
Sensor Networks for Medical Care

Victor Shnayder, Bor-rong Chen, Konrad Lorincz,
Thaddeus R. F. Fulford-Jones, and Matt Welsh

Division of Engineering and Applied Sciences

Harvard University

{shnayder,brchen,konrad,mdw}@eecs.harvard.edu, fulford@fas.harvard.edu

Abstract
Sensor networks have the potential to greatly impact many aspects of
medical care. By outfitting patients with wireless, wearable vital sign
sensors, collecting detailed real-time data on physiological status can be
greatly simplified. However, there is a significant gap between existing
sensor network systems and the needs of medical care. In particular,
medical sensor networks must support multicast routing topologies, node
mobility, a wide range of data rates and high degrees of reliability, and
security.

This paper describes our experiences with developing a combined
hardware and software platform for medical sensor networks, called
CodeBlue. CodeBlue provides protocols for device discovery and pub-
lish/subscribe multihop routing, as well as a simple query interface that
is tailored for medical monitoring. We have developed several medical
sensors based on the popular MicaZ and Telos mote designs, including a
pulse oximeter, EKG and motion-activity sensor. We also describe a new,
miniaturized sensor mote designed for medical use.

We present initial results for the CodeBlue prototype demonstrating
the integration of our medical sensors with the publish/subscribe routing
substrate. We have experimentally validated the prototype on our 30-node
sensor network testbed, demonstrating its scalability and robustness as the
number of simultaneous queries, data rates, and transmitting sensors are
varied. We also study the effect of node mobility, fairness across multiple
simultaneous paths, and patterns of packet loss, confirming the system’s
ability to maintain stable routes despite variations in node location and
data rate.

1 Introduction
An emerging application for wireless sensor networks involves
their use in medical care. In a hospital or clinic, outfitting every
patient with tiny, wearable wireless vital sign sensors would allow
doctors, nurses and other caregivers to continuously monitor the
status of their patients. In an emergency or disaster scenario, the
same technology would enable medics to more effectively care for
large numbers of casualties. First responders could receive imme-
diate notifications on any changes in patient status, such as respi-
ratory failure or cardiac arrest. Wireless sensors could augment or
replace existing wired telemetry systems for many specific clinical
applications, such as physical rehabilitation or long-term ambula-
tory monitoring.

Despite the increased interest in this area, a significant gap re-

This document is a technical report. It should be cited as:
Technical Report TR-08-05, Division of Engineering and
Applied Sciences, Harvard University, 2005.
For more information on this project, please see:http://www.
eecs.harvard.edu/˜mdw/proj/codeblue

mains between existing sensor network designs and the require-
ments of medical monitoring. Most sensor networks are intended
for deployments of stationary nodes that transmit data at relatively
low data rates, with a focus on best-effort data collection at a cen-
tral base station. By contrast, medical monitoring requires rela-
tively high data rates, reliable communication, and multiple re-
ceivers (e.g. PDAs carried by doctors and nurses). Moreover, un-
like many sensor network applications, medical monitoring can-
not make use of traditional in-network aggregation since it is not
generally meaningful to combine data from multiple patients.

This paper presents our initial experiences with a proto-
type medical sensor network platform, calledCodeBlue. We
have developed a range of medical sensors integrated with the
commonly-used Mica2 [8], MicaZ [9] and Telos [41] mote de-
signs. These include a pulse oximeter [37], two-lead electrocar-
diogram (EKG) [17], and a specialized motion-analysis sensor
board. In addition, we have developed a small form factor variant
of the Telos mote specifically for wearable use.

The CodeBlue software framework provides protocols for de-
vice discovery, publish/subscribe multihop routing, and a simple
query interface allowing caregivers to request data from groups of
patients. In addition to monitoring patient vital signs, CodeBlue
also integrates an RF-based localization system, called Mote-
Track [34], to track the location of patients and caregivers. This
capability is especially valuable in large hospital settings. We
present an initial evaluation of the CodeBlue prototype, demon-
strating its scalability and robustness as the data rates, number of
simultaneous queries, and transmitting sensors are varied. We also
study the effect of node mobility, fairness across multiple simulta-
neous paths, and patterns of packet loss, confirming the system’s
ability to maintain stable routes despite variations in node location
and data rate.

We are collaborating with several hospitals and medical re-
search groups that plan to make use of the CodeBlue platform.
These include Boston Medical Center, Brigham and Women’s
Hospital, the Spaulding Rehabilitation Hospital, and Johns Hop-
kins University. We present initial results demonstrating our wire-
less motion-analysis sensors, which will be used in a future study
of stroke patient rehabilitation. Our initial experience highlights
a number of open challenges facing the adoption of low-power
wireless sensors for medical deployments. These challenges in-
clude effective congestion management, reliable networking, and
security.

In the following section we present background on medical
sensor networks and discuss related work. In Section 3 we de-
tail our medical sensor hardware designs. Section 4 describes the
CodeBlue protocol architecture and prototype implementation. In
Section 5 we present initial results evaluating the performance
of the CodeBlue system on our 30-node indoor sensor network

testbed. Finally, Section 6 discusses future work and concludes.

2 Motivation and Background
Medical care is an oft-cited application for sensor networks [29,
11]. The ability to augment medical telemetry with tiny, wearable,
wireless sensors would have a profound impact on many aspects
of clinical practice. Emergency medical care, triage, and intensive
care can all benefit from continuous vital sign monitoring, espe-
cially immediate notification of patient deterioration. Sensor data
can be integrated into electronic patient care records and retrieved
for later analysis. In a wide range of clinical studies, especially
those involving ambulatory or at-home monitoring, wireless sen-
sors would permit data acquisition at higher resolution and for
longer durations than existing monitoring solutions.

Wireless medical telemetry is not altogether new. A number of
wireless medical monitors are currently on the market, including
electrocardiographs (EKGs) [21, 23, 18], pulse oximeters [42, 50],
blood pressure monitors [6, 1], and fetal heart rate and maternal
uterine monitors [19]. Most of these devices use Bluetooth or the
analog Wireless Medical Telemetry Service (WMTS) bands [16],
although several employ IEEE 802.11. However, these systems
are generally designed only to “cut the cord” between the sensor
worn by the patient and a bedside monitor or other nearby re-
ceiving device. They are not intended to participate in a network,
to relay data to multiple receivers (e.g. by means of multi-hop
routing), or to scale to large numbers of monitors in an area. In
addition, few of these systems are designed to be wearable; most
remain attached to the hospital bed, and the few wireless ambula-
tory products on the market are generally large and cumbersome.
As an example, the Welch-Allyn Micropaq monitor [50] measures
over 18 cm× 8.8 cm× 4cm and weighs nearly half a kilogram.

The emergence of low-power, single-chip radios based on the
Bluetooth and 802.15.4 [26] standards has precipitated the design
of small, wearable, truly networked medical sensors. In a mass
casualty or disaster setting, medics can place tiny sensors on each
patient to form anad hocnetwork, relaying continuous vital sign
data to multiple receiving devices (e.g. PDAs carried by physi-
cians, or laptop base stations in ambulances). In addition to relay-
ing vital sign data, each node can act as an “active triage tag,” stor-
ing information about the wearer (identification, medical history,
severity status, etc.) RF-based localization can be used to track
patient and first responder location on the scene. Such a system
can be translated directly into hospital settings where wired mon-
itoring is cumbersome and (especially with pediatric and neonatal
patients) obstructs the caregiver’s access to the patient.

2.1 Requirements
The requirements for a medical sensor network design depend
greatly on the specific application and deployment environment.
A sensor network designed forad hocdeployment in an emer-
gency situation has very different requirements than one deployed
permanently in a hospital. For example, the latter can make use
of fixed, powered gateway nodes which provide access to a wired
network infrastructure. In general, however, we can identify sev-
eral characteristics that nearly all medical sensor networks would
share.
Wearable sensor platforms: Medical applications generally re-
quire very small, lightweight, and wearable sensors. Existing
mote platforms are good for demonstrations, but we have found
that the large battery packs and protruding antennas are subopti-
mal for medical use.
Reliable communications:In medical settings, a great emphasis
is placed on data availability. Although intermittent packet loss

due to interference may be acceptable, persistent packet loss (due
to congestion or node mobility) would be problematic. Depending
on the sensors in use, sampling rates may range anywhere from
less than 1 Hz to 1000 Hz or more, placing heavy demands on the
wireless channel.
Multiple receivers: We expect that the data from a given patient
will typically be received by multiple doctors or nurses caring for
the patient. This suggests that the network layer should support
multicastsemantics.
Device mobility: Both patients and caregivers are mobile, requir-
ing that the communication layer adapt rapidly to changes in link
quality. For example, if a multihop routing protocol is in use, it
should quickly find new routes when a doctor moves from room
to room during rounds.
Security: Aside from the obvious security considerations with
sensitive patient data, United States law mandates that medical
devices meet the privacy requirements of the 1996 Health Insur-
ance Portability and Accountability Act (HIPAA). Recent work on
private-key and public-key cryptography schemes for sensor net-
works [29, 22, 38] is applicable here, but must be integrated into
an appropriate authentication and authorization framework.

2.2 Related work

Many of the aforementioned requirements have not yet been ad-
equately addressed by the sensor network community. The chief
reason is that most sensor network applications have very differ-
ent data, communication, and lifetime requirements. Unlike tradi-
tional data collection applications such as environmental monitor-
ing [7, 48, 51], medical deployments are characterized by mobile
nodes with varying data rates and few opportunities for in-network
aggregation. In addition, medical sensor networks are less con-
cerned with maximizing individual node lifetimes, since it is ac-
ceptable to recharge devices or change batteries on a relatively
frequent basis.

As a result, many of the significant advances in communication
models [27, 53], time synchronization [39, 15], and energy man-
agement [44] should be reevaluated given these new requirements.
This is not to say that we must start from scratch; rather, we be-
lieve it is best to borrow from prior systems as much as possible
and invent new technology only as needed.

A number of other research projects are exploring medical sen-
sor networks. Most of these projects are concerned with develop-
ing wearable medical sensors [33, 54, 46], while others have de-
veloped infrastructures for monitoring individual patients during
daily activity [30], at home [12], or at a hospital [31]. In con-
trast, our focus is to develop a robust, scalable infrastructure for
deploying sensor networks in a range of medical settings.

More closely related to our efforts are systems for enabling
large numbers of medical sensors to be used for disaster re-
sponse. The SMART [43], AID-N [52], and WiiSARD [32]
teams are among several funded through a US National Library of
Medicine effort to develop new technologies for disaster manage-
ment. The AID-N group is making use of our sensor designs, and
the SMART team has developed a mote-based EKG [46] that is
largely equivalent to our design described in Section 3. The WiiS-
ARD group has developed a prototype pulse oximeter based on an
802.11-equipped PDA, but its size and power requirements make
it impractical for real medical use. The WiiSARD and SMART
designs call for a central server to collect and distribute all sensor
data, an approach with obvious reliability and scalability consid-
erations. We are not aware of any published material describing
the communication, routing, discovery, or data query mechanisms
used by these systems.

3 Wireless Medical Sensors
Medical applications of sensor networks require new hardware de-
signs. In this section we detail three mote-based medical sensors
that we have developed: a mote-based pulse oximeter, two-lead
electrocardiograph (EKG), and a special-purpose motion-analysis
sensorboard. We also describe Pluto, our custom mote design for
wearable applications.

3.1 Pulse oximeter

Pulse oximetry has been in use as a medical diagnostic technique
since its invention in the early 1970s [49]. This non-invasive tech-
nology is used to reliably assess two key patient health metrics:
heart rate (HR) and blood oxygen saturation (SpO2). These pa-
rameters yield critical information, particularly in emergencies
when a sudden change in the heart rate or reduction in blood
oxygenation can indicate a need for urgent medical intervention.
Pulse oximetry can provide advance warning of the onset of hy-
poxemia even before the patient manifests physical symptoms.

3.1.1 Technology

Pulse oximetry involves the projection of infrared and near-
infrared light through blood vessels near the skin. Pulse oximeters
typically incorporate a plastic housing that slips over the index fin-
ger or earlobe. The housing contains an array of LEDs along one
inner surface and an optoelectronic sensor opposite.

By detecting the amount of light absorbed by hemoglobin
in the blood at two different wavelengths (typically 650nm and
805nm), the level of oxygen saturation can be measured. In addi-
tion, heart rate can be determined from the pattern of light absorp-
tion over time, since blood vessels contract and expand with the
patient’s pulse. Computation of HR and SpO2 from the light trans-
mission waveforms can be performed using standard digital signal
processing (DSP) techniques. Sophisticated algorithms have been
developed to mitigate errors due to motion artifacts [45].

3.1.2 Mote-based pulse oximeter

In developing a mote-based pulse oximeter, we were fortunate that
there exist several available products that provide self-contained
logic for driving the LEDs and performing the HR and SpO2 cal-
culations. We initially considered the Dolphin Medical [13] OEM
601 and 701 units, credit-card sized boards that contain all of the
required signal processing logic. However, they did not meet our
requirements due to a current consumption of over 100 mA and
an operating voltage of 5 V.

The smallest and lowest-power OEM module that we are aware
of is the BCI Medical Micro-Power Pulse Oximeter [47], measur-
ing 39 mm× 20 mm with a current draw of just 6.6 mA at 3 V.
The board performs all of the required calculations and relays vi-
tal sign data over a serial line which can be readily interfaced to a
mote. The board reports heart rates in the range 30–254 bpm and
SpO2 values from 0 to 99%.

Our pulse oximetry sensor board is essentially a connector be-
tween the Mica2/MicaZ mote platform and the BCI Medical board
(see Figure 1(a)). Our board incorporates the MicaZ’s 51-pin con-
nector, the two headers for the BCI board, and a DB9 connec-
tor for the finger sensor. A TinyOS module on the mote controls
the BCI hardware (which can be reset using two digital I/O pins
from the mote) and parses the serial protocol to determine HR and
SpO2. When powered on, the BCI module requires about 20 sec-
onds to acquire the waveform and report vital sign data. If the
finger sensor is detached from the patient, the board reports an
error condition using out-of-range vital sign values.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 176 176.5 177 177.5 178 178.5 179 179.5 180

EK
G

 d
at

a

Time

Telos EKG data

Figure 2: Sample EKG trace captured from our Telos-based EKG
sensor board.

3.2 Electrocardiograph (EKG)
Two different types of electrocardiograph (EKG or ECG) are com-
monly used in clinical and trauma care to measure the electrical
activity of the heart. The most prevalent EKG type involves the
connection of between twelve and fifteen leads to a patient’s chest,
arms and right leg via adhesive foam pads. The device records a
short sampling (not more than thirty seconds) of the heart’s elec-
trical activity between different pairs of electrodes. Each pair of
leads provides a unique and detailed picture of the cardiac rhythm,
an individual echo of the heart’s electrical impulses as they are
conducted through surrounding tissue. An experienced cardiol-
ogist can rapidly interpret a standard EKG tracing to diagnose a
wide range of cardiac arrhythmias, as well as acute myocardial
ischemia and infarction.

However, because standard EKG traces only represent a short
sampling of patient data, irregular or intermittent cardiac condi-
tions may not be identifiable. To address this shortcoming, many
hospitals also employcontinuous EKG telemetryto monitor pa-
tients in intensive care. This involves the use of a two- or three-
electrode EKG to evaluate a patient’s cardiac activity for an ex-
tended period. The amplified heart signals are either displayed
on a screen or printed onto a roll of paper adjacent to the patient’s
bedside. A physician may advise continuous monitoring if there is
a chance that a patient has cardiac problems, such as arrhythmia,
that occur intermittently, maybe only once or twice a day. Contin-
uous telemetry may also be useful as a means of alerting health-
care staff to the first signs of deterioration of a patient’s condition.

EKG systems operate by acquiring and amplifying the electri-
cal signals generated with each contraction and expansion of the
cardiac muscle. Commercial systems generally incorporate one
or more instrumentation amplifiers with excellent common mode
noise rejection and signal amplification characteristics. In addi-
tion, such systems may include dedicated signal processing cir-
cuitry to further enhance the quality of the tracing.

Many EKG machines, both standard and continuous, are mar-
keted as “portable” but this does not necessarily mean that they
are small and unobtrusive. Most such appliances receive power
from an electrical outlet and are sufficiently heavy that they must
be mounted on a cart and wheeled from one location to the next.

3.2.1 Mote-based EKG

We have developed sensor boards for both the Mica2/MicaZ and
Telos mote platforms that provide continuous EKG monitoring by
measuring the differential across a single pair of electrodes (see
Figure 1(b)). The circuit design incorporates the Texas Instru-
ments INA321 CMOS instrumentation amplifier; an earlier ver-
sion of the schematic is shown in [17]. More recent revisions of

(a) Pulse oximeter (b) EKG (c) Motion capture and EMG

Figure 1:Wireless medical sensors developed by our group.

the circuit include additional operational amplifiers together with
a multitude of passive components to provide enhanced filtering.
The circuit draws power from the mote’s battery pack.

Connectors are provided to three leads that attach to the pa-
tient’s upper and lower chest; one lead serves to properly bias the
patient’s skin while the other two are used to measure cardiac ac-
tivity. The INA321 amplifies the differential signal by a factor
of 5 and filters out almost all common-mode noise. A high-pass
feedback filter dynamically corrects any DC shift that may oc-
cur over time. The signal subsequently passes to an op-amp that
provides further amplification and acts as a low-pass filter. The
resulting trace is routed to an ADC port on the mote. A TinyOS
component samples the EKG signal at a configurable frequency
(typically 120 Hz). A sample trace captured from the Telos-based
EKG sensor is shown in Figure 2. Evaluation of the circuit’s out-
put by a clinical cardiologist confirmed that it was comparable to
that of commercial EKG machines.

3.3 Motion analysis sensor board

Apart from traditional vital sign monitoring, sensor networks can
be used in specific clinical studies that may require specialized
instrumentation to record physiological signals of interest. We
are working with researchers at Spaulding Rehabilitation Hospital
in Boston to develop wireless sensors for two studies involving
motion analysis. The first focuses on patients undergoing physical
rehabilitation after stroke while the second aims to evaluate the
effectiveness of treatments for Parkinson’s Disease. Both studies
require capturing detailed data on muscular activity and on limb
movements.

Stroke is a form of brain damage caused either by internal
bleeding or by an acute lack of blood in some part of the brain.
In either case, the function of a part of the brain is temporarily
or permanently stopped. A recovering stroke patient may experi-
ence impaired movement and weakness of one half of the body, in
addition to speech problems and difficulty maintaining a sense of
balance.

Parkinson’s Disease is a degenerative brain disorder that typi-
cally develops after the age of 50. The characteristic symptom of
Parkinson’s is an involuntary and uncontrollable shaking (called
tremor) that usually starts in the hands but which, if left untreated,
can eventually spread throughout the body. In many cases the
cause is unclear, but Secondary Parkinson’s Disease may be trig-
gered by conditions such as brain injury or certain brain infec-
tions. More accurate measurement of motor fluctuations during
daily life would benefit patients by enabling doctors to fine-tune
the dosage and timing of existing medications such as levodopa.
It would also help researchers to better evaluate new therapies in
clinical trials.

3.3.1 Technology

Traditional motion-capture systems use a wired data logger car-
ried in a waist harness; a multitude of wires runs from the harness
to various sensors positioned on body segments of interest (typi-
cally the arms, legs, back and torso). Clearly, the use of wearable
wireless sensors would greatly simplify data collection and would
allow patients to wear the sensors for longer periods of time since
the bulky data logger and leads would be eliminated.

Three sensor types are commonly used for motion analysis
studies in the field: accelerometers, gyroscopes, and surface elec-
trodes for electromyographic (EMG) recordings [4, 40, 5]. Triax-
ial accelerometers measure the orientation and movement of each
body segment. Gyroscopes measure angular velocity and com-
bined with accelerometer data can be used to accurately deter-
mine limb position [35, 20]. Surface EMG electrodes capture the
electrical field generated by depolarized zones traveling along the
muscle fibers during a muscle contraction. The root mean square
value of the EMG data is roughly proportional to the force exerted
by the monitored muscle. Thus analysis of the patterns of EMG
activity can lead to the identification of motor tasks and their char-
acteristics [3].

3.3.2 Mercury motion analysis sensor board

Our Mercury motion analysis sensor board (Figure 1(c)) inter-
faces to the Telos mote and incorporates a 2g/6g 3-axis accelerom-
eter (STMicroelectronics model LIS3L02AQ), a single-axis gy-
roscope (Analog Devices ADXRS300) and one EMG unit (MP-
1A.20.A0DM.60 from Motion Lab Systems, Inc.). The board in-
cludes a number of operational amplifiers to enhance signal qual-
ity together with voltage conditioning ICs to power the gyroscope
and passive filters to eliminate noise. Signals are routed through
the board to five ADC ports on the Telos mote. This is a proto-
type design and the next revision will include three gyroscopes
mounted in a triaxial configuration.

In our proposed studies, a patient will wear several Telos motes
outfitted with a Mercury board, one on each body segment of in-
terest. In the stroke patient study, this will require one node on
each of the upper arm, lower arm, back, and torso on the patient’s
affected side. The Telos AA battery pack will be replaced with
a thin, rechargeable battery which significantly reduces size and
weight.

Each axis of the accelerometers and gyroscopes is sampled at
100 Hz while the EMG is sampled at 1 kHz. Data is captured
to the mote’s EEPROM and relayed using a reliable communi-
cation protocol to a nearby base station for logging. Because it
is necessary to correlate signals across multiple sensor devices,
data from each node needs to be consistently timestamped. We
are investigating various time synchronization techniques for this

Figure 3:The Pluto custom wearable mote.

purpose [15, 39].

3.4 Pluto: A wearable wireless sensor design

The previously discussed sensor boards are intended to interface
with the commercially available Mica2, MicaZ and Telos motes.
While these platforms have been invaluable as a basis for experi-
mentation, we have found that they are not ideal for wearable use
in a medical setting. The use of AA batteries is convenient for
testing but adds considerable size and weight (an important con-
sideration when working with patients who suffer from motion
impairment). The smaller Mica2Dot mote has been used in vari-
ous settings where small size and weight are critical—however, no
802.15.4 version of this platform exists. In addition, the use of an
external whip antenna is problematic in terms of packaging. Many
physicians who have viewed demonstrations of our MicaZ/Telos
based sensor boards have commented on their large size and ap-
parent fragility (poor battery pack and sensor board connectors).

We have developed a custom wearable mote platform as a
proof-of-concept to demonstrate tight integration of the required
components in a form factor that is optimized for medical deploy-
ments. Our prototypePluto mote (Figure 3) sacrifices expand-
ability and long battery life in favor of a lightweight, miniaturized
design that fits within a convenient plastic enclosure.

Pluto is based on the Telos Rev B (recently renamed “Tmote
Sky”) mote design [41], the schematics for which are publicly
available, and incorporates the TI MSP430 microprocessor and
ChipCon CC2420 radio. The board layout is about 70% of the
surface area of Telos, and Pluto uses a gigaAnt surface-mount an-
tenna instead of the inverted-F design used on the Telos. A tiny
rechargeable 120 mAh lithium polymer battery powers the device.
With an average current consumption of 25 mA, Pluto will run
continuously for nearly 5 hours, although duty cycling to low-
power modes will allow lifetimes to be considerably extended. A
Mini-B USB connector is used for programming and to recharge
the battery; the board features built-in recharge circuitry. No soft-
ware changes are required to run TinyOS applications on Pluto,
since it is 100% compatible with the Telos design.

Rather than provide expansion capabilities for external sensors,
our intent is to design multiple revisions of Pluto with the re-
quired sensor components integrated onto the board; this will help
minimize system dimensions for actual deployments. The first
Pluto design incorporates the same STMicroelectronics 3-axis ac-
celerometer as the Mercury motion analysis sensorboard.

Even without sensors, Pluto is useful as a “wearable tag” that
can store patient information and track location using RF signals
(see Section 4.5). Pluto can also be used as a rudimentary one-way
communication device: the mote includes an external pushbutton
that can be used by a patient to transmit an alert message to hos-
pital staff.

Module ROM (bytes) RAM (bytes)
Coordinator 2140 494
CBQ 1682 244
TinyADMR 3544 1563
PulseOx 702 21
MoteTrack 5866 1035
Miscellaneous 142 24
TinyOS general 21284 181
Radio stack 7706 495
Total 43066 4057

Figure 5:Code size breakdown for the CodeBlue software compiled
for the MicaZ platform.

Pluto is designed to fit into an inexpensive OEM plastic enclo-
sure which measures 57× 36× 16 mm. An elasticated wristband
with velcro fasteners is attached to the enclosure. The Pluto mote,
battery, enclosure and wristband weigh just 30.5g, whereas the
Telos (with AA batteries and no enclosure) weighs 61g.

4 The CodeBlue Architecture
The previous section described our work on medical sensor hard-
ware. However, supporting the diverse requirements for medical
sensor networks also requires that we take a fresh look at the soft-
ware environment, routing protocols, and query interfaces. In this
section we describe the design and architecture forCodeBlue, a
protocol and middleware framework for medical sensor networks.
CodeBlue is implemented in TinyOS [24] and provides protocols
for integrating wireless medical sensors and end-user devices such
as PDAs and laptops. CodeBlue is intended to act as an “informa-
tion plane” tying together a wide range of wireless devices used
in medical settings.

CodeBlue is based on apublish/subscribe routing framework,
allowing multiple sensor devices to relay data to all receivers that
have registered an interest in that data. This communication model
fits naturally with the needs of medical applications where a num-
ber of caregivers may be interested in sensor data from overlap-
ping groups of patients. Adiscovery protocolis provided to allow
end-user devices to determine which sensors are deployed in a
CodeBlue network, while aquery interfaceallows a receiving de-
vice to request data from specific sensors based on type or physi-
cal node address. The query interface also provides a filter facility,
whereby a query can specify a simple predicate on sensor data that
will transmit only when the data passes the filter. For example, a
doctor might request data on a patient only when the vital signs
fall outside of a normal range.

Figure 4 shows an overview of the CodeBlue software architec-
ture, and Figure 5 shows the memory usage breakdown for each
TinyOS component.

4.1 Publish/subscribe routing layer
As described above, CodeBlue is based on a publish/subscribe
routing framework in which sensors publish relevant data to a spe-
cific channeland end-user devices subscribe to channels of inter-
est. Publish/subscribe communication decouples the concerns of
devices generating data from those receiving and processing it.

Any practical implementation of a publish/subscribe model
must take a number of considerations into account. First, sen-
sors should not publish data at an arbitrary rate, since the wireless
channel has limited bandwidth. This implies that the communica-
tion model should either specify requested data rates or give pub-
lishers the ability to locally filter sensor data before publication.
Second, given that publishers and subscribers are not necessarily
within radio range, some form of multihop routing is necessary.
Third, the communication layer should take mobility into account

CodeBlueQuery (CBQ)

QueryHandlerStdControl

Coordinator
Device Status

EKG

GenericSensor
as

EKGSensor
StdControl

dataBuff
MoteTrack

GenericSensor
as

LocationSensor
StdControl

dataBuff

getData()

HeartRate

GenericSensor
as

PulseSensor
StdControl

dataBuff

Radio

statusMsg

dataReady() getData()dataReady()getData()dataReady()

handleQuery()
cancelQuery()
reset()

sendDone()

publish()
subscribe()
send()
leave()

send()

TinyADMR

PubSubStdControl PubSubDiagnostic

GenericComm

SendMsgStdControl ReceiveMsg

receive()

dataReady()
init()

start()
stop()

receive()
sendDone()

receive()
rawReceive()

sendDone()
send()

init()
start()
stop()

init()
start()
stop()

init()
start()
stop()

init()
start()
stop()

init()
start()
stop()

Figure 4:The CodeBlue software architecture.

interface PubSub {
command result_t publish(uint16_t chan);
command result_t subscribe(uint16_t chan);
command result_t leave(uint16_t chan);

command result_t send(uint16_t channel,
uint8_t length, TOS_Msg* msg);

event result_t sendDone(TOS_MsgPtr msg,
result_t success);

event TOS_MsgPtr receive(TOS_MsgPtr m,
uint16_t channel, uint16_t srcAddr);

}

Figure 6:The TinyADMR software interface.

when establishing routing paths. In the medical scenario we ex-
pect both patients and caregivers to be mobile. Many patients may
be ambulatory and free to roam about the hospital ward. Even
those confined to hospital beds may be transferred between wards
or temporarily moved for surgery or imaging.

The CodeBlue routing layer is based on the Adaptive Demand-
Driven Multicast Routing (ADMR) protocol [28]. We selected
ADMR because it is simple and has been extensively studied in
simulation. As far as we are aware, ours is the first implementa-
tion of ADMR to be developed and tested on real hardware, and
certainly the first using motes and TinyOS.

We describe the ADMR protocol only briefly here; more de-
tails can be found in [28]. The TinyADMR component provides a
PubSub interface that exposes the commands and events shown
in Figure 6. Thepublishandsubscribecommands allow a node
to state that it wishes to associate with a particular channel, while
leaveterminates a publish or subscribe request. Thesend, send-
Doneand receiveinterfaces are equivalent to their Active Mes-
sage counterparts in TinyOS, except that the channel ID replaces
the destination mote ID.

ADMR establishes multicast routes by assigning nodes to be
forwardersfor a particular channel. A forwarder simply rebroad-
casts any messages that it receives on a given channel, using du-
plicate suppression to avoid multiple transmissions. Nodes are

assigned as forwarders through a route discovery process that is
initiated when a patient device requests to publish data. Multicast
routing allows nodes to avoid transmitting redundant data; for ex-
ample, if multiple doctors subscribe to vital signs from the same
patient, the patient need only transmit its data once to the channel,
where it will be forwarded to each recipient.

Route discovery in ADMR operates as follows. Every Code-
Blue node maintains anode tableindexed by the publisher node
ID. Each node table entry contains thepath costfrom the publisher
to the current node, as well as theprevious hopin the best path
from the publisher. Whenever an ADMR message is received, the
node table entry corresponding to the publisher is consulted. If
the estimated path cost from the publisher to the current node is
lower than the node table entry (or no node table entry exists), the
new previous hop and path cost fields are updated accordingly.

Routing costs can be estimated in a number of ways [10, 53].
We use an estimator of the totalpath delivery ratio(PDR) from
the originating node. This estimate is based on an empirical model
that maps the CC2420 radio’s Link Quality Indicator (LQI) to
an estimatedlink delivery ratio(LDR), using extensive measure-
ments from our 30-node sensor network testbed. The total path
loss can be calculated as

∏
l∈L LDR(l) whereLDR(l) represents

the link delivery ratio for linkl (estimated from LQI of the re-
ceived message), for all linksL along the path from the origi-
nator to the current node. The PDR is carried in the header of
each ADMR message and is updated incrementally at each hop.
We have found that this path selection metric yields very reliable
routes while avoiding the use of multiple rounds of message ex-
change to directly estimate link delivery ratios. The path cost is
then (1-PDR), that is, thepath loss ratio.

With the information in the node table, each node knows the
best (lowest cost) path from each publisher to itself. When a sub-
scriber wishes to receive data from a specific channel, it sends
a unicastroute replymessage along the reverse path from itself
to the publishing device, using the previous-hop information in
the node table. Upon receiving the route reply, each intermediate
node configures itself as a forwarder for the requested channel and
will subsequently rebroadcast received messages for that channel.

TOS_Msg

ADMRMsg

CodeBlueMsg type
1

CodeBlue Data Types

DeviceStatus nbrSen
1

Query senID
1

QueryReply
…

SensorValue Types

SpO2Value type value
1 1

LocationValue type

… 1

SensorValue

CodeBlue data debug
4up to 17

predicate
8

TOS Header

15
ADMR Header

TOS_DATA_LENGTH-15

Data

2TOSH_DATA_LENGTH8

Data

2

nbrSamples

2 2 2

xCoord yCoord zCoord

2 up to 7

queryID sqnNbr

CRC

sensorTypes[MAX_SENSORS]

replyChan queryID samplePeriod

2

2 2 2

srcAddr

2 2

queryAddr

up to MAX_SENSORS

Figure 7:CodeBlue message formats.

Note that due to link asymmetry, the route reply message may
traverse a poor link and be dropped. For this reason, we use hop-
by-hop acknowledgment and retransmissiononly for relaying the
route reply message to the publisher.

The route discovery process maintains the best paths from pub-
lishers to subscribers by periodically propagating a controlled
broadcast flood that updates the node tables on all intermediate
nodes. This periodic flooding allows the network to adapt to
changes in network topology caused by node movement and en-
vironmental conditions. We currently use an update interval of
15 seconds, allowing broken routes to be repaired quickly without
inducing too much protocol overhead. However, understanding
the practical tradeoffs in the route management process for very
large networks is worthy of further research.

4.2 Discovery protocol
In order for CodeBlue nodes to discover each other and determine
the capabilities of each sensor device, a simplediscovery proto-
col is layered on top of the ADMR framework. ADMR supports a
special-case broadcast channel that uses a simple controlled flood-
ing mechanism to deliver a message (unreliably) to every node in
the network. Each CodeBlue node periodically publishes meta-
data about itself, including node ID and sensor types that it sup-
ports, to the broadcast channel. Receiving devices that wish to
learn about other nodes in the network can subscribe to the broad-
cast channel to receive this information. Note that the metadata
information about a node is static and is not updated frequently
(the current update interval is 30 seconds). It would be straightfor-
ward to reduce the number of broadcast messages by performing
in-network aggregation of this metadata.

4.3 CodeBlue query interface
The CodeBlue Query (CBQ) layer allows receiving devices to es-
tablish communication pathways by specifying the sensors, data
rates, and optional filter conditions that should be used for data
transfer. Similar to Directed Diffusion [27] and TinyDB [36],
CBQ is intended to provide a very simple means of expressing
data requirements in a CodeBlue network. A CBQ query is gener-
ated by an end-user device (such as a PDA or laptop) and instructs
CodeBlue nodes to publish data that meets the query conditions
on a specific ADMR channel.

4.3.1 Query structure
CBQ does not provide a textual interface for issuing queries;
rather, queries can be issued using the GUI described in

Section 4.6. A CBQ query is specified by the tuple
〈S, τ, chan, ρ, C, p〉. S represents the set of node IDs that should
report data for this query andτ is the sensor typerepresent-
ing a specific physiological sensor. Examples of sensor types
include heart rate, SpO2 and EKG. This model allows a sin-
gle node to support multiple physical sensors. Results from the
query should be published to the ADMR channelchan. The
query also specifies the sampling rateρ and an optional count
C of the total number of samples to retrieve from each node (if
C is unspecified, it is assumed to be infinite). For example, the
query〈{3, 7},SpO2, 38, 1.0 Hz ,∞, p〉 specifies that nodes 3 and
7 should report their SpO2 data to channel 38 every second, using
the filter predicatep.

The filter predicate can be used to suppress transmission of sen-
sor data when the predicate condition is not met. It has the form

(τ1 ≺ T1) OP (τ2 ≺ T2)

whereτ1 andτ2 are the outputs of (possibly different) sensor types
andT1 andT2 are threshold values.≺ represents a comparison
operator such as<, ≤, =, or 6=. OP is one ofAND, OR, or XOR.
No more than two subexpressions can be included in the predi-
cate; this limitation allows the predicate to fit in a single query
message. For example, the query predicate (HR< 50) OR(HR>
200) would trigger data transmission only when the patient’s heart
rate falls below 50 bpm or exceeds 200 bpm.

Queries are currently issued to the network over the ADMR
broadcast channel; this ensures that every node will receive the
query, even if the setS of nodes that are responsible for processing
it is small. We chose to use broadcast here because new queries
are relatively infrequent events, so maintaining routing paths for
query dissemination would be far more resource intensive than a
rare flood. Queries are periodically re-broadcast until all patient
sensors specified in the query report that they have received it.
Each query has a unique ID that contains the subscriber ID, ensur-
ing that query IDs from different subscribers do not collide. The
subscriber can cancel the query with a short command (also sent
to the broadcast channel) with the query ID as a parameter.

Internally, the query processor consists of two main compo-
nents. The first is thecoordinatorthat receives messages from the
radio, handles various internal commands (e.g. for debugging),
and forwards queries to the CBQ component. CBQ maintains a
table of running queries, as well as a sorted queue of query exe-
cution events. Each event contains a pointer to a query as well as
the time until the next event. This design allows us to use a single
timer to drive the execution of all queries.

4.3.2 Discussion

CBQ’s implementation is greatly simplified by the use of the
underlying publish/subscribe layer. Unlike TinyDB [36] and
Cougar [55], the query engine is not responsible for maintaining
routing paths, nor is it concerned with how the routing topology
may affect results. However, the clean separation between the
CBQ and ADMR layers results in some inefficiency. For exam-
ple, both CBQ and ADMR perform separate broadcast floods, the
former for advertising node metadata and the latter for establish-
ing routing paths. It is clear that a simple cross-layer optimization
could be performed to combine these floods: for example, ADMR
could solicit a message payload from CBQ to include in its peri-
odic path establishment transmissions.

We believe that the basic set of predicate operators in CBQ
is sufficient for most cases of interest. A more general query lan-
guage, such as SQL, seems to be unnecessary for filtering medical
sensor data. The simple predicate structure in CBQ allows sensor

M

B2

B1

B3

coordinates
(x, y, z)

reference signature

signature
<B1, RSSIf1p1

, … ,RSSIfipj
>

<B2, RSSIf1p1
, … ,RSSIfipj

>
<B3, RSSIf1p1

, … ,RSSIfipj
>

mobile node

mobile node’s
current signature

<reference-signature1>
<reference-signature2>

…

reference signature
database

beacon node

beacon node’s
local reference

signature database

signature
<B1, RSSIf1p1

, … ,RSSIfipj
>

<B3, RSSIf1p1
, … ,RSSIfipj

>

Figure 8:The MoteTrack location system.B1, B2, andB3 are bea-
con nodes, which broadcast beacon messages at various frequencies and
transmission powers (f1p1, ..., fipj). Each beacon node stores a subset
of all reference signatures.M is a mobile node that can hear from all
three beacon nodes. It aggregates beacon messages received over some
time period into a signature. The areas enclosed by perimeter lines indi-
cate the reachability of beacon messages from the corresponding beacon
node. The dots denote the known locations where reference signatures
were collected.

data from up to two separate sensors to be used to trigger trans-
mission of a third sensor on the same patient. In addition, the set
of operators exposed by CBQ can readily be expanded to include
sensor-specific operations, such as detecting an arrhythmia from
EKG data.

Note that CBQ includes no provisions for in-network aggrega-
tion. In general, aggregating data across multiple patients does not
appear to be useful; a doctor does not want to know theaverage
heart rate of all of the patients on the ward! As we gain more ex-
perience with this query model in real medical settings we expect
to enhance CBQ as necessary.

4.4 Sensor interface
A GenericSensor interface is used to abstract the details of
acquiring data from each sensor type. Like the standard TinyOS
ADCinterface,GenericSensor provides a simple split-phase
interface. Data is requested with a call togetData(), which causes
a dataReady()event to be signaled upon completion. This event
returns a pointer to an internal memory buffer containing the sen-
sor data, the size of which depends on the sensor type. Each sensor
component must also provide theStdControl interface allow-
ing the associated hardware to be powered on or off as necessary.

The set of sensor types supported by CBQ on a particular
device is configured at compile time with a set of programmer-
specified flags. These flags cause the appropriate sensor modules
to be automatically wired to the CBQ component and included in
the sensor metadata advertisements. In this way the binary for a
sensor node will only include the components necessary for the
sensors actually present.

4.5 RF-based location tracking
In many medical settings, it is extremely useful to be able to accu-
rately locate patients, doctors, nurses, and even specialized pieces
of equipment (e.g. a crash cart). For this purpose, CodeBlue in-
corporates a robust, decentralized RF-based localization system,
called MoteTrack [34]. MoteTrack is designed to operate using
only the low-power radios already incorporated into CodeBlue

sensor nodes and end-user devices. In our building, MoteTrack
achieves an 80th percentile location error of about 1 m, which is
generally accurate enough to locate a patient or caregiver when
necessary. In CodeBlue, MoteTrack is simply treated as another
sensor type that reports the(x, y, z) location of the device when
queried.

MoteTrack is anempirical localization scheme that matches
the radio “signature” acquired by a roaming device with a
database mapping signatures to known locations. MoteTrack im-
proves upon systems such as RADAR [2] in that it does not require
a central server to maintain the signature database; rather, this in-
formation is stored on the set ofbeacon nodesthat are distributed
throughout the area (e.g. a hospital). Each beacon node (which is
simply a mote that may be connected to mains power) periodically
transmits radio messages at a range of frequencies and transmis-
sion power levels (see Figure 8).

A mobile node listens for these beacons and acquires a signa-
ture that consists of the average received signal strength (RSSI)
for each beacon node, frequency, and power level. The signature
is compared to a database of pre-acquired signatures (each labeled
with a known location) and a 3D location is determined. The sig-
nature database is replicated across the set of beacon nodes allow-
ing the mapping process to be decentralized. We have explored a
wide range of parameters in terms of signature distance metrics,
weighting schemes, and techniques for mitigating beacon node
failure; complete details are presented in [34].

Apart from enabling localization, the beacon nodes also pro-
vide a routing “backbone” for the ADMR protocol. While beacon
nodes are not required by CodeBlue itself, having a fixed set of
infrastructure nodes can be useful for establishing good commu-
nication coverage in an indoor environment.

4.6 User interface
The CodeBlue prototype provides a Java-based graphical user in-
terface (GUI) that is intended to be easy for medical personnel to
use and which provides enough detail on patient status and loca-
tion to identify trends. We plan to work with our medical col-
leagues to refine the GUI for specific applications.

The CodeBlue GUI is shown in Figure 9. The upper-left panel
displays a summary of metadata received from all patient sensors
in the network along with the latest sensor reading. The user
may request data from patient sensors by clicking in the appro-
priate box, which will issue a CBQ query with default parameters
based on the sensor type. A more advanced interface can be used
to specify CBQ parameters such as filtering predicates and data
rates. Also shown in the patient list are “strength bars” indicating
the network path quality to this patient sensor; this is calculated
based on the path quality reported by ADMR. The user can mon-
itor this information to ascertain whether they are experiencing
undue packet loss due to the current ADMR route.

The upper-right panel shows a trace of the sensor data received
from the currently-selected patient. Below this is a map of the
area, showing the location of all patients for which the user has
an active query. The fixed infrastructure nodes are also shown, as
well as the path taken by packets routed by the ADMR protocol
from the patient sensor to the end user. The message path is shown
for debugging purposes only and is determined by instrumenting
ADMR to include path information in each message header; this
would not necessarily be turned on by default.

Each end-user device communicates with the CodeBlue net-
work through a mote programmed with a specialized “base sta-
tion” program calledPubSubBase. Unlike the standard TOSBase
code included in TinyOS, which only forwards radio messages to
and from its serial port, PubSubBase understands the ADMR pro-

Figure 9:The CodeBlue user interface.This is an actual screenshot of the CodeBlue GUI running in our building with three patient sensors reporting
data to a laptop.

tocol and provides the publish/subscribe interface to the end-user
device. As a result, the complete ADMR subsystem does not need
to be reimplemented on the end-user laptop or PDA.1 This also al-
lows us to make changes to the ADMR protocol without affecting
the GUI implementation.

4.7 End-to-end use case example
To illustrate the use of the complete CodeBlue framework and
GUI, we present an end-to-end use case where a doctor issues a
query to a single patient sensor. The process begins when the
patient’s vital sign sensor (say, a pulse oximeter) is first powered
on. The CBQ module uses the broadcast channel to listen for
queries and to publish its metadata.

The doctor’s laptop is connected to a PubSubBase mote that
also listens on the broadcast channel. It receives the patient sensor
metadata, unwraps the message payload (containing the patient
node ID and sensor types), and passes the information to the Java
GUI over its serial port. The GUI then displays the ID and sensor
types for the new patient in the patient list panel (see patient 103
in Figure 9). The doctor can issue a query for the patient’s vital
signs by double-clicking on the icon in this panel, or may elect to
issue a more complex query with filtering parameters.

The query message is passed to the PubSubBase where it is for-
warded on the broadcast channel until it reaches the patient sen-
sor. The CBQ module on the patient device interprets the query
message and passes it to the query processor module for execu-
tion. The query processor samples the user’s pulse oximeter at the
specified rate, interprets the filtering predicate (if any) and relays

1We are developing a variant of the Telos mote with a Compact Flash interface
that will provide direct radio connectivity to PDA-class devices.

the query results to the CBQ module. CBQ then transmits the
vital sign data on the destination channel specified by the user’s
query. ADMR routes this data to the PubSubBase connected to
the doctor’s laptop, which in turn relays the data to the Java GUI
for display.

5 Evaluation
In this section we present an initial evaluation of the CodeBlue
system running on an indoor testbed of 30 MicaZ motes, dis-
tributed over 3 floors of our Computer Science building. Although
the location of each node is fixed, this testbed affords us the oppor-
tunity to measure communication reliability and throughput under
a wide range of link conditions and data rates. We also present re-
sults demonstrating the use of CodeBlue with mobile receivers.

Our goal in evaluating CodeBlue is to validate its overall ro-
bustness and scalability with multiple transmitting and receiving
devices. We also wish to explore the effect of increased data rates
on achieved throughput. Our results are promising and show that
CodeBlue and ADMR achieve good packet delivery ratios with
modest data rates. However, radio bandwidth saturation is a seri-
ous problem with higher data rates, suggesting that this should be
a primary focus for future work.

5.1 Evaluation environment
Our 30-node sensor network testbed provides a Web-based inter-
face allowing users to schedule time and run jobs on the testbed.
The system also forwards messages to and from each mote’s se-
rial port via a TCP socket, allowing us to control and monitor the
entire network from a single machine. We have implemented a
Java-based driver to send commands to the CodeBlue nodes for

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

Re
ce

pt
io

n
Ra

tio

Data Rate (packets per second)

1 hop
2-4 hops
5-6 hops

Figure 10:The effect of increasing data rate and hop count on re-
ception ratio. This experiment measures three separate sender-receiver
pairs with different number of radio hops in the ADMR path. Increas-
ing the transmission rate leads to degradation in reception rate due to
dropped packets.

issuing queries, receiving data, retrieving statistics, and so forth.
This setup proved to be very convenient, making it possible to run
tests with many different parameters without having to reprogram
the motes each time.

In each experiment, we used “virtual” sensors on each patient
device that generate data at a constant rate. Each experiment was
executed for at least 2 minutes, and statistics were calculated af-
ter removing the first 60 seconds of each trace to avoid measuring
startup effects. Of course, this does not directly measure latency
for query propagation and route establishment. Our results do in-
dicate that a doctor or nurse coming onto a shift will be able to is-
sue queries and receive results with a lag time ofat most1 minute.

5.2 Scalability
The first set of experiments attempts to measure three scalability-
related properties of our system:

• What is the effect of increasing the data rate generated by
each sensor device?

• What is the effect of increasing the number of senders?

• What is the effect of increasing the number of receivers?

Because of the limited size of our testbed, we are unable to di-
rectly generate data for very large networks (hundreds of nodes
or more). However, we can emulate this behavior by increasing
the data rate from each transmitter, which increases background
traffic.

Varying data rate and hop count: Figure 10 shows the packet
reception ratio (the number of received packets divided by the
number of transmitted packets) for three separate sender-receiver
pairs. In all three cases, the same node is used as the sender, while
the receiving node is varied. Receivers were selected to vary the
number of radio hops along the ADMR path. Note that the hop
count varies over time because ADMR routes are dynamic. The
single-hop case should be very common in clinical settings where
the doctor or nurse is generally near the patient.

As the figure shows, the reception rate is very good in the
single-hop case, even for high data rates (50 packets per second).
With the multi-hop cases, the reception ratio degrades substan-
tially. This occurs for two reasons. First, in multi-hop cases,

forwarding nodes must compete for bandwidth with both the up-
stream and downstream forwarders, limiting the amount of avail-
able bandwidth for each node. Increased reception rates cause
packet queues on each node to fill, eventually forcing packets to be
dropped. Second, we have observed that increasing the amount of
interfering traffic adversely affects reception ratios on our testbed,
even when no transmissions are dropped. This is likely due to
collisions caused by hidden-terminal effects.

Varying number of senders: Apart from varying the data rate
for each sender, we can explore the effect of varying the number of
senders. In each case we use the same receiving node but increase
the number of senders from 1 to 10. In each case theper-sender
data rate is increased from 1 to 50 packets per second. In the
single-sender case the receiver is within radio range, but in other
cases the senders are between 1 and 4 hops away. It is worth
noting that as we added senders, the average hop count increased
as well, so we would expect throughput to degrade more seriously
in those cases.

The results shown in Figure 11 are encouraging: for low data
rates (below 5 packets per second per sender), the reception ratio
is above 62%, even with 10 senders. Given that many vital sign
sensors (pulse oximetry, blood pressure, heart rate) only need to
transmit data at most once a second, this suggests that the system
could scale to a large number of devices each with a modest data
generation rate.

Varying number of receivers: We repeated these experiments
with 3 separate receivers, using the same set of senders; the re-
sults are shown in Figure 12. Because the receivers are no longer
within one hop from the first sender, even in the one-sender case
we see some degradation as the data rate increases. Figure 12(b)
shows that the maximum aggregate bandwidth of 10 senders and
3 receivers is 120 Kbps, or 40 Kbps per receiver. This is con-
sistent with tests that we have performed measuring the single-
hop throughput of Telos motes with the standard TinyOS CC2420
radio stack. These numbers are far below the nominal 802.15.4
channel capacity of 250 Kbps due to MAC and protocol over-
heads.

It is worth noting that the reception ratio degradation with 3 re-
ceivers is much less than what we would expect if constructing
unicastpaths between senders and receivers. To get a rough idea
of what the latter case would entail, consider the reception ratio
for 10 senders and 1 receiver in Figure 11(a). If the sender is gen-
erating data at a rate of 10 packets per second and relaying data to
3 receivers via unicast, this is roughly equivalent to the node gen-
erating data at 30 packets per second, which results in a reception
ratio of about 20%. However, the multicast case (Figure 12(a))
shows that with 10 senders, 3 receivers, and a per-sender data rate
of 10 packets per second, we achieve a reception ratio closer to
40%. This shows that multicast routing in CodeBlue helps to mit-
igate the effects of bandwidth limitations.

5.3 Fairness
In a multicast environment with multiple publishers and sub-
scribers, we are concerned with the overallfairnessachieved by
the routing substrate. If the network unfairly biases certain paths
over others, a doctor receiving data from the system has little con-
fidence that the data they are receiving is evenly distributed across
patient sensors.

To demonstrate the overall fairness of the CodeBlue routing
layer we ran an experiment with 6 senders (each generating data
at 1 packets per second) and 3 receivers. The path hop counts for
each route varied from 1 to 6. Figure 13 shows the reception ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

Re
ce

pt
io

n
Ra

tio

Data Rate (packets per second)

1 sender
3 senders
5 senders

10 senders

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (K

bp
s)

Data Rate (packets per second)

1 sender
3 senders
5 senders

10 senders

(a) Reception ratio (b) Aggregate throughput

Figure 11:Effect of increasing data rate and number of senders with 1 receiver.Reception ratios are very high for data rates below 5 packets per
second, even with 10 separate senders over multihop paths (1-5 hops).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

Re
ce

pt
io

n
Ra

tio

Data Rate (packets per second)

1 sender
3 senders
5 senders

10 senders

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (K

bp
s)

Data Rate (packets per second)

1 sender
3 senders
5 senders

10 senders

(a) Reception ratio (b) Aggregate throughput

Figure 12:Effect of increasing data rate and number of senders with 3 receivers.Increasing the number of receiving nodes has a more serious
effect on the reception ratio as data rates are increased. (Path hop counts in this test ranged from 1 to 7).

breakdown across each sender-receiver pair. As the figure shows,
the reception ratio across all pairs is roughly equivalent, with a
mean of 83% and a standard deviation of 12%. In only one case
was the reception ratio less than 60%.

5.4 Latency and jitter
The scalability results show that bandwidth limitations are a seri-
ous issue for delivery of medical data in CodeBlue. Apart from
reduced packet reception ratios, we are concerned about the po-
tential impact on packetlatencyinduced by background traffic. In
addition, we are interested in studying the pattern of packet loss;
that is, whether losses occur in large bursts or more intermittently.

Latency: Measuring packet latency in a multihop network is
difficult and would require either fine-grained synchronization be-
tween senders and receivers or a round-trip measurement. Time
synchronization using a protocol such as FTSP [39] is possible,
although the results would be dependent on FTSP’s own accuracy
in our testbed. Round trip measurements are problematic in the
ADMR framework because different paths would be chosen in
the forward and reverse directions.

Instead, we chose to instrument the message path in CodeBlue
by having senders, receivers, and forwarders send debug messages
to their serial ports during the routing process. These messages
are received by the central testbed server and timestamped with

an accuracy of a few milliseconds; however, because this time
stamping involves several context switches on the (loaded) server
it is unclear how accurate this is.

We measured the end-to-end latency for several multihop paths
of up to 7 hops at a data rate of 1 packet per second. The end-to-
end message delay was measured to be less than 200 ms in all
cases. Through link-level measurements in our testbed, we have
measured the MAC delay of the TinyOS radio stack under a wide
range of traffic conditions. The delay varies between 3 ms (with
no background traffic) to about 15 ms (with heavy background
traffic). We believe this range generally characterizes expected
per-hop packet latencies in the CodeBlue environment.

Packet jitter: We definepacket jitteras the number of consec-
utive dropped packets for a given sender-receiver pair. This can be
measured by comparing packet sequence numbers on the receiver.
If the jitter were very large, we would be concerned that much
critical medical data would be lost. Figure 14 shows a histogram
for a single sender-receiver pair placed at an average distance of
5 hops. As the figure shows, the packet reception ratio is about
70%. In 22% of the cases, the jitter was equal to 1; in less than
8% of the cases the jitter is 2 or more packets. In no case was a
jitter of more than 5 packets observed.

To understand how multiple senders and receivers affect packet
jitter, we repeated the previous experiment with 6 senders and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

A
ve

ra
ge

 r
ec

ep
tio

n
ra

tio

Sender node

receiver 1
receiver 2
receiver 3

Figure 13:Fairness across multiple sender-receiver pairs.This graph
shows the reception ratio breakdown across 18 sender-receiver pairs with
a data rate of 1 packets per second.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

P
er

ce
nt

 o
f p

ac
ke

ts
 (

%
)

Nbr. of consecutive lost packets

Jitter Histogram
(1 sender to 1 receiver)

1 far pair

Figure 14:Packet jitter distribution for a single node pair. The sender
and receiver are placed at opposite ends of the building with an average
path hop count of 5.

3 receivers distributed throughout the building, transmitting one
packet per second. Figure 15 shows the jitter histogram for all
18 pairs. The figure also shows the jitter for two specific paths:
the multihop pair from our previous experiment with 1 sender and
1 receiver, and a single-hop pair. No jitter is observed for 86%
of the packets, 9% of packets experienced a jitter of 1, and 5%
of the packets experienced a jitter greater than 1. The maximum
jitter observed in this case is 23 packets. It is interesting to note
that with multiple senders and receivers, jitter is reduced for the
first pair of nodes (the same pair that was measured in Figure 14).
This is explained by the increased number of forwarders, which
increases the chance of packets getting through.

5.5 Effect of mobility

The final evaluation that we wish to present concerns the impact
of mobility on communication reliability. As senders or receivers
move in a hospital, radio link quality will vary and ADMR will
create new routes. Therefore, we expect to see some data loss due
to node mobility, but ideally a valid route will be maintained at all
times.

In this experiment, we configured 3 fixed nodes as patient sen-
sors transmitting data at 5 packets per second. The senders were

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

P
er

ce
nt

 o
f p

ac
ke

ts
 (

%
)

Nbr. of consecutive lost packets

Jitter Histogram
(6 senders to 3 receivers)

1 far pair
1 close pair

all pairs

Figure 15:Packet jitter distribution across 6 senders and 3 receivers.
This graph shows packet jitter for 3 cases: a single-hop node pair, a
multi-hop pair, and across all 18 node pairs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

Av
er

ag
e

Re
ce

pt
io

n
Ra

tio

Time (s)

sender 5
sender 22
sender 24

Figure 16:Effect of mobility. Reception ratio averaged over 60 second
intervals for 3 senders and a single roaming receiver.

widely distributed throughout the building. A single receiver node
attached to a laptop acted as a roaming node. The user carrying the
laptop moved around the second floor of our building at a normal
walking pace, pausing occasionally, entering and leaving rooms,
for a duration of about 25 minutes. This movement pattern is in-
tended to represent a doctor walking through a hospital ward.

Figure 16 shows the reception ratio for each of the 3 senders,
averaged over 60 second windows. As the receiver walks around,
we see the reception ratios vary over time, but do not see any large
dropouts or catastrophic effects due to mobility. We have also
recorded the hop count and ADMR path cost for each packet and
see a general correlation between improved delivery ratio and re-
duced path cost. These results show that ADMR deals gracefully
with node movement, at least for “typical” mobility rates.

5.6 Mitigating packet loss
Although CodeBlue does not currently provide a reliable rout-
ing mechanism, we anticipate that reliable communication will be
necessary for many medical scenarios, especially clinical studies
and continuous monitoring during surgery. Thus far, our focus has
been on unreliable multicast which allows the system to scale to
many patient sensors and receiving devices. We expect that med-
ical sensor networks will require a range of reliability semantics

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

Re
ce

pt
io

n
Ra

tio

Data Rate (packets per second)

1-transmit
2-transmit
5-transmit

Figure 17:Mitigating packet loss by transmitting each message mul-
tiple times. Data is shown for a single multihop path.

for different types of data.
The best approach to implementing reliability is not immedi-

ately clear. Using link-by-link acknowledgment and retransmis-
sion with multicast requires additional MAC support and may in-
cur high overhead. End-to-end reliability is highly sensitive to
overall path conditions.

One approach that is worth considering makes use of redun-
dant transmissions and coding techniques that allow data to be
reconstructed on the receiver despite packet loss. We are still in-
vestigating this idea, but to capture a rough estimate of how it
would perform we have conducted experiments where each mes-
sage is simply transmitted multiple times by the sender. In this
way a receiver can recover the original data if any one ofk trans-
mitted packets is received. This approach consumes considerably
more bandwidth but should yield an estimate of the improvement
obtainable via more sophisticated techniques.

Figure 17 shows the result of a series of experiments with a
single multihop path (with an average path length of 5 hops). As
the figure shows, for low data rates (below 15 packets per sec-
ond), using multiple transmissions per packet increases robustness
considerably, from 63% (with 1 transmission) to over 98% (with
5 transmissions). However, at larger data rates the increased mes-
sage load causes network saturation and reception ratios drop con-
siderably. Ideally, nodes would be able to tune their transmission
rates according to background traffic conditions.

6 Future Work and Conclusions
Our evaluation of the CodeBlue prototype points to a number of
critical areas for future work. The most serious is the lack of reli-
able communication, although our results show that this problem
can be mitigated somewhat through redundant transmissions. We
do not believe that reliable routing is required for all medical data;
rather, the system should allow each query to specify its reliability
needs in terms of acceptable loss, data rate, or jitter.

Another area worth exploring is the impact of bandwidth limi-
tations and effective techniques for sharing bandwidth across pa-
tient sensors. For example, each CodeBlue query could specify a
data priority that would allow certain messages (say, an alert from
a critical patient) to have higher priority than others in the pres-
ence of radio congestion. This approach can be combined with
rate-limiting congestion control [14, 25] to bound the bandwidth
usage of patient sensors.

An important shortcoming of the current CodeBlue prototype

is its lack of security. We have already begun to explore the in-
tegration of private-key encryption [29] along with a public-key
protocol for key distribution [38, 22] in CodeBlue. The privacy
and security requirements for medical care are complex and differ
depending on the scenario. For example, HIPAA privacy regula-
tions need not be enforced during life-saving procedures. Never-
theless, we intend to integrate some form of end-to-end security
into the next version of the CodeBlue system.

In conclusion, this paper has presented an initial exploration
into the challenges of hardware and software design for medical
sensor networks. We believe that low-power wireless sensors have
the potential for tremendous impact in many medical applications.
We have described a range of mote-based medical sensors as well
as a prototype protocol and middleware platform. CodeBlue is
currently being developed through several active collaborations
with local hospitals and we anticipate a clinical deployment of the
system in the next few months.

References
[1] A & D Medical, Inc. UA-767BT Wireless Blood Pressure Moni-

tor. http://www.lifesourceonline.com/products/
telemonitoring.cfm .

[2] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user
location and tracking system. InProc. INFOCOM (2), pages 775–784, 2000.

[3] P. Bonato, R. Hughes, D. Sherrill, R. Black-Schaffer, M. Akay, B. Knorr,
and J. Stein. Using Wearable Sensors to Assess Quality of Movement After
Stroke. InProceedings of the 65th Annual Assembly American Academy
of Physical Medicine and Rehabilitation 2004, Phoenix, Arizona, October
2004.

[4] P. Bonato, P. Mork, D. Sherrill, and R. Westgaard. Data mining of motor pat-
terns recorded with wearable technology.IEEE Eng Med Biol Mag., 22(3),
May-June 2003.

[5] J. Bussmann, J. Tulen, E. van Herel, and H. Stam. Quantification of physical
activities by means of ambulatory accelerometry: a validation study.Psy-
chophysiology, 35(5), 1998.

[6] Card Guard. Wireless Blood Pressure Monitors.http://www.
cardguard.com/site/products-list.asp?id=20 .

[7] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habi-
tat monitoring: Application driver for wireless communications technology.
In Proc. the Workshop on Data Communications in Latin America and the
Caribbean, Apr. 2001.

[8] Crossbow Technology, Inc. MICA2 Series (MPR4x0).http://www.
xbow.com/Products/productsdetails.aspx?sid=72 .

[9] Crossbow Technology, Inc. MICAz ZigBee Series (MPR2400).http://
www.xbow.com/Products/productsdetails.aspx?sid=101 .

[10] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. InProceedings of the 9th ACM
International Conference on Mobile Computing and Networking (MobiCom
’03), San Diego, California, September 2003.

[11] J. Deng, R. Han, and S. Mishra. A performance evaluation of intrusion-
tolerant routing in wireless sensor networks. InProc. Second International
Conference on Information Processing in Sensor Networks (IPSN’03), April
2003.

[12] E. Dishman. Inventing wellness systems for aging in place.IEEE Computer,
37(5), May 2004.

[13] Dolphin Medical. OEM 601 Oximetry Module. http://www.
dolphinmedical.com/oem601.htm .

[14] C. T. Ee and R. Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. InProc. SenSys’04, Baltimore, MD, November
2004.

[15] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. InProc. Fifth Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston, MA, December 2002.

[16] Federal Communications Commission. Wireless Medical Telemetry Service
(WMTS). http://wireless.fcc.gov/services/personal/
medtelemetry/ .

[17] T. R. F. Fulford-Jones, G.-Y. Wei, and M. Welsh. A portable, low-power,
wireless two-lead EKG system. InProc. 26th IEEE EMBS Annual Interna-
tional Conference, San Francisco, September 2004.

[18] GE Healthcare. ApexPro CH. http://www.gehealthcare.
com/usen/patient_mon_sys/wireless_and_telemetry%
/products/telemetry_sys/products/apexpro_ch.html .

[19] GE Healthcare. Corometrics 340M – Telemetry Ambulatory monitoring dur-
ing labor. http://www.gehealthcare.com/usen/perinatal/
mat_fetal_mon/products/colo3%40M.html .

[20] D. Giansanti, V. Macellari, G. Maccioni, and A. Cappozzo. Is It Feasible
to Reconstruct Body Segment 3-D Position and Orientation Using Accelero-
metric Data?IEEE Trans Biomed Eng, 50(4), 2003.

[21] GMP Wireless Medicine, Inc. LifeSync Wireless EKG System.http:
//www.wirelessecg.com/ .

[22] N. Gura, A. Patel, A. Wander, et al. Comparing elliptic curve cryptography
and RSA on 8-bit CPUs. InProc. Cryptographic Hardware and Embed-
ded Systems (CHES 2004): 6th International Workshop, Cambridge, MA,
August 2004.

[23] HealthFrontier, Inc. ecgAnywhere.http://www.healthfrontier.
com.

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System architecture directions for networked sensors. InProc. the 9th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, pages 93–104, Boston, MA, USA, Nov. 2000.

[25] B. Hull, K. Jamieson, and H. Balakrishnan. Techniques for mitigating con-
gestion in sensor networks. InProc. SenSys’04, Baltimore, MD, November
2004.

[26] IEEE. IEEE 802.15.4 — Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (LR-WPANs), October 2003.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. InProc. In-
ternational Conference on Mobile Computing and Networking, Aug. 2000.

[28] J. G. Jetcheva and D. B. Johnson. Adaptive Demand-Driven Multicast Rout-
ing in Multi-Hop Wireless Ad Hoc Networks. In2001 ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc2001),
pages 33–44, October 2001.

[29] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer security archi-
tecture for wireless sensor networks. InProc. Second ACM Conference on
Embedded Networked Sensor Systems (SenSys 2004), November 2004.

[30] D. Konstantas, V. Jones, R. Bults, and R. Herzog. Mobihealth - innovative
2.5/3g mobile services and applications for healthcare. InProc. Eleventh
IST Mobile and Wireless Telecommunications Summit 2002, Thessaloniki,
Greece, June 2002.

[31] K. V. Laerhoven, B. P. Lo, J. W. Ng, S. Thiemjarus, R. King, S. Kwan,
H.-W. Gellersen, M. Sloman, O. Wells, P. Needham, N. Peters, A. Darzi,
C. Toumazou, and G.-Z. Yang. Medical healthcare monitoring with wear-
able and implantable sensors. InProc. Sixth International Conference on
Ubiquitous Computing, Tokyo, Japan, September 2004.

[32] L. Lenert et al. WiiSARD: Wireless Internet Information System for Medical
Response in Disasters.https://wiisard.org .

[33] B. Lo and G. Z. Yang. Key technical challenges and current implementations
of body sensor networks. InProc. 2nd International Workshop on Body
Sensor Networks (BSN 2005), April 2005.

[34] K. Lorincz and M. Welsh. MoteTrack: A Robust, Decentralized Approach
to RF-Based Location Tracking. InProceedings of the International Work-
shop on Location- and Context-Awareness (LoCA 2005) at Pervasive 2005,
Oberpfaffenhofen, Germany, May 2005.

[35] H. Luinge, P. Veltink, and C. Baten. Estimating Orientation with Gyroscopes
and Accelerometers.Technol Health Care, 7(6), 1999.

[36] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks. InProc. the 5th OSDI,
December 2002.

[37] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. CodeBlue: An ad
hoc sensor network infrastructure for emergency medical care. InProc.
MobiSys 2004 Workshop on Applications of Mobile Embedded Systems
(WAMES 2004), June 2004.

[38] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography. InProc. the
First IEEE International Conference on Sensor and Ad hoc Communications
and Networks (SECON), Santa Clara, CA, October 2004.

[39] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchro-
nization protocol. InProc. SenSys’04, Baltimore, MD, November 2004.

[40] M. Mathie, A. Coster, N. Lovell, and B. Celler. Accelerometry: providing an
integrated, practical method for long-term, ambulatory monitoring of human
movement.Physiol Meas., 25(2), April 2004.

[41] Moteiv, Inc. Tmote sky.
[42] Nonin Medical, Inc. Avant 4000 Wireless Wearable Pulse Oximeter.http:

//www.nonin.com/products/4000.asp .
[43] L. Ohno-Machado et al. SMART: Scalable Medical Alert Response Tech-

nology. http://smart.csail.mit.edu/ .

[44] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power
wireless research. InProc. Fourth International Conference on Information
Processing in Sensor Networks: Special track on Platform Tools and Design
Methods for Network Embedded Sensors (IPSN/SPOTS), April 2005.

[45] T. Rusch, R. Sankar, and J. Scharf. Signal processing methods for pulse
oximetry. Computers in Biology and Medicine, 26(2):143–159, 1996.

[46] E. Shih, V. Bychkovsky, D. Curtis, and J. Guttag. Demo abstract: Con-
tinuous, remote medical monitoring. InProc. Second Annual International
Conference on Embedded Networked Sensor Systems, November 2004.

[47] Smiths Medical PM, Inc. BCI Micro Power Oximeter Board.http://
www.smiths-bci.com/html/Products/oem_products.htm .

[48] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis of a
large scale habitat monitoring application. InProc. Second ACM Conference
on Embedded Networked Sensor Systems (SenSys), November 2004.

[49] K. K. Tremper and S. J. Barker. Pulse oximetry.Anesthesiology, 70(1):98–
108, January 1989.

[50] Welch Allyn, Inc. Micropaq Wireless Patient Monitor. http:
//www.monitoring.welchallyn.com/products/wireless/
micropaq.asp .

[51] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring
volcanic eruptions with a wireless sensor network. InProc. Second European
Workshop on Wireless Sensor Networks (EWSN’05), January 2005.

[52] D. White et al. AID-N: Advanced Health and Disaster Aid Network.
https://secwww.jhuapl.edu/aidn/ .

[53] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. InProc. the First ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003), November 2003.

[54] G.-Z. Yang et al. Body Sensor Network Node.http://www.doc.ic.
ac.uk/vip/ubimon/bsn_node/index.html .

[55] Y. Yao and J. E. Gehrke. The Cougar approach to in-network query process-
ing in sensor networks.ACM Sigmod Record, 31(3), September 2002.

