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This paper addresses one of the most pressing open problems in project scheduling, 
namely how to incorporate uncertainty. Although Bayesian Networks (BNs) have 
recently been used to handle uncertainty in other relevant domains, the approach using 
BNs described here is completely novel and provides powerful analytical information 
for project managers. 
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Abstract 

Project scheduling inevitably involves uncertainty. The basic inputs (i.e. time, 

cost and resources for each activity) are not deterministic and are affected by 

various sources of uncertainty. Moreover, there is a causal relationship 

between these uncertainty sources and project parameters; this causality is not 

modelled in current state-of-the-art project planning techniques (such as 

simulation techniques). This paper introduces an approach, using Bayesian 

network modelling, that addresses both uncertainty and causality in project 

scheduling. Bayesian networks have been widely used in a range of decision-

support applications, but the application to project management is novel. The 

model presented empowers the traditional Critical Path Method (CPM) to 

handle uncertainty and also provides explanatory analysis to elicit, represent, 

and manage different sources of uncertainty in project planning. 
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1 Introduction 

Project planning is difficult because it inevitably involves uncertainty. Uncertainty in 

real-world projects arises from the following characteristics: 

• uniqueness (no similar experience) 

• variability (trade-off between performance measures like time, cost and 

quality)  

• ambiguity (lack of clarity, lack of data, lack of structure and bias in estimates)  

Many different techniques and tools have been developed to support better project 

scheduling, and these tools are used seriously by a large majority of project managers 

[Fox 1998, Pollack-Johnson 1998]. Yet, quantifying uncertainty is rarely prominent in 

these approaches.  

 

This paper focuses especially on the problem of handling uncertainty in project 

scheduling. Section 2 elaborates on the nature of uncertainty in project scheduling and 

summarises the current state-of-the-art. The proposed approach is to adapt one of the 

best-used scheduling techniques, Critical Path Method (CPM) [Kelly 1961], and 

incorporate it into an explicit uncertainty model (using Bayesian Networks). Thus, 

Section 3 summarises the basic CPM methodology and notation. Section 4 presents a 

brief introduction to Bayesian Networks, and describes how the CPM approach can be 

incorporated (using a simple illustrative example). Section 5 discusses a mechanism 

to implement the model in real-world projects. Section 6 suggests the way forward 

and possible future modifications. 
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2 The nature of uncertainty in project scheduling 

The project management body of knowledge [PMBOK 2004] identifies risk 

management as a key area:  

 

‘It includes the processes concerned with identifying, analyzing, and 

responding to project risk. It includes maximizing the results of positive events 

and minimizing the consequences of adverse events’.  

 

Central to risk management is the issue of handling uncertainty. [Ward and Chapman 

2003] argue that current project risk management processes induce a restricted focus 

on managing project uncertainty. They believe it is because the term ‘risk’ has 

become associated with ‘events’ rather than more general sources of significant 

uncertainty.  

 

In different project management processes there are different aspects of uncertainty. 

The focus of this paper is on uncertainty in project scheduling. The most obvious area 

of uncertainty here is in estimating duration for a particular activity. Difficulty in this 

estimation arises from a lack of knowledge of what is involved rather than from the 

uncertain consequences of potential threats or opportunities. This uncertainty arises 

from one or more of the following: 

• Level of available and required resource  

• Trade-off between resources and time 

• Possible occurrence of uncertain events (i.e. risks)  

• Causal factors and inter-dependencies between them including common casual 

factors that affect more than one activity (such as organizational issues) 
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• Lack of previous experience and use of subjective rather than objective data  

• Incomplete or imprecise data or lack of data at all 

• Uncertainty about the basis of subjective estimation (i.e. Bias in estimation) 

 

The best-known technique to support project scheduling is the Critical Path Method 

(CPM) (described in detail in Section 3). This technique, which is adapted by the 

most widely used project management software tools, is purely deterministic. It 

makes no attempt to handle or quantify uncertainty. However, a number of 

techniques such as Program Evaluation and Review Technique (PERT), Critical 

Chain Scheduling (CCS) and Monte Carlo Simulation (MCS) do as follows: 

 

• PERT [Malcom et al 1959, Miller 1962, Moder 1988] incorporates 

uncertainty in a restricted sense, by using a probability distribution for each 

task. Instead of having a single deterministic value, three different estimates 

(pessimistic, optimistic and most likely) are approximated. Then the ‘critical 

path’ and the start and finish date are calculated by use of distributions’ 

means and applying probability rules. Results in PERT are more realistic 

than CPM but PERT does not address explicitly any of the sources of 

uncertainty listed above. 

 

• Critical Chain (CC) Scheduling is based on Goldratt’s Theory of Constraints 

(TOC) [Goldratt 1997]. For minimizing the impact of Parkinson’s Law (jobs 

expand to fill the allocated time), CC uses a 50% confidence interval for each 

task in project scheduling. The safety time (remaining 50%) associated with 

each task is shifted to the end of the critical chain (longest chain) to form the 
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project buffer. Although it is claimed that the CC approach is the most 

important breakthrough in project management history, its over-simplicity is 

a concern for many companies who do not understand both the strength and 

weakness of CC and apply it regardless of their particular and unique 

circumstances [Pinto 1999]. The assumption that all task durations are 

overestimated by a certain factor is questionable and the main issue is: How 

does the project manager determine the safety time? [Raz  et all 2003]. CC 

relies on a fixed, right-skewed probability for activities, that may be 

inappropriate [Herroelen 2001] and a sound estimation of project and activity 

duration (and consequently the buffer size) is still essential [Trietsch 2005].  

 

• Monte Carlo Simulation (MCS) was first proposed for project scheduling in 

the early 1960s [Van Slyke 1963] and implemented in the 1980s  [Fishman 

1986]. In the 1990s because of improvements in computer technology, MCS 

rapidly became the dominant technique for handling uncertainty in project 

scheduling [Cook 2001]. A survey by the Project Management Institute [PMI 

1999] showed that nearly 20% of project management software packages 

support MCS. For example, PertMaster[PertMaster 2006] accepts scheduling 

data from tools like MS-Project and Primavera and incorporates MCS to 

provide project risk analysis in time and cost. However, the Monte Carlo 

approach has attracted some criticism. [Van Dorp and Duffey 1999] explain 

the weakness of Monte Carlo simulation, in assuming statistical 

independence of activity duration in a project network. Moreover, being 

event-oriented (assuming project risks as ‘independent events’), MCS and the 

tools that implement it do not identify the sources of uncertainty. 
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 As argued in [Ward and Chapman 2003] managing uncertainty in projects is not just 

about managing perceived threats, opportunities and their implication. A proper 

uncertainty management provides: identifying various sources of uncertainty, 

understanding the origins of them, and then managing them to deal with desirable or 

undesirable implications.  

Capturing uncertainty in projects ‘needs to go beyond variability and available data. It 

needs to address ambiguity and incorporate structure and knowledge’ [Chapman and 

Wards 2000]. In order to measure and analyse uncertainty properly, we need to model 

relations between trigger (source), risk and impacts (consequences). Because projects 

are usually one-off experiences, their uncertainty is epistemic (i.e. related to a lack of 

complete knowledge) rather than aleatoric (i.e. related to randomness). The duration 

of a task is uncertain because there is no similar experience before, so data is 

incomplete and suffers from imprecision and inaccuracy. The Estimation of this sort 

of uncertainty is mostly subjective and based on estimator judgment. Any estimation 

is conditionally dependent on some assumptions and conditions even if they are not 

mentioned explicitly. These assumptions and conditions are major sources of 

uncertainty and need to be addressed and handled explicitly.  

The most well established approach to handling uncertainty in these circumstances is 

Bayesian approach [Goldstein 2006, Efron 2004]. Where complex causal relationship 

are involved, the Bayesian approach is extended by using of Bayesian Networks. The 

challenge is to incorporate the CPM approach into Bayesian Networks.. 
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3 CPM methodology and notation 

CPM [Moder 1988] is a deterministic technique that, by use of a network of 

dependencies between tasks and given deterministic values for task durations, 

calculates the longest path in the network called the ‘critical path’. The length of the 

‘Critical Path’ is the earliest time for project completion. The critical path can be 

identified by determining the following parameters for each activity: 

 

D - Duration 

ES - earliest start time 

EF - earliest finish time 

LF - latest finish time 

LS - latest start time 

  

The earliest start and finish times of each activity are determined by working forward 

through the network and determining the earliest time at which an activity can start 

and finish considering its predecessor activities. For each activity j: 

 

ESj = Max [ESi + Di ; over predecessor activities i]  

EFj =ESj+ Dj 

 

The latest start and finish times are the latest times that an activity can start and finish 

without delaying the project and are found by working backward through the network. 

For each activity i: 

 

LFi = Min [LFj – Dj ; over successor activities j] 
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LSi= LFi – Di 

The activity's ‘Total Float’ (TF) (i.e. the amount that the activity’s duration can be 

increased without increasing the overall project completion time) is the difference in 

the latest and earliest finish of each activity. A critical activity is one with no TF and 

should receive special attention (delay in a critical activity will delay the whole 

project). The critical path then is the path(s) through the network whose activities’ 

have minimal TF. 

 

The CPM approach is very simple and provides very useful and fundamental 

information about a project and its activities’ schedule. However, because of its’ 

single point estimate assumption it is too simplistic to be used in real complex 

projects. The challenge is to incorporate the inevitable uncertainty. 

4 Proposed BN solution 

Bayesian Networks (BNs) are recognised as a mature formalism for handling causality 

and uncertainty [Heckerman et al 1995]. This section provides a brief overview of 

BNs and describes a new approach for scheduling project activities in which CPM 

parameters (i.e. ES, EF, LS and LF) are determined in a BN.  

4.1 Bayesian Networks: An overview 

Bayesian Networks (also known as Belief Networks, Causal Probabilistic Networks, 

Causal Nets, Graphical Probability Networks, Probabilistic Cause-Effect Models, and 

Probabilistic Influence Diagrams) provide decision-support for a wide range of 

problems involving uncertainty and probabilistic reasoning.  Examples of real-world 

applications can be found in [Heckerman et al 1995, Fenton et al 2002, Neil et al 

2001]. A BN is a directed graph, together with an associated set of probability tables.   
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The graph consists of nodes and arcs. Figure 1 shows a very simple BN that models 

the cause of delay in a particular task in a project. The nodes represent uncertain 

variables, which may or may not be observable. Each node has a set of states (e.g. ‘on 

time’ and ‘late’ for ‘Sub-contract’ node). The arcs represent causal or influential 

relationships between variables. (e.g. ‘Sub-contract’ and ‘Staff Experience’ may cause 

‘Delay in Task’). There is a probability table for each node, providing the 

probabilities of each state of the variable. For variables without parents (called ‘prior’ 

nodes) the table just contains the marginal probabilities. (e.g. for ‘Sub-contract’ node 

P(‘On-time’)=0.95 and P(‘late’)=0.05). This is also called ‘prior distribution’ that 

represents the prior belief (state of knowledge) about the variable.  For each variable 

with parents, the probability table has conditional probabilities for each combination 

of the parents states (see, for example, the probability table for ‘Delay in Task’ in 

Figure 1). This is also called ‘likelihood function’ that represents how likely is a state 

of a variable given a particular states of its parent. 

 

 
On time 0.95 

Late 0.05 
 
 

 
Sub-contract On time Late 

Staff Exp. High Low High Low 
Yes 0.95 0.7 0.7 0.01 Delay No 0.05 0.3 0.3 0.99  

 
High 0.7 
Low 0.3  

Figure 1  A  Bayesian Network contains nodes, arcs and probability table 
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The main use of BNs is in situations that require statistical inference. In addition to 

statements about the probabilities of events, the user knows some evidence (i.e. some 

variable states or events that have actually been observed), and wishes to infer the 

probabilities of other variables, which have not as yet been observed. These observed 

values represent a posterior probability, and by applying Bayes rule in each affected 

node, they can influence other BN nodes via propagation, modifying the probability 

distributions. For example, the probability that the task finishes on time, with no 

observation, is 0.855 (Figure 2a). However if we know that the sub-contractor has 

failed to deliver on time, this probability updates to 0.49 (Figure 2b). 

 

a) P(Task =on time)=0.855 b) P(Task =on time)=0.49 
Figure 2 New evidence updates the probability 

 

The key benefits of BNs that make them highly suitable for the project planning 

domain are that they: 

• Explicitly quantify uncertainty and model the causal relation between variables 

• Enable reasoning from effect to cause as well as from cause to effect 

(propagation is both ‘forward’ and ‘backward’) 

• Make it possible to overturn previous beliefs in the light of new data  

• Make predictions with incomplete data 

• Combine subjective and objective data 
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• Enable users to arrive at decisions that are based on visible auditable reasoning 

 

BNs, as a tool for decision support, have been deployed in domains ranging from 

medicine to politics. BNs potentially address many of the ‘uncertainty’ issues raised 

in Section 2. In particular, incorporating CPM-style scheduling into a BN framework 

makes it possible to properly handle uncertainty in project scheduling. 

 

There are numerous commercial tools that enable users to build BN models and run 

the propagation calculations. With such tools it is possible to perform fast propagation 

in large BNs (with hundreds of nodes). In this work we have used [AgenaRisk 2006], 

which is especially well-suited to this kind of application because it is the only BN 

tool that can properly handle continuous variables (as opposed to just discrete).  

4.2 BN for Activity Duration 

 
 

Figure 3 Bayesian Network for Activity Duration 
 

 
Figure 3 shows a prototype BN that we have built to model uncertainty sources and 

their affects on duration of a particular activity. The model contains variables that 
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capture the uncertain nature of activity duration. ‘Initial Duration Estimation’ is the 

first estimation of the activity’s duration; it is estimated based on historical data, 

previous experience or simply expert judgement. ‘Resources’ incorporates any 

affecting factor that can increase or decrease the activity duration. It is a ranked node, 

which for simplicity here is restricted to three levels: low, average and high. The level 

of resources can be inferred from so called ‘indicator’ nodes. Hence, the causal link is 

from the ‘resources’ to directly observable indicator values like the ‘cost’, the 

experience of available ‘people’  and the level of available ‘technology’. There are 

many alternative indicators. An important and novel aspect of this approach is to 

allow the model to be adapted to use whichever indicators are available.  

 

The power of this model is better understood by showing the results of running it 

under various scenarios. It is possible to enter observations anywhere in the model to 

perform not just predictions but also many types of trade-off and explanatory analysis. 

So, for example, we can enter observations for ‘Initial Duration Estimation’ and 

‘Resources’ and let the model show the distributions for ‘duration’. Figure 4 shows 

how the distribution of the activity duration whose initial estimation is five days, 

changes when the level of its available resources changes from ‘Low’ to ‘High’. (All 

the subsequent figures are outputs from the AgenaRisk software). 
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Figure 4 Probability distribution for ‘Duration’  (days) changes when the level of ‘Resources’ changes 
  
 

Another possible analysis in this model is the trade-off analysis between ‘Duration’ 

and ‘Resources’ when there is a time constraint for activity duration and we are 

interested to know about the level of required resource. For example, consider an 

activity whose initial duration is estimated as five days but which must be finished in 

three days. Figure 5 shows the probability distribution of required resources to meet 

this duration constraint. Note how it is highly skewed toward ‘high’. 
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Figure 5 Level of required ‘Resources’ when there is a constraint on ‘Duration’ 
 
 

4.3 Mapping CPM to BN 

As described in Section 3, the main components of CPM networks are activities. 

Activities are linked together to represent dependencies. In order to map a CPM 

network to a BN we first need to map a single activity. Each of the activity parameters 

identified in Section 3 are represented as a variable (node) in the BN. 

 Figure 6 shows a schematic model of the BN fragment associated with an activity. It 

clearly shows the relation between the activity parameters and also the relation with 

predecessor and successor activities. 
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ES

D

EFLF

LS

Predecessor
Activities

Successor
Activities

Successors

Predecessors

Duration 
Model

 

Figure 6 Schematic of BN for an activity 
 
 
The next step is to define the connecting link between dependent activities. The 

forward pass method in CPM is mapped as a link between EF of each activity to ES of 

the successor activities. The backward pass method in CPM is mapped as a link 

between LS of each activity to LF of the predecessor activities. 

 

4.4 Example 

The following illustrates this mapping process. The example is deliberately very 

simple to avoid extra complexity in the BN. How the approach can be used in real-

size projects is discussed in section 5. 

Consider a small project with five activities A, B, C, D and E. The Activity on Arc 

(AOA) network of the project is shown in Figure 7.  
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A(5) 

B(4) D(2)

C(10) E(5)

 

Figure 7 CPM network  
 
The results of the CPM calculation is summarized in Table 1. Activities A, C and E 

with TF=0 are critical and the overall project takes 20 days (i.e. earliest finish of ‘E’). 

 

Activity D ES EF LS LF TF 

A 5 0 5 0 5 0 

B 4 5 9 9 13 4 

C 10 5 15 5 15 0 

D 2 9 11 13 15 4 

E 5 15 20 15 20 0 
 

Table 1 Activities’ time (days) and summary of CPM calculations  
 

Figure 8 shows the full BN representation of the above example. Each activity has 5 

associated nodes. Forward pass calculation of CPM is done through connection 

between ES and EF. Activity ‘A’, the first activity of the project, has no predecessor, 

so its ES is set to zero. ‘A’ is predecessor for ‘B’ and ‘C’ so EF of ‘A’ is linked to ES 

of ‘B’ and ‘C’. EF of ‘B’ is linked to ES of its successor, ‘D’. And finally EF of ‘C’ 

and ‘D’ are connected to ES of ‘E’. In fact ES of ‘E’ is the maximum of EF of ‘C’ and 

‘D’. EF of ‘E’ is the earliest time for project completion time. 
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Figure 8 Overview of BN for example (1) 

 

The same approach is used for backward CPM calculation connecting LF and LS. 

Activity ‘E’ is the last activity of the project and has no successor, so its LF is set to 

EF. ‘E’ is successor of ‘C’ and ‘D’ so LS of ‘E’ is linked to LF of ‘C’ and ‘D’. LS of 

‘D’ is linked to LF of its predecessor ‘B’. And finally LS of ‘B’ and ‘C’ are linked to 

LF of ‘A’. LF of ‘A’ is the minimum of LS of ‘B’ and ‘C’. 
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For simplicity in this example, it is assumed that activities ‘A’ and ‘E’ are more risky 

and need more detailed analysis. For all other activities the uncertainty about 

‘duration’ is expressed simply by a normal distribution. 

4.5 Results 

This section explores different scenarios of the BN model in Figure 8. The main 

objective is to predict project completion time (i.e. the earliest finish of E) in such a 

way that it fully characterises uncertainty.   

Suppose the initial estimation of activities’ duration is the same as Table 1. Suppose 

the resource level for ‘A’ and ‘E’ is ‘medium’. If the earliest start of ‘A’ is set to zero, 

the distribution for project completion is shown in Figure 9a. The distribution’s mean 

is 20 days as was expected from the CPM analysis. However, unlike CPM the 

prediction is not a single point and its variance is 4. Figure 9b illustrates the 

cumulative distribution of finishing time, which shows the probability of completing 

the project before a given time. For example, with probability of 90% the project will 

finish in 22 days.  

 

a) Probability Distribution b) Cumulative Distribution 

 
Figure 9 Distribution of project completion (days) for main Scenario in example (1) 

 
 



 20

 

 
In addition to this baseline scenario, by entering various evidence (observations) to 

the model, it is possible to analyse the project schedule from different aspects. For 

example, one scenario is to see how changing the resource level affects the project 

completion time.  

Figure 10 compares the distributions for project completion time as the level of 

people’s experience changes. When the experience of people changes from ‘low’ to 

‘high’ the mean of finishing time changes from 22.7 days to 19.5 days and the 90% 

confidence interval changes from 26.3 days to 22.9 days. 

 

a) Probability b) Cumulative 

 
Figure 10 Change in project time distribution (days) when level of people’s experience changes  

 
 

Another useful analysis is when there is a constraint on project completion time and 

we want to know how much resource is needed. Figure 11 illustrates this trade-off 

between project time and required resources. If the project needs to be completed in 

18 days (instead of the baseline 20 days) then the resource required for ‘A’ most 

likely must be ‘high’; if the project completion is set to 22, the resource level for ‘A’ 

moves significantly in the direction of  ‘low’. 
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Figure 11 Probability of required resource changes when the time constraint changes 
 
 
The next scenario investigates the impact of risk in activity ‘A’ on the project 

completion time as it is shown in Figure 12. When there is a risk in activity ‘A’, the 

mean of the distribution for project completion time changes from 19.9 to 22.6 and 

the 90% confidence interval changes from 22.5 days to 25.3 days. 

 

a) Probability b) Cumulative 

 
Figure 12 The impact of occurring risk in activity A on the project completion time 

 
 

One of important advantage of BNs is their potential for parameter learning, which is 

shown in the next scenario. Imagine activity ‘A’ actually finishes in 7 days even 
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though it was originally estimated as 5 days. Because activity ‘A’ has taken more time 

than it was expected, the level of resources has probably not been sufficient. 

By entering this observation the model gives the probability of resource for activity 

‘A’ as illustrated in Figure 13. This can update our belief about the actual level of 

available resources.  

 

 

 
Figure 13 Learnt Probability Distribution ‘Resource’ when the actual duration is 7 days  

 
 

Assuming both activities ‘A’ and ‘E’ use the same resources (e.g. people), the updated 

knowledge about the level of available resource from ‘A’ (which is finished) can be 

entered as evidence in ‘Resource’ for activity ‘E’ (which is not started yet) and 

consequently updates the project completion time.  

Figure 14 shows the distributions of completion time when the level of available 

resource of ‘E’ is learned from the actual duration of activity ‘A’. 
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a) Probability graph b) Cumulative graph 

 
Figure 14 completion time (days) based on learned parameters compare with baseline scenario  

 
 

Another application of parameter learning in these models is the ability to incorporate 

and learn about bias in estimation. So if there are several observations in which actual 

task completion times are underestimated the model learns that this may be due to 

bias rather than unforeseen risks and this information will inform subsequent 

predictions. Work on this type of  application (called ‘Dynamic Learning’), is still in 

progress and can be a possible way of extending the BN version of CPM.  

 

5 Object Oriented Bayesian Network (OOBN) 

It is clear from Figure 8 that even simple CPM networks leads to a fairly large BNs. 

In real-sized projects with several activities, constructing the network needs a huge 

effort, which is not effective especially for users without much experience in BNs.  

However, this complexity can be handled using the so-called Object Oriented 

Bayesian Network (OOBN) approach [Koller and Pfeffer 1997]. This approach,  

analogous to the Object-oriented programming languages, supports a natural 

framework for abstraction and refinement, which allows complex domains to be 

described in terms of inter-related objects.  
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The basic element in OOBN is an object; an entity with identity, state and behavior. 

An object has some set of attributes each of which is an object. Each object is 

assigned to a class. Classes provide the ability to describe a general, reusable network 

that can be used in different instances. A class in OOBN is a BN fragment. 

The proposed model has a highly repetitive structure and fits the Object Oriented 

framework perfectly. The internal parts of the activity subnet (Figure 6) are 

encapsulated within the activity class as shown in Figure 15. 

 

 

Figure 15 Activity class encapsulates internal parts of network 
 

Classes can be used as libraries and combined into a model as needed. By connecting 

inter-related objects, complex network with several dozen nodes can be constructed 

easily. Figure 16 shows the OOBN model for the example presented in section 4.4.  
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Figure 16 OO model for the presented example 
 
 

The OOBN approach can also significantly improve the performance of inference in 

the model. Although a full discussion of the OOBN approach to this particular 

problem is beyond the scope of this paper, the key point to note is that there is an 

existing mechanism (and implementation of it) that enables  the proposed solution to 

be genuinely ‘scaled-up’ to real-world projects. Moreover, AgenaRisk is one of the 

few BN tools that implements the OOBN solution and research is emerging [Agena 

2006] to develop the new generation of BNs tools that support OOBN concept both in 

constructing large-scale models and also in propagation aspects. 

 

6 Conclusions and way forward 

Handling risk and uncertainty is increasingly seen as a crucial component of project 

management and planning. One classic problem is how to incorporate uncertainty in 

project scheduling. Despite the availability of different approaches and tools, the 
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dilemma is still challenging. Most current techniques for handling risk and uncertainty 

in project scheduling (simulation based techniques) are often event-oriented and try to 

model the impact of possible ‘threats’ on project performance. They ignore the source 

of uncertainty and the causal relations between project parameters. More advanced 

techniques are required to capture different aspects of uncertainty in projects.  

 

This paper has proposed a new approach that makes it possible to incorporate risk, 

uncertainty and causality in project scheduling. Specifically, we have shown how a 

Bayesian Network model can be generated from a project’s CPM network. Part of this 

process is automatic and part involves identifying specific risks (which may be 

common to many activities) and resource indicators. The approach brings the full 

weight and power of BN analysis to bear on the problem of project scheduling.  This 

makes it possible to:  

 

• Capture different sources of uncertainty and use them to inform project 

scheduling.  

• Express uncertainty about completion time for each activity and the whole 

project with full probability distributions 

• Model the ‘trade-off’ between ‘time’ and ‘resources’ in project activities 

• Use ‘what-if?’ analysis for finding the level of required resources given 

constraints like, for example, a specific completion time 

• Learn from data so that predictions become more relevant and accurate  

 

The application of the approach was explained by use of a simple example. In order to 

scale this up to real projects with many activities the approach must be extended to 
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use the so-called Object Oriented BNs. There is ongoing work to accommodate such 

object oriented modelling so that building a BN version of CPM is just as simple as 

building a basic CPM model. 

 

Other extensions to the work described here include:  

 

• Incorporating additional uncertainty sources in the duration network 

• Handling dynamic parameter learning as more information becomes available 

when project progresses 

• Handling common causal risks which affect more than one activity 

• Handling management action when the project is behind its plan 
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