could implement distinct security
models without altering the code. Furthermore, by gathering the policy into a sin-
gle file, it was easier to do a security analysis and gauge what information flows
could take place for a given principal, in contrast to leaving declassify-statements
in the code.

6. RELATED WORK

This work falls into a long line of research on using security-typed languages to
enforce information flow control and variations of noninterference [Sabelfeld and
Myers 2003]. Our work is substantively distinguished from related work in two
ways: our model of declassification, and the way that permitted declassifications
are expressed in the security policy and implemented in our policy framework.

FJifP permits declassifications to occur only within trusted methods, where the
added trust granted those methods (in terms of information flows that contrary to
the acts-for hierarchy ∆) is part of a global policy Υ. Following the Sabelfeld and
Sands’ declassification nomenclature [Sabelfeld and Sands 2008], our declassifica-
tion mechanism is identified by where declassifications occur—within expressions
declassify e that occur in trusted methods m mentioned in Υ—and who allows
the declassifications, as indicated by the principal p where (m, p, q) ∈ Υ. A de-
termination of what may be declassified requires (manual) analysis of the actual
declassifications. For example, we may know that Alice allows her data to be leaked
by a password check. By manually analyzing this declassifier, we could determine
that only one bit of information is leaked per call. We would have to understand
how the program uses the declassifier to ensure it is not called too often.

FJifP’s declassify e construct resembles the language construct proposed for
selective declassification [Myers 1999], robust declassification [Myers et al. 2006],
and delimited release [Sabelfeld and Myers 2004], among others. One difference is
that these prior mechanisms may downgrade e to an arbitrary label (under the right
conditions, see below), while in FJifP the new label is restricted by the portion
of declassification policy Υ that applies to the trusted method m in which the
declassify appears. This restriction is similar to that imposed by flow policies F in
the construct flow F in S proposed by Matos and Boudol [2005]. This construct
specifies that the execution of statement S should allow additional flows according
to F , which consists of statements of the form A � B. Follow-on work [Boudol and
Kolundzija 2007] constrains when this construct can be used according to a dynamic
access control policy, similar to an approach taken by Tse and Zdancewic [2004].
We could implement our trusted declassification policy Υ using such a construct
by, for each (m, p, q) ∈ Υ, changing the body S of m to be flow (p � q) in S. The
actual occurrences of declassification within S, using this approach, are implicit,
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while for trusted declassifiers they are explicit, aiding manual analysis.
Robust declassification considers the integrity of a program’s control flow in de-

ciding whether a declassification should be allowed. For example, data owned by
Alice can only be robustly downgraded if the integrity of the control flow at the
declassification point is trusted by Alice. At present, FJifP lacks this notion of
robustness—it only considers the static policy Υ with respect to a declassifying
method m, and not the program context in which m could be called. This notion of
robustness could be incorporated into FJifP by changing how declassify is type
checked; we could allow the programmer to augment Υ to specify intransitive in-
tegrity constraints similar to the confidentiality constraints now expressed.

Designating trusted methods as part of the global security policy reveals all po-
tential information flows as part of that policy, simplifying policy analysis (e.g., as
reachability in a graph like that shown in Figure 3). This is in contrast to the de-
classification mechanisms mentioned above, which require analyzing the program in
conjunction with the global policy. Work by Smith and Thober [2007] proposes sep-
arately declaring information flow policies at the API level for input/output classes,
and for methods that would perform declassification or endorsement (for integrity).
The latter are similar in spirit to our trusted methods, but are implemented as
simply in-lining selective declassification construct declassify around the returned
value, rather than relaxing the policy within the body of the method. This approach
is in the spirit of an in-lined reference monitor (IRM) [Erlingsson 2004], in which
a reference monitor is compiled into a program to enforce a separately-declared
policy.

If we also consider security labels as part of the policy, then two other recently-
proposed systems also express all possible information flows as part of the policy:
the declassification policies of Chong and Myers [2004] and the downgrading policies
of Li and Zdancewic [2005a][2005b]. In both of these systems, the way that data
may be declassified is expressed directly in that data’s label.

Declassification policies p are expressed using security labels of the form l −→c p,
where l is the initial security label of the data, but the label may be changed to
label p when condition c is true. The initial label l may be another declassification
label, or an atomic label drawn from a traditional security lattice. As an example,
the label S −→curryear≥2010 P could express that a document currently labeled
as secret (S) should be relabeled to be public (P ) after the year 2010. Another
example would be to label a document s with S −→isAnonymized(s) P to state that s
is considered secret until some function isAnonymized indicates it is safe to treat
as public. The transition is witnessed by a selective declassification construct and
is only permitted if the type checker can prove c is satisfied at the point of the
declassification. Chong and Myers prove a property called noninterference until
c1, ...ck, which is similar to our noninterference modulo trusted methods property,
but refers to conditions rather than trusted methods. Declassification policies have
been implemented in a recent extension to Jif 3.0 [Clarkson et al. 2008]. (We note
that the flow locks of Broberg and Sands [2006] can specify similar temporal policies
but require the programmer to explicitly indicate in the program text at which
points release conditions have been met, confounding a separate policy analysis.)

Li and Zdancewic’s downgrading policies are also expressed as labels, but they
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indicate what data can be leaked. In particular, a label is a function whose input
parameter represents secret data, and whose result can be considered public. In
effect, the label of some data indicates precisely by what computation it may be
leaked, and the enforcement mechanism can ensure that any program actions on
data will not leak information in violation of its label’s policy. For example, the
identity function λx.x represents the label public, since as “input” it takes a secret
value x, and then returns that value unchanged, making it publicly-visible. At the
opposite extreme are labels described via constant functions; e.g., λx.c (where c
is some constant integer) indicates that no matter what secret argument is passed
in, the same constant value c is returned. The middle ground would be a label
such as λp.(x = p) where p is a (secret) password and = represents the equality
operation (not assignment). This says that information about password p can be
made public by comparing to the guess x; in other words, a public user will learn,
each time the password checker is invoked, whether a public value x is or is not
p. Since this leaks a small amount of information about p, it expresses a kind of
downgrading. Li and Zdancewic prove that their system enjoys a property they call
relaxed noninterference, which essentially states that the only information leaked is
that according to the policy (lattice and labels) [Sabelfeld and Myers 2004]. They
have also adapted their approach to integrity policies [Li and Zdancewic 2005b].

A disadvantage of both of these approaches is that a security analyst must review
the code of an application, and in particular the labels of each variable (which could
themselves refer to program variables), to understand the impact of declassification
operations on the overall policy goals. The insight behind trusted declassifiers is
that declassification operations can be mentioned in a policy that is separate from
programs that use them if (1) declassification operations have a name, and (2) if
the programmer has defined abstract conditions under which the named declassifi-
cation operations may be used. On the other hand, global release policies may not
always be appropriate—it may be more natural to specify declassification policies
for particular data, i.e., as labels. Moreover, both of these systems say something
about what is released (in Li and Zdancewic’s system) and when it is released (in
Chong and Myers’ system), whereas trusted declassifiers say nothing about these
concerns. A natural direction for further research would be to explore combining
trusted declassifiers with elements of these approaches.

Trusted declassifiers and the above systems require label annotations within pro-
grams themselves. For our work, only the allowed declassification contexts and
acts-for hierarchies are separate from the program. Sun et al. [2004] and Smith
and Thober [2007] use whole-program inference and API-based specifications to
avoid labeling in the program text entirely. Labeling policies similarly allow for
a separate specification of how to label data read/written to/from external chan-
nels [Hicks et al. 2007]. This work could be combined with ours for fully separate
security policies.

As discussed previously, the security property presented by Matos and Boudol
[2005] allows adding local information flows through the expression flow F in M .
The authors then define a non-disclosure policy, similar to noninterference with
certain flows allowed, and then prove that a successful program typing under a flow
context G indicates that the program satisfies the non-disclosure policy ND(G).
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As the flow context G is expanded during a static typing to provide temporary
flows in the case of a flow F in M expression, this provides a fine-grained result as
to what conditions information can leak under; the only circumstances under which
information can leak beyond G are these special flow allowance statements. The
proof of our Theorem 3.10 also implies a result of fine-grained information leakage,
as our notion of Λ contains all of the declassification flows possible in a program at
runtime. An easy lemma shows that if Λ′ ≤ Λ, then observational equivalence at
Λ implies observational equivalence at Λ′. This implies that those portions of the
computation that perform declassification to Λ′ are noninterfering below Λ′.

Askarov and Sabelfeld [2007] give a system that weakens noninterference with
a policy for gradual release: at each step during the run of a program, the only
information that is available to an observer (defined as knowledge) is that which
has been already released by declassify statements. They then show that a standard
type system (with minor modifications) over an imperative language with while-
loops satisfies gradual release. As our system does not contain side effects, no
information is released during a computation besides the final value that a term
evaluates to. If we extended the language of FJifP to include side effects, the only
alteration that we would need to make to the type system so that well-typed terms
satisfied gradual release would be to disallow declassifications to levels L that occur
with a program counter of label L′ with L ≤ L′ (for example, within either branch
of a conditional of secrecy L′).

7. CONCLUSION

In this paper, we have presented a security-typed, object-oriented language, FJifP,
which incorporates declassification and delegation as authorized by an external,
global policy. We have shown that this language satisfies a modified form of non-
interference, noninterference modulo trusted methods, meaning that all violations
of noninterference can be justified by the policy. Consequently, noninterference
is maintained for principals which allow no declassifications (i.e. have no trusted
declassifiers) in the policy (and no one who can act for them makes any declassi-
fications). We implemented our policy and trusted declassification for Jif in the
JPolicy framework by using a restricted form of Jif’s selective declassification: we
provide a policy compiler to compile simple policy files into Jif code and we restrict
the use of Jif’s declassify in a way that does not limit the expressive power of the
language.

The JPolicy framework presents an important step forward in making STLs
more practical. For real applications, exceptions must be made to the strong secu-
rity property of noninterference for handling such operations as authentication, data
encryption, anonymization and filtration. The key to our approach is in moderat-
ing the use of these exceptional functions, called declassifiers, through an external
policy. In this way it is still possible to understand the end-to-end information flow
properties of an application without having to inspect the code. Rather, it is only
necessary to inspect the external policy to understand the security properties of an
application running under that policy. This enables to apply the accepted systems
principle of separating security policy from mechanism [Hansen 1970] to STLs.

Introducing a policy specification for a Jif program that introduces principals,
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establishes delegations and also integrates declassification is a significant advance
in improving the flexibility of policy in Jif. Such policies, separated from program
code, can be understood, modified and analyzed apart from the programs in which
they are used. This facilitates high-level reasoning about program policy not pre-
viously possible, opening the door for policy reconciliation analyses such as one
recently defined for Jif and Security-Enhanced Linux policies [Hicks et al. 2007]
and used for developing secure systems [Hicks et al. 2007b; 2007a].

To demonstrate the practicality of our approach, we have successfully applied our
policy framework to some significant applications. We describe our experience with
the Jif application, JPmail, and conclude the value of our approach. Building the
JPmail application and understanding its security properties were greatly improved
through the introduction of JPolicy, our policy framework incorporating trusted
declassification.
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