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ABSTRACT

New high-precision U/Pb geochronology from volcanic ashes shows that the Triassic-Juras-
sic boundary and end-Triassic biological crisis from two independent marine stratigraphic
sections correlate with the onset of terrestrial flood volcanism in the Central Atlantic Mag-
matic Province to <150 ka. This narrows the correlation between volcanism and mass extinc-
tion by an order of magnitude for any such catastrophe in Earth history. We also show that
a concomitant drop and rise in sea level and negative 8°C spike in the very latest Triassic
occurred locally in <290 ka. Such rapid sea-level fluctuations on a global scale require that
global cooling and glaciation were closely associated with the end-Triassic extinction and
potentially driven by Central Atlantic Magmatic Province volcanism.

INTRODUCTION

Mass extinctions reflect important interac-
tions between biology, geology, geochemical
cycles, and climate. The end-Triassic mass
extinction is one of the five largest extinctions in
Earth history, though considerable uncertainty
remains in terms of its duration, causes, and
effects. Many workers suggest that the extinc-
tion was related directly or indirectly to adverse
climate following the onset of the Central Atlan-
tic Magmatic Province (CAMP), which erupted
>2.5 x 10° km?® of basalt, possibly in <1 Ma,
making it perhaps the most voluminous flood
basalt sequence of the Phanerozoic (Marzoli et
al., 2004; McHone, 2003; Nomade et al., 2007;
Whiteside et al., 2007). However, there remains
a need for precise and accurate geochronol-
ogy to correlate the onset of CAMP volcanism,
recorded uniquely in terrestrial sections, with the
well-documented marine extinction event (Mar-
zoli et al., 2008; Tanner et al., 2004; Whiteside
et al., 2007). Also lacking are time constraints
for the rates of the Triassic-Jurassic bound-
ary extinction and associated geochemical and
paleoenvironmental fluctuations. We sampled
three volcanic ash beds bracketing the Triassic-
Jurassic boundary from the Pucara basin, north-
ern Peru (Fig. 1A; Schaltegger et al., 2008), and
also the first discovered ash bed from the New
York Canyon, Nevada, which has been proposed
as the Global Boundary and Stratotype Sec-
tion and Point for the Triassic-Jurassic bound-
ary (Guex et al., 2004). We also provide new
U/Pb zircon data from two labs for the North
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Mountain Basalt, the lowest CAMP basalt from
the Fundy Basin, Nova Scotia (Greenough and
Dostal, 1992). Both the ash beds and the North
Mountain Basalt were dated using chemical
abrasion—isotope dilution—thermal ionization
mass spectrometry (CA-ID-TIMS; Mattinson,
2005) U-Pb zircon geochronology employing a
new well-calibrated 2*?Pb->%Pb->*U->U tracer
solution, which removes random uncertainty in
mass fractionation during mass spectrometry.
Data with this solution are as much as 70% more
precise compared to single-Pb/single-U tracers,
revealing complexity in tuff zircon populations
that require new data interpretation strategies.

TRIASSIC-JURASSIC BOUNDARY

Recent consensus places the Triassic-Jurassic
boundary at the first occurrence of the oldest
Jurassic ammonite Psiloceras spelae, which
marks the beginning of postextinction biodi-
versity recovery (Guex et al., 2004; Morton
and Hesselbo, 2008). Pinpointing the extinction
interval is more complicated, but coincides with
a sharp negative spike in 8'*C at the end-Triassic,
when there were steep declines in the bio-
diversity of ammonites, bivalves, radiolarians,
corals, and conodonts (Morton and Hesselbo,
2008). This initial negative excursion is fol-
lowed by a gradual positive recovery (Fig. 1B),
which precedes a slow negative excursion in
the Early Jurassic (beginning at bend N13 in
Fig. 1B; Guex et al., 2004; Hesselbo et al., 2004;
Kuerschner et al., 2007; Ward et al., 2001). The
end-Triassic negative 8'"*C excursion is recorded
in marine organic and carbonate carbon and
continent-derived wood material, illustrating
that the anomaly resulted from a global carbon
cycle perturbation (Galli et al., 2005; Hesselbo
et al., 2004; Palfy et al., 2001).

Proxies for rising atmospheric CO, have been
reported from terrestrial fossil plants straddling
the Triassic-Jurassic boundary (McElwain et al.,
1999; Retallack, 2001), though the effects of
other gases such as SO, on such proxies may
also be important (Guex et al., 2004; Tanner et
al., 2007). Terrestrial correlatives to the marine
extinction are debated (Lucas and Tanner, 2007,
Tanner et al., 2004). An apparent palynological
event <1 m below the lowest CAMP basalt in
the Newark and Fundy Basins in North America
was proposed as correlative of the Triassic-
Jurassic boundary (Whiteside et al., 2007); this
has been challenged on the basis of biostrati-
graphic and magnetostratigraphic work from
North America and Morocco (Marzoli et al.,
2004, 2008). Others argue that vertebrate and
palynological biostratigraphy in the Newark and
Fundy Basins, respectively, place the Triassic-
Jurassic boundary in sedimentary slivers above
the North Mountain Basalt (Lucas and Tanner,
2007; Cirilli et al., 2009).

An age for the marine Triassic-Jurassic
boundary comes from the Pucara basin in
northern Peru, where Schaltegger et al. (2008)
reported a weighted-mean *Pb/**U date of
201.58 + 0.18/0.38 Ma (20; without/with
decay constant uncertainties). Abundant CAMP
“OAr/*Ar data cluster at 199 Ma (e.g., Nomade
et al., 2007), but uncertainties of 1-2 Ma on indi-
vidual dates in addition to the well-documented
~0.7%—1% bias between the “*Ar/*Ar and U-Pb
dating methods (Kuiper et al., 2008; Schoene
et al., 2006) make this correlation imprecise. A
206pb/238U date from the North Mountain Basalt
0f201.27 £ 0.06/0.30 Ma (Schoene et al., 2006)
would suggest that the CAMP postdates the Tri-
assic-Jurassic boundary, precluding a causative
relationship. However, those two U-Pb dates
were measured using different tracer solutions,
allowing for systematic bias and preventing
high-precision comparison.

LOCALITIES AND U-Pb
GEOCHRONOLOGY

We sampled three volcanic ash beds brack-
eting the Triassic-Jurassic boundary in the
Pucara basin (samples LM4-86, LM4-90, and
LM4-100/101; Figs. 1A, 1B), which is well
calibrated biostratigraphically (Schaltegger et
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al., 2008). In this section, the disappearance
of the latest Triassic ammonite Choristoceras
crickmayi immediately precedes the peak
extinction rate (Guex et al., 2004). One ash
bed sample (NYC-N10) was collected ~1.5 m
above the first occurrence of P. spelae in the
New York Canyon section, for which detailed
4"C and biostratigraphic data have been pub-
lished (Guex et al., 2004, 2008) (Figs. 1A, 1B).
We also provide new U/Pb data from two labo-
ratories for the North Mountain Basalt (NMB-
03-1). All dates were produced using CA-ID-
TIMS on single zircons relative to the new
EARTHTIME  (http://www.earth-time.org/)
(£?2Pb)-25Pb-?33U-?»U tracer solution, allow-
ing us to ignore tracer calibration uncertain-
ties within this study (Schoene et al., 2006).
All uncertainties are reported at the 26 level,
have been corrected for °Th disequilibrium,
and omit decay constant uncertainties unless
otherwise noted (see the GSA Data Repository!
for analytical details). 2°°Pb/**U dates for sin-
gle zircons are plotted in Figure 1C and concor-
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dia plots and U-Pb data are presented in Fig-
ure DR1 and Table DR1, respectively.

Ash beds yielded 20-100 zircons between 50
and 200 um in diameter (see the Data Reposi-
tory); 14 zircons from sample LM4-86 give
206ph/238U dates that span ~1.5 Ma between 201
and 203 Ma, with one older and one younger
grain. The main population is not statistically
equivalent, with a high mean square of weighted
deviates (MSWD) of 12 on a weighted-mean
200ph/238U date (i.e., many dates do not overlap
at 20). Similarly, LM4-90 and LM4-100/101
yield zircon populations that spread between 0.4
and >1 Ma with high MSWD values. LM4-90
also has one grain ca. 200.1 Ma and a popula-
tion of ca. 900 Ma xenocrystic zircons. Of 17
zircons from NYC-N10, 15 give *Pb/?33U dates

!GSA Data Repository item 2010109, U-Pb data

table, analytical details, and additional figures, is
available online at www.geosociety.org/pubs/ft2010
.htm, or on request from editing @ geosociety.org or
Documents Secretary, GSA, P.O. Box 9140, Boulder,
CO 80301, USA.

between 201.3 and 201.9 Ma; a weighted-mean
yields an MSWD of >2. Two younger grains
give 2%Pb/?#¥U dates younger than 201 Ma and
two older grains of ca. 203 Ma (Fig. 1C).

Analyses of 13 single grains of the North
Mountain Basalt (NMB-03-1) from the Univer-
sity of Geneva and 19 analyses from the Massa-
chusetts Institute of Technology are statistically
equivalent, yielding a weighted-mean 2°°Pb/>$U
date of 201.38 +0.02/0.22/0.31 Ma (internal
uncertainties/with tracer calibration uncertain-
ties/with decay constant uncertainties; omitting
two analyses, MSWD = 1.2).

INTERPRETING DEPOSITION AGES
FOR ASH BEDS

U/Pb ages for volcanic ash beds are often
determined by calculating a weighted-mean
date and thus assuming that there exists a single
population of zircons that crystallized immedi-
ately prior to eruption (Ramezani et al., 2007;
Schaltegger et al., 2008). Our ash-bed data reveal
complicated U-Pb systematics, precluding such
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an interpretation. The observed spread in dates
could be created by several effects: (1) analyti-
cal bias and underestimated uncertainties, (2)
postcrystallization loss of radiogenic Pb from
zircons, or (3) zircons representing a range of
growth histories prior to eruption. The equiva-
lency of the North Mountain Basalt data from
two independent laboratories using a single
tracer solution, transparent data-reduction tech-
niques (Schmitz and Schoene, 2007), and care-
ful analytical blank calibration (see the Data
Repository) suggests that tuff zircon data are
equally accurate and analytical uncertainties are
correctly estimated.

Despite the overall success of the chemical
abrasion technique at removing the effects of
Pb loss (Mattinson, 2005), three of four ash-
bed samples have at least one zircon that is far
younger than the main population, and we sug-
gest that these outliers are the result of residual
Pb loss. There is a simple test suggesting that the
main population of zircons did not also undergo
Pb loss: the youngest zircon from the main popu-
lation of each sample is younger or within uncer-
tainty than that of the sample stratigraphically
below it. This would be remarkably coincidental
if these populations had undergone Pb loss.

We interpret the spread in 2°Pb/>%U dates
of the main population of tuff zircons to be
the result of protracted growth of zircon in the
magmatic system and/or the incorporation of
xenocrystic zircon. Complex volcanic and plu-
tonic systems involving small magma batches,
mafic and silicic replenishment, magma min-
gling and/or mixing, and crustal assimilation
can entrain antecrystic to xenocrystic zircons
with dates recording millions of years of mag-
matic activity (Charlier et al., 2005; Crowley et
al., 2007; Simon and Reid, 2005; Miller et al.,
2007). Th/U ratios of zircons from each of our
ash samples plot into distinct but overlapping
groups (Fig. DR2). This argues that younger
ashes came from a different magma batch, but
may have incorporated reworked ash material
and/or xenocrystic zircons. Zircon morphology
supports this: the youngest grains had the high-
est aspect ratios and were prismatic and euhe-
dral (typical of rhyolitic zircon), whereas older
populations contained similarly euhedral grains
in addition to anhedral rounded grains. Thus,
although zircon selection is critical in avoiding
xenocrysts, the increased precision afforded by
the 22Pb-2%Pb-23U-?U tracer can also identify
euhedral zircons that predate eruption. The zir-
cons from LM4-86 dated (Schaltegger et al.,
2008) with a 2Pb-?*U tracer likely record the
same population of zircons as this study, though
it appeared as one population due to increased
uncertainties on single analyses (Fig. 1C). Such
an observation demands caution when taking
weighted means of large populations, especially
in lower precision data sets.

GEOLOGY, May 2010

Therefore, we use the youngest single closed-
system zircon to approximate the eruption date
(Figs. 1B, 1C). A less conservative interpretation
uses weighted means of several zircons, with
the resulting MSWD as a guide. Those eruption
ages overlap with the single-grain interpretation
and with the age of the North Mountain Basalt
(Table DR3).

TIMING AND RATES OF EVENTS AT
THE TRIASSIC-JURASSIC BOUNDARY

A 2Pb/*8U age of the Triassic-Jurassic
boundary in the Pucara basin, defined as the first
appearance of P. spelae, can be calculated using
our new data to be 201.31 +0.18/0.38/0.43 Ma,
using the difference between the minimum age
of LM4-100/101 and the maximum age of LM4-
90. This correlates to the onset of the CAMP in
the Fundy Basin to within +150 ka (Fig. 1B).

Our data also provide tie points between the
terrestrial Triassic-Jurassic boundary, located
near the North Mountain Basalt (Cirilli et al.,
2009), and the marine ammonite extinction in
two stratigraphic sections. The deposition age
from NYC-N10 in Nevada is identical to that
from LM4-100/101 in Peru, illustrating that the
first appearance of P. spelae in both sections is
contemporaneous within our resolution. If we
assume that the last occurrence of C. crickmayi
in the New York Canyon is also correlative
with that in the Pucara basin, we can conclude
that the duration of the end-Triassic negative
3‘3C0rgunic excursion was 70 +220/-70 ka (the
duration between LM4-86 and NYC-N10),
which also serves as an estimate for the duration
of the mass extinction event.

DISCUSSION

Some numerical carbon cycle models suggest
that CO, released from flood basalts is insuf-
ficient to create the end-Triassic negative 8'*C
anomaly and that associated with the Permian-
Triassic extinction (Beerling and Berner, 2002;
Payne and Kump, 2007). Alternatively, it is
hypothesized that CAMP volcanism may have
destabilized methane hydrates or accessed large
carbon reservoirs by erupting through organic-
rich sediment, resulting in massive input of light
carbon into the oceans and atmosphere, creat-
ing a <200 ka negative 8"°C spike (Beerling
and Berner, 2002; Pélfy et al., 2001; Retallack,
2001), which is consistent with our geochro-
nological data. However, recent work suggests
that SO, and polycyclic aromatic hydrocarbons
were drivers in rapid and widespread terrestrial
plant turnover, rather than CO, and greenhouse
warming (Van de Schootbrugge et al., 2009).
Furthermore, Korte et al. (2009) provided 'O
data from fossil oysters that argue for cool ocean
temperatures immediately after the initial nega-
tive 8'*C excursion (after the extinction event in
the New York Canyon), followed by ~8 °C early

Hettangian warming. These recent studies argue
that CO,-induced global warming was not the
driver for the end-Triassic biotic crisis, but allow
that it was important in the postextinction recov-
ery interval.

The short duration (<290 ka) for the marine
regression-transgression sequence in the New
York Canyon provided by our geochronological
data gives an additional constraint. Latest Tri-
assic regression-transgression is recognized in
numerous sections in Europe and North Amer-
ica, and is likely the result of global sea-level
change (Hallam and Wignall, 1999). Several
sections in Europe also show it coupled to the
Late Triassic negative 8"C excursion, as seen
in the New York Canyon (Fig. 1B) (e.g., Galli
et al., 2005; Hesselbo et al., 2004; Kuerschner
et al., 2007). Global eustasy results from a vari-
ety of processes, including continental uplift
due to thermal underplating (e.g., by a plume)
or changes in volumes or rates of mid-ocean
ridge production, but these processes occur on
time scales longer than 1 Ma (e.g., Miller et al.,
2005). The rapid sea-level fluctuation we docu-
ment for the latest Triassic can only be explained
by glacial eustasy. A model that accounts for this
observation was proposed in Guex et al. (2004),
and suggested that the negative 8'*C excursion in
the uppermost Triassic (Fig. 1B) was associated
with extinction and primary productivity col-
lapse caused by volcanic SO, and heavy metals
emissions, acid rain, and a cooling and glacial
event that caused a short but major drop in sea
level. This first phase was followed by CAMP—
related CO, accumulation, greenhouse warm-
ing, marine transgression, and postextinction
biotic recovery, corresponding to the positive
and second negative 8'*C excursions (Fig. 1B).

Fingerprinting the trigger for the end-Triassic
ecological disaster must come from additional
biological and environmental proxy data in com-
bination with high-precision geochronology in
other Triassic-Jurassic boundary sections. Such
work will better constrain the rates of CAMP
eruption and corroborate that sea-level change
and extinction were everywhere fast and contem-
poraneous (Hallam and Wignall, 1999; Hesselbo
et al., 2004). Our new U-Pb data show that such
constraints can be facilitated using new freely
available EARTHTIME (+%*Pb)->*Pb-3U-*U
tracers, by effectively eliminating interlaboratory
bias and substantially increasing both internal
and external precision of U-Pb ID-TIMS dating.

ACKNOWLEDGMENTS

Guex, Schaltegger, and Schoene were supported by
the Suisse Fonds National, and Guex acknowledges
stimulating discussions with D. Taylor. We thank
J. Ramezani for assistance with the North Mountain
Basalt dating at the Massachusetts Institute of Technol-
ogy (MIT). Helpful suggestions from A. Marzoli and
two other reviewers improved this paper. Support at
MIT comes from National Science Foundation grant
EAR-0446880 and the EARTHTIME initiative.

389


http://geology.gsapubs.org/

Downloaded from geology.gsapubs.org on May 1, 2010

REFERENCES CITED

Beerling, D.J., and Berner, R.A., 2002, Biogeochemi-
cal constraints on the Triassic-Jurassic boundary
carbon cycle event: Global Biogeochemical Cy-
cles, v. 16, 1036, doi: 10.1029/2001GB001637.

Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B.,
Blake, S., Van Calstren, P.W., and Davidson,
J.P,, 2005, Magma generation at a large hyper-
active silicic volcano (Taupo, New Zealand)
revealed by U-Th and U-Pb systematics in zir-
cons: Journal of Petrology, v. 46, p. 3-32, doi:
10.1093/petrology/egh060.

Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H.,
Buratti, N., Jourdan, F., Bellieni, G., Kontak,
D., and Renne, P.R., 2009, Latest Triassic on-
set of the Central Atlantic Magmatic Province
(CAMP) volcanism in the Fundy Basin (Nova
Scotia): New stratigraphic constraints: Earth
and Planetary Science Letters, v. 286, p. 514—
525, doi: 10.1016/j.epsl.2009.07.021.

Crowley, J.L., Schoene, B., and Bowring, S.A., 2007,
U-Pb dating of zircon in the Bishop Tuff at the
millennial scale: Geology, v. 35, p. 1123-1126,
doi: 10.1130/G24017A.1.

Galli, M.T., Jadoul, F., Bernasconi, S.M., and Weis-
sert, H., 2005, Anomalies in global carbon
cycling and extinction at the Triassic/Jurassic
boundary: Evidence from a marine C-isotope
record:  Palacogeography, Palaeoclimatol-
ogy, Palaeoecology, v. 216, p. 203-214, doi:
10.1016/j.palaeo.2004.11.009.

Greenough, J.D., and Dostal, J., 1992, Cooling
history and differentiation of a thick North
Mountain Basalt flow (Nova Scotia, Canada):
Bulletin of Volcanology, v. 55, p. 63-73, doi:
10.1007/BF00301120.

Guex, J., Bartolini, A., Atudorei, V., and Taylor, D.,
2004, High-resolution ammonite and carbon
isotope stratigraphy across the Triassic-Juras-
sic boundary at New York Canyon (Nevada):
Earth and Planetary Science Letters, v. 225,
p. 29-41, doi: 10.1016/j.epsl.2004.06.006.

Guex, J., Bartolini, A., Taylor, D., Atudorei, V., The-
lin, P., Bruchez, S., Tanner, L.H., and Lucas,
S.G., 2008, The organic carbon isotopic and
paleontological record across the Triassic-
Jurassic boundary at the candidate GSSP sec-
tion at Ferguson Hill, Muller Canyon, Nevada,
USA: Comment: Palacogeography, Palaeocli-
matology, Palacoecology, v. 273, p. 205-206.

Hallam, A., and Wignall, P.B., 1999, Mass extinc-
tions and sea-level changes: Earth-Science Re-
views, v. 48, p. 217-250, doi: 10.1016/S0012
-8252(99)00055-0.

Hesselbo, S.P., Robinson, S.A., and Surlyk, F., 2004,
Sea-level change and facies development
across potential Triassic-Jurassic boundary
horizons, SW Britain: Geological Society of
London Journal, v. 161, p. 365-379.

Korte, C., Hesselbo, S.P., Jenkyns, H.C., Rickaby,
R.E.M., and Spétli, C., 2009, Palacoenviron-
mental significance of carbon- and oxygen-
isotope stratigraphy of marine Triassic Jurassic
boundary sections in SW Britain: Geological
Society of London Journal, v. 166, p. 431-445,
doi: 10.1144/0016-76492007-177.

Kuerschner, WM., Bonis, N.R., and Krystyn, L.,
2007, Carbon-isotope stratigraphy and paly-
nostratigraphy of the Triassic-Jurassic transi-
tion in the Tiefengraben section—Northern
Calcareous Alps (Austria): Palacogeography,
Palaeoclimatology, Palacoecology, v. 244,
p. 257-280, doi: 10.1016/j.palaeo.2006.06.031.

Kuiper, K.F,, and Deino, A., Hilgen, F.J., Krijgsman,
W., Renne, PR., and Wijbrans, J.R., 2008, Syn-

390

chronizing rocks clocks of Earth history: Sci-
ence, v. 320, p. 500-504.

Lucas, S.G., and Tanner, L.H., 2007, The nonma-
rine Triassic-Jurassic boundary in the Newark
Supergroup of eastern North America: Earth-
Science Reviews, v. 84, p. 1-20, doi: 10.1016/j.
earscirev.2007.05.002.

Marzoli, A., and 14 others, 2004, Synchrony of the
Central Atlantic magmatic province and the
Triassic-Jurassic boundary climatic and bi-
otic crisis: Geology, v. 32, p. 973-976, doi:
10.1130/G20652.1.

Marzoli, A., Bertrand, H., Knight, K.B., Cirilli, S.,
Nomade, S., Renne, PR., Vérati, C., Youbi, N.,
Martini, R., and Bellieni, G., 2008, Synchrony
between the Central Atlantic magmatic prov-
ince and the Triassic-Jurassic mass-extinction
event?: Comment: Palacogeography, Palaeocli-
matology, Palacoecology, v. 262, p. 189-193,
doi: 10.1016/j.palaec0.2008.01.016.

Mattinson, J.M., 2005, Zircon U-Pb chemical-
abrasion (“CA-TIMS”) method: Combined
annealing and multi-step dissolution analysis
for improved precision and accuracy of zircon
ages: Chemical Geology, v. 220, p. 47-56, doi:
10.1016/j.chemge0.2005.03.011.

McElwain, J.C., Beerling, D.J., and Woodward, FI.,
1999, Fossil plants and global warming at the Tri-
assic-Jurassic Boundary: Science, v. 285, p. 1386~
1390, doi: 10.1126/science.285.5432.1386.

McHone, J.G., 2003, Volatile emissions from Central
Atlantic Magmatic Province basalts; mass as-
sumptions and environmental consequences, in
Hames, W.E., et al., eds., The Central Atlantic
Magmatic Province; insights from fragments
of Pangea: American Geophysical Union Geo-
physical Monograph 136, p. 241-254.

Miller, J.S., Matzel, J.P., Miller, C.F., Burgess, S.D.,
and Miller, R.B., 2007, Zircon growth and
recycling during the assembly of large, com-
posite arc plutons: Journal of Volcanology and
Geothermal Research, v. 167, p. 282-299, doi:
10.1016/j.jvolgeores.2007.04.019.

Miller, K.G., Kominz, M.A., Browning, J.V., Wright,
J.D., Mountain, G.S., Katz, M.E., Sugarman,
P.J., Carter, B.S., Christie-Blick, N., and Pekar,
S.E, 2005, The Phanerozoic record of global
sea-level change: Science, v. 310, p. 1293—
1298, doi: 10.1126/science.1116412.

Morton, N., and Hesselbo, S., eds., 2008, Details of
voting on proposed GSSP and ASSP for the
base of the Hettangian Stage and Jurassic Sys-
tem: International Subcommission on Jurassic
Stratigraphy Newsletter, v. 35, part 1, Decem-
ber, 76 p.

Nomade, S., Knight, K.B., Beutel, E., Renne, P.R.,
Verati, C., Féraud, G., Marzoli, A., Youbi, N.,
and Bertrand, H., 2007, Chronology of the
Central Atlantic Magmatic Province: Impli-
cations for the Central Atlantic rifting pro-
cesses and the Triassic-Jurassic biotic crisis:
Palaeogeography, Palaeoclimatology, Palaeo-
ecology, v. 244, p. 326-344, doi: 10.1016/j
.palaeo.2006.06.034.

Palfy, J., Demény, A., Haas, J., Hetényi, M., Orchard,
M.J., and Veto, 1., 2001, Carbon isotope anom-
aly and other geochemical changes at the Tri-
assic-Jurassic boundary from a marine section
in Hungary: Geology, v. 29, p. 1047-1050, doi:
10.1130/0091-7613(2001)029<1047:CIAAOG
>2.0.CO;2.

Payne, J.L., and Kump, L.R., 2007, Evidence for
recurrent Early Triassic massive volcanism
from quantitative interpretation of carbon iso-
tope fluctuations: Earth and Planetary Science

Letters, v. 256, p. 264-277, doi: 10.1016/j
.epsl.2007.01.034.

Ramezani, J., Schmitz, M.D., Davydov, V.I., Bow-
ring, S.A., Snyder, W.S., and Northrup, C.J.,
2007, High-precision U-Pb zircon age con-
straints on the Carboniferous-Permian bound-
ary in the southern Urals stratotype: Earth and
Planetary Science Letters, v. 256, p. 244-257,
doi: 10.1016/j.epsl.2007.01.032.

Retallack, G.J., 2001, A 300-million year record
of atmospheric carbon dioxide from fossil
plant cuticles: Nature, v. 411, p. 287-290, doi:
10.1038/35077041.

Schaltegger, U., Guex, J., Bartolini, A., Schoene,
B., and Ovtcharova, M., 2008, Precise U-Pb
age constraints for end-Triassic mass extinc-
tion, its correlation to volcanism and Hettan-
gian post-extinction recovery: Earth and Plan-
etary Science Letters, v. 267, p. 266275, doi:
10.1016/j.epsl.2007.11.031.

Schmitz, M.D., and Schoene, B., 2007, Derivation
of isotope ratios, errors, and error correlations
for U-Pb geochronology using 205Pb-235U-
(233U)-spike isotope dilution thermal ioniza-
tion mass spectrometric data: Geochemistry
Geophysics Geosystems, v. 8, Q08006, doi:
10.1029/2006GC001492.

Schoene, B., Crowley, J.L., Condon, D.C., Schmitz,
M.D., and Bowring, S.A., 2006, Reassessing
the uranium decay constants for geochronol-
ogy using ID-TIMS U-Pb data: Geochimica
et Cosmochimica Acta, v. 70, p. 426—445, doi:
10.1016/j.gca.2005.09.007.

Simon, J.I,, and Reid, M.R., 2005, The pace of rhyo-
lite differentiation and storage in an ‘archetypi-
cal’ silicic magma system, Long Valley, Califor-
nia: Earth and Planetary Science Letters, v. 235,
p- 123-140, doi: 10.1016/j.epsl.2005.03.013.

Tanner, L.H., Lucas, S.G., and Chapman, M.G., 2004,
Assessing the record and causes of Late Triassic
extinctions: Earth-Science Reviews, v. 65, p. 103—
139, doi: 10.1016/S0012-8252(03)00082-5.

Tanner, L., Smith, D.L., and Allan, A., 2007, Sto-
matal response of swordfern to volcanogenic
CO, and SO, from Kilauea volcano: Geo-
physical Research Letters, v. 34, L15807, doi:
10.1029/2007GL030320.

Van de Schootbrugge, B., Quan, T.M., Lindstrom, S.,
Piittmann, W., Heunisch, C., Pross, J., Fiebig,
J., Petschick, R., Rohling, H.-G., Richoz, S.,
Rosenthal, Y., and Falkowski, P.G., 2009, Floral
changes across the Triassic/Jurassic boundary
linked to flood basalt volcanism: Nature Geo-
science, V. 2, p. 589-594, doi: 10.1038/ngeo577.

Ward, PD., Haggart, JJW., Carter, E.S., Wilbur,
D., Tipper, H.W., and Evans, T., 2001, Sud-
den productivity collapse associated with the
Triassic-Jurassic boundary mass extinction:
Science, v. 292, p. 1148-1151, doi: 10.1126/
science.1058574.

Whiteside, J.H., Olsen, PE., Kent, D.V., Fowell, S.J.,
and Et-Touhami, M., 2007, Synchrony between
the Central Atlantic magmatic province and
the Triassic-Jurassic mass-extinction event?:
Palaeogeography, Palaeoclimatology, Palaco-
ecology, v. 244, p. 345-367, doi: 10.1016/j
.palaeo.2006.06.035.

Manuscript received 11 September 2009
Revised manuscript received 13 November 2009
Manuscript accepted 13 November 2009

Printed in USA

GEOLOGY, May 2010


http://geology.gsapubs.org/

SUPPLEMENTARY ONLINE MATERIAL

Sample descriptions and analytical methods. NMB-03-1, the North Mtn. Basalt, was
collected at the location described in Schoene et al. (2006) and Hodych and Dunning
(1992). It comes from pegmatitic segregations within the lowest basaltic flow, which
were interpreted by Greenough and Dostal (1992) to have formed in situ after eruption of
the basalt, and therefore zircon dates from these segregations very closely date the
eruption (further description of the NMB is found in Kontak; 2008). Our sample was
processed at MIT using standard crushing and mineral separation procedure. It yielded
abundant stubby prismatic grains from which single grains were selected for chemical
abrasion. Ash sample NYC-N10 was taken from the New York canyon section, Nevada,
USA, whose location is described in Guex et al. (2004) and Ward et al. (2007). The GPS
location for P. spelae in this section is N 38°29'10.6", W 118°05'0.72". The other ash
samples come from the Pucara Group sediments in the Utcubamba Valley, Northern
Peru, which is described in Schaltegger et al. (2008). The GPS location for P. spelae in
this section is S 06°18'28.5", W 77°53'16.2". Sampled ash beds were between 1 and 7 cm
thick and consisted of gray to green to yellow fine-grained material. Ashes were
processed at UNIGE by first crushing with a hammer in a plastic bag and then placed in a
tungsten mill shatterbox for five second increments and sieved to <500 um. Separated
material was then washed with water in a large beaker and decanted multiple times to
remove clay material, and the resulting separates were put through magnetic and heavy
liquid separation. This resulted in between 100 (LM4-100/101) and 20 zircons (NYC-

N10). Single grains were picked for chemical abrasion and combined in a quartz beaker



for annealing at 900 °C for ~60 hours. All grains from a single sample were leached
together in 3 ml savillex beakers in HF + trace HNO; for ~12 hours, rinsed with water
and acetone and then placed in 6N HCI on a hotplate at ~110 °C overnight. These were
then washed several times with water, HCI, and HNOs. Single grains were then
handpicked for dissolution, which varied from short and stubby to long and prismatic
with variable levels of clarity. There was no obvious correlation between grain
morphology and age in any of the analyzed samples, though youngest ash zircons were
always long and prismatic. Each grain was spiked with ~0.004 g of the EARTHTIME
(£2Pb)->Pb->*U->*U tracer solution. Zircons were dissolved in ~70 pl 40% HF and
trace HNOs3 in 200 pl savillex capsules at 210 °C for 48+ hours, dried down and
redissolved in 6N HCI overnight. Samples were then dried down and redissolved in 3N
HCI and put through a modified single 50 pl column anion exchange chemistry (Krogh,
1973). U and Pb were collected in the same beaker and dried down with a drop of 0.05
M H3POQy4, and analyzed on a single outgassed Re filament in a Si-gel emitter, modified
from Gerstenberger and Haas (Gerstenberger and Haase, 1997). Measurements were
performed on a Thermo-Finigan Triton thermal ionization mass spectrometer at UNIGE
and a VG S54 thermal ionization mass spectrometer at MIT.

On the Triton, Pb was measured in dynamic mode on a modified Masscom
secondary electron multiplier (SEM). Deadtime for the SEM was determined by periodic
measurement of NBS-982 for up to 1.3 Mcps and observed to be constant at 23.5 ns.
Multiplier linearity was monitored every few days between 1.3x10° and <100 cps by a
combination of measurements of NBS-981, -982 and -983, and observed to be constant if

the Faraday to SEM yield was kept between ~93-94% by adjusting SEM voltage.



Baseline measurements were made at masses 203.5 and 204.5 and the average was
subtracted from each peak after beam decay correction. Interferences on ***Pb and **°Pb
were monitored by measuring masses 201 and 203 and also by monitoring masses 202
and 205 in unspiked samples. As a result, no corrections were applied. For samples with
the 2**Pb-**’Pb->*U-"U tracer each measured ratio was corrected for fractionation in the
data acquisition software using a ***Pb/*’Pb of 0.99989. For single-Pb spike samples,
the average fractionation value determined by the “**Pb->*’Pb tracer was used, and this
was 0.13+0.04 (2-sigma standard deviation).

On the Triton U was measured in static mode on Faraday cups and 10'? ohm
resistors as UO,". Oxygen isotopic composition was monitored by measurement of mass
272 on large U500 loads (Wasserburg et al., 1981). Though the '*0/'°O typically grew
from 0.00200 to 0.00208 over the course of an analysis, the most drastic increase
occurred at the beginning towards an average value of ~0.00205. As a result, early
blocks of data were deleted and the average value was used for all data, and corrected
during mass spectrometry. Baselines were measurement at £0.5 mass units for 30
seconds every 50 ratios. Correction for mass-fractionation for U was done with the
double spike assuming a sample ***U/**°U ratio of 137.88. Measured ratios were reduced
using the algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007)
(Supplementary Table 1), using the following tracer composition, which has a **>U/**’Pb
=100.20 to which a total uncertainty of 0.1 was assigned (Supplementary Table 2).

All ashbed zircons were measured at UNIGE. Because many of the tuff zircons in
this study are very low-U, the largest uncertainty in the calculated date is that of the

correction for common lead. We measured over 40 total procedural blanks at UNIGE



over the course of this study, spiked either the tracer containing ***Pb or with the single
Pb tracer. We found that the amount of common Pb in blanks agreed well with that found
in zircon analyses, suggesting all common Pb came from blank. The tracer-stripped
isotopic composition resulting from each tracer was slightly different, and this is likely
due to different isotopic compositions in the tracers themselves. Thus, zircons analyzed
with 2°Pb->*’U-*>U were reduced using the corresponding blank composition and vice
versa. After 2-sigma outlier rejection, the composition of fifteen “°Pb->>U-***U -spiked
blanks was: **’Pb/***Pb = 18.08+0.66, **’Pb/***Pb = 15.79+0.45, ***Pb/***Pb = 37.55+0.93
(2-sigma standard deviations) and for 27 **Pb-*">Pb-**U-***U -spiked blanks was:
200pp/2%ph = 18.39+0.22, 2’Pb/A**Pb = 15.62+0.20, ***Pb/**Pb = 37.62+0.78 (2-sigma
standard deviations). To test the accuracy of the **’Pb-2"Pb-**U->*>U composition, we
intentionally picked very small fragments (<20 pm diameter) of North Mtn. Basalt
(NMB-03-1) in order to achieve similar ratios of radiogenic Pb to blank Pb as those
observed in ash bed zircons. Because this did not introduce scatter into the results, we
conclude the blank composition is approximately correct, and not the cause of the range
in dates seen in each ash bed. Blank calculation at MIT followed a similar procedure,
and resulted in the following composition, used to reduce all NMB-03-1 data: ***Pb/**'Pb

= 18.30+0.26, 2°"Pb/***Pb = 15.38+0.17, **®*Pb/***Pb = 37.45+0.72.
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Supplementary Fig. 1. Concordia plots for samples from this study. Uncertainties are at the 95%
confidence level and were calculated using the algorithms in Crowley et al. (2007) and Schmitz and

Schoene (2007).
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Supplementary Fig. 2: Th/U ratio plotted versus age (Supplementary Table 3) for each single zircon
analysis. Th/U from each sample form overlapping clusters, and the average Th/U of zircons from the each
Pucara sample decrease with increasing stratigraphic height. The youngest zircon from each sample
(indicated by color-coded arrows), chosen as the eruption age, follow this same trend. The overlap in
populations may be evidence of zircon inheritance and recycling from older batches of magma or host

rocks.
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Supplementary Table 2: composition of the EARTHTIME U-Pb tracer used in this study

205Pb 9.882260145E-12 [mol/g]

235U 9.902024666E-10 [mol/g]
235U/205Pb 100.20 0.05 + 1o [%]
202Pb/205Pb 9.998900000E-01 +0.005 + 1o [%]
206Pb/205Pb 2.989385290E-04 +0.74 1o [%]
207Pb/205Pb 2.407104342E-04 +0.10 1o [%]
204Pb/205Pb 8.875074984E-05 +0.10 1o [%]
208Pb/205Pb 5.917328387E-04 +0.10 1o [%]
207Pb/206Pb 8.052171630E-01 +0.10 1o [%]
204Pb/206Pb 2.970280430E-01 +0.10 1o [%]
238U/235U 3.087000000E-03 +0.005 1o [%]
233U/235U 9.946400000E-01 +0.005 1o [%]
238U/233U 3.103635486E-03 +0.005 1o [%]



Eruption

Ages
N N

N  date + (MSWD)  date + (MSWD)  date +
NMB
UNIGE |1 20134 011 | 13(0.8) 201.37 0.02
NMBMIT | 1 20127 011 | 19(1.4) 201.39 0.03
LM4-86 | 1 20140 018 | 3(0.7) 20145 010 | 4(3.1) 20154 0.22
LM4-90 | 1 20136 0.13 | 4(0.0) 20135 0.09 | 8(0.9) 201.41 0.07
LM4-
100/101 | 1 20129 0.16 | 3(0.4) 20132 0.10 | 5(0.3) 201.33 0.09

NYC-N10 | 1 20133 0.13 3(0.1) 20134 0.09 | 10(1.3) 20146 0.08

Timing of
Events
age of TJB 201.31 0.18 201.33 0.1 201.36 0.12

duration of
§'"%c 0.07
excursion

+0.22/ 011 +0.13/ +0.23/
-0.07 ' -0.11 -0.08

Supplementary Table 3. Estimates for eruption ages of samples from this study using different
interpretations of the data. All dates are *°°Pb/***U dates in millions of years. All uncertainties are at the
95% confidence interval. N = number of data points used in calculation, beginning with the youngest
closed-system zircon (Fig 1C) and including the next oldest; MSWD = mean square of weighted deviates
for weighted-means with N>2. Ages for events are calculated as follows: age of Triassic-Jurassic
Boundary (TJB) = maximum limits of LM4-90 and minimum limits of LM4-100/101; duration of 8"*C
excursion = age of LM4-86 - age of NYC-N10, uncertainties calculated using standard error-propagation,

assuming duration cannot be <0.





