
1ON STATISTICAL INFERENCE UNDER ASYMMETRIC LOSSFUNCTIONSMichael BaronReceived: AbstractWe introduce a wide class of asymmetric loss functions and show how to obtainasymmetric-type optimal decision rules from standard and commonly usedBayesian procedures. Important properties of minimum risk estimators areestablished. In particular, we discuss their sensitivity to the magnitude ofasymmetry of the loss function.1 IntroductionConsider a statistical decision problem, where underestimating the parameteris, say, cheaper or less harmful than overestimating it by the same amount.Problems of this nature appear in actuarial science, marketing, pharmaceuticalindustry, quality control, change-point analysis, child's IQ estimation, estima-tion of water levels for dam constructions, and other situations ([1], [2], [3],AMS 1991 subject classi�cations: 62A15, 62C10.Key words and phrases: loss function, prior distribution, minimum risk estimator, �xedpoint, range of posterior expectation.



2 BARONsection 4.4, [6], section 3.3, [8], [9], [10], [11]). For example, an underestimatedpremium leads to some �nancial loss, whereas an overestimated premium maylead to a loss of a contract.For the sake of simplicity, it is still common in practical applications to usestandard Bayesian decision rules like the posterior mean or median, even inasymmetric situations. However, these procedures do not re
ect the di�erencein losses. It is recognized that some type of correction should be introducedto take account of the asymmetry.In this paper we introduce a wide class of asymmetric loss functions (1).The corresponding asymmetric-type minimum risk decision rules can then beobtained as �xed points of standard estimators (Theorem 1). A simple alter-native is to use linear or quadratic approximations (14) and (15) for situationswhen over- and underestimation costs are di�erent, but compatible. In thiscase, a standard Bayes estimator should be corrected by a term proportionalto the posterior mean absolute deviation.Suppose that a continuous or discrete parameter � 2 � is to be estimated.Here � is either a connected subset of R or a possibly in�nite collection ofpoints f: : : < �0 < �1 < : : :g. Let � be a probability measure on �, whichmay be realized as the prior distribution, or the posterior, after a samplex = fx1; : : : ; xng has been observed. As an initial setting, we choose anarbitrary measure � on � and a loss function L(�; �), where � is a decisionrule. The loss Lmay be one of the standard symmetric loss functions, however,symmetry is not required for the subsequent discussion.



BARON 3Introduce an asymmetric loss function of the formW (�; �) = K1L(�; �)If� � �g+K2L(�; �)If� > �g (1)for some positive K1 and K2. It generalizes the linear loss proposed in [3],section 4.4.2, for estimating the child's IQ. Another popular asymmetric lossfunction is the linex loss ([10], [11]). Unlike the linex, (1) de�nes a wide familyof loss functions, due to an arbitrary choice of L(�; �), where costs of over- andunderestimation are compatible.Without loss of generality we can study the caseK1 � K2 only, because theother situation obtains by reparameterization � 7! ��. Also we can assumethat K1 = 1. Then the loss function W has the formW (�; �) = 8><>: L(�; �) if � � �;(1 + �)L(�; �) if � > � (2)for some � � 0, which denotes the additional relative cost of overestimation.Let �� be the minimum risk estimator of �,�� = ��(�) = argmin� Z W (�; �)d�(�):If overestimation is costly, one will tend to underestimate �. A way toexpress this is to consider a family of weighted measures f�tg obtained from� by increasing probabilities of small values of �,�t = 8><>: (1 + �)�=(1 + � R��t d�(�)) if � < t;�=(1 + � R��t d�(�)) if � � t: (3)For every t let ~�(t) = argmin� Z L(�; �)d�t(�):



4 BARONIn practice, � is usually a posterior distribution �(�jx) under some prior �(�).One de�nes an altered prior �t(�) similarly to (3), by assigning higher proba-bilities for smaller values of �. Then �t in (3) is the corresponding posterior.In the next section, we show that �� is the local and global minimum, andthe �xed point of ~�(t). The rest of the paper gives simple methods of obtaining��(�) in practice and establishes robust properties of �� with respect to thechoice of �. Popular examples are discussed.2 The �xed point of ~�(t)We assume that L(�; �) is a strictly convex nonnegative function of � for any�, with L(�; �) = 0.Consider the risks r(�) and rt(�) associated with (W;�) and (L;�t) respec-tively. One has ~�(t) = arg min rt(�) for any t, and �� = argmin r(�). Then~�(t) also minimizes t(�) = C(�; t)rt(�) = Z L(�; �)d�(�) + � Z�<t L(�; �)d�(�);and �� minimizes  (�) =  �(�). Under our assumptions  t(�) and  (�) arestrictly convex functions of �. The following lemma establishes an importantproperty of ~�(t).Lemma 1 The decision rule ~�(t) is a non-increasing function on (�1; T ) anda non-decreasing function on (T;+1), where T = inffs : ~�(s) � sg = supfs :~�(s) > sg.



BARON 5Proof : For any s � t one has t(�) =  s(�) + � Zs��<t L(�; �)d�(�): (4)Hence, by convexity, the minimum of  t(�) is attained between the pointsof minima of  s(�) and Rs��<t L(�; �)d�(�). In other words, since the latterattains its minimum at some point between s and t,minfs; ~�(s)g � ~�(t) � maxft; ~�(s)g: (5)If ~�(s) � s, then (5) results in ~�(s) � ~�(t) � t, from which fs : ~�(s) � sg isa right half-line and ~�(t) is non-decreasing on it. Let T = inffs : ~�(s) � sg.Then ~�(t) > t for all t < T , and for any s < t (5) implies ~�(t) � ~�(s). Thus~�(t) is non-increasing on (�1;T ). 2We now handle discrete and continuous cases separately. First, let � be adiscrete distribution on � = f�kg, where �k are enumerated in increasing order.Then it follows from (4) that  t(�) =  �k(�) for t 2 (�k�1; �k], and therefore~�(t) = ~�(�k). In particular,  (�) =  �(�) =  �k (�), when �k�1 < � � �k.We show that  (�) attains a local minimum at � = T . Then, by convexityof  , �� = T .Let �k�1 < T � �k for some k. ThenT = supfs : ~�(s) > sg = supfs : ~�(�k) > sg = ~�(�k); (6)and hence  �k(�) has a local minimum at T . If T < �k, then  (�) also at-tains a local minimum at � = T , because both functions coincide in someneighborhood of T . Otherwise, if T = �k for some k, thenT = inffs : ~�(s) � sg = inffs : ~�(�k+1) � sg = ~��(k+1):



6 BARONThus, from (6), ~�(�k) = ~�(�k+1), and T is a point of minimumfor both functions �k and  �k+1 . Since  �  �k to the left of T and  �  �k+1 to the right of it,and it is continuous, it follows that T is a point of minimum for  (�).Formula (6) implies that �� solves the equation~�(t) = t: (7)Moreover, �� is the unique root of (7). Indeed, suppose that ~�(t) = t forsome t 6= T . By the de�nition of T , the only possibility is t > T . Let�m < t � �m+1, and take any s 2 (maxfT; �mg ; t). Then ~�(s) = ~�(t) = t > s,which contradicts that s > T .The fact that �� is the unique �xed point of ~�(t) suggests a computationalmethod of numerical evaluation of ��.We also note that from (5) with s = T one has T � ~�(t) for any t > T .The same inequality obtains for t < T , because ~�(T � �) = T for some � > 0,and by Lemma 1 ~�s � ~�(T � �) for any s < T � �. Hence, �� = mint ~�(t).Now turn to the case when � is a continuous distribution on �, having adensity �(�). Then, from (4), one has  s !  t pointwise as s ! t, and thefollowing statement holds.Lemma 2 If � is absolutely continuous with respect to Lebesgue measure, then~�(t) is a continuous function of t.The proof of Lemma 2 is given in the Appendix. By continuity, it follows againfrom Lemma 1 that ~�(T ) = T = mint ~�(t). It remains to show that �� = T .Since  t(�) increases in t pointwise, for any t > T (t) =  t(t) >  t(~�(t)) �  T (~�(t)) �  T (T ) =  (T ):



BARON 7Hence, �� > T is impossible. Suppose that �� < T . Choose �� < t < Tand a sequence tj # t, for which �(tj) is bounded by some M . Then, since�� = arg min , and  is convex, one has  (tj) >  (t), and (tj)�  t(tj) >  t(t)�  t(tj): (8)Consider both sides of (8). From (4), (tj)�  t(tj) = � Z tjt L(�; tj)�(�)d�� �M(x)L(t; tj)(tj � t) = o(tj � t);as j !1, because L(t; tj)! 0. However, by convexity of  t, t(t)�  t(tj) � m(tj � t); where m =  t(t)�  t(~�(t))~�(t)� t > 0:Now we have a contradiction to (8). Thus we have proved the following theo-rem.Theorem 1 The minimum risk estimator of � under the loss function W andthe prior � is the unique root of the equation ~�(t) = t. Also, it equals mint ~�(t).As an illustration, we consider the problem of estimating the binomialparameter �, when one variable X from the binomial (5; �) distribution isobserved, and � has a uniform prior distribution. For � 2 f1; 6g and all possiblevalues of X, the graphs of ~�(t) are depicted on Figure 1. Their shapes are inaccordance with Lemma 1. The dotted line represents the graph ~�(t) = t. ByTheorem 1, ��(�) coincides with the intersection points for di�erent values ofX. Obviously, higher values of � imply a higher penalty for overestimation,which leads to lower values of ~�(t) and ��.
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t tFigure 1. Behavior of ~�(t) and �� in the binomial case.2.1 The range of decision rulesMethods of Bayesian global posterior robustness suggest giving an interval ofdecision rules corresponding to a family of priors �, rather than specifying oneoptimal procedure for one given prior ([4], [5]). One considers an intervalD = " inf�2� ��; sup�2� ��#of the minimum risk decision rules corresponding to all priors of �. In asym-metric problems with a �xed �, one considers the family of prior distributions�� = f�tg for all values of t, as de�ned in (3). A direct application of Lemma1 and Theorem 1 gives the form of D,D = [��(�); ��(0)] ; (9)whereas Lemma 4 below bounds the length of D for the case of the squared-error loss.



BARON 9Further, one can consider an extended family of priors � = f�t;�g forall t 2 �� and � 2 [�1; �2], 0 < �1 < �2. Then the range of the posteriorexpectation is D = [��(�2); ��(0)] ; (10)independent of �1.If a sample from f(xj�) is available, and �� are Bayes rules under the priordistributions � 2 �, their ranges are still given by (9) and (10).3 Absolute error lossIn order to have a unique minimizer, we required that L(�; �) be a strictlyconvex function of �. However, if L(�; �) = j� � �j, all the minimum riskestimators with respect to the loss function W are still the solutions of (7).Indeed, if L is the absolute error loss, then ~�(t) is any median of �t, and (7)is equivalent to a system of two inequalities,Z t�1 d�t(�) = Z t�1 (1 + �)d�(�)(1 + �) R t�1 d�(�) + R1t d�(�) � 12and a similar inequality for R1t d�t(�). Any 1=(�+2)-quantile of � solves thissystem. According to [3], section 4.4, the Bayes rule �� has the same form.4 Squared error loss and weighted lossesWhen L(�; �) = (� � �)2, it is easy to check that~�(t) = E�t(�) = � + �E�(�I�<t)1 + �P �f� < tg : (11)



10 BARONHere and later IA = 1 if A holds; = 0 otherwise, and � = E�(�). Notethat E�(�I�<t) = E�f� j � < tgP �f� < tg. Hence, ~�(t) is a convex linearcombination of � = ~�(�1) and E�(� j � < t). Then, according to (11) andTheorem 1, �� solves the equationE�f� � t) + �E�(� � t)I�<t = 0; (12)which is equivalent toE�(� � t)+ = (1 + �)E�(� � t)�;where a+ = maxfa; 0g, and a� = maxf�a; 0g.In general, for any loss function of the formL(�; �) = j� � �j
; 
 > 1;�� solves the equationE�[(� � t)+]
�1 = (1 + �)E�[(� � t)�]
�1:The case 
 = 1 yields the 1=(�+2)-quantile mentioned in the previous section.Generalization to the case of weighted squared error loss functions L(�; �) =w(�)(� � �)2 is straightforward. The weights w(�) usually allow larger errorsfor larger true values of the parameter. It is equivalent to the decision problemwith the unweighted loss, if the distribution �t(d�) is replaced by�0t(d�) = 8>>>>>>><>>>>>>>: (1 + �)�(�)w(�)E�w(�) + � R��t w(�)d�(�) if � < t;�(�)w(�)E�w(�) + � R��t w(�)d�(�) if � � t: :Any weighted loss function can be considered similarly, as long as the weightfunction is �-integrable.



BARON 114.1 Sensitivity with respect to �, and correction ofstandard decision rulesWhen the choice of �, the relative additional cost of overestimation, is notobvious, it is natural to investigate the robustness of �� with respect to di�erent�. The following results concern the rate of change of �� = ��(�) for � ! 0and �! +1.Lemma 3 Let L(�; �) be the squared error loss. Thend��(�)d� ������=0 = Cov(� ; I�<�) = �12E�j� � �j: (13)Lemma 3 shows that j��(�)� ��(0)j has the linear order in � as �! 0. As� # 0, one has ��(�) = �� �2E�j� � �j+O(�2): (14)In applications, this determines a simple strategy for a decision maker. Ev-ery time when overestimation is slightly more costly than underestimation,the standard Bayes estimator ��(0) = � is to be corrected by a term propor-tional to the mean absolute deviation of �. Suppose, for example, that the losscaused by overestimating the parameter is 10% higher than the loss caused byunderestimating it by the same amount. Then the corrected decision rule��(0:1) = �� (0:05)E�j� � �jshould be used instead of the standard posterior mean � = E�(�).Di�erentiating once more, one obtains,d2��(�)d�2 ������=0 = E�j� � �jP � f� < �g :



12 BARONThis provides a more accurate correction of the standard decision rule,��(�) = ��E�j� � �j �2 � �2P f� < �g+O(�3)! ; as �! 0: (15)The next result bounds all possible deviations of ��.Lemma 4 One has j��(�) � ��(0)j��(�) � �2p1 + �; (16)where ��(�) denotes the standard deviation of � under the distribution �.Simple calculation shows that if � consists of only two points, then �(t) =�1 everywhere between them. In this case, equality holds in (16).According to Lemma 4, when � is unbounded, ��(�) deviates from ��(0)with the rate O(p�), as �! +1.4.2 ExamplesBayesian estimation of the normal meanWe consider Bayesian estimation of a normal mean. Let X1; : : : ;Xn be asample from the normal distribution with E X = �; V ar(X) = �2. Sup-pose that �2 is known, and �, the parameter of interest, has a prior distribu-tion �(�), which is normal(�; � 2). The corresponding posterior � = �(�jx) isnormal(�x; � 2x), where�x = n �X=�2 + �=� 2n=�2 + 1=� 2 and � 2x = 1n=�2 + 1=� 2(eg. [3], [7]). Then z = (� � �x)=�x follows the standard normal distribu-tion under �(�jx). Let �(u) and �(u) denote standard normal pdf and cdf



BARON 13respectively. Note that E zIz<u = ��(u). From (11),~�(t) = �x + �E(�x + �xz)I�x+�xz<t1 + �P f�x + �xz < tg = �x � ��x�(u)1 + ��(u) ;where u = (t� �x)=�x. Then the �xed-point equation (7) is equivalent to�(u) + u�(u) + u� = 0: (17)Hence, the minimum asymmetric risk decision rule is given by��(�) = �x + �xu(�); (18)where u(�) is a solution of (17).According to (18), d��d� = �xu0(�), which is independent of X1; : : : ;Xn. Inparticular, d��d� ������=0 = ��x�(0) = � 1p2� 1q n�2 + 1�2 ;and the same formula can be obtained by Lemma 3.By (15), ��(�) � �x� �x�(1��)=p2� for small �, and the correction termis the same regardless of the observed sample.Asymmetric least squaresIn the no-intercept linear regression modelyi = �xi + �i;let �̂ be selected to minimize (b) = X(yi � xib)2 + �X(yi � xib)2Iyi<xib= Xx2i (ri � b)2 + �X x2i (ri � b)2Iri<b; (19)



14 BARONwith ri = yi=xi. Additional weights assigned to squared residuals re
ect thehigher cost of overestimating � and overpredicting y.Suppose that ratios ri are enumerated in their increasing order, r1 � : : : �rn. For every k = 1; : : : ; n, consider k(b) = nXi=1 x2i (ri � b)2 + � kXi=1 x2i (ri � b)2;This function is minimized at�̂(k) = Pn1 x2i ri + �Pk1 x2i riPn1 x2i + �Pk1 x2i = R rd��(r)R d��(r) = E��(r);where the distribution �� puts masses8><>: Cx2i at ri; i > k;C(1 + �)x2i at ri; i � k:Thus �̂(k) has the Bayes-type form of ~�(k), and according to Theorem 1, theasymmetric least squares solution �̂ = �� can be found as the �xed point of�̂(k). Clearly, the case � = 0 gives the OLS solution.Change-point estimationIn a classical change-point problem, a sample of independent variables x =(X1; : : : ;Xn) is such that the distribution of Xj depends on whether j < � orj � �. One needs to estimate the change-point parameter �. Since a change-point has to be detected \as soon as possible", suppose that overestimationleads to a higher loss than underestimation.Further, assume a (continuous) uniform prior distribution of � over theinterval � = [0;n]. If the pre-change and the post-change densities or proba-bility mass functions f and g are mutually absolutely continuous, the standard



BARON 15Bayes rule under the squared-error loss has the form� = ��(0) = E(�jx) = Pnk=1 k�(k)Pnk=1 �(k) ; (20)where �(k) = f(X1) � : : : � f(Xk)=g(X1)= : : : =g(Xk) ([8]). Correction for anasymmetric loss is straightforward. According to (15), one obtains the optimaldecision rule under the loss function (2),��(�) = �� 0@Pn1 �(k)jk � �j+P[�]+11 �(k) + (f�g2 � 1) �([�] + 1)Pn1 �(k) � 121A�0@�2 � �2P[�]1 �(k) + f�g�([�] + 1)Pn1 �(k) 1A +O(�3);as �! 0, where � is given by (20), [�] and f�g denote its integer and fractionalparts, respectively (derivation is omitted).5 AppendixProof of Lemma 2. Suppose that there exist such � > 0 and a monotonesequence tj ! � that j~�(tj)� ~�(� )j > � for all j. Let� = minf � (~�(� )��);  �(~�(� ) + �)g �  �(~�(� )) > 0:If tj " � , then  tj(�) "  � (�), and  tj(~�(� ) � �) >  � (~�(� ) � �) � �=2 forsu�ciently large j. Then, since  tj(~��) �  � (~��) <  �(~�(� ) � �) � �=2, itfollows from convexity of  tj that it has a minimum on (~�(� )��; ~�(� ) + �),which contradicts to j~�(tj)� ~�(� )j > �.If tj # � , then  tj(~�(� )) �  tj(~�(tj)) �  � (~�(tj)) >  �(~�(� )) + �, and wehave a contradiction:  tj(~�(� )) 6!  �(~�(� )).



16 BARONHence, ~�(t) is continuous.Proof of Lemma 3. According to (12),Z (� � ��)d�(�) + � Z�<��(� � ��)d�(�) = 0:Di�erentiating implicitly, one obtainsd��(�)d� = �E�(� � ��)�1 + �P �f� < ��g :Notice that � = 0 corresponds to the symmetric square loss W � L, hence��(0) = �. Also,�E�(� � �)� = E� (�I�<�)� �E�I�<� = Cov(� ; I�<�); (21)and the �rst equality in (13) follows.Next, observe thatE(� � �)I�>� +E(� � �)I�<� = E(� � �) = 0; (22)and E(� � �)I�>� �E(� � �)I�<� = Ej� � �j: (23)Subtracting (23) from (22), one completes the proof.Proof of Lemma 4. For any t let �(t) denote a correlation coe�cient between� and I�<t under �. Then, similarly to (21), one obtains from (11)~�(t)� ��(0) = �Cov(�; I�<t)1 + �P � f� < tg= ��(t)��(�)qP � f� < tg (1� P � f� < tg)1 + �P � f� < tg :



BARON 17Clearly, ~�(t) � ��(0). Then, by Theorem 1, ��(�) maximizes j~�(t)� ��(0)j overall t, and j��(�)� ��(0)j � ���(�) max0�p�1 qp(1� p)1 + �p = ���(�)2p1 + �:Acknowledgment. The author is grateful to Professors A. L. Rukhin,R. J. Ser
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