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Abstract

We introduce a wide class of asymmetric loss functions and show how to obtain
asymmetric-type optimal decision rules from standard and commonly used
Bayesian procedures. Important properties of minimum risk estimators are
established. In particular, we discuss their sensitivity to the magnitude of

asymmetry of the loss function.

1 Introduction

Consider a statistical decision problem, where underestimating the parameter
is, say, cheaper or less harmful than overestimating it by the same amount.
Problems of this nature appear in actuarial science, marketing, pharmaceutical
industry, quality control, change-point analysis, child’s I() estimation, estima-

tion of water levels for dam constructions, and other situations ([1], [2], [3],
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section 4.4, [6], section 3.3, [§], [9], [10], [11]). For example, an underestimated
premium leads to some financial loss, whereas an overestimated premium may

lead to a loss of a contract.

For the sake of simplicity, it is still common in practical applications to use
standard Bayesian decision rules like the posterior mean or median, even in
asymmetric situations. However, these procedures do not reflect the difference
in losses. It is recognized that some type of correction should be introduced

to take account of the asymmetry.

In this paper we introduce a wide class of asymmetric loss functions (1).
The corresponding asymmetric-type minimum risk decision rules can then be
obtained as fixed points of standard estimators (Theorem 1). A simple alter-
native is to use linear or quadratic approximations (14) and (15) for situations
when over- and underestimation costs are different, but compatible. In this
case, a standard Bayes estimator should be corrected by a term proportional

to the posterior mean absolute deviation.

Suppose that a continuous or discrete parameter # € O is to be estimated.
Here © is either a connected subset of R or a possibly infinite collection of
points {... < 0y < 6; < ...}. Let Il be a probability measure on O, which
may be realized as the prior distribution, or the posterior, after a sample
x = {x1,...,2,} has been observed. As an initial setting, we choose an
arbitrary measure Il on © and a loss function L(4,8), where § is a decision
rule. The loss L may be one of the standard symmetric loss functions, however,

symmetry is not required for the subsequent discussion.



BARON 3

Introduce an asymmetric loss function of the form
W(6,0) = K1L(6,0)1{6 <0} + K2 L(6,0)I{é > 0} (1)

for some positive K7 and K,. It generalizes the linear loss proposed in [3],
section 4.4.2, for estimating the child’s 1Q. Another popular asymmetric loss
function is the linex loss ([10], [11]). Unlike the linex, (1) defines a wide family
of loss functions, due to an arbitrary choice of L(-,-), where costs of over- and
underestimation are compatible.

Without loss of generality we can study the case K; < K, only, because the
other situation obtains by reparameterization § — —f. Also we can assume

that K7 = 1. Then the loss function W has the form

W(5,0) =

5,0 if §<0,
{ L(5,0) < o)

(14 NL(8,0) if 6> 0

for some A > 0, which denotes the additional relative cost of overestimation.

Let 6* be the minimum risk estimator of 0,
5ﬁ:yu):mg@y/ﬁvwﬁmnwy

If overestimation is costly, one will tend to underestimate 6. A way to
express this is to consider a family of weighted measures {Il;} obtained from

IT by increasing probabilities of small values of 6,

- (3)

(14 NI/ (1 4 A fye, dI1(0)) i 0 <1,
T/(1 4 Ay, dU1(0)) if 0> 1.

For every t let

&w:a@@@/L@ﬁmmwy
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In practice, Il is usually a posterior distribution m(#|@&) under some prior 7(6).
One defines an altered prior m;(#) similarly to (3), by assigning higher proba-
bilities for smaller values of §. Then II; in (3) is the corresponding posterior.

In the next section, we show that ¢* is the local and global minimum, and
the fixed point of S(t) The rest of the paper gives simple methods of obtaining
d*(A) in practice and establishes robust properties of 6* with respect to the

choice of A\. Popular examples are discussed.

2 The fixed point of §(t)

We assume that L(,8) is a strictly convex nonnegative function of ¢ for any
6, with L(6,0) = 0.

Consider the risks r(4) and () associated with (W, II) and (L, I1;) respec-
tively. One has S(t) = arg minr(d) for any ¢, and §* = argminr(d). Then
4(1) also minimizes

Pi(6) = C(A )r(0) = /L(é,@)dﬂ(@) + A L(6,0)dI1(),

o<t

and 6* minimizes ¥ (6) = 1s(d). Under our assumptions ¢(d) and () are
strictly convex functions of 4. The following lemma establishes an important

property of S(t)

Lemma 1 The decision rule S(t) is a non-increasing function on (—oo,T) and

a non-decreasing function on (T, +00), where T' = inf{s : S(S) < s} =sup{s:

o(s) > s}.
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Proof: For any s <t one has

Go(8) = y(8) + X / ., LE0(0) (4)

Hence, by convexity, the minimum of ¢,(d) is attained between the points
of minima of ¥(5) and [y, L(4,0)dII(0). In other words, since the latter

attains its minimum at some point between s and t,
min{s; d(s)} < 6(1) < max{t;d(s)}. (5)

If §(s) < s, then (5) results in §(s) < §(t) < ¢, from which {s : §(s) < s} is
a right half-line and () is non-decreasing on it. Let 7' = inf{s : i(s) < s}.
Then 6(t) > t for all t < T, and for any s < ¢ (5) implies §(¢) < d(s). Thus
4(1) is non-increasing on (—oo; T'). O

We now handle discrete and continuous cases separately. First, let II be a
discrete distribution on © = {;}, where 6 are enumerated in increasing order.
Then it follows from (4) that 14(8) = g, (8) for ¢ € (f5_1; 6], and therefore
5(1) = 6(6). In particular, (8) = ¥5(8) = g, (8), when Op_y < § < 6.

We show that () attains a local minimum at § = 7. Then, by convexity
of b, §* =T.

Let 0;_y < T < 6 for some k. Then

T =sup{s:d(s)> s} =sup{s:(0;) > s} =6, (6)

and hence 4, (4) has a local minimum at 7. If T" < 6, then () also at-
tains a local minimum at & = 7', because both functions coincide in some

neighborhood of T'. Otherwise, if T' = §; for some k, then

T =inf{s:d(s) < s} = inf{s: d(fpy1) < s} = Sg(k_l_l).
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Thus, from (6), S(@k) = S(0k+1)7 and T is a point of minimum for both functions
g, and g, . Since P = g, to the left of T and ¢ = 1y, to the right of it,
and it is continuous, it follows that 7" is a point of minimum for ¥ (4).

Formula (6) implies that §* solves the equation
S(t) =t. (7)

Moreover, ¢* is the unique root of (7). Indeed, suppose that S(t) =t for
some t # T. By the definition of 7', the only possibility is ¢ > T. Let
0,, <1< 0,41, and take any s € (max{7T,6,,};t). Then é(s) = 6(t) =t > s,
which contradicts that s > T

The fact that 6* is the unique fixed point of S(t) suggests a computational
method of numerical evaluation of §*.

We also note that from (5) with s = T one has T < S(t) for any ¢ > T.
The same inequality obtains for ¢ < 1", because S(T —¢) =T for some ¢ > 0,
and by Lemma 1 &, > S(T —¢) for any s < T — e. Hence, 6* = min, S(t)

Now turn to the case when II is a continuous distribution on ©, having a
density m(#). Then, from (4), one has s — ¢, pointwise as s — ¢, and the

following statement holds.

Lemma 2 [f1II is absolutely continuous with respect to Lebesgue measure, then

S(t) is a continuous function of t.

The proof of Lemma 2 is given in the Appendix. By continuity, it follows again
from Lemma 1 that S(T) =T = min S(t) It remains to show that é* = 7.

Since ¥(d) increases in t pointwise, for any ¢t > T

D(t) = el(t) > u(8(8)) > e (5(8)) > ¢r(T) = (T).
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Hence, 6* > T is impossible. Suppose that é* < T. Choose 6* < t < T
and a sequence t; | t, for which n(¢;) is bounded by some M. Then, since
§* = argmint, and ¢ is convex, one has ¥ (¢;) > ¥(t), and

W(t5) = i(ty) > Pult) — u(t). (8)

Consider both sides of (8). From (4),

(L) —lt;) = /\/ dv
< (®)L(t,1;)(t; — 1) = oft; — 1),

as j — oo, because L(t,t;) — 0. However, by convexity of ,

ult) = i(3(1)
3(t) —t

> 0.

Pi(t) — u(ty) > m(t; —t), where m =

Now we have a contradiction to (8). Thus we have proved the following theo-

rem.

Theorem 1 The minimum risk estimator of 0 under the loss function W and

the prior 7 is the unique root of the equation S(t) =t. Also, it equals miny S(t)

As an illustration, we consider the problem of estimating the binomial
parameter 6, when one variable X from the binomial (5,6) distribution is
observed, and 6 has a uniform prior distribution. For A € {1,6} and all possible
values of X, the graphs of S(t) are depicted on Figure 1. Their shapes are in
accordance with Lemma 1. The dotted line represents the graph S(t) =t. By
Theorem 1, §*(A) coincides with the intersection points for different values of
X. Obviously, higher values of A imply a higher penalty for overestimation,

which leads to lower values of S(t) and §*.
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1 6(t) A=1 1 6(t) A=6
o8 ks osw
——%=5
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04— X7 0.4\/’x2f
0.2 0.2\/_XT

Figure 1. Behavior of §(t) and §* in the binomial case.

2.1 The range of decision rules

Methods of Bayesian global posterior robustness suggest giving an interval of
decision rules corresponding to a family of priors I', rather than specifying one
optimal procedure for one given prior ([4], [5]). One considers an interval

D= linf 07 sup 5”]
IIer

Ifer

of the minimum risk decision rules corresponding to all priors of I'. In asym-
metric problems with a fixed A, one considers the family of prior distributions
I'y = {II;} for all values of ¢, as defined in (3). A direct application of Lemma

1 and Theorem 1 gives the form of D,

whereas Lemma 4 below bounds the length of D for the case of the squared-

error loss.
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Further, one can consider an extended family of priors I' = {Il;,} for
allt € O and ) € [A1,A2], 0 < Ay < Ay, Then the range of the posterior

expectation is

D = [7(X2),07(0)], (10)

independent of ;.
If a sample from f(z|0) is available, and 6! are Bayes rules under the prior

distributions II € I', their ranges are still given by (9) and (10).

3 Absolute error loss

In order to have a unique minimizer, we required that L(d,6) be a strictly
convex function of 4. However, if L(d,6) = |6 — 6], all the minimum risk
estimators with respect to the loss function W are still the solutions of (7).
Indeed, if L is the absolute error loss, then S(t) is any median of II;, and (7)
is equivalent to a system of two inequalities,

: B (14 \)dIL(6)
/_oo dL(0) = /_oo (L4 ) 1 dII(0) + [ dTI(0)

1
>
-2

and a similar inequality for [ dI1;(9). Any 1/(A+ 2)-quantile of 1I solves this

system. According to [3], section 4.4, the Bayes rule §* has the same form.

4 Squared error loss and weighted losses

When L(§,0) = (6§ — 8)?, it is easy to check that

_pt AEH(‘”@Q)
1+ APY0 <t}

5(t) = E™M(0) (11)
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Here and later 14, = 1 if A holds; = 0 otherwise, and y = E™(). Note
that EN(01y;) = E"{0]0 < 1} P < t}. Hence, §(1) is a convex linear
combination of y = d(—oo) and E™(0 |0 < t). Then, according to (11) and

Theorem 1, 6* solves the equation
EMNO 1) + XE™(0 — t)ly<; = 0, (12)
which is equivalent to
E"0-t)r =(1+NE"0—-1),

where a* = max{a; 0}, and ¢~ = max{—«;0}.

In general, for any loss function of the form
L(3,0) =5 — 0], v > 1,
§* solves the equation
E[(0— )7 = (1+ N E"[(6 - )],

The case v = 1 yields the 1/(A+2)-quantile mentioned in the previous section.

Generalization to the case of weighted squared error loss functions L(4,8) =
w(8)(6 — 0)?* is straightforward. The weights w(8) usually allow larger errors
for larger true values of the parameter. It is equivalent to the decision problem

with the unweighted loss, if the distribution II;(d#) is replaced by
(1 + MI(0)w(9)

ET0(0) + A fyey w(0)d11(0) it o<t

11/(d0) =

T1(0)w(6) .
Ew0(0) + A Jye, w(0)dI1(0) s

Any weighted loss function can be considered similarly, as long as the weight

function is Il-integrable.
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4.1 Sensitivity with respect to )\, and correction of

standard decision rules

When the choice of A, the relative additional cost of overestimation, is not
obvious, it is natural to investigate the robustness of §* with respect to different
A. The following results concern the rate of change of 6* = §*(A) for A — 0

and A\ = +oo.

Lemma 3 Let L(4,0) be the squared error loss. Then

d5*(\)
|,

Lemma 3 shows that |[6*(A) —6*(0)| has the linear order in A as A — 0. As
A1 0, one has

1
= Cov(l, locy) = —§EH|9 — - (13)

5 =~ S0l O02) (14)

In applications, this determines a simple strategy for a decision maker. Ev-
ery time when overestimation is slightly more costly than underestimation,
the standard Bayes estimator 6*(0) = p is to be corrected by a term propor-
tional to the mean absolute deviation of 6. Suppose, for example, that the loss
caused by overestimating the parameter is 10% higher than the loss caused by

underestimating it by the same amount. Then the corrected decision rule
§(0.1) = p — (0.05)E™0 — p|

should be used instead of the standard posterior mean y = E™(9).
Differentiating once more, one obtains,

d257(\)
e

A=0

= E"0 - p|P"{0 < i}
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This provides a more accurate correction of the standard decision rule,
* 11 A 2 3
5()\):/,L—E|(9—/,L|(§—)\P{(9</,L}—I—O()\)),as A — 0. (15)
The next result bounds all possible deviations of 6*.

Lemma 4 One has

SN =8 (O)] _ A
all(9) T2V 4N

where o'(0) denotes the standard deviation of 0 under the distribution I1.

(16)

Simple calculation shows that if © consists of only two points, then p(t) =
—1 everywhere between them. In this case, equality holds in (16).

According to Lemma 4, when © is unbounded, §*(\) deviates from §*(0)
with the rate O(\/X), as A — +oo.

4.2 Examples
Bayesian estimation of the normal mean

We consider Bayesian estimation of a normal mean. Let Xi,.... X, be a
sample from the normal distribution with EX = 6, Var(X) = % Sup-
pose that o2 is known, and 6, the parameter of interest, has a prior distribu-
tion m(#), which is normal(u, 7%). The corresponding posterior Il = 7(8|x) is
normal (., 72), where

nX/o? + pu/7?

nfo?+1/72 Y onfot41/7?
(eg. [3], [7]). Then z = (§ — py)/ 7 follows the standard normal distribu-

Mz =

tion under w(f|e). Let ¢(u) and ®(u) denote standard normal pdf and cdf
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respectively. Note that F z[.., = —¢(u). From (11),

S(t) _ Ho + )\E(Mx + TxZ)[M$+TmZ<t - )\qub(u)
L+ AP {p, + 72 < t} “ L4+ A0(u)’

where « = (t — p1,)/ 7. Then the fixed-point equation (7) is equivalent to

Blu) +ud(u) + T = 0. (17)

Hence, the minimum asymmetric risk decision rule is given by
0 (A) = pz + mou(N), (18)

where u(A) is a solution of (17).

According to (18), % = 7,u'()), which is independent of Xy,..., X,. In

particular,

ds* 1
=

1
= —qub(()) = — ,
dX A=0 VQW\/;%—I_T

and the same formula can be obtained by Lemma 3.
By (15), 6*(A) & py — 1A (1 — A)/+/27 for small A, and the correction term
is the same regardless of the observed sample.

Asymmetric least squares

In the no-intercept linear regression model
yi = Pxi + €,

let B be selected to minimize

¢(b) = Z(yl - xib)z + )‘Z(yi - xib)zlyKl’ib
= fo(n —b)* + )\Z 23 (ri — )21, <, (19)
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with r; = y;/x;. Additional weights assigned to squared residuals reflect the

higher cost of overestimating # and overpredicting y.

Suppose that ratios r; are enumerated in their increasing order, r; < ... <
r.. For every k =1,...,n, consider
n k

Yi(b) = fo(n — b+ A fo(n —b)?,

=1 =1
This function is minimized at
B(k) _ S+ )\Zlf xir; _ [ rdIly(r)
Sral 4+ A a? [ dILy(r)

where the distribution I, puts masses

= E(r),

Ca? at 0 >k,
C(1+ )\):1;22 at r;,1 < k.

Thus B(k) has the Bayes-type form of S(k), and according to Theorem 1, the

asymmetric least squares solution B = ¢* can be found as the fixed point of

N

B(k). Clearly, the case A = 0 gives the OLS solution.

Change-point estimation

In a classical change-point problem, a sample of independent variables & =
(X1,...,X,) is such that the distribution of X; depends on whether j < 6 or
J > 0. One needs to estimate the change-point parameter #. Since a change-
point has to be detected “as soon as possible”, suppose that overestimation
leads to a higher loss than underestimation.

Further, assume a (continuous) uniform prior distribution of # over the
interval @ = [0; n]. If the pre-change and the post-change densities or proba-

bility mass functions f and ¢ are mutually absolutely continuous, the standard
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Bayes rule under the squared-error loss has the form

00— oty Stk
= 5°0) = Blofe) = Z Y, )
where (k) = f(X1) - ...« f(Xp)/g(X1)/ ... /9(Xk) ([8]). Correction for an

asymmetric loss is straightforward. According to (15), one obtains the optimal

decision rule under the loss function (2),

n . [u]+1 2 _
5“M:M_(znamw M+212§2J«M} 1mw4+m_1)

X(A_VEWQM+{MQMHJ)

) T C(h) )*mﬁ%

as A — 0, where p is given by (20), [¢] and {¢} denote its integer and fractional

parts, respectively (derivation is omitted).

5 Appendix

Proof of Lemma 2. Suppose that there exist such A > 0 and a monotone

sequence {; — 7 that |0(t;) — ()| > A for all j. Let

e = min {¢(() — A), - (3(r) + A)} = ¢, (5(7)) > 0,

If 1; 1 7, then 4y, (-) T 1,(-), and ¢y, (5(r) £ A) > 4, (3(r) £ A) — ¢/2 for
sufficiently large j. Then, since ¥, (3,) < ©.(d,) < ©.(5(7) £ A) — ¢/2, it
follows from convexity of ¢, that it has a minimum on (3(7) — A, () + A),
which contradicts to [8(t;) — o(7)| > A.

If t; | 7, then ¢ (8(7)) > 1, (3(1)) > - (8(1;) > ©+(d(7)) + ¢, and we
have a contradiction: ¢y, (§(7)) 4 ¥.(3()).
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Hence, S(t) is continuous.

Proof of Lemma 3. According to (12),

/(9 CSdIL(0) + A [ (0 — 57)dIL(0) = 0.

f<5*

Differentiating implicitly, one obtains

dé*(\)  —E"(0— 6"
A\ 1+ AP0 < 57}

Notice that A = 0 corresponds to the symmetric square loss W = L, hence

6%(0) = p. Also,
—E"0—p)" =E"(0lye,) — n E" e, = Cov(8, Iye,), (21)

and the first equality in (13) follows.
Next, observe that

E(0 — p)losy + E(0 — ) loc = E(0 — 1) =0, (22)

and

E(0 — p) o>, — E(0 — p)loc, = E|0 — pl. (23)
Subtracting (23) from (22), one completes the proof.

Proof of Lemma 4. For any ¢ let p(¢) denote a correlation coefficient between
6 and Iy<; under II. Then, similarly to (21), one obtains from (11)
< ACov(0, Tgey)
5(t) —467(0) =
®) (0) 1+ AP {0 <t}
Ao(H)a ()P {0 < 1} (1 — P {9 < t})
L+ AP {0 <t}
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Clearly, S(t) < 6*(0). Then, by Theorem 1, §*(A) maximizes |S(t) —0*(0)| over
all ¢, and

p(l—p)  Xo"(0)

0erst 1+ Ap 214N

[67(A) = 67(0)] < Aa(0)
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