DIFdoc: a standard format for visualizing
hierarchical dataflow representations

Ivan Corretjer and Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742, USA

Introduction

High performance embedded computing continues to push
the boundaries of performance and complexity for modern
embedded system design tools. Many tools for design of
embedded digital signal processing (DSP) systems have
been developed that increase programmer productivity by
using dataflow models to represent the target application
(e.g., see [2, 3, 7, 9]). For DSP-oriented applications,
dataflow has been shown to be a highly intuitive conceptual
and visual format.

As design complexity increases, so do the resulting
dataflow graphs and one way to manage this complexity is
through hierarchical decomposition of designs. Current
DSP design tools usually present this hierarchy to designers
via a recursive “look-inside” mechanism. Typically, the
top-level graph containing hierarchical components is
displayed in the current view and subsequent levels of the
hierarchy are accessed by clicking through hierarchical
components which then replace the current view. When
working with complex designs involving several layers of
hierarchy, this approach can lead to a loss of where in the
hierarchy the present view is contained and how the current
view fits into the overall application. Furthermore, the
appearance of this approach is tool-dependent, and
therefore it is not always possible to communicate such
representations unambiguously outside a given design team.

In this abstract, we present a novel format for displaying
hierarchical dataflow representations that addresses the
problems described above. Our format presents the entire
hierarchy to the designer in a tool-independent and intuitive
format, while still allowing for convenient inspection of
hierarchical components. Additionally, our format can be
used to standardize dataflow graph descriptions for
presentation and/or documentation purposes. To
demonstrate our format we have integrated it into the
dataflow interchange format (DIF) package.

DIF

The dataflow interchange format (DIF) project is an effort
undertaken in the DSPCAD Research Group at the
University of Maryland to standardize dataflow semantics,
facilitate technology transfer for DSP design tools, and
improve dataflow modeling and synthesis technology [5, 6].
DIF provides a programming language (called the ‘DIF
language’ or just ‘DIF’) that unifies important forms of
DSP-oriented dataflow modeling semantics, and also
provides various components for the analysis and
manipulation of graphs that are described in this language.
Figure 1, which is adapted from [6], illustrates the role of
DIF in DSP system design.

DIFdoc

We have developed a tool-independent, human-readable
dataflow graph documentation format called DIFdoc for
representing dataflow designs as hyperlinked combinations
of HTML files and visual, graph representations. We have
also developed a tool for generating DIFdoc representations
from the DIF internal representation, which is the internal
form to which all DIF language specifications are compiled
into by the DIF language front-end.

Representative
DSP Domains

Image Proc

Static Dataflow Models

E Dynamic }[Meta—Modeling}
[BDF]|| [PDF | [BLDF] [Audio Proc |

T
(DIF Language »--#_DIF Specifications)
1

+
The DIF Package [DIF Front-end | [Algorithms |
T T DIF-to-C
‘ AIF / Porting ‘ ‘ DIF Representations ‘ DIF-to-VSIPL
E ST E

DIF Spec DIF Spec

[DIF-Ptolemy Ex/Im | [DIF-AT Ex/Im | [Other Ex/Im | ,_i,?,gfies

T T -
Dataflow-based lMOM'- SPGN -VSIE
DSP Design Autocoding Other
Tools ‘ Ptolemy Il ‘ ‘ Toolset ‘ ‘ Tools ‘

s =SS

Embedded Java Ada Other
Processing Embedded
Platforms [Java VM| | VDM Platforms

Figure 1: An illustration of the role of DIF in DSP design.

More specifically, the DIFdoc format displays dataflow-
based design hierarchies using a combination of HTML (to
represent hierarchical layers textually), and dot graphs (to
represent individual graphs pictorially). The dot package is
a well-known, freely-available software package for
drawing graphs in their standard pictorial format [4]. This
package employs sophisticated algorithms to draw graphs
in ways that are visually intuitive.

The HTML portions of DIFdoc use indentation to represent
the various layers of the design hierarchy, and hyperlinks so
that for any level of the hierarchy, one has easy access to a
visual (dot-based) representation for the dataflow graph at
that level. Furthermore, deeply-nested designs can be
organized through multiple HTML files, where the deepest
levels of the hierarchy in the top-level representation are
linked to separate HTML-based representations of their
internal structures.

This hyperlinked, combined textual-pictorial representation
of dataflow designs provides a unique representation of an
entire dataflow hierarchy, a kind of view that is not
available with conventional GUI-based dataflow tools, and
is an especially convenient way for users to browse
dataflow designs, and document them in a tool-independent
way.

Application Examples

The DIFdoc representation of an FM demodulation
application graph taken from the GNU radio software
package [1] is depicted in Figure 2. The textual
representation of the graph hierarchy can be seen in (a).
The top-level graphical representation of the application is
shown in (b), with the hierarchical component demod
depicted in (c). The source signal is provided by the high
speed analog-to-digital converter (ADC), and filter
coefficients are generated to select the appropriate FM
station to demodulate. By changing these coefficients
through a user parameter, the same application graph can be
used to demodulate any FM station. Once the FM station
frequency has been selected, the signal (at FM frequencies)
is downconverted to baseband, and passed to the
demodulation subsystem. Inside demod, a quadrature
demodulator operates on the baseband FM signal to extract
a portion of the FM audio signal (namely, the left-plus-right
audio information). This audio signal is then filtered before
being sent to the PC sound card (audio sink).

(@) (b)

fmDemod e — — ——
ﬂ!iﬂl_speed_a<b_> (firdes_low_pass)
high_speed_adc ‘--__,'__..—- — -

el Je

freq_xlating fir_filter_cof

firdes_low_pass Cfreq xdating fir_filter_ccf >

demad
3
fquadrature demod cf L]
fir filter fff (dmmd)
firdes_low_pass Ly
audio_sink _
If\'.“ui::_siul;/‘
c — —
© fmDemod

Cjcilm(h'nhuc_dmlod_ci:) Cﬁrd.cs_l.owyasé)

\a @
e
(fir_filter_t11)
bml:l;;l:ne
Figure 2: FM demodulation example from GNU radio.

(€Y (b)

BAR

(AllaCoceader) (SARDataReader) ¢ AlterCoefRender? 3 AllaCoeMReader
SKRFR i . c -l —— 3 - :
= €l
AZI FR -~
aA—F .
CORNERTURN { SARFR)
FFT
CONVL o
{_ LineWriter
LFET i
(c) SAR (d)
ENG_FB -
¢ CORNERTURN) AR
FAD e s
" ks
VELGUT ' v
¥ Citin F s Y
COMPRESS { mr) {_weIoHT)
COMPENSATE = et
L] v
FiltercortRrader o z 3
{_oaNvL) { _COMPRESS)
SARDATAREAdEr e G
|5 E
FiltercortRraders])
FilrrrcorfReaderd L J { COMPENSATE 3
AZI_FR RNG_FR

Linefricer

Figure 3: Synthetic aperture radar example from MCCI.

Another example is the synthetic aperture radar (SAR)
application provided by MCCI [8], and shown in Figure 3
in DIFdoc format. Here, the application graph (b) and main
processing components, Azimuth (c) and Range finding (d),

are shown in graphical form after being accessed from the
top-level textual representation (a).

Integration of DIFdoc and DIF

To facilitate adoption of our new DIFdoc format, we have
integrated it into the DIF package. This was accomplished
through the introduction of a new DIF attribute, difdoc.
Users can specify several configuration parameters for the
current DIF graph using the difdoc attribute, with a sample
of these options summarized in Table 1.

Future work on DIFdoc involves the incorporation of
interfaces to the hierarchy as well as providing for more
detailed information to edge attributes. We plan on
releasing an updated, full performance version of DIF with
the DIFdoc enhancements in the near future.

Table 1: DIFdoc configuration parameters.

. Sets the amount of indention for

indentAmount .
each level of hierarchy

maxIndent Sets the maximum level of indention
per HTML page

dotOutputFormat Sets the format for dot generated
graph files

Acknowledgements

This work is supported by the U.S. Defense Advanced
Research Projects Agency through Management,
Communications, and Control, Inc.

References

[1] E.Blossom. GNU radio: tools for exploring the radio
frequency spectrum. Linux Journal, June 2004.

[2] J. Buck and R. Vaidyanathan. Heterogeneous modeling and
simulation of embedded systems in El Greco. In Proceedings
of the International Workshop on Hardware/Software Co-
Design, May 2000.

[31 J. Eker et al., “Taming heterogeneity — the Ptolemy
approach”, Proceedings of the IEEE, January 2003.

[4] E. R. Gansner, S. C. North, E. Koutsofios, and K. Vo. A
technique for drawing directed graphs. Technical report,
AT&T Bell Laboratories, 1993.

[5] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhatta-
charyya, “DIF: An interchange format for dataflow-based
design tools”, Proceedings of the International Workshop on
Systems, Architectures, Modeling, and Simulation, pages
423-432, Samos, Greece, July 2004.

[6] C.Hsu and S.S. Bhattacharyya. Integrating VSIPL support
in the dataflow interchange format. In Proceedings of the
Annual Workshop on High Performance Embedded
Computing, pages 75-76, Lexington, Massachusetts,
September 2005.

[7] Lauwereins, R., Engels, M., Ade, M., and Peperstracte, J. A,
“Grape-II: A system-level prototyping environment for DSP
applications”, |EEE Computer Magazine, 28(2):35-43,
February 1995.

[8] C. B. Robbins, “Autocoding Toolset software tools for auto-
matic generation of parallel application software”, Technical
report, Management, Communications, and Control, Inc.,
2002.

[9] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamlt: A
language for streaming applications. In Proceedings of the
International Conference on Compiler Construction, 2002.

